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Abstract

Digital monitoring of physiological signals can allow computer systems
to adapt unobtrusively to users, so as to enhance personalised ‘smart’
interactions. In recent years, physiological computing has grown as
a research field, and it is increasingly considered in diverse applica-
tions, ranging from specialised work contexts to consumer electronics.
Working in this emerging field requires comprehension of several phys-
iological signals, psychophysiological states or ‘indices’, and analysis
techniques. The resulting literature encompasses a complex array of
knowledge and techniques, presenting a clear challenge to the practi-
tioner.

We provide a foundational review of the field of psychophysiology to
serve as a primer for the novice, enabling rapid familiarisation with the
core concepts, or as a quick-reference resource for advanced readers. We
place special emphasis on everyday human–computer interface applica-
tions, drawing a distinction from clinical or sports applications, which
are more commonplace. The review provides a framework of commonly
understood terms associated with experiential constructs and physio-
logical signals. Then, 12 short and precisely focused review chapters de-
scribe 10 individual signals or signal sources and present two technical
discussions of online data fusion and processing. A systematic review of
multimodal studies is provided in the form of a reference table. We con-
clude with a general discussion of the application of psychophysiology
to human–computer interaction, including guidelines and challenges.
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Interaction, vol. 9, no. 3-4, pp. 151–308, 2015.
DOI: 10.1561/1100000065.



1
Introduction

The psychophysiological method uses measurements of physiology to
form inferences about states of mind. The aim is to extract quantitative
indices of essentially qualitative cognitive or affective states. Because
the method does not impose restrictions on the physiological signals
that are measurement sources, it has an extensive area of possible focus.
Since the measurements are quantitative while cognitive and affective
states are qualitative, there is an issue of establishing ground truth, and
the choice of psychological model becomes important. Clearly, there are
enormous challenges. Among the ways of addressing these challenges
are accounting for the context of the individual during the recording
and using multimodal data. However, the primary requirement is an
effective working knowledge of the range of relevant signals and their
application.

Human–computer interaction (HCI) is one domain wherein the psy-
chophysiological method can be efficiently applied. In this application,
human-facing software accesses psychophysiological indices from its
user(s) in order to adapt via some internal logic and, for example, al-
ter the information display so as to enhance the cognitive ergonomics.
The vision is that, in conjunction with ‘smart’ software, the human
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Figure 1.1: An example of an ambulatory psychophysiological set-up with an EEG
amplifier plus mobile and fixed devices. Image reproduced with permission from
Neuroelectrics SLU (Barcelona, Spain).

user performs the tasks that humans carry out best and is aided by
software that automates other types of tasks.

As in other psychophysiology applications, such as clinical or sports
uses, it is important to link the task and environment context with
physiology signals such that user-facing systems, systems in the envi-
ronment, and sensors all contribute to the same end, as illustrated in
Figure 1.1.
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We present a reference guide and primer to the concepts and meth-
ods of psychophysiology, along with its uses in HCI, thereby enabling
rapid familiarisation with the core concepts across a broad swath of the
field of psychophysiology in HCI. Although this field is very broad, tak-
ing an essentially practical approach enables us to present a relatively
comprehensive overview of the relevant topics.

Our focus constrains the psychophysiological technology that we
consider here, as we are concerned with only those devices that are
lightweight, wearable or remotely operable, and application-ready. This
rules out room-sized sensors, such as the ones utilised in functional
magnetic resonance imaging.

Overview Section 1.1 briefly describes prior reviews of psychophysi-
ology in HCI, after which the following organisation is used:

• 2: Definitions: the terminology necessary for understanding sig-
nals and associated metrics with which one may index psycholog-
ical states

• 3: The state of the art: description of each of the most commonly
used signals or methods, in turn, in sections 3.1 to 3.10, then
sections 3.11 and 3.12, which focus on signal fusion, from both a
theoretical and a practical perspective

• 4: An overview and reference to guide users of psychophysiology,
including a reference table summarising prior work, along with
sections on generic application areas for psychophysiology in HCI
(4.1) and general guidelines for use, which also serve as a practical
reference for putting the information in this primer to use (4.2)

• 5: Concluding remarks on the complexities and limitations of
psychophysiology, with an introduction to the subtle challenges
posed by more complicated issues of theory and epistemology,
such as choice of interpretive model
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1.1 Related reviews

The foundational text for the field of psychophysiology is arguably the
Handbook of Psychophysiology (Cacioppo et al., 2000), a comprehensive
reference covering the underlying scientific disciplines. With more than
1,000 pages, this comprehensive handbook cements many principles
and covers a wide range of subjects, such as developmental, clinical,
and environmental psychophysiology. The range of topics extends well
beyond HCI, in fact, hence falling beyond the scope of our interest.

A reference book with a more applied orientation is Engineering
Psychophysiology (Backs and Boucsein, 2000), which proceeds from
engineering psychology and ergonomics. Research in these fields can be
considered to be closer to our scope. The first part of the book reviews
issues such as methodological considerations, theoretical issues, signal
processing, and recording methods, whilst the application part reports
on a mixture of laboratory and realistic studies, thereby demonstrating
a relevant gap to the application of psychophysiology in the real world.

In HCI, psychophysiology has been gaining ground as both a
method for studying user experience and a technique to be incorpo-
rated into interactive systems. Particularly instrumental for the lat-
ter has been the introduction of physiological computing as a field in
which human physiological data act as system input in real time (Al-
lanson and Fairclough, 2004). Early reviews of physiological comput-
ing highlighted the complexity of psychophysiological inference and its
validation (Park, 2009), alongside challenges in representing the psy-
chophysiological state of the user (Dirican and Göktürk, 2011), design-
ing explicit and implicit interventions in the bio-cybernetic loop, and
ethics implications (Fairclough, 2009b). Recently, several books (Fair-
clough and Gilleade, 2014) and special issues of journals (Silva et al.,
2015; Jacucci et al., 2015) have reported on advances in physiological
computing for HCI.

Several reviews have covered some portion of the research corpus
on the application of psychophysiology in HCI. Psychophysiology, along
with multimodal techniques, has been gaining attention in the field of
Affective Computing, as evidenced in recent reviews (D’mello and Kory,
2015; Lopatovska and Arapakis, 2011; D’Mello and Kory, 2012; Zeng
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et al., 2009). Usually these are high-level reviews considering how fusing
and combining modalities is possible in detection of emotions, and they
seldom go into the details of each signal or metric (Calvo and D’Mello,
2010). Ravaja (2004) described the literature on the application of psy-
chophysiology in Media Psychology research, while Kivikangas et al.
(2011) created a review for computer-game research.

Furthermore, specific topics have inspired recent reviews. Cowley
(2015), for instance, undertook a preliminary review of the use of psy-
chophysiology to assess states of high-level cognition, a new and promis-
ing area of study, which is typically associated with decision-making,
problem-solving, and executive control of cognition and action. Novak
et al. (2012) compiled a detailed review of data-fusion applications (the
source for Tables 2.1, 2.2, and 4.1). Other, partially overlapping reviews
include those by Lisetti and Nasoz (2004) and by Jerritta et al. (2011),
which briefly summarise previous applications in emotion recognition
and affective computing. Another high-level review, by Brouwer et al.
(2015), focuses on the most successful applications, warning about some
pitfalls and providing recommendations.

In light of the above, there is a clear absence of a reference article
geared for HCI that could serve as a compact guide for researchers of
various backgrounds.



2
Definitions

This chapter defines psychological and biological terms, signals, and
associated quantitative metrics. The terms listed below are defined for
the scope of this review alone – i.e., they apply to human psychophysi-
ology in computer interactions1. Section 3.12 provides a more detailed
picture of signal processing concepts.

• Sensor : a physical device for the measurement of signals from
physical systems – in our case, people. Examples are electrodes,
cameras, and accelerometers.

• Signal: a real-time data stream supplied by a sensor.

• Cognitive/affective state: any interesting aspect of the user’s state
that can be interpreted from the user’s physiology and thus mea-
sured by sensors (e.g., emotion or cognition).

1Our terms are intended to follow the literature as closely as possible, but vari-
ation across sources renders it impossible to offer definitions that are both unique
and universal. For the interested reader, some reference texts (Cacioppo et al., 2000)
are more foundational than others.
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• Metric: a quantitative feature of a signal, such as heart rate de-
rived from a cardiogram by measurement of the number of heart
beats (R-peaks) within a given time window.

• Index (pl. indices): a scalar representing a cognitive state, built
from one or more metrics. An index is, in essence, a model of the
user’s cognitive/affective state, so the usual issues that accompany
modelling, such as ground truth and goodness of fit, are pertinent.

• Client: any external application that accesses the psychophysiol-
ogy data after the primary processing is carried out.

• Processing element: an atomic unit utilised for performing com-
putations on the incoming signal within a system.

• Classifier : a statistical algorithm that separates the multidimen-
sional space of one or more metrics into two or more regions,
corresponding to an index or indices. For psychophysiology, a
classifier is usually supervised; it is trained on data pre-labelled
with indices from some model – for instance, the valence/arousal
emotional circumplex (see Figure 2.1).

• System: an integrated set of hardware and software employed to
manage one or more sensors, derive metrics from signals, and
transform metrics to indices for transmission to clients. Details
on technical aspects are given in section 3.12, below.

The next step is to define the signals covered in Table 2.1 and the
metrics in Table 2.2, which are reviewed in the sections below on the
state of the art. After chapter 3 is an overview of the indices. Provided
in Table 4.1, this serves as a ready reference. It should be borne in
mind that the signals described in Table 2.1 can be used either to infer
one or more psychological indices or for using the signals for control
or feedback, as discussed in section 4.1. That discussion is followed by
articulation of a general approach to selecting signals and metrics when
one is starting to work in the realm of psychophysiology, in section 4.2.

Features extracted from the signals determine the inferences that
one can draw about the underlying psychological process; therefore,
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Figure 2.1: The simple emotional circumplex model, with orthogonal bipolar di-
mensions of arousal (from alert to lethargic) and valence (pleasant to unpleasant).

the choice of features is highly important. Feature extraction is a rich
topic, largely beyond the scope of this paper, but a brief indication
of feature classes is given in Table 2.2. In the text and table, we refer
only to metrics, because a) we thereby represent only features that are
canonical in the literature (i.e., are associated with specific states of the
individual and hence have a well-defined interpretation) and, b) techni-
cally, a feature is a single, strictly defined calculation formula, whereas
we deal with classes of features, in which many possible formulae can
correspond to a single metric (e.g., heart rate variability can refer to
the standard deviation of normal peaks (SDNN) or to the root mean
square of successive differences (rMSSD)).

The review method The following method was applied for creation of
these tables. We searched for recent papers surveying the literature on
cognitive- and affective-state detection via psychophysiology, and then
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we selected two works that listed previous literature in a schematic and
concise manner (Novak et al., 2012; Jerritta et al., 2011). The review
by Novak et al. (2012) was found to cover all the indices mentioned by
Jerritta et al. (2011); accordingly, all papers mentioned in the review
section of Novak et al. (2012)’s work were considered. Via University of
Helsinki library resources, 47 of the 54 relevant papers were accessible
and downloaded. To create Tables 2.1 and 2.2, we noted, for each paper,

• which metrics were used for the ‘final’ classification2 and

• from which signal each metric was computed.

This systematically derived ‘scoping review’ provided the seed for
the rest of the process. From the complete set of signals yielded by
the scoping review, we selected a subset in line with the constraints
of our motivating application. Firstly, we chose only those signals that
either already are or should in the foreseeable future be recordable
with lightweight off-the-shelf sensors appropriate for real-world HCI
applications. Secondly, the signals chosen were known to be tried and
tested across a substantial body of literature, and, in consequence, they
are ‘practical’ choices for the novice and advanced user alike.

This subset is reviewed in the first 10 sections on state-of-the-art
uses, below, and its elements are listed in Tables 2.1 and 2.2, above
the dashed horizontal line. Below that line, in brackets, are signals
that have been used in an HCI setting at least once but either are
not biological in nature or lack sufficient support in the literature to
merit a separate section. As with signals, metrics that were not widely
used in HCI (and are not discussed in detail in this paper) are listed
toward the bottom of the metric table (again, in brackets). These out-
of-scope signals and metrics are included for completeness, and hence
are cross-referenced in Table 4.1 for all mentions in the literature.

Finally, Table 4.1 groups all indices listed in the 47 papers into
categories on the basis of the exact word used to define the respective
index (e.g., ‘stress’). Items that were denoted with different words but

2Metrics were denoted on the basis of the procedure followed to compute them
(e.g., if the metric was called ‘GSR’ but was recorded via the conductance method
and computed for the phasic component, we labelled it ‘SCR’).
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based on very similar phenomena are placed in the same group – i.e.,
considered the same index (e.g., papers that indexed ‘Cognitive effort’
or ‘Mental workload’ are listed under ‘Cognitive load’). Indices are
cross-referenced with the section(s) in which they are discussed, and
key reference citations are given for each index.

Table 2.1: List of signals in order of appearance in chapter 3
Signals not reviewed are in brackets; some are mainly behavioural in nature and
hence out of scope. Those below the dashed line are used mostly in the medical
domain and have poor usability for HCI.

Signal Description Section

ECG Electrocardiogram 3.1
PPG Photoplethysmography 3.1, 3.9
EDA Electrodermal Activity (also known as

Skin Conductance or Galvanic Skin
Response)

3.2

RESP Respiration (e.g., chest plethysmography) 3.1, 3.3, 3.9
EMG Electromyography 3.4
EEG Electroencephalography, also the source

of event-related potentials (ERPs)
3.5, 3.6

VOG Video-oculography (eye tracking) 3.7, 3.8
EOG Electro-oculography 3.8
VID Video-based posture/facial recognition 3.9
SPEECH Speech recorded via microphone(s) 3.10
(ACL) Accelerometer(s)
(BEHAV) Behavioural data collected from device

usage (e.g., mouse movements or driving
controls)

(TOT) Time-on-task
(CO2) Capnography
(HSOUND) Heart sound
(ICG) Impedance cardiogram
(PRS) Pressure (e.g., via piezoelectric sensors)
(SMM) Sphygmomanometer (incl. proprietary

tech such as Vasotrac)
(TEMP) Thermometer (e.g., on finger or arm)
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3
The state of the art

The discussion of the state of the art is arranged on the basis of three
themes: internal signals1, including those from the autonomic nervous
system (ANS) and the central nervous system (CNS); external signals2,
encompassing the ocular system and remote recording of video and
audio; and combined signals, including multimodal measurement and
online processing of multiple signals. This thematic structure presents
the signals roughly in order by increasing complexity of the topic, from
the perspective of a novice to the field3. For internal signals, the order
is approximately in line with the spectrum of signal sources from auto-
nomic to more volitional, with most signals obtained by amplification
from skin-contact electrodes. External signals, though promising, are,
in general, slightly less mature or field-ready than their internal coun-
terparts, and signal recording technologies show mixed results. The
complete list of topics dealt with is as follows:

1Defined as circumspect signals traditionally recorded with skin-contact sensors.
2Defined as remotely detectable signals recorded with non-contact sensors.
3Complexity of the topic is a matter distinct from the complexity of the physio-

logical signal source; for a review of physiology, see the Handbook of Psychophysiology
(Cacioppo et al., 2000).
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Internal signals
Autonomic nervous system

• 3.1: Cardiovascular system

• 3.2: Skin conductance

• 3.3: Respiration

• 3.4: Electromyography

Central nervous system

• 3.5: Oscillatory electroencephalography

• 3.6: Event-related electroencephalography

External signals
Ocular system

• 3.7: Pupillometry

• 3.8: Eye tracking

Remote signals

• 3.9: Video

• 3.10: Audio (voice)

Combined signals

• 3.11: Multimodal signal classification

• 3.12: Online processing of multiple signal sources

The aim with this paper is not to describe technical requirements of
the psychophysiological method, such as signal processing concerns, se-
lection of sensor equipment, or machine learning for inference-building.
However, for completeness, brief reference to works on these topics is
provided in each section.
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3.1 Cardiovascular signals

The heart is innervated by both the sympathetic and the parasympa-
thetic branch of the ANS. The sympathetic branch, tied to stress ‘fight-
or-flight’ responses, tends to increase heart rate, whereas parasympa-
thetic activity, representing ‘rest-and-digest’ behaviour, decreases it.
The rate at which the heart beats and variations thereof hence re-
flect the activity of the ANS. Accordingly, various metrics describing
the ANS activity can be derived from cardiovascular signals. For in-
stance, heart rate variability metrics derived from the electrocardio-
gram (ECG) are widely used in psychophysiology (Malik et al., 1996)
– for example, to investigate phenomena such as mental workload. The
cardiovascular system responds to sympathetic and parasympathetic
activation within a few seconds (Berntson, 1997). However, cardio-
vascular metrics used in psychophysiology are typically analysed on
a time scale of minutes (Malik et al., 1996) in the case of short-term
heart rate variability metrics. For instance, the Trier Social Stress Test
(Kirschbaum et al., 1993) has been used extensively to induce psy-
chosocial stress, and cardiovascular and endocrine responses are well
documented (Kudielka et al., 2007). In this connection, one can gain
insight from a study by Lackner et al. (2010) investigating the time
course of cardiovascular responses in relation to mental stress and or-
thostatic challenge in the form of passive head tilt-up. There are also
longer rhythms evident in cardiovascular metrics, such as circadian
patterns in heart rate variability (Huikuri et al., 1994).

The cardiovascular measurement techniques considered here are (i)
electrocardiography, (ii) blood pressure measurement, and (iii) photo-
plethysmography; however, the activity of the heart can also be mea-
sured by means of various other techniques, such as ballistocardiogra-
phy (Lim et al., 2015) or Doppler (Lin et al., 1979).

Measurement of cardiovascular signals

Cardiovascular signals can be measured continuously via non-invasive
techniques and have been widely utilised in the measurement of mental
workload (Aasman et al., 1987). The ECG represents the electrical
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activity of the heart, and the measurement is carried out with chest
electrodes (Malmivuo and Plonsey, 1995). From the ECG it is possible
to extract several signals, among them heart rate, or HR (denoting
the absolute pace at which the heart beats) and heart rate variability
(HRV), which is an umbrella concept for all metrics describing how
the rhythm of the heart varies. To record HR and HRV, it is sufficient
to record one lead, as only the R-peaks of the ECG waveform are
required; for details, refer to Berntson (1997). For instance, affordable
sports watches can be used for obtaining a signal suitable for HRV
analysis (Gamelin et al., 2006).

Measuring continuous arterial blood pressure (BP) is technically
more demanding than ECG measurement and requires more advanced
equipment. In addition, long-term measurement of BP is not as un-
obtrusive as corresponding ECG measurement. Continuous BP can be
measured from the finger, via the method of Peñáz (Peñáz, 1973) as
implemented in, for example, the Finapres device (Wesseling, 1990)
and its ambulatory version, the Portapres.

One can obtain a photoplethysmogram (PPG) either by using meth-
ods that require skin contact or remotely. See, for example, Allen
(2007b) for a review on the measurement of PPG. In transmission PPG,
the tissue is between the light source and the receiver, whereas in re-
flective PPG the light source and the receiver are next to each other on
the surface of the skin, with the light only bouncing through the tissue
from the source to the receiver. The PPG is typically obtained from the
finger and the pinna by transmission and from the wrist via reflection.
The PPG measurement can be performed remotely without skin con-
tact by using imaging techniques to consider changes in the pulse (Sun
et al., 2012c) (imaging techniques are discussed in section 3.9). Remote
PPG has been used to study, for example, vasoconstrictive responses
during mental workload by means of an ordinary webcam (Bousefsaf
et al., 2014). Work related to this, by Vassend and Knardahl (2005),
has used laser Doppler flowmetry to investigate facial blood flow during
cognitive tasks.

The plethysmographic pulse amplitude (PA) depends on the degree
of vasoconstriction, which, in turn, is affected by cognitive load (Iani
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et al., 2004). The pulse transit time (PTT) in the PPG has been found
to be correlated with BP (Ma and Zhang, 2005; He et al., 2013). It
should be noted that vasoconstrictive effects are not visible in the ear
(Awad et al., 2001). The use of reflective PPG has become popular in
several consumer sports watches, such as the A360 from Polar Electro
(Kempele, Finland); Forerunner 225 from Garmin Ltd (Schaffhausen,
Switzerland); Charge from Fitbit, Inc. (San Francisco, CA, USA); Ap-
ple Watch from Apple, Inc. (Cupertino, CA, USA); and Microsoft Band
from Microsoft, Inc. (Redmond, WA, USA). Reflective PPG is used also
in research equipment such as the E4 from Empatica Inc. or various
sensors from Shimmer Sensing (Dublin, Ireland).

Methods

Analysis of cardiovascular signals In using the cardiovascular signals
to investigate the activity of the autonomic nervous system, it is the
variability of the signal that is of interest. The cardiovascular signals are
hence analysed on a beat-by-beat basis. Raw, continuous cardiovascular
signals such as the ECG, PPG, or continuous beat-by-beat BP signal
must therefore be preprocessed. The goal with the preprocessing is to
remove artefacts from the recorded signals through various methods
and reliably convert the raw signals into event series, where an event
corresponds to some property of one beat of the heart. Accordingly,
there are as many events in the event series as there are heart beats
in the raw signal. Different cardiovascular signals give rise to different
event series. For the ECG, the resulting event series is called an inter-
beat interval (IBI) series or an RR series and each event corresponds
to the duration between consecutive heart beats, typically measured in
milliseconds. The term ‘RR series’ comes from the fact that the R-peak
in the ECG waveform is used as the marker for a heart beat and each
event is the time from one R-peak to the next R-peak. Similarly, for
the PPG the event series is an interpulse interval time series reflecting
changes in blood volume in the tissue, which varies with the action
of the heart. For the continuous BP signal, it is possible to form, for
example, three event series wherein each event in the respective series
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corresponds to the systolic blood pressure (SBP) for each heart beat,
the diastolic blood pressure (DBP), or the mean blood pressure (MBP).

Panel a in Figure 3.1 shows a 100-second sample of ECG data
from the Physionet (Goldberger et al., 2000) Fantasia database (Iyen-
gar et al., 1996). R-peaks in the ECG have been identified and are
shown in red. The resulting IBI series is presented in Panel b, and
Panel c shows a shorter, five-second segment of the ECG signal.
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Figure 3.1: Example of the formation of an inter-beat interval (IBI) series from
an ECG. The R-peaks in the ECG are shown in red. Panel a shows a 100-second
ECG signal, and the corresponding IBI series is shown in panel b. Panel c shows a
five-second segment of the ECG signal.



172 The state of the art

The variability of cardiovascular signals is studied by taking into
consideration several distinct variability metrics calculated from the
event series: HRV from the ECG (Malik et al., 1996; Berntson, 1997),
blood pressure variability (BPV) from the BP signal (Parati et al.,
1995), and pulse rate variability (PRV) from the PPG (Constant et al.,
1999). The calculation for these variability metrics constitutes the main
part of the analysis of the cardiovascular signals. The variability met-
rics for the individual signals can be calculated by means of several
methods, such as (i) time-domain, (ii) frequency-domain, and (iii) non-
linear methods. It should be noted that, although the cardiovascular
signals are of a different nature (e.g., IBIs or SDP values), many of
the analysis techniques developed for HRV analysis are applicable also
for BP analysis (Tarvainen, 2004). We discuss some HRV metrics next.
Two examples of time-domain measures are the standard deviation of
inter-beat intervals (SDNN), reflecting overall HRV, and the square
root of the mean of the squares of the IBIs (RMSSD), reflecting short-
term HRV (Malik et al., 1996). The analysis in the frequency domain
is based on the power spectrum of the IBI signal, derived by using
the Fourier transform, an autoregressive method, or the Lomb–Scargle
method (Clifford et al., 2006). In the spectral analysis, the power of the
signal is considered primarily in three bands: the very low-frequency
(VLF) band (0–0.04Hz), the low-frequency (LF) band (0.04–0.15Hz),
and the high-frequency (HF) band (0.15–0.40Hz). The LF band is typ-
ically linked to sympathetic activation and the HF band to parasym-
pathetic activation (Malik et al., 1996), and the ratio of power in the
LF band to power in the HF band (LF/HF ratio) is used to describe
the degree of sympathovagal balance; see Billman (2007) for a discus-
sion addressing issues related to the interpretation of the LF/HF ratio.
The nonlinear analysis methods involve use of metrics such as various
entropies.

There are relationships among cardiovascular signals; for instance,
the correlation between HRV metrics derived from fingertip PPG and
from the ECG has, in general, been found to be high (Selvaraj et al.,
2008; Lu et al., 2009; Lin et al., 2014), although confounding factors
such as respiration should be taken into account (Lee et al., 2010).
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It ought to be noted that, though HRV and PRV are related, they are
not identical (Constant et al., 1999; Lu et al., 2009; Lin et al., 2014). In
addition, factors such as ambient light can affect the PPG signal, and
the latter signal is less stable than the ECG during physical activity.

For a discussion of the analysis of BPV, see de Boer (1985) and
Tarvainen (2004). Blood pressure reactivity can be studied also in terms
of baroreflex sensitivity (BRS), which uses a combination of ECG and
BP, as illustrated in other works by, for example, Mulder et al. (1990)
and Van Roon et al. (2004). The BRS metric describes how rapidly the
heart rate responds to changes in blood pressure.

Applications

The most interesting phenomenon from the perspective of human–
computer interaction is how the various cardiovascular metrics reflect
mental workload. It is this aspect of study to which we direct our focus
in the primer.

Heart rate variability The relationship between mental workload and
the ANS response, reflected in HRV, is complex. However, one can
state that HRV generally is reduced during mental effort, with the
degree of reduction dependent on the level of mental effort (Mulder
et al., 1993). It has been shown that average heart rate is one of the
most sensitive metrics for distinguishing between low and high levels
of mental workload in a computerised task (Henelius et al., 2009). In
addition, HRV has been used in occupational settings, a review of which
can be found in the work of Togo and Takahashi (2009).

Garde et al. (2002) used HRV to investigate the difference between
two computerised tasks (one using a keyboard, the other using a mouse)
and concluded that no difference was evident in terms of mental work-
load. Differences in HRVmetrics were found when the setting featured a
physically demanding computer task. In a study (Hjortskov et al., 2004)
investigating differences in a computerised task with different difficulty
levels, the researchers found differences in the HRV LF/HF ratio be-
tween the tasks. Hjortskov and colleagues also concluded that HRV is
more sensitive than BPV is to mental stress levels. In a recent study,
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Taelman et al. (2011) found several HRV metrics (average normal-to-
normal interval length, SDNN, RMSSD, pNN50, LF, and HF) to be
affected by the extent of mental load.

A study by Cinaz et al. (2013) investigated the use of HRV for clas-
sifying levels of workload during office work. They found that RMSSD
and pNN50 decreased with the degree of workload experienced, while
the LF/HF ratio increased

In an example of particular frequency bands within the HRV spec-
trum, Nickel and Nachreiner (2003) investigated the 0.1 Hz component
of HRV during the performance of a battery of computerised stress
tests. They concluded that this particular frequency component was
not sensitive to workload level.

The heart pre-ejection period (PEP) (Backs et al., 2000; Miyake
et al., 2009) and the T-wave amplitude (TWA) (Myrtek et al., 1994;
Vincent et al., 1996) too have been linked to mental stress. See the work
of Lien and colleagues Lien et al. (2015) for a study comparing these
indices as metrics of sympathetic nervous system activity in ambulatory
settings.

Heart rate variability has been studied extensively in connection
with measuring the task difficulty or mental workload experienced by
pilots (Jorna, 1993; Roscoe, 1992, 1993). In addition, research by Wil-
son (2002) investigated various psychophysiological measurements dur-
ing flight and found that HR was more sensitive than HRV to task
difficulty.

Blood pressure Measurements of BP, BPV, and BRS have been ap-
plied in multiple studies related to mental workload.

For instance, in a study (Stuiver and Mulder, 2014) that considered
two simulated tasks (ambulance dispatching and a driving simulator),
the researchers found that HR increased during the dispatch task; BRS
decreased; and BP showed an initial increase, after which it continued
to rise, albeit more slowly. For the driving task, BP initially increased
but then fell to near baseline levels. Both BRS and HR decreased dur-
ing the task. The researchers concluded that there are task-specific
differences that lead to different types of autonomic control.



3.1. Cardiovascular signals 175

A study carried out by Madden and Savard (1995) utilised a com-
puterised quiz to induce mental stress. It was found that BPV decreased
and systolic BP rose as the degree of mental stress increased. Similar
results were obtained in another study (Ring et al., 2002), in which
mental stress was induced by mental arithmetic, leading to an increase
in mean BP.

Finally, a study by Robbe et al. (1987) investigated BRS during
mental arithmetic and memory tasks. Its conclusion was that the mod-
ulus (the gain between BPV and HRV (Mulder, 1988; Robbe et al.,
1987)) decreased during task performance. Additionally, blood pres-
sure was recorded during flight in research conducted by Veltman and
Gaillard (1998), and the modulus was found to be a good index for
mental effort.

Photoplethysmography In addition to the measures discussed above
that reflect various aspects of cardiac variability, the autonomic ac-
tivity can be studied by observing vasoconstriction. As noted above,
mental stress is reflected in peripheral vasoconstriction, which is visible
in the PPG signals as a decreased pulse amplitude (PA). For instance,
Iani et al. (2004) investigated the peripheral arterial tone (measured
by means of a pneumatic plethysmograph) during the performance of a
computerised memory task. They found that subjects exhibited vaso-
constriction during the more demanding memory tasks in their experi-
ment. Similar results were found in an experiment involving simulated
flight, wherein vasoconstriction was observed during difficult phases of
the simulation (Iani et al., 2007).

Pulse rate variability can also be analysed in a fashion similar to
HRV. Yoo and Lee (2011) examined detection of mental stress by us-
ing the PPG signal and PRV, while other researchers (Yashima et al.,
2006; Kageyama et al., 2007) have explored the use of wavelet analy-
sis for mental stress detection via the PPG signal. Arai et al. (2012)
estimated mental stress by considering the LF/HF ratio calculated
from the PPG signal, and the resulting extracted mental stress metric
was used to control the functioning of a mail program on a smart-
phone.
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Conclusions

Cardiovascular signals and the variability metrics extracted from them
are used extensively for the determination of mental workload during
various types of task performance. Of the signals considered in this sec-
tion of the paper, the ECG and PPG signals are easy to measure, and
good-quality recordings can be obtained with affordable devices such as
sports watches. The recent incorporation of PPG sensors into several
wrist-worn devices means that such devices could well be usable for
long-term measurements. The use of remote PPG techniques, of vari-
ous types, that employ ordinary webcams might be highly suitable for
computer work. Blood pressure, however, is not well suited to the pro-
longed measurement of cardiovascular activity at present, on account
of the technical requirements. In terms of usability, ECG and PPG
measurements are hence currently more suitable for human–computer
interaction applications than is BP.

The metrics used for analysing cardiovascular signals are well estab-
lished, as illustrated, for example, by Malik et al. (1996). Furthermore,
other metrics describing variations in cardiovascular signals are being
studied, such as the fractal dimension of the HRV signal (Nakamura
et al., 1993; Cáceres et al., 2004).

Cardiovascular metrics have been applied extensively for determin-
ing and monitoring levels of mental workload. However, it appears that
these metrics have not been used thus far for the purpose of adapting
user interfaces to the degree of mental workload. This is a new, rela-
tively unexplored area.

3.2 Electrodermal activity

‘Electrodermal activity’ (EDA) is a general term used to describe
changes in the electrical properties of the skin resulting from autonomic
nervous system functions (Dawson et al., 2000). These fluctuations are
caused by activation of sweat glands that are controlled by the sympa-
thetic nervous system, which autonomously regulates the mobilisation
of the human body for action. Furthermore, skin conductivity is not
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influenced by parasympathetic activation. Therefore, EDA can be con-
sidered to act as an indicator of both psychological and physiological
arousal and, by extension, as a measure of cognitive and emotional
activity (Dawson et al., 2000; Boucsein, 2012).

Background

EDA has been investigated for well over 100 years, with a number of
changes having occurred in the method and the understanding of the
phenomenon. Terms have changed accordingly, though ‘galvanic skin
response’ is still commonly in use, which can be confusing; instead,
one should use the modern terminology, as outlined in Boucsein et al.
(2012):

“[The] first two letters refer to the method of measurement
. . . SP for skin potential, SR for skin resistance, SC for skin
conductance, SZ for skin impedance, and SY for skin ad-
mittance. The third letter refers to level (L) or response
(R)”.

These terms are derived from the methods employed to detect changes
in the electrical properties of the skin, which are the following: the
passive measurement of electrical potential difference, or the endoso-
matic method, and active exosomatic measurement, wherein either al-
ternating current (AC) or direct current (DC) is passed between two
electrodes to measure the skin’s conductivity, the reciprocal of its re-
sistance. In this section, we refer to the latter method, as it is the more
widely used (to our knowledge). For full details on these methods, es-
pecially how to obtain the slightly more complicated SZ and SY terms,
see the work of Boucsein and colleagues.

In the literature, EDA has most often been taken as a measure
of arousal (Bradley, 2000). Several studies using a picture-viewing
paradigm have shown that EDA is highly correlated with self-reported
emotional arousal (Lang et al., 1993). That is, arousing pictures of
either positive or negative valence result in increased EDA as com-
pared to low-arousal pictures. This index is affected by the location
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of recording, as different skin sites are innervated by different distri-
butions of nerve bundles, not all of which are involved in emotional
responses. In simple terms, emotional response affects eccrine sweat
glands, which are most densely distributed on the palms and soles,
nearly four times more so than on the forehead, for example. Sixteen
recording sites were explored and compared in a review by van Dooren
et al. (2012), which profiled site-wise responsiveness to emotional in-
ducement (by film clips). Their review illustrates that care must be
taken in the choice of the signal feature to estimate responsiveness.
The authors found also that responses did not show full lateral sym-
metry, so care must be taken in the decision on which side of the body
to record. Picard’s Multiple Arousal Theory Picard et al. (2015) sug-
gests an explanation: that different brain areas map to different areas
of the body, both contralaterally and ipsilaterally.

EDA is a commonly used physiological measure when one is study-
ing HCI experiences (see ‘Applications’, below). The arousal models
used in HCI studies are often uni-dimensional and bipolar, and, hence,
they can be combined with a dimension of positive–negative valence
to give a circumplex model of emotions, as highlighted in Figure 2.1.
However, richer models have been proposed, such as the three-system
model of arousal (Backs and Boucsein, 2000). Indeed, Backs and Bouc-
sein (p. 6) argued that this might be more appropriate for investigat-
ing the specific sensitivity of physiological effects in HCI. In brief, this
model posits three systems: ‘affect arousal’, ‘effort’, and ‘preparatory
activation’, of which only affect is indexed by EDA. The areas of the
CNS that correspond to these systems are Amygdala, Hippocampus,
and Basal Ganglia, respectively. The authors also provided a review
demonstrating the sensitivity of EDA in technology interaction studies
(p. 16).

Methods

EDA instrumentation EDA is a well-established recording method,
and numerous devices exist for performing laboratory-grade measure-
ments. These devices usually comprise wired electrodes and often a
bulky amplifier, thereby restricting use to controlled environments.
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Furthermore, electrodes placed on the hand are often very sensitive
to motion, thereby requiring the hand to stay quite still.

With the recent increase in the quality and popularity of wearable
biosensors, several portable EDA devices have become available. Porta-
bility is appealing for both psychological research and clinical use. In
psychology, wearable sensors allow experiments to take place in more
ecologically valid settings (Betella et al., 2014), while in health care
wearable sensors enable continuous physiological monitoring at a rela-
tively low cost (Pantelopoulos and Bourbakis, 2010).

Non-intrusively measuring EDA in a continuous long-term manner
is desirable for many, quite different fields of research and diagnostics.
Popular options in this regard are wearable EDA sensors, such as the
ring-mounted Moodmetric (Vigofere Ltd., Helsinki, Finland); the wrist-
worn E4 (Empatica Inc., Boston, MA, USA); or the edaMove (movisens
GmbH, Karlsruhe, Germany), which combines a wrist-worn amplifier
with wired electrodes. A recent study addresses the comparability of
such a wearable sensor to a laboratory-grade device (Torniainen et al.,
2015).

Recording EDA measurement registers the inverse of the electrical
resistance ‘ohm’ between two points on the skin – i.e., the conductivity
of the skin in that location, ‘mho’. The recorded EDA signal has two
components. The slowly varying tonic component of the EDA signal
represents the current skin conductance level (SCL) and can be influ-
enced by external or internal factors such as dryness of the skin and
psychological state. Superimposed on the slow tonic component is a
rapidly changing phasic component, skin conductance response (SCR);
see, for example, Figure 3.2. The spike-like SCR corresponds to sym-
pathetic arousal, resulting from an orienting response to either specific
environmental stimuli, such as a novel, unexpected, significant, or aver-
sive stimulus, or non-specific activation, such as deep breaths and body
movements (Boucsein, 2012; Dawson et al., 2000).

Typically, EDA is recorded non-invasively from the surface of the
palms and fingers. Following Boucsein et al. (2012), we recommend
recording from the fingers to the extent that this is possible. Fingers
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provide good signal characteristics, such as amplitude, and respon-
siveness of the signal to emotional relevance is well-established. When
recording is conducted in situations that demand grasping actions,
which could disturb the sensors, the soles of the feet, or the forehead,
may be used also (van Dooren et al., 2012).

Preprocessing In a typical EDA analysis, the acquired signal is pre-
processed and then decomposed into tonic and phasic components –
i.e., SCL and SCRs. The preprocessing is relatively simple: data are
down-sampled or low-pass filtered, typically to <10 Hz. Electrode dis-
placement tends to generate artefacts, represented by signal disconti-
nuities. These can be detected by a maximum signal-change threshold
criterion and handled epoch-wise by rejection or temporal interpola-
tion. For group analysis, the signal should then be standardised or
centred.

Signal decomposition can be performed via a number of methods,
depending on whether stimulus events also have been recorded. If event
times are known, latency-based detection of SCRs can be performed,
per Boucsein et al. (2012). Boucsein and colleagues also define the SCL
as the signal in the absence of SCRs; therefore, after SCR detection,
SCL can be estimated by subtraction. However, data-driven methods
should be preferred, to minimise errors, because SCRs do not follow
uniformly from events, and events can occur in rapid succession, caus-
ing SCR overlap. A classic example is peak-and-trough detection, which
is achieved by finding zero-derivative points (where the signal is flat).
One can identify SCR features from the trough-to-peak amplitude and
latency. This system tends to be inaccurate for stimulus events that
overlap – i.e., that have a shorter inter-stimulus interval than the re-
covery time of the phasic peak – because the amplitude of SCRs begins
to sum. See Figure 3.2 for more details.

Alexander et al. (2005) proposed a method that handles this issue,
based on the deconvolution of the signal to estimate the driver function
from sudomotor nerve activity and the corresponding impulse response
function, the latter describing the temporal profile of each impulse of
the phasic driver response and used as the deconvolution kernel in the
decomposition process.
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Figure 3.2: Illustration of SCR overlap, reproduced from Alexander et al. (2005),
with permission. They explain: “The upper graph shows the smoothed skin con-
ductance signal, with two groups of three overlapping SCRs. The middle graph
shows the commuted driver signal, which because of its shorter time-constant has
six clearly separate peaks. These separate peaks are used to estimate the individual
SCRs shown in the bottom graph.”
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This method is based on standard deconvolution, which does not
account for variations in the SCR shape and can result in a negative
driver function when the SCR has a peaked shape. These problems were
addressed by Benedek and Kaernbach (2010a,b), who introduced two
separate solutions: non-negative deconvolution (NND) and continuous
decomposition analysis (CDA)4. Using NND ensures that any negative
component of the driver is transformed to a positive ‘remainder’, inter-
preted as the additional phasic component caused by pore opening. The
output of this analysis is depicted in Figure 3.3. The NND approach was
inspired by the poral valve model of EDA, which suggests that peaked
SCRs result from additional sweat diffusion caused by pore opening,
as illustrated in Figure 1 from Benedek and Kaernbach (2010b). They
state that

“[i]f sweat ducts are filled to their limits, intraductal pres-
sure will cause a hydraulic-driven diffusion of sweat to the
corneum, resulting in a flat SCR. If intraductal pressure
exceeds tissue pressure, the distal part of the duct and the
pore will eventually open, which results in a peaked SCR”.

CDA takes a different approach, which “abandons the concept of
single, discrete responses in favour of a continuous measure of phasic
activity” (Benedek and Kaernbach, 2010a). The latter is, of course,
more plausible in a messy biological system. The CDA estimate of the
phasic driver can take on negative values, in which case the interpre-
tation is simply that negative values signify quality issues, either in
extraction algorithm parameters or in the original data.

For Benedek and Kaernbach (2010a), estimation is a multi-step
optimisation process using gradient descent to minimise a compound
error consisting of a weighted sum of the negativity and indistinctness
of the phasic driver. Indistinctness describes the sharpness of impulses,
and negativity represents the number of negative values in the phasic
driver.

4NND and CDA are implemented as the Ledalab toolbox for Matlab.
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Figure 3.3: Screenshot from Ledalab. Top panel: 20 seconds of EDA are shown from
a recording of a continuous-performance task, with inhibit (labelled ‘cor-inb’) and
respond (labelled ‘cor-rsp’) targets shown every ∼2 seconds. Response targets (with
the subject’s responses labelled ‘RESP’) are less frequent in the task so generate a
greater EDA response. The grey area indicates SCL, and the coloured area shows
SCRs diminishing over time. Bottom panel: Fitting by NND in Ledalab produces an
estimate of the SCRs (‘Driver’, blue) and pore opening components (‘Overshoot’,
pink).

Analysis For group phasic analyses, the impulse response function
generally should be estimated separately for each participant. The pha-
sic component is then analysed around selected events (if the phasic
component was derived by data-driven methods as recommended, with-
out reference to the events, there is the added benefit that a relationship
discovered between phasic features and events cannot be an artefact of
the feature extraction method). One can do this either by averaging the
phasic driver or by calculating a set of phasic features and then per-
forming the analysis in feature space (as in, for example, Khalfa et al.
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(2002)). Commonly used phasic features include the number of signifi-
cant phasic peaks, the sum of amplitudes of those peaks, the time inte-
gral of the phasic response, and the maximum value of phasic activity.

Applications

EDA has seen application in a host of areas, from research to clinical
practice and consumer devices. The number of form factors used in
such devices remains relatively limited (they are usually situated on
the wrist and fingers), but, as van Dooren et al. (2012) have shown,
there are many options for recording sites. Therefore, in line with the
application, the reader could conceive of implementing a device in a hat
or eyeglasses (to measure forehead EDA), in socks or shoes (to measure
foot sole EDA), or in a wrist-worn strap or other clothing items.

There is an extensive body of literature on EDA applications; here,
we cite only a few examples.

In the area of HCI, EDA is a popular input in helping to clas-
sify arousal (usually referring to ‘affect arousal’ (Backs and Boucsein,
2000)). For example, Fantato et al. (2013) reported on a naïve Bayes
classifier, which was trained to recognise states of affect arousal from a
number of EDA features, on the basis of validated labelling of arousal
levels during work-like tasks. Cross-validation testing of these tasks
achieved an accuracy level above 90%. The system was tested also by
recording of subjects in a computer-game-like learning environment,
where the classifier achieved an accuracy of 69% for predicting the self-
reported emotional arousal of the game. The sensor was the Varioport-
ARM device (Becker Meditec, Karlsruhe, Germany).

Studies have shown more specific effects also. Heiden et al. (2005),
studying work done with a computer mouse, found highly significant
differences in EDA between conditions that differed in the level of
task difficulty. Setz et al. (2010a) compared several classifiers in
discriminating between work-like tasks with a baseline cognitive load
only and tasks with added stress (considered to be a form of negative
affect arousal). The input consisted of 16 EDA features, and the
researchers’ best-performing classifier (Linear Discriminant Analysis,
LDA) achieved an accuracy of 83%. Their device was an early form
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of wearable arm-mounted sensor, lab-built and described in the paper
referenced above.

Offering a final example, we focus on an application that is not
usually connected with the workplace. Biofeedback is an increasingly
popular application for performance enhancement, and it can be found
in such varied contexts as clinical, occupational, and sports scenarios.
In clinical biofeedback, the user is trained to respond to a given feature
of the real-time signal from a physiological sensor; in this manner, the
user can learn to recognise and control the subjective state that corre-
sponds to the feature. With EDA, the feature that needs to be classified
might be, for example, the number of significant phasic peaks. In an ap-
plication, users could learn to recognise the subjective feeling of having
more or fewer phasic peaks, then attempt to control their physiological
state accordingly.

One recreational use of biofeedback involves an affect-based music
player, in which concurrently measured biosignals are used to classify
the listener’s emotional response as the music is playing. The efficacy
of such a system for inducing target moods has been demonstrated in
an ecologically valid office setting, although with only a small sample
size, N=10 (van der Zwaag et al., 2013).

O’Connell et al. (2008) demonstrated the ‘Self-Alert Training’
(SAT) system for EDA biofeedback, to modulate attention via arousal
level. This software was validated with a group of 23 neurologi-
cally healthy participants, each of whom received brief (30–40-minute)
biofeedback training sandwiched between two sustained attention to re-
sponse task (SART) tests. Half of the participants were given placebo
training. Analysis indicated that the SAT group

• significantly reduced their number of commission errors (a mea-
sure of response inhibition), while the placebo control group did
not;

• maintained consistent response time variability (RTV – an in-
verse measure of sustained attention) after training, whereas the
placebo group shows a significant increase in RTV; and
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• increased in arousal (SCR amplitude in response to cues) after
training, while the placebo group’s corresponding figures signifi-
cantly decreased.

The last of these findings indicates that the short training period was
enough to enable participants to counter whatever effects of fatigue
and cue exposure had caused the reduction of arousal in the placebo
group. This is important for the domain of safety-critical operator work
in an HCI setting, where the effect of brief periods of activity to boost
vigilance and alertness can be considered a valuable option for reducing
human error. Such systems can now be implemented at low cost, as
sensor devices are becoming robust, lightweight, and wearable, and
interfaces are available for mobile platforms such as smartphones.

Conclusion

Electrodermal activity is a reliable, interpretable, and simple-to-use
measure that has seen many applications in various domains. There-
fore, it is an excellent choice for an introduction to the psychophysio-
logical method and a highly suitable tool for making inferences about
sympathetic nervous system activity. In addition, EDA aids in pro-
viding valuable context for other physiological signals in multimodal
applications.

3.3 Respiration

The respiration signal is of scientific relevance because it is controlled
by the autonomic nervous system and the central nervous system. This
means that respiration can be consciously controlled by the subject
(unlike, for instance, heart rate). Different parts of the brain are re-
sponsible for autonomic and behavioural breathing: voluntary breath-
ing is controlled by the cerebral cortex, while autonomous breathing
is controlled by the brain stem. There are, however, projections from
the cortex to the brain stem that allow the higher centres to influ-
ence metabolic breathing patterns. The autonomic respiratory pattern
is therefore a complex interaction among the brain stem, the limbic
system, and the cortex (Homma and Masaoka, 2008).
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While respiration is an interesting signal from a theoretical perspec-
tive, there are some practical issues that limit its use in an HCI setting.
Traditional respiratory measurement techniques, such as spirometers,
which force the user to breathe through a tube, are often overly intru-
sive and cumbersome, while non-invasive methods can be too impre-
cise. The fact that respiration can be consciously controlled can act as
a confounding factor. Also, respiration is highly susceptible to artefacts
produced by speech and movement (Wientjes, 1992).

Background

Although respiration (respiration rate) is an important topic in health
science, in physiology studies in a games or learning context it is less
well researched than are many other psychophysiological signals, suf-
fering from neglect even in studies of the cardiovascular system, with
which it interacts intimately (Nesterov et al., 2005). This is partly an
interpretative issue, as respiratory control is both voluntary and invol-
untary (Harver and Lorig, 2000), but equally it is a function of the
uses served by respiration – the heart and brain together account for
less than 3% of body weight but more than 30% of oxygen usage. Ac-
cordingly, states of low mental workload and high metabolic rate may
be reflected in the respiration rate similarly to states of high mental
workload and low metabolic rate. However, it has been shown that
increased respiration rate results when subjects are sitting and atten-
tively wakeful (e.g., listening to a story), as opposed to sitting without
paying attention or with closed eyes. Thus, in similar metabolic situa-
tions, increased respiration indicates an increase in attention (Harver
and Lorig, 2000). In consequence, given an attentionally demanding
situation with static metabolic demand, respiration should increase in
line with the subject’s engagement. In other words, the more attention
paid (barring metabolic variation), the higher the respiration rate.

In its effects, respiration is closely interwoven with most other phys-
iological signals of interest, because it provides the oxygen that under-
lies localised mental activity, the energising of the musculature, and
heart rate response (Harver and Lorig, 2000). Respiration affects heart
rate variability through a process called ‘respiratory sinus arrhythmia’
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(RSA) whereby the inter-beat interval of the heart is shortened dur-
ing inspiration and prolonged during expiration (Yasuma and ichiro
Hayano, 2004). It may therefore be necessary to control for breathing
in experiments that include HRV.

In addition to the respiratory rate, there are several (more specific)
indices that can be derived from the respiratory pattern, such as in-
spiratory time, inspiratory volume, and inspiratory pause. A study by
Boiten (1998) explored the effect of film scenes, reaction time, and cold
pressor tasks on affect-related respiratory patterns. The study showed
that there were clear effects on respiratory patterns whenever the films
elicited amusement or disgust, in that amusement induced a decrease
in inspiratory time and tidal volume, while disgust would elicit pro-
longed inspiratory pauses (breath-holding). The reaction time task in-
duced a relatively fast, shallow, and regular breathing pattern, while
the cold pressor brought on a substantial increase in respiratory volume,
an increase in post-inspiratory pause duration, and a large amount of
breath-to-breath variability in the pattern of breathing. Accordingly, in
the design of HCI applications it can be useful to pay attention to more
specific details of respiration than respiration rate alone (see Kreibig
(2010) for a comprehensive list of possible respiratory pattern indices).

Frequent sighing has been shown to be associated with anxiety.
Blechert et al. (2006), for instance, studied the physiological correlates
of anxiety and found that sighing frequency increased 150% when the
participants thought that they might receive an electric shock.

Methods

Several methods exist for measuring respiration. The flow of air in and
out of the lungs can be measured directly by means of a spirometer.
However, while very accurate, this apparatus forces the user to wear
a nose clip and to breathe through a tube, which makes it unsuitable
for most HCI purposes. Therefore, instead of measuring respiration di-
rectly, it is often more convenient to measure the movement of the
chest and the abdomen, by using respiratory inductance plethysmog-
raphy (RIP). In this method, an elastic band is wrapped around the
abdomen and around the chest. It is also possible to use only a single
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Figure 3.4: Schematic diagram of the canonical locations for respiration belt sen-
sors, on the chest and at the abdomen. Respiration belts are typically a flexible
cable transducer (pictured here as a red sinusoid) attached to an elasticated cloth
belt (here, a grey rectangle), terminating in connectors to the amplifier (represented
by red and black squares).

belt, around the abdomen. However, to estimate tidal volume (i.e., the
total volume of air inspired and expired with each breath), it is nec-
essary to use two belts, enabling both the abdomen and the chest to
be measured (see Figure 3.4). Nonetheless, because of the physiological
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uniqueness of every individual, the measurement of tidal volume with
two belts requires calibration of the system for each user, through use
of a spirometer (Wientjes, 1992).

Applications

In an HCI context, respiration has been used mostly as an explicit con-
trol signal. Moraveji et al. (2011) studied whether they could influence
the respiration of users during an information-processing task. Reduc-
ing breathing rate has been shown to reduce stress and anxiety, so the
aim was to build a system that helps users to regulate their breathing
to this end. It displayed a semi-translucent bar in the bottom half of
the screen that served as guidance for the user. Users were instructed to
inhale when the bar goes up and exhale as it moves down. The system
was designed to illustrate a breath rate 20% below the user’s baseline.
It indeed reduced users’ breathing rate – the authors found that users
were able to decrease their breathing rate significantly while still able
to continue performing information work such as research, writing, and
programming.

The use of respiration in a more entertainment-oriented context was
studied by Kuikkaniemi et al. (2010), who explored the use of biofeed-
back in computer gaming. They developed a first-person shooter game
wherein the fire rate and recoil were linked to the player’s respiration.
In their experiment, they studied how biofeedback was perceived when
the players were aware of the adaptation as compared to when they
were unaware of the biofeedback. The researchers established that con-
scious control through respiration was more immersive and rewarding,
thereby highlighting the nature of respiration as a signal that can be
dealt with as either an implicit or an explicit form of interaction.

Conclusions

Respiration is a signal that is rarely used on its own. More often, is
serves as an auxiliary signal either to complement information from
other signals, such as heart rate in the case of respiratory sinus ar-
rhythmia, or to serve as part of a machine learning approach that
draws together information from several physiological signals. When
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used alone, respiration is usually employed as an explicit control mech-
anism, offering an additional input channel that can complement man-
ual input.

3.4 Electromyography

Electromyography (EMG) involves the detection of myoelectric poten-
tials by means of surface electrodes. It measures the electrical activity
associated with contractions of striated muscles (Tassinary and Ca-
cioppo, 2000). These muscle contractions may yield a direct index of
the physical embodiment of various mental states, including emotions,
stress, or fatigue; for example, the contraction of facial muscles under-
lies some emotional expressions. When one is assessing facial expression
in emotion, the advantage of facial EMG measurement over observa-
tion (facial expression coding) is that it can sensitively assess hidden
facial muscle activity that may not be perceptible by mere observation
(Ravaja, 2004).

Background

Facial EMG has been found to be a successful method primarily in
discriminating positive emotions from negative ones (Ravaja, 2004).
That is, facial EMG is a psychophysiological index of hedonic valence,
the dimension of emotion that ranges from negative (or unpleasant) to
positive (or pleasant). For producing this index, facial EMG activity is
usually recorded over three distinct facial muscle areas: the zygomaticus
major (the cheek muscle area that activates during smiling), corrugator
supercilii (the brow muscle area that activates during frowning), and
orbicularis oculi (the periocular muscle area that activates during the
so-called ‘enjoyment smile’ (Tassinary and Cacioppo, 2000)).

A large body of evidence shows that the processing of pleasant
emotions is associated with increased activity within the zygomati-
cus major muscle area and that processing of unpleasant emotions
evokes higher activity in the corrugator supercilii muscle area dur-
ing affective imagery (Ravaja et al., 2006a) and when the subject is
presented with acoustic stimuli (Bradley, 2000), radio advertisements
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(Bolls et al., 2001), emotional still and moving images (of 6 s duration)
(Simons et al., 1999), written words (Larsen et al., 2003), textual news
messages (Ravaja et al., 2006a), and news messages in video format
(Ravaja et al., 2006a). There is also evidence that the zygomaticus
major responds only to positive valence (pleasantness), while the cor-
rugator supercilii responds to both negative and positive valences, in
a reciprocal manner (Larsen et al., 2003). Activity in the orbicularis
oculi muscle area has been correlated with pleasantness – in particular,
high-arousal positive emotional states (Ravaja, 2004) – and activity in
this region has also been found to differentiate smiling due to genuine
pleasure from ‘forced’ smiling.

When one is interpreting facial EMG measurements, or facial ex-
pressions in general, it is important to know whether they provide
information on the true emotional state of an individual or are social
signals possibly without any connection to emotional experience. That
is, there are two competing views. The emotion-expression view is that
facial displays express a person’s internal emotional state (e.g., Ekman
(1994); see Figure 3.10, in section 3.9, below), whereas the behavioural
ecology view holds that facial displays are social signals that communi-
cate behavioural intentions or social motives (and are not ‘readouts’ of
an underlying affective state (Fridlund, 1991)). Although the emotion-
expression view is supported by a number of studies (see above), the
behavioural ecology view has gained support through studies show-
ing that positive and negative emotional facial displays are augmented
in the presence of a real or an imagined audience when one is viewing
videotapes, with the effect being independent of a concurrent emotional
state (Fridlund, 1991). However, all in all, the evidence shows that, in
social situations, facial expressions are affected by both emotional and
social factors (e.g., Hess et al. (1995)).

In addition, a more straightforward interpretation of EMG signals
has been posited, in which facial EMG measured from the temporalis,
masseter, and medial and lateral pterygoid muscles can be used to de-
tect bruxism (grinding of the teeth) (Lavigne et al., 2008). Among the
possible causes for bruxism while one is awake are stress, anxiety, and
hyperactivity. Measurement of EMG from muscles around the neck and
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shoulder region (such as the upper trapezius and deltoid muscles) can
be used to monitor the fatigue of an office worker, for example (Math-
iassen et al., 1995). Measurements in the area of the upper trapezius
can be used for indexing shoulder–neck load, but these are sensitive to
arm motions (Mathiassen et al., 1995).

Methods

The elementary functional unit of musculature is the motor unit, con-
sisting of a motoneuron and the set of consonant muscle fibres it inner-
vates. Muscles act more or less quickly and precisely in proportion to
the innervation ratio – i.e., the number of muscle fibres per motoneu-
ron – and this has implications for interpreting the spectral signature
of muscle action potentials. For example, such potentials at a given fre-
quency band and power level might correspond to meaningful activity
if measured from the orbicularis area but may fall below the threshold
required for distinguishing signal from noise if measured from the del-
toid. Muscle action potentials propagate rapidly from the motoneuron
endplate across muscle fibre, and a small portion of the changing elec-
trical field of (typically multiple) muscle fibres is conducted through the
intervening fluid to the skin. Therefore, what EMG measures directly is
changing electrical potentials associated with grouped muscle activity,
with a possibly very broad frequency range whose characteristics are
related to the underlying muscle dimensions.

Facial EMG activity is typically recorded over the above-mentioned
muscle areas (on the left side of the face) by means of surface Ag/AgCl
electrodes with a contact area 4 mm in diameter (filled with conductive
electrode gel (Tassinary and Cacioppo, 2000)). Precise placement of the
electrodes in this regard is important, and, for obtaining a good-quality
signal, careful preparation of the skin is necessary also, to reduce any
impedance between the skin surface and the gel. This involves, for
example, rubbing the skin with a gauze pad and cleansing the site with
either alcohol or soap and water.

The raw EMG signal is amplified, and frequencies below 30 Hz and
above 500 Hz are filtered out (in some conditions, slightly different cut-
off frequencies may be applicable (Blumenthal et al., 2005; Tassinary
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and Cacioppo, 2000)). In light of the Nyquist–Shannon sampling theo-
rem, it is important that the sampling rate be at least 1000 Hz (twice
the highest frequency featuring in the signal). In the next stage of
processing, the signal is rectified (conversion to absolute values is per-
formed) and integrated or smoothed. There are various procedures for
analogue and digital processing of the facial EMG signal (see Blumen-
thal et al. (2005)), but one commonly applied procedure is smoothing,
which involves passing the rectified EMG signal to a low-pass filter,
using a digital routine. Signal amplitude is thus interpreted as muscle
activation; therefore, the final metrics for EMG are simply first-order
statistics of the signal, such as maximum amplitude.

Nowadays, in addition to laboratory devices, there are ambulatory
psychophysiological data collection systems, such as the Varioport-
ARM (Becker Meditec, Karlsruhe, Germany), that enable the recording
of facial EMG in real-world situations (see Figure 3.5). However, the
feasibility of real-world facial EMG recordings is limited by the need
to attach electrodes to the face.

Figure 3.5: Facial EMG measurement over the brow, periocular, and cheek muscle
areas via a mobile physiological data collection system in a real-world context.
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Applications

Facial EMG measurements can be applied to investigate many research
questions in the area of HCI. However, as is the case for all psychophysi-
ological measures, the interpretation of facial EMG is highly dependent
on the context and research paradigm (Ravaja, 2004). It seems very
likely that facial EMG provides an index of internal emotional state,
especially in contexts wherein little social interaction is involved, such
as viewing of emotion-eliciting material (e.g., emotional images and
news items) on a computer screen. However, emotional expressions are
affected also by display rules (learned rules dictating the management
of emotional expressions on the basis of social circumstances, as de-
scribed by Zaalberg et al. (2004)). Obviously, in some social situations
(e.g., when interacting with a person of higher social status), people
may even express the emotion opposite what they are feeling (e.g., smil-
ing instead of showing anger). Clear evidence has recently emerged that
display rules may influence facial expressions, and also facial EMG ac-
tivity, when the subject is interacting with a virtual character (Ravaja
et al., 2015). Accordingly, it seems clear that facial EMG can be used
to assess emotion-bearing facial expressions but not a human’s inner
emotional state.

Expressing the opposite emotion from what one is actually feeling
may also be done for purposes of emotional coping. For example, there
is a recurrent finding that failure in a digital game (e.g., the death of
the player’s character in a first-person shooter game) elicits increased
zygomatic and orbicularis oculi activity and decreased corrugator ac-
tivity (van den Hoogen et al., 2012). That is, people tend to smile even
though the game event is likely to have elicited negative rather than
positive emotion. Therefore, it is important to understand that facial
EMG does not index inner emotional state in connection with such a
game event, even though it may be non-problematically related to expe-
rienced emotions in connection with other types of game events. Also,
Ravaja et al. (2006b) also examined the influence of opponent type on
facial EMG activity in playing of digital games. With both co-located
and non-co-located players, they found that self-reported pleasure and
zygomatic and orbicularis oculi EMG activity increased and corrugator
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EMG activity decreased in the following order: playing against a com-
puter — playing against a stranger — playing against a friend. In this
study, facial EMG activity was paralleled by self-reported emotional
valence.

Recently, Salminen et al. (2013) studied the effects of computer-
mediated cues of group emotion on facial EMG activity when the mem-
bers of a non-co-located group performed knowledge-work tasks. Nega-
tive cues of group emotion (depressed or nervous/stressed) displayed in
textual form on a Web page elicited lower self-reported pleasure, less
perceived confidence in other group members, and higher corrugator
supercilii EMG activity than did cues of positive group emotions (pleas-
antly excited or pleasantly relaxed). This finding was apparently due
to emotional contagion. Thus, facial EMG activity appears to measure
inner emotional state in the context of distributed knowledge work, at
least when social communication with facial expressions is not relevant
(cf. video calls). However, it was also found that planning (creative)
tasks elicited lower corrugator EMG activity when compared with rou-
tine tasks. Given that routine tasks (checking the grammar of text
excerpts, for instance) require effort and that attention and corrugator
activity may increase with attentional effort (Cohen et al., 1992), differ-
ences in corrugator EMG activity between task types may be explained
by attentional requirements. Accordingly, it should be recognised that
a given psychophysiological parameter, such as corrugator EMG ac-
tivity, may index different psychological processes in connection with
different factors in a factorial-design experiment. This underscores the
importance of understanding differences between experimental condi-
tions in terms of what facial-EMG-related psychological processes they
may evoke.

The EMG technique has been applied to other locations on the
body in research on ergonomics and prosthetics. For example, EMG
measurements from the deltoid have been used to study the effect of
posture on performance in work at a computer (Straker et al., 1997).
Wearable EMG trousers can register the activity of leg muscles during
standing and walking (Tikkanen et al., 2013), and EMG can also be
used as a control signal for prosthetic limbs. Additionally, it can act as
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an input signal for controlling a computer, whether in everyday applica-
tions or as a prosthetic control signal for industrial limb augmentation
or rehabilitation. In everyday applications, multi-channel EMG is often
used in combination with an accelerometer for gesture recognition in
connection with various commands (Zhang et al., 2009). In the case of
hand and arm prostheses, the EMG electrodes are usually fixed to one
of the antagonist muscle pairs (Zecca et al., 2002).

Conclusions

It seems apparent that facial EMG can be a valuable measure in the
area of HCI. As with all psychophysiological signals, interpretation of
the data may pose challenges, though, and only under certain circum-
stances can facial EMG activity be used to index an individual’s inner
emotional state. These facts do not, however, diminish the value of
facial EMG measurements, and there may be just as much value in
obtaining information on emotional facial expressions determined by
display rules in computer-mediated communication.

3.5 Oscillatory electroencephalography

Recording electrical brain activity is useful in studies of human cogni-
tion. One of the techniques available, electroencephalography (EEG),
provides this measurement in an affordable and non-invasive way. In
addition, when compared to other functional brain activation record-
ing techniques, it is relatively easy to set up, mobile, and suitable for
recording outside a laboratory setting. The technique measures the
summated activity in local populations of oriented neurons. This syn-
chronous activation often elicits rhythmic oscillations with distinct fre-
quencies. The subsequent volume conduction of these oscillations can
be detected at the scalp. In the strictest terms, a neural oscillation is
defined as an increase – i.e., a spectral peak – in the power of the EEG
signal in a specific frequency band (Lopes da Silva, 2013). Therefore,
although the word ‘oscillation’ is used rather loosely in the context
of EEG, a peak in the power spectrum should be present when one is
seeking to identify an oscillation. A mere increase in power over a wider
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frequency domain does not constitute an oscillation in the frequency
band of interest, however; on account of the weakness of neural cur-
rents, environmental electrical fields can cause significant interference
in the signals measured, even for frequencies with detectable peaks.
This section of the paper presents the possibilities that EEG affords
for assessing cognitive and affective states in individuals. Here, we con-
sider continuous EEG signals. Continuous signals encompass all EEG
measurements of interest for our purposes apart from the event-related
potentials (ERPs) that are discussed in section 3.6.

Background

The oscillatory analysis of an EEG signal consists of using spatial-,
temporal-, and frequency-domain information for analysis of the vol-
ume conducted – i.e., electrical currents outside neurons’ axons (ex-
plained in more detail in the next paragraph). These currents are mea-
sured as voltage differences between electrodes distributed over the
scalp. Work with the frequency domain was the historical foundation
of EEG analysis. Ever since the discovery of alpha waves, by Berger
(1929), EEG has been considered a mixture of signals, with different
frequencies, a perspective that has had strong implications for EEG
analysis. Originally, four major types of sinusoidal EEG waves were
recognised. These rhythms are presented, among other standard brain
rhythms, in Table 3.1. In addition to temporal and frequency-domain
features, one can analyse higher-order features such as synchrony and
spatial distributions in EEG signals.

All non-invasive techniques employed for brain state evaluation re-
quire highly synchronised activity across neighbouring neuronal pop-
ulations that results in signals measurable outside the scalp. The os-
cillations measurable on the surface of the scalp are rhythmic pat-
terns caused by simultaneous pyramidal neuron action potentials in the
area of interest. These patterns manifest as amplitude modulations via
event-related synchronisation (ERS) or event-related desynchronisation
(ERD) (Pfurtscheller and Lopes da Silva, 1999; Güntekin and Başar,
2014; Horschig et al., 2014). Figure 3.6 illustrates this phenomenon. In
a concrete example, imagining a movement of the left hand leads to
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Figure 3.6: Illustration of the volume conduction of neuronal firings recorded by
EEG. Physically aligned and synchronously firing neuron populations (shown su-
perimposed on the grey arrow) induce an electrical field (represented by concentric
rings). This field propagates through the layers of dura, skull, and dermis (shown
as horizontal lines) and can be measured at the scalp by means of distributed elec-
trodes. Electrical fields that are strong enough to be measured are registered as a
potential difference between distinct parts of the scalp, hence the need for a reference
electrode.

a contralateral ERD in the motor cortex (the right motor cortex for
a movement of the left hand) in the µ and β bands during imagining
of the movement and to an ERS in the β band (sometimes termed
β rebound) just after the imagined movement ends (Pfurtscheller and
Lopes da Silva, 1999).

One example of application is brain–computer interfaces (BCIs)
(Vidal, 1973) utilising information provided by various frequency bands
in EEG signals. A basic design for a motor-imagery BCI – i.e., a set-up
in which a computer is controlled via imagined movements – would also
exploit the spatial information by extracting features only from EEG
channels localised over the motor areas of the brain, typically the chan-
nels C3 (lateral parietal) for the right hand’s movements, Cz (medial
parietal) for foot movements, and C4 (opposite lateral) for movements
of the left hand. The frequency bands extracted in motor-imagery de-
sign are EEG-MU (referred to as ‘motoric µ’ herein) (8–12Hz) and
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EEG-BETA (referred to as ‘β’ herein) (16–24Hz). The design focuses
on temporal information in event-dependent amplitude variations in
these features (spatial and spectral extractions). Some generalisations
pertaining to frequency-domain information that are used in experi-
ment designs of various types are listed in Table 3.1.

Finding a correlation between EEG features and mental states is
far from a simple task, and caution should be employed in general-
isation from the examples presented below. They are descriptions of
results from single studies and previous reviews. Researchers utilise
diverse techniques to extract features from the measured signals. In
addition to the features introduced above, these techniques include sta-
tistical connectivity measures, complexity measures for evaluating the
predictability of EEG signal features, and chaos-theory-inspired mea-
sures that consider signals’ fractal dimensions. ‘Connectivity’ denotes
interplay of the spatially or spectrally separated signals. It is exam-
ined by assessment of basic correlation or, in more detail, by means
of causality analysis (e.g., common spatial pattern (CSP) analysis), a
direct transfer function (DTF), or similar techniques.

With ERD variations used as a feature, angry expressions elicit
stronger beta and gamma oscillatory responses than happy and neutral
expressions do when subjects view emotion-expressing faces (Güntekin
and Başar, 2007; Keil et al., 2001). In addition, higher-power parietal
beta activity has been found with emotionally loaded stimuli in com-
parison with non-emotional examples (Güntekin and Başar, 2010). The
utility of simple power-based analysis techniques is limited and prone
to session-to-session variations, inter-subject differences, and measure-
ment inaccuracy. Analysing more than one EEG parameter improves
the reliability of classification in respect of distinct brain functions and
mental states. Results have been inconsistent between studies examin-
ing EEG band power changes elicited by emotional stimuli; hence, there
is a need for in-depth analysis for all oscillatory responses, including
phase-locked activity, evoked and/or induced power, time-frequency
compositions, and connectivity measures. In addition, brain waves of
various types are confounded by, for example, microsaccade potentials
(Lopes da Silva, 2013).
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According to Güntekin and Başar (2014), future studies should ex-
amine the synchronisation of alpha oscillatory responses when subjects
are presented with an emotional stimulus, to reveal the dynamics of
alpha activity in full. At the same time, it must be remembered that
differences in age, gender, and phenotype greatly affect EEG dynamics,
and that oscillatory systems are equally important in cognitive func-
tions. For example, alpha oscillations in the occipital areas are directly
linked to cognitive performance, showing a linear relationship with at-
tentional processes in cognitive tasks. These findings suggest that hu-
man cognition is modulated by the phase of α oscillations (Ergenoglu
et al., 2004; de Graaf et al., 2013). Further studies support this claim,
implying that even though this robust brain wave is linked to inhibitory
processes, it does not represent an ‘idling’ rhythm of the brain but,
rather, expresses ‘windows of excitability’ (Dugué et al., 2011).

Methods

Instrumentation EEG devices take many forms, from consumer-grade
one-channel ‘game controllers’ to MRI-compatible medical instruments.
These devices vary greatly, even at medical grade, in both their qual-
ity and properties such as number of channels, electrode type, and
amplification techniques. For field experiments, EEG instrument de-
velopment has produced a range of ambulatory research-grade devices.
These are portable, utilise the latest innovations in electrode develop-
ment, and measure a reasonable quantity of channels while remaining
relatively easy to set up and use. At the time of writing, these include
the LiveAmp system, from BrainProducts GmbH (Munich, Germany)5;
the Quasar DSI 10/20, from Quasar, Inc. (San Diego, CA, USA)6;
Enobio, by Neuroelectrics SLU (Barcelona, Spain)7; and g.MOBIlab+,
from g.tec medical engineering GmbH (Schiedlberg, Austria)8.

5See http://pressrelease.brainproducts.com/liveamp/.
6See http://www.quasarusa.com/products_dsi.htm.
7See http://www.neuroelectrics.com/products/enobio/.
8See http://www.gtec.at/Products/Hardware-and-Accessories/g.MOBIlab-

Specs-Features.

http://pressrelease.brainproducts.com/liveamp/
http://www.quasarusa.com/products_dsi.htm
http://www.neuroelectrics.com/products/enobio/
http://www.gtec.at/Products/Hardware-and-Accessories/g.MOBIlab-Specs-Features
http://www.gtec.at/Products/Hardware-and-Accessories/g.MOBIlab-Specs-Features
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Processing There are many ways to compute band power features
from EEG signals (Herman et al., 2008). The canonical process flow
for a basic temporal analysis of EEG data is as follows: Raw EEG →
Preprocessing → Feature Extraction → (Feature Selection) → Classi-
fication (feature selection is an optional step used in subject-specified
analysis).

A simple, popular, and efficient method is to band-pass filter the
EEG signal from a given channel into the frequency band of interest,
then square the resulting signal to compute the signal power and finally
average it over time (e.g., over a time window of 1 s).

Using more channels means extracting more features, which, in
turn, increases the dimensionality of the data. High dimensionality
leads to problems with classification and other mathematical analy-
sis techniques. Accordingly, adding channels may even decrease perfor-
mance if too few training data are available. Three main approaches
can be applied in practice to exploit multiple EEG channels efficiently,
all of which contribute to reducing dimensionality:

• Feature selection algorithms automatically select a subset of
relevant features from among all the features extracted. These
algorithms utilise machine learning techniques to perform the se-
lection.

• Channel selection algorithms are similar to feature selection
methods. They utilise mathematical routines for automatic selec-
tion of a subset of relevant channels from all available channels.

• Spatial filtering algorithms combine several channels into a
single one, generally using weighted linear combinations. Features
are extracted from the synthesised signal. Another kind of fixed
spatial filter (Baillet et al., 2001) is represented by an inverse solu-
tion: an algorithm that enables one to estimate signals originating
from sources within the brain on the basis of measurements taken
at the scalp.

Alternatives for EEG feature representations can be divided into
the following four categories: temporal, connectivity-, complexity-, and
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chaos-theory-related methods. Each class of methods extracts distinct
attributes from EEG signals.

Temporal representations Temporal features quantify how signals
vary over time. In contrast to the more basic features used for ERP,
which consist simply of EEG amplitude samples over a short time win-
dow, some measures have been developed for characterising and quan-
tifying variations in the signals measured. The corresponding features
include Hjorth parameters (Hjorth, 1970) and time-domain parameters
(TDPs) (Vidaurre et al., 2009). Some research results have even sug-
gested that TDPs could be more efficient than the gold-standard band
power features (Vidaurre et al., 2009).

Connectivity measures Connectivity measures indicate how signals
from two channels (or signals from two anatomical locations, obtained,
for instance, via spatial filtering) are correlated and synchronised, or
even whether one signal influences another one. In other words, con-
nectivity features measure how the signals of two locations in spatial or
spectral space are related. This is particularly useful for BCIs and men-
tal state assessment, since it is known that, in the brain, there are long-
distance communications between distant areas (Varela et al., 2001)
and that the individual frequency bands are interconnected (Palva
et al., 2005). Therefore, connectivity features are put to increasing use
in neuroscience and seem to be a very valuable complement to what
are classed as more ‘traditional’ features. Among connectivity features
are coherence, phase-locking values, and the directed transfer function
(DFT) (Varela et al., 2001; Caramia et al., 2014; Krusienski et al.,
2012).

Complexity measures Complexity measures are used for ascertain-
ing the complexity in EEG signals. The class of complexity measures
quantify regularity or predictability of a signal. This has been shown
to provide information about the cognitive state of a subject and, ad-
ditionally, to provide information complementary to classical features
such as band power features. Some of the features in this category
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are approximate entropy, a measurement adapted from anaesthesiol-
ogy (Klockars et al., 2006); predictive complexity (Brodu et al., 2012);
and waveform length (Lotte, 2012).

Chaos-theory-inspired measures The fourth category of features con-
sists of chaos-related measures, used to estimate how chaotic an EEG
signal is or which chaotic properties it might possess. Among the exam-
ples one could cite of corresponding features are the fractal dimension
(Wang and Sourina, 2013) and multi-fractal cumulants (Brodu et al.,
2012).

Applications

The complexity of human cognition does not map well to simplicity
of analyses for low-spatial-accuracy signals such as EEG output, es-
pecially when the features extracted are rather simplified, as in the
case of the five established frequency bands (EEG-DELTA, EEG-
THETA, EEG-ALPHA, EEG-BETA, and EEG-GAMMA, referred to
as δ, θ, α, β, and γ). With such a small amount of information, it is
obvious that direct mapping between cognitive processes and EEG os-
cillations is not realistic. That said, it is likely that EEG oscillations
contribute to different cognitive functions, depending on their param-
eters (amplitude, frequency, phase, and coherence) and their spatial
location within the brain. The related functions, together with corre-
sponding references, are listed in Table 3.1 and summarised below:
• δ: Attention and functional inhibition of executive functions (Har-
mony, 2013)

• θ: Hippocampal communications and the functional inhibition of
executive functions (Colgin, 2013)

• α: Pacemaker, timing and suppressing attention (Başar, 2012)

• β: Integrating aspects of motor and cognitive processes and af-
fection (Kilavik et al., 2013)

• γ: Conscious perception, updating of active memory, etc. (Merker,
2013)
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Besides the functional linkage – i.e., the causality between distant
cortex areas – the interplay between frequency bands has received re-
newed attention. For instance, one hypothesis suggests that the ca-
pacity of working memory is represented by the ratio of brain activ-
ity involved at the theta and gamma frequencies (Lisman and Idiart,
1995). The nesting behaviour in different EEG oscillation bands itself
was found long ago by Berger (1929). More recently, the power of alpha
waves has been demonstrated to modulate gamma oscillations, while
it has been noted in addition that cross-frequency phase synchrony
among α, β, and γ is related to cognitive functions (Palva et al., 2005).
It has been shown also that dysfunctions in these interplays are linked
to disorders such as autism (Khan et al., 2013). For a review on cross-
frequency couplings, see Canolty and Knight (2010) or Herrmann et al.
(2015).

In general, the information on cognitive functions conveyed by EEG
signals has been found significant in more recent studies. For instance,
the EEG traces of attention, motivation, and vigilance can be utilised
in the context of learning through analysis of α power balance on the
cortices (Cowley and Ravaja, 2014). Besides the α frequency range,
there is evidence of a δ power linkage on learning curves in ‘complex
video-game’ environments (Mathewson et al., 2012).

Conclusion

These more sophisticated analysis methods render it possible to gain
information supplementary to, for instance, basic band power features,
and they may increase classification accuracy in certain conditions.

The sophisticated methods presented here provide information that
can be complementary to classical EEG analysis and thereby improve,
for example, the classification performance of various machine learning
algorithms (Lotte, 2014).

The EEG signal processing methods presented here can be of great
assistance in evaluating subject cognition, affection, and mental state.
At this juncture, we must reiterate that classifying EEG signals is
a tremendously complex task, on account of the non-stationary con-
ditions, high dimensionality, artefacts, and the limited nature of the
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learning data. Current methods are far from perfect, but research is
lively; for instance, methods are becoming more robust to noise, arte-
facts due to movement, session-to-session variations, etcetera. In turn,
these advances are expected to lead towards more standardised analysis
techniques for assessing human cognition. It is conceivable that they
may even ultimately enable fully functional Brain-Computer Interfac-
ing.

3.6 Event-related brain potentials

Event-related brain potentials are well-known and widely studied sig-
natures of brain activity that are time-locked to a specific stimulus
event, such as the beginning of a sound or the presentation of an im-
age. Distinct from EEG oscillations, ERPs are direct representations
of the time domain. These potentials are extracted from the raw EEG
signal by averaging over tens to hundreds of EEG time periods (epochs)
of fixed duration and are offset with respect to the time stamp for the
event (Luck, 2014). Some ERP components are so strong that with
a large enough number of channels and careful investigation of the
spatial and spectral characteristics of the ERP, they can be recognised
even without averaging (Delorme and Makeig, 2004). Such ‘single-trial’
ERPs, together with ERPs evoked by more naturalistic stimuli (for ex-
ample, continuous ecologically valid sounds), constitute the main focus
of this section. The broader subject of ERPs is quite vast; for further
reading on the topic, see Kappenman and Luck (2011).

Some ERPs, especially those with low latencies, typically remain
unaffected by cognitive workload, mental effort, vigilance, or affective
processes, while others, especially those related to higher cognitive func-
tions and with higher latencies, can be used reliably as indicators of
mental state and task difficulty in HCI settings (Nittono et al., 2003).

Background

In electrophysiology, cognitive processes are traditionally studied via
examination of high-latency neural responses of the ERP that are ex-
tracted from the continuous EEG by signal averaging. One can refer to
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ERPs in terms of their polarity (positive or negative) and the latency
after the trigger event. Customarily in plots of ERPs, positive values
are positioned below the x-axis, and latencies are denoted canonically,
not exactly. Hence, for example, two common ERPs are designated as
N1 and P3 (these are also referred to as the N100 and P300).

Early-going or ‘fast’ ERPs tend to be related to orienting responses,
so the N1 ERP is a fast neuronal response to stimuli. The ERPs as-
sociated with cognition typically peak hundreds of milliseconds after
the onset of an event and originate in connected cortical areas (Savers
et al., 1974). Increases in task difficulty, a lack of cognitive resources,
and higher cognitive loads result in a decrease in the amplitude and an
increase in the latency of several ERP components. A typical example
of longer-latency ERP components is the P3 (or P300), an ERP elicited
in the process of decision-making. The P3 component is an endogenous
ERP component related to cognitive processes such as attention, rather
than physical properties of the stimulus that caused it in the first place.
It can be divided into two sub-components, the P3a and P3b, which
peak at different sites on the scalp. The delay in P3 (sub-)components
is around 250–500 ms and depends on the task (Picton, 1992).

Figure 3.7, taken from reporting on an experiment that contrasted
two groups (ADHD patients and healthy controls) across two condi-
tions (illusory contour and no contour) (Cowley, 2013), illustrates some
simple properties of ERPs. Firstly, N100 and P300 waves are clearly
visible in all panels. Secondly, the P300 at posterior sites is much less
condition-responsive than that at frontal sites. This is logical, given the
back-to-front propagation of visual processing in the cortex. Thirdly,
the conditions discriminate between the groups: when compared to the
controls, ADHD patients show a significantly diminished P300 at F3
(above the left dorsolateral pre-frontal cortex).

Several ERP peaks are visible in responses to sound stimuli recorded
while the subject is fully engaged in a primary task with a computer and
not paying any attention to the sounds. The auditory P3 brain response
is particularly valuable in this connection, since it has been linked to the
allocation of attention to surprising, unexpected sounds separate from
the primary task. The strength of this response is related to the extent
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Figure 3.7: An example of ERPs, from four electrode sites – F3, F4, P3, and P4
(‘F’ for frontal, ‘P’ for parietal, ‘3’ for left, and ‘4’ for right) – in two conditions for
a computerised response task (the condition targets are shown in black squares).
The P300 is marked in the top-left panel; abscissa (ms) and ordinate (µV) scales
are marked at the top right.
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of cognitive resources available at a given moment (Kramer et al., 1983).
The auditory P3 is also proposed to index the momentary processing
capacity of the relevant individual (Kok, 2001).

Somatosensory ERP responses have been proposed as possible in-
dices of cognitive functions, primarily attention, during a task (Chen
et al., 2014). Similarly to sounds, somatosensory stimuli can be deliv-
ered unexpectedly, without disrupting the primary task excessively.

ERPs related to a user’s own actions have been proposed as mark-
ers of user cognitive state. The contingent negative variation (CNV)
(Boehm et al., 2014) is a preparatory motor potential that is observed
prior to movement. Its duration and strength are posited to be re-
lated to the planning of the imminent movement. Specifically, inhibi-
tion of the response is proportional to the strength of the CNV response
even prior to the motor movement after decision-making (Boehm et al.,
2014).

Accordingly, the ‘event’ for an ERP may include responses to stim-
uli; indeed, stimulus-event- and response-locked potentials are often
analysed in pairs (O’Connell et al., 2012). In a study by O’Connell
et al. (2012), the response was a subjective decision with respect to
continuous (audio and visual) stimuli crossing the perception thresh-
old. This illustrates that ERPs can be derived not only from discrete
trials but also from continuous multimodal stimuli.

A further and more field-ready demonstration of ERPs from con-
tinuous natural stimuli has been provided by Poikonen et al. (2016),
who extracted musical features from natural sounds and the tango
nuevo, techno, and lullaby musical genres. They found that ERPs were
detectable in periods of rapid feature increase, especially when such
feature ‘peaks’ were preceded by an extended duration of low-feature
values. This demonstrates the utility ERPs can have for the practi-
tioner when combined with automated methods of extracting informa-
tion from natural stimuli.

As described in section 3.5, above, cognitive processes are also as-
sociated with EEG oscillations, and the relationship between ERPs
and oscillations has been investigated by, for example, Watanabe et al.
(2002), who found that event-related gamma-band oscillation and the
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P3 may share several components of a common larger process related
to recognising rare stimuli. Indeed, if we consider the time course of
an ERP as a summation of fixed-frequency waves – e.g., the P3 is a
wave with a 300 ms wavelength – considering ERPs to represent a
brief-time-window snapshot of convolved oscillations is intuitive.

Methods

The recording for ERP signals is similar to that used for EEG appli-
cations, but it additionally requires a temporally very accurate time
stamp for the events in question. This implies that the experimenter
must account for transmission latencies between the EEG amplifier and
the source of the stimulation event. In consequence of the very high
precision required, one should also correct for time stamp ‘jitter’ (the
slight non-periodicity inherent in any electronic signal) when events are
in a stream. On the assumption that these preconditions are met, in a
typical basic research setting, epochs are combined across hundreds of
experiment trials and dozens of participants, to form a grand average
waveform (Luck, 2014).

The process of averaging is a key factor, because the waveforms
characteristic of the ERP may not be seen clearly in any of the indi-
vidual trials unless they are of large amplitude. This noisiness of the
individual signals can arise from source mixing and volume conduction,
in addition to external contributions such as artefacts. Therefore, the
ERP can be considered an idealised representation of the underlying
process.

In an applied setting, one should use EEG amplifiers that are
lightweight and portable to improve usefulness and affordability; even
some consumer-grade devices can be used. In recent years, there has
been a great increase in the commercial availability of ambulatory EEG
sensors, partly due to technological advances and also on account of
the popularity of the ‘quantified self’ movement. The sensors avail-
able range from lower-cost consumer-oriented models such as the Muse
headband, from Interaxon (Toronto, Canada), with fixed electrodes,
to expensive medical-grade devices such as the Embla Titanium, from
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Natus Medical Incorporated (Pleasanton, CA, USA). The Enobio (Neu-
roelectrics, Barcelona, Spain) amplifier is an intermediate device that
is suitable for research purposes and supported in this respect (see
Figure 1.1).

Consumer-oriented devices are usually accompanied by software
aimed at self-quantification and cognitive enhancement; for instance,
the MUSE band comes with an application that teaches meditation
techniques. Devices such as this nevertheless usually employ a com-
munication protocol that allows other software to access the device’s
raw data. Adding time stamps in the form of triggers, however, may
prove challenging, since the solutions currently available for triggering
portable EEG recorders do not typically demonstrate ERP-grade tem-
poral accuracy. This necessitates manual verification of the trigger la-
tency and jitter by the experimenter, a time-consuming and technically
demanding task. In the field of BCI, issues of raw data access or tem-
poral registration have usually been resolved in isolation within labs;
however, this is problematic, as BCI research is largely concerned with
clinical studies (Bamdad et al., 2015; Ahn et al., 2014). For these two
reasons, most of the relevant reports to date have been from laboratory-
based experiments. That said, the impediments to implementation out-
side the lab seem to be mainly an engineering problem, in terms of both
data recording and design of the stimulation events.

Applications

ERP applications require that a stimulus event of sufficient
information-processing novelty evoke a clear brain response. The stim-
ulus is presented in or detected from the environment, or it may come
from the behaviour of the subject during an HCI task. This implies one
of the following:

• The person is going to be slightly or moderately distracted on
occasion by an external stimulus (e.g., sound, a somatosensory
stimulus, or light).

• The event is extracted from the task-related behaviour of the
person in question (O’Connell et al., 2012).
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• The event is isolated from a continuous stimulation stream, such
as a piece of music (Poikonen et al., 2016).

It should be noted with respect to external events that a secondary
task related to external stimuli may annoy, distract, or fatigue the
participant (Kramer and Spinks, 1991; Trejo et al., 1995; Ullsperger and
von Cramon, 2001). Therefore, external events should be rare enough
with respect to the primary task. In addition, the stimuli should be
subtle enough not to disturb but salient enough for evoking measurable
ERPs. In some cases, the strength of the stimulus, e.g. loudness of a
sound, may need to be adjusted for each individual.

Studies showing the effects of cognitive load and processing capac-
ity on the auditory P3 response have been conducted in the field (i.e.
in ecologically valid settings, outside the lab) or in flight simulators
(Fowler, 1994; Sirevaag et al., 1993), during simulated driving (Bayliss
and Ballard, 2000), and in safety-critical monitoring (Trejo et al., 1995;
Ullsperger and von Cramon, 2001). Furthermore, the P3 has been re-
liably extracted with freely moving subjects performing an auditory
oddball task outside (De Vos et al., 2014), indicating that the relevant
paradigm is nearly field-ready.

ERP paradigms can be developed to use stimuli that are elicited by
the participants. For instance, the P3 difference between unexpected
vs. expected stimuli can be locked to the participant’s mouse clicks
(Nittono et al., 2003). More recently, blink-related activity and N2
waves have been found to be predictive of user condition in a study of
a simulated logistics-work environment, where the conditions involved
physical effort, cognitive effort, and rest (Wascher et al., 2014).

Conclusion

Recording EEG data with portable devices and in real-world settings is
non-invasive, is affordable, and exhibits a high success rate. However,
the practical application of ERPs requires suitable hardware/software,
which is not currently straightforward to obtain, and demands a clever
stimulation protocol that is sufficient to evoke detectable responses yet
not interrupt the user. Once such solutions have been identified, ERPs
should constitute a valid approach for workplace HCI. Their use as a
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control input is still limited by the very low information throughput
(Allison et al., 2007), but they possess a clear strength in their long
history as a tool used to detect and probe cognitive states. We can
conclude that using ERPs is to be recommended whenever the appli-
cation clearly supports the rather strict requirements imposed by this
approach.

3.7 Pupillometry

Pupil size has been studied largely for its value as an indicator of
cognitive workload, mental effort, attention, or affective processing.
Research in various fields has explored the application of pupil-based
metrics in several HCI scenarios. However, the pupil is usually stud-
ied under highly controlled conditions, as it is extremely sensitive to
external factors such as changes in ambient light. In fact, the pupil
dilation that occurs in response to a change in light exposure is much
greater than that experienced as a result of cognitive processing (Beatty
and Lucero-Wagoner, 2000). Additionally, pupil behaviour is user- and
session-dependent. These factors make the use of pupil size and pupil
dilation indices as implicit inputs for real-world HCI settings a non-
trivial challenge, yet it is an exciting one, in an area that holds great
promise.

Background

Pupil size is regulated by two muscles (the sphincter pupillae and the
dilator pupillae). By dilating and contracting, the pupil controls the
amount of light that enters the eye; however, there are fluctuations in
pupil size that are not related to the regulation of light entering the
eyes. These fluctuations take place on a much smaller scale, not visible
to human observers (around 0.5 mm), and are associated with cognitive
processes in the brain. This phenomenon has been subject to study for
around 150 years now (Schiff et al., 1875). Almost a century after the
first studies in this area, the field started to grow significantly (around
the 1960s) and it piqued the interest of cognitive psychophysiologists
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aiming at better understanding the functions of the brain and cogni-
tion (Hess and Polt, 1964). From the large body of research that then
emerged, those cognitive states achieving the greatest acceptance as
able to be inferred through pupil size are mental effort and cognitive
overload. In a large set of studies, researchers have shown that there is
a correlation between pupil size and the level of demands imposed by
a cognitive task. That is, the more demanding the cognitive task, the
greater the pupil size (Beatty and Lucero-Wagoner, 2000).

More recently, technological advances in the measurement of pupil
size have been accompanied by increased interest among HCI re-
searchers in using this metric as an additional communication channel
between humans and machines.

Methods

In an HCI connection, pupil size is commonly measured through video-
oculography (VOG), a technique using cameras (often infrared cam-
eras) that record the eye and, by applying image processing, allow one
not only to track the pupil but also to track the point of regard (the
point at which the eye is looking) and other gaze-based phenomena
(Duchowski, 2007), as indicated in section 3.8, on eye tracking. As
noted above, changes in pupil diameter can be due either to cognitive
processing, in a phenomenon also known as task-evoked pupillary re-
sponses (TEPRs), or to other types of pupillary responses, such as that
to ambient light (Beatty and Lucero-Wagoner, 2000). The metrics most
commonly employed to quantify TEPRs are mean pupil dilation, max-
imum pupil dilation (i.e., peak dilation), and latency to peak dilation.
These metrics are computed about 0.5 to 5 seconds after initiation,
with the time depending on the nature of the task (Beatty, 1982). For
analysis of TEPRs under controlled lighting conditions it is common
to divide the signal into epochs initially, in accordance with the nature
of the task or the stimuli presented. For each of the epochs, baseline
normalisation usually is required, in such a form as subtracting from
the epoch pupil data for some period of time prior to presenting of
the stimulus (e.g., 500 ms; see Beatty and Lucero-Wagoner (2000)),
following which metrics can be computed.
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Figure 3.8: The pupil as measured through video-oculography.

A large body of research has considered the relationship between
the individual elements affecting pupil dilation. For instance, Palinko
and Kun (2011, 2012) examined whether cognition-related pupil dila-
tions can be separated from luminance-related pupil dilations in driv-
ing simulation studies. Although highly dependent on the experimental
procedure, their results indicate that it is indeed possible to separate
these two components of pupil dilation. More recently, Binda et al.
(2014) have been studying how the interaction of luminance and cog-
nitive load is reflected in pupil size.

Applications

To illustrate the potential for pupil size metrics in HCI, we selected a
subset of state-of-the-art, non-overlapping studies in which pupil size
has been used on its own rather than in combination with other psy-
chophysiological signals.

As previously mentioned, one of the most well-established indices
that can be inferred from pupil measurements is utilised for estimat-
ing mental workload. Examples of pupil size as an indicator of mental
workload include the Index of Cognitive Activity (ICA), developed by
Marshall (2002). In Marshall’s work, pupil size is used for real-time es-
timation of the user’s cognitive effort in the course of interaction with
a virtual display. More recently, Takeuchi et al. (2011) studied whether
cognitive effort as reflected in pupil size changes as the perceptual learn-
ing process progresses in visual search tasks. They found that in the
early stages of the learning process, pupil size rapidly increased in line
with mental effort. However, in later phases of learning, the increase
was much less pronounced. Recently, Pedrotti et al. (2014) showed the
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predictive power of pupil size in relation to stress situations. They built
a classifier, using neural networks, and were able to predict the stress
condition being experienced by a participant by assessing pupil size.
Their system achieved prediction accuracies of up to 79%.

Pupil size has been used also as an indicator of affective processing.
Partala and Surakka (2003) measured pupil size while participants were
exposed to auditory emotional stimuli. They found that pupil dilation
was significantly greater when the subjects were exposed to emotional
stimuli as compared with neutral stimuli. In addition, the effect was
found to be more prevalent among female subjects.

In HCI research, Oliveira et al. (2009) showed how pupil size could
be useful in analysis of perceived relevance of Web search results. They
studied the relevance of images and documents. Carrying out controlled
laboratory experiments, they found pupil size to differ significantly
when subjects were viewing relevant vs. non-relevant search results. The
authors suggested that pupil size is best viewed as a delayed measure
of interest, because relevant changes in the pupils were found around
400 to 500 milliseconds after the stimuli were shown. In other work,
Jepma and Nieuwenhuis (2011) investigated the relationship between
pupil dilation and choice strategy (exploration of new choices vs. ex-
ploitation of a fixed choice) and were able to differentiate between the
two choice strategies considered: pupil dilation was significantly greater
in exploration scenarios than in exploitation scenarios.

Conclusion

Pupil size has been studied in cognitive sciences for more than a century
and has been slowly introduced in the HCI field in the last few decades.
Pupil size can be used to infer cognitive workload and mental effort in
a reliable manner, and it also can be measured relatively inexpensively
and unobtrusively. However, the extensive dependence on external fac-
tors such as ambient light conditions is slowing its progress beyond
controlled laboratory experiments. In a promising development, recent
research aimed at discriminating task-evoked pupillary responses from
external-evoked pupillary responses has shown positive results, which
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augurs a productive future for pupillometry in HCI. This may well her-
ald application of the signal finding its way into less controlled set-ups
‘in the wild’.

3.8 Eye tracking

As the proverbial ‘windows of the soul’, the eyes can be considered the
only surface feature of the central nervous system. As such, they should
be a rich source of information on human cognition and activity. In this
brief review, we consider eye/gaze tracking as a source of information on
internal cognitive and contextual state, intention, and the locus of the
user’s visual attention in interactive settings. Because the primary func-
tion of the eye is to sample visual information from the environment, re-
purposing it for direct interaction, by using gaze as an ‘input method’,
has proved to be problematic and results in a phenomenon known as
the Midas touch (Jacob, 1990): attentive information-seeking fixations
are interpreted too readily as actions within the gaze-controlled inter-
face. Eye tracking in direct-interaction applications has been discussed
recently by Fairclough and Gilleade (2014) and is not discussed further
here.

Background

Eye movements are highly task- and context-specific (Rothkopf et al.,
2015). In a task performance context, eye movements can be divided
into fixational and saccadic movements. Fixational control (consisting
of fixations and smooth pursuit movements that track slowly moving
targets) is aimed at stabilising the retinal image for information ex-
traction, whereas saccadic movements rapidly move the point of gaze
to fixate and acquire new features from within the visual field. Vergence
(convergent, independent movement of the eyes) can provide additional
information on the depth plane of visual focus in binocular viewing.

In a fairly novel development, also micro-saccades, minor directed
movements of the eye within a fixation, have been shown to corre-
late with cognitive activity, especially visuo-spatial attention (Meyberg
et al., 2015). However, as tracking these requires special equipment that
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is not usable in everyday contexts, our review will deal only with the
eye movements listed above.

Eye trackers typically enable the extraction of several parameters
for each type of eye movement. For fixations, typical parameters are
location, duration, frequency, and drift within fixations. For saccades,
the usual parameters considered are frequency, duration, amplitude,
average speed, and speed profiles. In addition to eye movements, eye
tracking can provide information on blinks, and typical parameters in
this connection include frequency, closing of the eye(s), and eyelid clos-
ing and opening times. Among the more complex, derived parameters
are dwell times (the sum of fixation times within a defined area of in-
terest); gaze paths and patterns; the area covered; and the frequency,
number of, and sequence of areas of interest visited in visual stimuli or
an interface.

Methods

The two most firmly established eye tracking techniques at present
are the electro-ogulogram and video-oculography. The first of these is
generated from measurement of electrical activity associated with eye
movements, quantified by recording from electrodes applied to the skin
surface around the eye(s). The EOG approach provides high tempo-
ral resolution (up to several kilohertz) and can even be used when the
eyes are closed (during sleep or at sleep onset), though it offers limited
spatial resolution, has a drifting baseline, and exhibits high-frequency
noise (Eggert, 2007). These properties make EOGs suitable for wear-
able devices tracking oculomotor parameters, but they are less useful
in actual point-of-gaze (POG) tracking. Although EOG measurement
set-ups vary, most often the measurements are performed with four
electrodes: two horizontal, placed at the outer canthi of the eyes, with
the signal summing the movement of the electrical dipoles of the two
eyes, and two vertical, placed above and below one eye, which can be
used also for tracking blinks.

Devices for VOG measurements are camera-based, tracking the
movements of the eye via changes in visual features such as the pupil,
iris, sclera, eyelid, and light source reflections on the surface of the
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Figure 3.9: A mobile gaze tracking device in an ecologically valid application, in the
left panel. The centre panel provides a visualisation of the algorithm’s performance:
the smaller (green) ellipses show detection of infrared light source reflections; the
larger (blue) ellipse shows the subsequently detected pupil. The right panel shows
the consequent detection of the point of gaze. See Lukander et al. (2013) for details.

cornea. Pupillary measures available through VOG have been linked
with cognitive activity, and these are discussed in section 3.7. Video-
oculography devices, which can be grouped into wearable and desktop
devices, vary significantly in their capabilities and requirements. Desk-
top devices encompass both very precise trackers, requiring the use of
head and chin rests, and completely non-intrusive remote trackers that
may be integrated into laptop computers and monitors. While VOG de-
vices provide better spatial resolution than does EOG (typically 0.5–2
degrees of visual angle), all but the most expensive tracking systems
offer only limited temporal resolution (30–60 Hz). Hence, VOG is bet-
ter suited to tracking the POG, examining gaze patterns, and utilising
event-based metrics.

Applications

We will now present several example applications of eye tracking for
establishing the internal state of the user on the basis of eye and gaze
metrics.

Mental workload Mental workload has been studied under various
task conditions. Hutton (2008) presented examples of saccadic eye
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movements being affected by working memory and attention require-
ments in experimental stimulus–response paradigms. Chang and Choi
(2014) used gaze duration (dwell times on sentences) for measuring the
spatial and temporal distribution of attention in a reading task, with
‘seductive details’ grabbing attention and leading to poor comprehen-
sion and recall performance.

Tokuda et al. (2011) introduced the detection of ‘saccadic intru-
sions’ – quick fixation-restoring saccades – and their frequency for esti-
mating mental workload, while Bodala et al. (2014) utilised peak sac-
cade velocity for gauging mental workload, claiming that higher cogni-
tive workload necessitates faster saccades.

Flow and focus Successfully tracking flow and focus, and thereby
being able to support users’ task engagement, could offer a highly pro-
ductive use for eye tracking. Tsai et al. (2007) reported that in a dual
visual-auditory task condition, increased fixation frequency was indica-
tive of a focus on the visual task while reduced blink frequency and
horizontal vergence indicated a focus on the auditory task. Wang et al.
(2014) explored gaze patterns during driving, concluding that gaze pat-
terns contract in conditions of increased cognitive demands, focusing on
a more limited area around the item of attention. Dehais et al. (2012),
in the meantime, suggested an ‘index of attentional focus’, based on
decreased saccadic activity and more concentrated fixations.

Marshall (2007) described seven binary eye-based metrics, which
she used for studying cognitive state changes in three set-ups: re-
laxed/engaged problem-solving, focused/distracted attention in driv-
ing, and alert/fatigued state during performance of a visual search.
Marshall reported that all seven eye metrics successfully discriminated
among the states, with classification accuracies between 67% and 93%.

Fatigue/sleepiness Fatigue and sleepiness studies have concentrated
mainly on EOG, for obvious practical reasons – both blink and saccade
parameters derived from EOG have been shown to be sensitive to fa-
tigue caused by sleepiness. For blinks, Barbato et al. (1995); Khushaba
et al. (2011) used blink rates and Ingre et al. (2006); Papadelis et al.
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(2007) used blink duration; while Morris and Miller (1996) showed
that blink amplitude and eye closing times change significantly in con-
sequence of fatigue. For saccades, Wright and McGown (2001); Hyoki
et al. (1998) studied saccade rate and eye activity metrics, and Mor-
ris and Miller (1996); Hyoki et al. (1998); Thomas and Russo (2007)
used saccadic velocity parameters for detecting fatigue and sleepiness.
Another study suggested that the peak velocity of horizontal saccades
could be the most powerful eye parameter for monitoring sleepiness
(Hirvonen et al., 2010). Thomas and Russo (2007) presented saccadic
velocity as an oculomotor neurophysiological measure significantly cor-
related with decreasing brain metabolism and cognitive performance,
thereby demonstrating that it could be used as a surrogate marker for
the for the cognitive state of alertness or sleep deprivation.

Application-specificity A large proportion of eye movement research
to date has been performed in limited laboratory environments. One
of the pioneers of eye tracking research, Rayner (2009), warns also
that it might be hazardous to generalise eye movement metrics across
task types such as reading and visual search. As eye movement metrics
are highly task- and subject-specific, movements in the real world can
ultimately be understood only in the context of a particular task.

Conclusions

Metrics of eye movements provide a rich, contextual source of infor-
mation on human behaviour and internal cognitive states, applicable
to various HCI endeavours. Recent developments in measuring and
analysing ocular behaviour can inform novel tools, enabling their use
in natural everyday environments. As a large proportion of the existing
studies have looked at eye tracking in laboratory conditions, studying
and applying gaze interaction and gaze-based user modelling in natural
environments presents a substantial opportunity. However, individual-
to-individual variability and the task-specific nature of eye movements
should be carefully considered, if one is to deliver successful applica-
tions of eye-aware user interfaces and insights into the cognitive state
of users.
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3.9 Video

Advances in camera technologies make video an attractive possibil-
ity for measuring a variety of physiological phenomena, especially in
environments such as the workplace, where contextual factors (e.g.,
ambient light) can be accounted for. Ever smaller and more accurate
camera systems enable unobtrusive observations with sufficiently high
precision for many interesting applications, and as long as there is a line
of sight between the camera and the object of interest, a video signal
may reveal, for example, a person’s cognitive state without interrupting
the work that is being done.

Here we consider digital video-based systems aimed at assessing
some aspect of physiology or behaviour from a distance, in order to
augment human–computer interaction. We exclude the ocular system
from discussion, since it is dealt with in sections 3.7 and 3.8.

Background

Typically, a video signal comprises measurements of the intensity of
electromagnetic radiation in the spectra of visible (wavelengths of
about 390 to 700 nm) and infrared (wavelengths from about 700 to
1000 nm) light, on a plane (for example, the image sensor in digital
cameras). Changes in intensity arise mainly from a change in the origi-
nal light source or the various points of reflection along the path of the
ray of light from the source to the sensor. Accordingly, any movement
within the measurement space (for instance, the eyebrows rising when
the subject is surprised or expansion of the lungs when one is inhaling)
or changes in the reflective properties of the reflection points (such as a
change in skin colour due to increased blood flow) may be detected via
the sensor. There is great variety in the video technologies and systems
available today.

High-speed cameras A typical video camera captures 24 to 30 frames
per second, depending on the encoding. While this is sufficient to make
a video stream seem smooth for the human visual system, systems with
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higher frame rates have been developed too. One of the fastest meth-
ods, known as compressed ultra-fast photography (CUP), can capture
non-repetitive time-evolving events at up to 1011 frames per second
(Gao et al., 2014). For many physiological phenomena, a frame rate on
the magnitude of 100 frames per second is adequate, and 200 frames a
second may already allow, for example, the use of video-based photo-
plethysmography in clinical settings (Sun et al., 2012a).

Webcams The first system to feature a video camera that streamed
an image in real time through a computer network came about in 1991
(Stafford-Fraser, 1995). The camera was pointed at a coffee pot in the
Cambridge University Computer Lab. Since then, video cameras have
become a basic feature in laptop computers and the screens of desktop
computers, and they have been used mainly for video calls.

Cameras in hand-held devices While cameras forming part of tradi-
tional computers are widespread, probably the most ubiquitous camera
systems today are those embedded in hand-held devices, since almost
all modern mobile phones and tablet computers have one or more cam-
eras on their faces. The main camera typically points away from the
user and is intended for photography. There is often another, however,
intended for video calls and points in the same direction as the screen.
In addition to conveying a video image to a caller, the front-facing cam-
era can be used to detect, for example, whether or not there is a face
in front of the screen. Once a face is detected, it may reveal various
attributes of the user, such as emotional engagement as assessed from
facial expressions (Kang et al., 2008). Also, however, as their name sug-
gests, hand-held devices are often held in the user’s hand. It has been
demonstrated that the optical sensor of a mobile phone can detect,
for example, the following elements from touch: breathing rate, heart
rate, blood oxygen saturation, and even atrial fibrillation or blood loss
(Scully et al., 2012).

3D camera systems Whereas a single-sensor camera system typically
is limited to collecting emitted visual information on a two-dimensional
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plane, adding sensors and possibly projectors to the system may enable
the observation of three-dimensional structures. A system with two
appropriately placed cameras (i.e., a stereo camera system) functions
in the same way as human binocular vision and can produce three-
dimensional images. In another commonly used method, the system
utilises projections of structured light patterns onto a three-dimensional
surface, whereby the sensor’s detection of distortions in the patterns
received may reveal the precise three-dimensional co-ordinates of the
surface (Ma et al., 2009). A third method, one that is quite new, uses a
time-of-flight (ToF) camera system, in which distances from the source
of a light pulse to a camera via each point in the visual field can be
resolved from the time of flight of each light pulse on the basis of the
known speed of light (Gokturk et al., 2004). Systems of this type have
been used, for example, to monitor sleep (Lee et al., 2015).

Methods

With the above foundations laid, we now describe methods that have
been used to extract information about human psychophysiology from
a video signal. While there are diverse methods, we concentrate on
three main categories here: light intensity analysis, 2D morphological
analysis, and 3D morphological analysis. All of these areas are show-
ing rapid development, and some solutions are still experimental. For
practical methods, therefore, more research might be required.

Light intensity analysis is the basis for video signal analysis and en-
ables most higher-level interpretations. Even on its own, however, sim-
ply detecting changes in the intensity of the light in a fixed area in a
video image may illuminate interesting psychophysiological variables.
For example, while a plethysmograph reveals changes in volume in a
body, typically due to changes in the amount of blood or air contained
in that part of the body, photoplethysmography is an optical technique
that can be used to detect variations in the intensity of light reflected
from tissue that arise from changes in blood flow (Allen, 2007a). For an
optimal result, various light intensity parameters should be considered.
These depend on the application. For example, pulses in line with heart
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rate seem the most apparent in the green colour channel of a colour
camera feed (Sun et al., 2012b).

2D morphological analysis is the analysis of interesting areas or
shapes in a 2D image, and it is based on the detection of edges between
areas that differ in light intensity. For HCI purposes, the most inter-
esting part of the body is the human face. Face detection and recogni-
tion are established research topics, and there are free tools available
for these (for example, OpenCV FaceRecognizer9). Samal and Iyengar
(1992) provide a good description of the process, from face detection
all the way to the analysis of facial expressions and the classification of
faces. More recently, Zhao et al. (2003) undertook an extensive review
of face recognition. In a recent, thorough review, Martinez and Valstar
(2016) concentrates on automatic recognition of facial expressions.

3D morphological analysis is a broad category of analysis methods
that rely on different optical sensor systems producing data on 3D
structures within a sensor’s field of view. For example, in addition to
using intensity analysis, one can collect plethysmographic data from a
distance by measuring the movement of a body in three-dimensional
space with an optical sensor. Even consumer-grade 3D sensors used in
gaming may be utilised to measure heart and respiration rate (Bernac-
chia et al., 2014).

Applications

Novel video technologies and methods of signal processing give rise to
interesting applications for observing psychophysiological phenomena.
Here we describe two of the most interesting video-based applications
for HCI: photoplethysmography and the recognition of facial expres-
sions.

Plethysmographic data can provide basic information on psy-
chophysiology. More thorough description is given in section 3.1. Here
we consider using video cameras for PPG, an optical technique that can

9See http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_
tutorial.html.

http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html
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be utilised to detect changes in blood flow (Allen, 2007a). For example,
Sun and colleagues extracted a PPG signal from a video and analysed
pulse rate variability (a possible surrogate measure for HRV; see, for
example, Gil et al. (2010)) from the palm of the subject’s hand, using a
monochrome CMOS camera running at 200 frames per second in 10-bit
greyscale (Sun et al., 2012a). Tarassenko et al. (2014) measured both
heart and respiration rate in a clinical set-up from a five-megapixel
face video with eight bits per pixel, recorded at 12 frames per second.
For broader applicability, even low-cost webcams have been demon-
strated to function as photoplethysmographic sensors. In another of
their studies, Sun et al. (2012b) compared a high-performance camera
and a low-cost webcam in normal office lighting. They fixed a high-
speed colour CMOS camera and a colour webcam in front of the face,
along with a gold-standard pulse oximetry contact sensor on the index
finger of the user’s left hand. To ensure that they were measuring light
reflected from the skin, the authors manually determined the region of
interest (ROI) in each frame of the video signals. For HR detection,
they used the green colour channel to analyse changes in the average
intensity of the pixels within the ROI, since, especially in the webcam
signal, pulsations were most apparent in this particular channel. They
concluded that both imaging PPG systems can successfully measure
important physiological variables (in their case, HR).

Mental state is high-level information, and identifying and convey-
ing that information is gaining burgeoning interest in HCI research.
Knowledge of the user’s mental state could augment not only user inter-
faces but also remote collaboration, telecommuting, and video confer-
encing. Facial expressions are an obvious signal as to the mental state,
and the recognition of facial expressions is natural (and automatic) for
humans; it is an important part of our communication. Both voluntary
and involuntary facial actions convey, in particular, emotional infor-
mation that is otherwise difficult to express – and difficult to conceal
in face-to-face interaction (Ekman, 2003). Facial expressions can be
categorised as reflecting six canonical emotions in addition to a neu-
tral expression: anger, disgust, fear, happiness, surprise, and sadness
(Ekman, 1994). For an excellent review of automatic facial expression
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Figure 3.10: Seven actor poses for emotional expressions, from the
Japanese Female Facial Expression (JAFFE) database (Lyons et al., 1998).
Clockwise from top left: anger, disgust, fear, happiness, a neutral expression, sur-
prise, and sadness. Although use of posed emotional expressions is a dated technique,
such datasets provide a convenient picture of the concepts involved.

recognition, we recommend the work of Martinez and Valstar (2016).
Traditionally, the process has begun with databases of portraits of ac-
tors mimicking the emotions (for example, as shown in Figure 3.10).
A neutral expression is used as a reference for training the algorithm.
The core challenges with such a category-based approach are that the
emotions each appear relatively rarely and that some expressions may
differ in meaning on the basis of context. For example, someone might
smile when embarrassed, not just when happy. Another method in-
volves looking at the basic units of muscle activity in the human face,
termed ‘action units’, in keeping with the Facial Action Coding System
(FACS; see (Ekman and Friesen, 1976)). With the FACS approach, in-
terpretation of mental state can be done at a later stage in the analysis
pipeline, with the aid of additional information on the context. A third
approach is to represent the mental state on two or more dimensions of
affect, such as continua for arousal (ranging from relaxed to aroused)
and valence (from pleasant to unpleasant). However, neither action
units nor values on the affective dimensions are always detected with
the current methods, especially in real-world settings.
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Conclusion

The recent progress in video and signal processing methods renders
video an interesting alternative to many traditional means of obtaining
psychophysiological measurements, in areas such as plethysmography.
In addition, video may enable new HCI applications, such as the re-
mote and automatic identification of the mental state. Many of these
methods are still in the early phases of development and require more
research before they can achieve greater feasibility; however, there is
already inexpensive hardware available, and, for many areas of study,
excellent-quality free, open-source software tools and libraries exist. It
is clear that the use of video in HCI is only just beginning.

3.10 Audio – the human voice

Human voice production originates at the larynx, where air pressure
from the lungs causes vibration of the vocal folds, thereby generating
a complex but patterned sound source composed of a fundamental fre-
quency and multiple harmonics. This signal is then filtered through
the vocal tract airways (oral and nasal cavities). This vocal apparatus
produces a complex interactive system capable of generating a wide
variety of sounds (Ghazanfar and Rendall, 2008).

Humans have evolved a nonverbal communication system in which,
alongside linguistic content, speech carries rich information in the in-
tonation, voice quality, prosody, and rhythmic variation of utterances,
allowing listeners to recognise numerous distinct emotional states in
the speaker. Several types of factors, from emotions to cognitive load
and pathological conditions, affect the functioning of the larynx, or
‘voice box’, whereby the internal state of the speaker causes tighten-
ing/relaxation of the vocal folds, which modulates the acoustic and
rhythmic components of speech.

Now that computing systems are starting to listen actively to people
(as with Google’s ‘Voice’, Microsoft’s ‘Cortana’, and Apple’s ‘Siri’),
human speech provides a promising source for online understanding of
context and psychophysiological state with measurement that remains
minimally intrusive.
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Background

Evaluating stress, affect, and mood on the basis of the human voice is
not a new notion. Much of the literature on the effects of psychophys-
iological states on the acoustics of speech production has its roots in
the 1970s, in work on stress and lie detectors in interrogation, military,
and aerospace settings. Technologies used in these settings – namely,
voice stress analysis, voice risk analysis, and layered voice analysis –
use the recorded features, including ‘micro tremors’, in a person’s voice
to construct a scorable ‘voice gram’, which is then evaluated by a spe-
cialist. While these approaches have been utilised in courtrooms and
operator monitoring in demanding work tasks, their reliability has been
disputed – for these methods, the most convincing results have been
obtained in conditions of extreme stress, such as under threat of injury
or great operational risk. The recording environments in such research
has possessed heterogeneous acoustic characteristics, and the results
and metrics from the relevant studies cannot be cross-evaluated reli-
ably (Hopkins et al., 2005; Harnsberger et al., 2009).

However, even everyday user interaction situations appear to elicit
strong enough emotional and stress responses to produce systematic,
detectable changes in voice parameters. In the interactive setting of HCI
specifically, the psychophysiological states recognised in the literature
as having an effect on speech production are cognitive workload, or
‘stress’ (Lively et al., 1993); physical stress (Godin and Hansen, 2015),
and various emotional states (El Ayadi et al., 2011).

Methods

Changes in human voice production can be measured with a micro-
phone, in combination with the use of mathematical models to asso-
ciate acoustic changes with the functioning of the larynx, or through
electroglottography, in which the system uses two pairs of electrodes
(one pair on either side of the subject’s throat) to measure the varia-
tions over time in the degree of contact of the vocal folds during voice
production (Kania et al., 2006). When microphones are employed, the
approach typically involves inverse-filtering microphone recordings to
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model the waveform of the glottal airflow pulses, which, in turn, reflect
the movements of the vocal folds (Alku, 2011). There is a downside,
however: microphone recordings vary greatly in quality and with re-
spect to noise parameters related to microphone type, environmental
factors, and distance from the speaker. Guidelines for selection of mi-
crophones suitable for human voice research are provided in a summary
by Svec and Granqvist (2010).

Several derived low-level features and combinations thereof have
been suggested to be correlated with variations in internal states.
Table 3.2, compiled on the basis of work by Ververidis and Kotropou-
los (2006) and Scherer (2003), presents the effects of fundamental emo-
tional state on selected features. Typical features derived from speech
signals include loudness, fundamental frequency, word and utterance
rate (speed), jitter, zero-crossing rate, and frequency ratios. While
acoustic features of speech such as pitch, timing, voice quality, and
articulation have been shown to correlate highly with underlying emo-
tional activation (low–high), there is no agreement as to how these
dimensions correlate with the valence of the emotion (El Ayadi et al.,
2011). Instead of direct comparisons involving individual features or
combinations of them, modern approaches tend to use machine learn-
ing methods to improve detection rates (Zhou et al., 2001).

Applications

While variations between one speaker and the next require calibration
and baselines, online calculation of acoustic parameters and spectral
measures is relatively easy and robust. In one recent innovation, a set
of open-source toolboxes for automated feature extraction and voice
analysis has been developed. These include openSMILE – the Munich
Versatile and Fast Open-Source Audio Feature Extractor (Eyben et al.,
2010) – and AMMON (Affective and Mental Health Monitor) (Chang
et al., 2011).

A considerable amount of the recent research in this field has
been presented in connection with the Interspeech computational par-
alinguistic challenges (Schuller et al., 2015). Since 2009, these chal-
lenges have called for methods of evaluating speech for the detection
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of age, gender, affect and emotional parameters, personality, likeabil-
ity, pathologies and diseases, social signals, signs of conflict, cognitive
load, and physical demands. For an extensive list of examples of com-
putational solutions for the paralinguistic detection of cognitive and
emotional states, the reader is directed to the Interspeech repository
available online at http://compare.openaudio.eu/.

Conclusion

For the interactive setting that is the focus of our attention, analysing
the acoustics of speech production offers a non-intrusive online metric
for gauging the internal state of the user. There is considerable potential
on account of the pervasiveness and unobtrusive nature of the method.
The classification performance of automated solutions is beginning to
reach an acceptable level of sensitivity and reliability, at least upon
user-specific calibration to accommodate the effects of differences in
languages and dialects, individual-to-individual differences in speech
production, and variations in stress and affective responses.

Another source of motivation for significant improvements in both
recognising and producing natural paralinguistic cues associated with
empathetic responses arises from future needs related to affective com-
puting, robotics, and artificial conversation partners in general. These
technologies necessitate naturalistic input and output down to the
smallest detail in order to escape the ‘uncanny valley’ (Mori et al.,
2012).

3.11 Multimodal signal classification

Having considered 10 individual types of signal source, we can now dis-
cuss their use in combination. Signals obtained from multiple sources
(physiological and behavioural) can be combined and analysed collec-
tively for determining the state of a user (or, in some cases, multiple
users). Performing cognitive or affective state assessment by means of
multiple signals is the focus of this section and the next. We begin by
considering the theory of data fusion in general, especially when the

http://compare.openaudio.eu/
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fusion is performed offline (i.e., post-recording), then devote the final
subsection to online data fusion.

Increasing the number of signals analysed has the potential of pro-
viding more accurate estimates; whereas data collected from a single
source could lead to conflicting interpretations, using data from mul-
tiple sources in combination aids in disambiguating cognitive or affec-
tive state. In the case of the widely known two-dimensional model of
affect (Russell, 1980) (a simplified version of which was depicted in Fig-
ure 2.1), a moderate increase in arousal could be caused by the subject
experiencing either fear or annoyance. For the purpose of our example,
we assume that this increase in arousal is unequivocally measured via
EDA (discussed in section 3.2). Integrating EDA with additional mea-
surement (such as facial recognition) can assist in discriminating which
of the two emotions the user was actually experiencing; for instance,
the vertical position of the eyebrows is often higher when one is expe-
riencing fear rather than annoyance. Similarly, when facial recognition
alone does not provide enough information to detect the emotion unam-
biguously, measuring arousal (from EDA or other signals) could aid in
correctly classifying less clear-cut cases. For example, Bailenson et al.
(2008) found males to be less facially expressive than females when
experiencing sadness. Accordingly, including additional physiological
signals in their classifier (such as EDA and ECG) increased the prob-
ability of correctly detecting sadness for males. Mandryk and Atkins
(2007) presented an interesting approach, using a fuzzy classifier based
on ECG, EDA, and facial EMG, to classify both arousal and valence
of participants playing a popular computer game.

Novak et al. (2012) and Lisetti and Nasoz (2004) discuss general
strategies that can be employed in the design and implementation of
multimodal systems. Inspired by these works, we describe here a generic
schema for detecting affective and cognitive state in the types of multi-
modal systems discussed in this part of the primer; see Figure 3.11. As
this figure shows, stimuli are associated with some cognitive/affective
state(s) in the first step, either through the use of validated stimuli
(e.g., the International Affective Picture System) or via subjective la-
belling of each stimulus after perception (for instance, a questionnaire
can be used to evaluate a recording of the experience). Metrics are
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computed from their respective signals. Then, a classifier is trained to
associate the data obtained with specific affective states on the basis
of the stimulus classification performed earlier. ‘Optional’ procedures,
shown in dotted boxes in the figure, may be applied at this stage. Such
optional procedures may increase classification accuracy. For exam-
ple, one may include a user model based on population-level inferences
or (non-physiological) contextual information – such as time of day.
Finally, reverse inference is performed to associate a particular set of
data with a single specific state or with a range of states; probabilities
are used to identify those states that are more likely to be associated
with the observed data.

Multimodal systems can be useful when data from a given channel
are missing, a situation that can normally be expected to arise when
data are recorded outside research laboratories. For example, in the
research by Wagner et al. (2011a), missing data were handled by means
of a naïve Bayes classifier and three modalities: voice (audio), facial
recognition (video), and gestures (accelerometer).

Determination of affective and cognitive state

Several studies have considered fusing information from multiple signals
in order to assess mental workload. In a recent study, Hogervorst et al.
(2014) noted that the use of multiple physiological signals is expected
to enhance estimation of mental workload if the chosen signals repre-
sent separate aspects of workload. They extracted features from EEG,
ECG, skin conductance, respiration, pupil size, and eye blinks, using
these as inputs for both support vector machine (SVM) and elastic
net classifiers. They achieved a high classification accuracy in two-level
workload determination.

Cognitive state can be estimated also through a combination of
a single physiological signal and a non-physiological source – Mühl
et al. (2014), for example, used an LDA classifier to classify mental
workload, combining EEG and mood (measured via self-reporting).
Fusing of multiple features from the same signal has been undertaken,
for instance, by Brouwer et al. (2012), who used features derived from
EEG as inputs to an SVM classifier. They concluded that models using
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Figure 3.11: Diagrammatic generalisation of multimodal physiological systems.
Grey boxes are roughly equivalent to the concept of a ‘complex topography’ in
signal processing systems (depicted below in Figure 3.12).

both EEG and ERP features – i.e., fusion models – worked better for
mental workload classification using short data segments.

Given that learning can be facilitated by an optimal level of arousal
(Baldi and Bucherelli, 2005; Sage and Bennett, 1973), Cowley and
Ravaja (2014) showed that the interaction of EDA and EEG features
predicted learning outcomes in a game-like task wherein individual sig-
nals alone were uninformative.

A study by Wilson and Russell (2003b) applied a combination of
85 EEG frequency power features, inter-beat interval, respiration rate,
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and electro-oculogram data from air traffic controllers. These 88 fea-
tures were classified via an artificial neural network (ANN), achieving
very high accuracy in two-class mental workload classification. Simi-
lar performance was achieved in classification of mental workload on a
three-level scale instead (Wilson and Russell, 2003c). The same set of
signals were used by Wilson and Russell (2007) in an adaptive-aiding
system.

Applications

Multimodal systems capable of interpreting physiological signals in re-
alistic HCI applications have been implemented with some success, es-
pecially in the last 10 years. We will discuss the most relevant applied
work here.

Healey and Picard (2005) examined drivers’ stress levels (referring
to distress, or negative stress; see Table 4.1) via four modalities: ECG,
EMG, EDA, and respiration. Using Fisher’s discriminant analysis, they
reported an accuracy of 97.4%. This relatively early research focused
only on assessing the feasibility of correctly classifying three levels of
stress. Malta et al. (2011) conducted a similar study, in which drivers’
frustration was measured during actual (non-simulated) driving. Us-
ing a Bayesian network, they classified specific time segments in two
classes (frustration-present vs. frustration-absent). They achieved, for
the most part, 80% hit and 9% false positive rates, with the rates
depending on the data fed to the classifier. Interestingly, the most ac-
curate predictions were obtained when contextual information, such as
traffic density, was provided to the classifier along with physiological
information.

Pavlidis et al. (2007) utilised thermal cameras to measure multiple
signals. Although only a single sensor was employed technically (the
camera’s thermal sensor), they effectively measured blood flow, cardiac
pulse, and breathing rate. These metrics were used to compute a general
level of negative stress, by means of a model of data fusion developed
specifically for this application. The researchers reported good accuracy
in detecting the actual stress levels (r = 0.91, Pearson correlation), with
the exception of one outlier. They proposed two applications, desktop



238 The state of the art

computer monitoring and sleep analysis, in both of which a stress level
was computed for the current user, who was then alerted in the event
that a specific threshold was exceeded. It should be noted, though, that
the desktop computer test was carried out in the form of a laboratory
experiment (a variant of the Stroop Test) (Pavlidis et al., 2007).

In other work, a biometric mouse and finger sensor (intended for
desktop computer users) were used to measure EDA, skin temperature,
heart rate, and touch intensity, in conjunction with behavioural data
(such as mouse movements), for development of a recommender system
that was tested in real-world working conditions over a span of four
years (Kaklauskas et al., 2011). The recommender system was capable
of detecting stress and anxiety. It then presented individual users with
suggestions for managing their work environment, on demand. Simi-
lar research involved a multimodal system employing EEG, ECG, and
EMG, which was tested by CAD engineers. The system classified four
emotions (frustration, challenge, engagement, and satisfaction) in users
carrying out CAD work (so that, for example, one could detect designs
developed amid frustration, which might display errors in judgement).
However, small sample sizes prevented statistically significant findings
(Liu et al., 2013). In other applications, it was noted that less expert
users might benefit from physiological integration, as in a system that
utilises gaze, facial recognition, and speech recognition in order to pre-
dict user intentions. However, while welcomed by non-experts, a system
of this nature (Maat and Pantic, 2007) was met with dissatisfaction by
more experienced users.

Measurement of physiology from multiple sources has not been lim-
ited to single-user desktop computer usage. It has been carried out in
more social settings also, such as at meetings or on public speaking
occasions. For example, stress-related arousal has been measured ‘in
the wild’ through a combination of EDA, ECG, and motion sensors
(though the system was tested with only a small number of partici-
pants) (Kusserow et al., 2013). This creates the possibility of analysing
one’s own data during a public speaking event, so that any performance
problems due to distress can be identified and, possibly, be avoided in
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the future. In addition, observer stress, the stress experienced by a per-
son observing a meeting or group event, has been measured by means
of thermal cameras, EDA, and EEG (Sharma and Gedeon, 2014). In
the same study, observer stress was measured during an interview event
(with the interview being designed to induce observer stress at specific
moments). With genetic algorithms and support vector machines, the
presence (or absence) of observer stress was detectable with an accuracy
of 98%. In a similar context, a more laboratory-oriented setting (which
used virtual humans as ‘presenters’) utilised video cameras (for facial
recognition), eye tracking, and audio signals to measure observer inter-
est in a given topic (Schuller et al., 2009). That study demonstrated
that a virtual agent was capable of detecting loss of the user’s inter-
est and of switching topic accordingly. Although the frequent change
of topic might have had an adverse impact on user understanding,
the system was capable of correctly detecting changes in user interest
(with a cross-correlation value of 0.72, using support vector regres-
sion).

Challenges

As are all the other methods mentioned, multimodal methods are af-
fected by high noise levels at the receiving end. The ‘bleeding-edge’
nature of the technologies employed implies that signal quality can
vary greatly across devices. Moreover, the interference typical of body-
based measurements (such as adverse effects of muscle movements on
EEG) complicates processing of the signals obtained. In general, this
means that ‘one size fits all’ measurements are infeasible, so user- and
environment-based customisations are required for obtaining satisfac-
tory signal quality, especially when physiology is being measured out-
side well-controlled laboratory settings (Hong and Dey, 2014).

If they are to be effective, multimodal measurements would bene-
fit from an overarching theory of emotion. Although some approaches
pointing in this direction have been put forward (Conati and Maclaren,
2009; Peter and Herbon, 2006; Gunes and Schuller, 2013; Gunes and
Pantic, 2010), consensus is still lacking, as the nature of emotions is not
fully understood. Moreover, a lack of interdisciplinary work is evident in
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this field: applications devised within one community are rarely shared
with other communities (for example, an HCI experiment may not
demonstrate strong enough correlations between the data and specific
events to satisfy the demands of psychological research, while psycho-
logical research is usually too theoretically oriented for HCI applica-
tions) (Lopatovska and Arapakis, 2011).

The absence of consensus with regard to theories of emotion might
also explain why multimodal methods generally manifest only modest
improvements over single-sensor settings (D’Mello and Kory, 2012).
Often, multimodal systems assume co-ordinated bodily responses to
a single emotion, which might not occur in reality. Since multimodal
measurements demand more computing power, it is important to ver-
ify that multiple theories of emotion are considered while the work
is still in the development stage, so as to avoid the creation of a
highly complex system that yields minimal gains over a single-sensor-
based system. That said, modest gains are still welcome, provided
that the increase in computation time is not unmanageable. Moreover,
development of novel systems that take current theories of emotion
into account could lead to new insights into the nature and phys-
iology of emotions themselves (e.g., in the case of unexpected find-
ings).

Conclusion

Most of the multimodal applications described here, especially in the
context of HCI, have focused on detection of (negative) stress, possibly
because stress is often identified as the most negative – yet measurable
– factor that can arise in working environments. Applications in this
area have found some success, although they rarely address use cases
beyond user self-assessment. Multimodal applications that constitute
attempts to detect other cognitive or affective states, such as interest,
intention, or emotion, do exist but are only in the early stages of their
development. For that reason, research in this connection is currently
focused on improving classification accuracies rather than on presenting
effective use cases.
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It appears that research into multimodal physiological systems
would benefit from more interdisciplinary work focused on finding com-
mon ground between the fields of psychology and human–computer in-
teraction, so that advanced systems, capable of detecting user states
with greater accuracy, can be developed. Tools that should aid in the
implementation of advanced, online data-fusion systems are discussed
in the final section.

3.12 Solutions for online data processing and fusion

We have covered a wide range of individual biosensors and areas of
application for them, and, with the preceding section, we began to
discuss signal fusion. While we have thereby looked at it from a the-
oretical perspective, we have not yet addressed the topic of how to
perform these fusion operations (feature extraction and classification)
involving multiple signal sources in real time while leveraging mod-
ern stream processing methods. Therefore, the final subsection focuses
on the implementation and technical aspects of real-time stream pro-
cessing systems for the online extraction and fusion of indices from
streaming biosignals. The calculation of user indices from one or more
signals is often realised by means of machine learning techniques such
as a classifier. We address the integration of these indices into various
applications also, by listing currently available hardware and software
solutions.

An overview of stream processing systems

Real-time data fusion requires a tool for combining multiple physi-
ological signal streams and performing online extraction of features
from raw signal data. Typical database management systems do not
perform this task well, as the databases must be updated constantly
for incoming data and the relevant operations tend to be slow. Also,
long-term data storage is not required in most applications, since short
fixed-length buffers cover the time ranges presented in Table 2.2. Sys-
tems that take these factors into consideration are generally referred to
as stream processing systems (SPSs). Their origins lie in the need for
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real-time processing of high-velocity and high-volume data. Example
applications can be found in the field of data-mining: fraud detection,
stock market analysis, and manufacture monitoring. Although dated,
the most comprehensive survey of generic stream processing systems
can be found in Stephens (1997). Most existing stream processing sys-
tems are generic; i.e., they can be configured to process various kinds of
data. The most prominent examples of this type of SPS are AURORA
(Abadi et al., 2003) and its continuation project BOREALIS (Abadi
et al., 2005). The downside of a generic SPS is the overheads required
for configuring the system for a specific task. For this reason, spe-
cialised, task-specific SPSs designed to deal with particular data types
have been developed. Examples of task-specific SPSs used for physio-
logical data include brain–computer interfaces and body area networks
(see Chen et al. (2011)).

Stream processing systems are made up of three basic components,
often termed sources, filters, and sinks (Stephens, 1997), although the
naming conventions employed in the literature vary. For the sake of
clarity, these components are referred to here as sensors, processing
elements, and clients, for consistency with the rest of the review; these
names match the terms introduced in Table 4.1. Stream processing
systems are often represented as directed graphs comprising the three
above-mentioned components. Two examples of SPS architectures, with
different scales, are shown in Figure 3.12.

Sensor Broadly speaking, one can define a sensor as an instrument
used to measure some form of signal from a subject. In addition to
the sensor element itself, this definition encompasses the interface and
the protocol for transforming the incoming data into a format under-
stood by the SPS. Sensor protocols include vendor-specific proprietary
formats and APIs but also more open protocols such as the lab stream-
ing layer15 (LSL) (Kothe, 2013). Most methods employed for recording
physiology have some sensor instrument that can be implemented as
part of an SPS.

15See https://github.com/sccn/labstreaminglayer.

https://github.com/sccn/labstreaminglayer
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Figure 3.12: Two example topographies for stream processing systems.

Processing elements Processing elements are the main computa-
tional units of an SPS. They can have multiple functions, but at
the very minimum they perform some operation on incoming data.
If the SPS is distributed in nature, the processing elements can be
implemented on separate hardware, which provides for load balancing
throughout the system. This is beneficial, as processing of signals with
high sampling rates and high channel counts can be computationally
intensive. Processing elements may also have internal buffers for the
short-term storage of data.

Clients The term ‘client’ describes any external application utilising
information produced by the SPS. Clients can be considered end points
(or sinks) in the SPS workflow. Some BCI frameworks consider the user
of the system to be part of the client component.

In addition to the basic components of an SPS, there are various
properties that are intrinsic to most such systems. These include scala-
bility, distributed processing, load management, fault tolerance, latency
management, and service discovery. Scalability refers to the ability to
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extend the system to include more sensors and processing elements
(scaling methods suitable for very large systems are discussed by Jain
et al. (2006)). In distributed processing, different parts of the system
can run on different hardware, possibly even in different (geographical)
locations. Optimisation strategies for distributed SPSs are presented
by Golab and Özsu (2003). The SPS must also apply some method
of controlling multiple concurrent queries from multiple clients. The
usual implementation is some form of load balancer (for details of var-
ious load management methods and fault tolerance, see Abadi et al.
(2003, 2005)). Since the system is composed of multiple, distributed
parts, latency management is important; that is, it must control or
monitor the latency between components. Various methods for achiev-
ing low-latency real-time operation exist in both the Aurora and the
S4 (Neumeyer et al., 2010) system. Finally, to enable communication
between different system components, automated discovery of various
sources and processing elements should be part of the system. For in-
stance, metadata-based identification and discovery of system compo-
nents were used by Aberer et al. (2007).

When one is fusing information from multiple signals for classifi-
cation, it is important to consider the different time scales at which
the signals operate too, as is noted by Hogervorst et al. (2014). The ro-
bustness of index determination over time, as discussed by, for example,
Estepp and Christensen (2011), is an important issue, since the per-
formance of the classifier degrades as time since calibration increases.
Therefore, an online system should preferably incorporate some kind
of automatic continuous calibration procedure. Further design consid-
erations, requirements, and guidelines for implementing SPSs are pre-
sented by Balazinska (2005); Stonebraker et al. (2005); Cherniack et al.
(2003).

Software solutions for online analysis of signals

Several stream processing software solutions exist that are capable of
gleaning knowledge about a user’s cognitive state from biosignals. The
various stream processing systems intended for psychophysiology are
all similar in design, possessing the elements outlined in the previous
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section. There are, however, some differences with regard to what types
of signals the tools primarily support and what constitutes their end-use
purpose. We will briefly review some of the available stream processing
systems intended for physiological data. The software covered in this
section is presented in Table 3.3.

Table 3.3: Existing stream processing systems for physiological data

Software Reference URL

BCI2000 Schalk et al. (2004) http://www.schalklab.org/research/
bci2000

OpenViBE Renard et al. (2010) http://openvibe.inria.fr/
SSI Wagner et al. (2011b) http://hcm-lab.de/projects/ssi/
BCILAB Kothe and Makeig (2013) http://sccn.ucsd.edu/wiki/BCILAB
Wyrm https://github.com/bbci/wyrm
MIDAS Henelius and Torniainen

(2015)
https://github.com/bwrc/midas

Most of the SPS software packages available for physiological data
are BCI and biofeedback frameworks. The BCI2000 package, for in-
stance, is a full software solution tailored for BCI research. The design
of BCI2000 is modular, cross-platform, and able to be extended with
C++. OpenViBE is another cross-platform BCI solution. It is intended
for biofeedback and neurofeedback and can be extended through C++
but also supports Python/Lua scripting. The SSI solution is a more
versatile framework, suitable for processing a wide range of signals,
from biosignals to video and audio. It includes functionality for fea-
ture extraction and classification. Extending SSI is handled with C++.
A BCI toolbox for MATLAB, BCILAB utilises the lab streaming layer
protocol and provides a vast number of functions for analysing and
classifying brain signals. Finally, the Python-based Wyrm is a more
programming-oriented approach for implementing BCI set-ups.

Recently, the MIDAS framework, developed for the online process-
ing of signals, was introduced (by the authors of this section). The goal
with MIDAS is to provide a cross-platform, generic framework that is
easy to use and extend. While the MIDAS solution utilises LSL for

http://www.schalklab.org/research/bci2000
http://www.schalklab.org/research/bci2000
http://openvibe.inria.fr/
http://hcm-lab.de/projects/ssi/
http://sccn.ucsd.edu/wiki/BCILAB
https://github.com/bbci/wyrm
https://github.com/bwrc/midas
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signal input, it provides only the framework for constructing modu-
lar and distributed analysis systems. In other words, MIDAS contains
only the building blocks for an SPS, and it is up to the user to imple-
ment the necessary analysis modules. The MIDAS framework is written
entirely in Python and can be easily extended. Communication with
clients takes place over a REST API. This makes it easy to integrate
psychophysiological indices extracted online by means of MIDAS with
other applications.

It should be noted that BCI2000, OpenViBE, BCILAB, and SSI
all can be set up and used without programming, since they include
user-friendly tools for constructing workflows for BCI experiments.
One key philosophy behind these software packages is to enable non-
programmers to implement BCI/neurofeedback systems. In contrast,
BCI systems implemented with the Wyrm toolbox or MIDAS require
more programming and technical understanding.

MIDAS and BCI2000 are the only stream processing systems re-
viewed here that support a distributed design. This attribute can be
useful in processing tasks that involve multiple input signals and large
volumes of data.

Hardware solutions for integrated online feature extraction

In addition to software solutions for real-time signal fusion, there are
dedicated hardware solutions for monitoring various aspects of a user’s
cognitive state; see Table 3.4.

For instance, the LifeShirt system is used to monitor the physio-
logical signals (such as heart and respiration rate) of firefighters (Coca
et al., 2009). Another example of hardware-based stream processing
systems is the BioHarness 3, from Zephyr. Affectiva (founded by affec-
tive computing researcher Rosalind Picard) develops systems for on-
line emotion recognition, especially using webcams (such as one called
Affdex). Details of an interesting solution for monitoring heart rate
(another application that uses a webcam) have recently been published
(Poh et al., 2010).

Hardware solutions for monitoring cognitive states by means of
EEG have been developed by Quasar and B-Alert. In addition, several
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Table 3.4: Examples of hardware that performs online signal analysis

Product and producer Reference and/or URL

LifeShirt Coca et al. (2009)
http://vivonoetics.com/products/sensors/
lifeshirt

BioHarness 3 http://www.zephyranywhere.com/products/
bioharness-3

Affectiva http://www.affectiva.com/
Quasar http://www.quasarusa.com/technology_

applications.htm
B-Alert http://www.advancedbrainmonitoring.com/eeg-

based-metrics
JIN CO., JINS-MEME http://jins-meme.com/
Optalert http://www.optalert.com/
LumeWay http://www.lumeway.com/
Bitalino-board Guerreiro et al. (2013), http://www.bitalino.com/
e-Health Sensor Platform https://www.cooking-hacks.com/ehealth-

sensors-complete-kit-biometric-medical-
arduino-raspberry-pi

solutions are available for tracking fatigue on the basis of eye tracking.
Examples include JINS-MEME, Optalert, and LumeWay.

Alongside application-specific products, there are platforms that
allow a do-it-yourself approach to fusion of multiple biosensors. At the
time of writing, the most noteworthy examples are the Bitalino-board
(Guerreiro et al., 2013) and the e-Health Sensor Platform. Both feature
numerous sensors (for EMG, EDA, BP, temperature, etc.) that can
be connected to low-level microcontroller devices (e.g., an Arduino)
or more high-level devices with compatible input/output connections
(e.g., a Raspberry Pi). Both sets are highly configurable, with the trade-
off that some expertise is required for building and operating systems
on these platforms.

Conclusion

The primary goal with online processing in HCI is to allow index de-
termination to be used as a control signal for other components. Fusing
information from multiple biosignals makes it possible to utilise comple-
mentary information and hence increase the robustness of the system.

http://vivonoetics.com/products/sensors/lifeshirt
http://vivonoetics.com/products/sensors/lifeshirt
http://www.zephyranywhere.com/products/bioharness-3
http://www.zephyranywhere.com/products/bioharness-3
http://www.affectiva.com/
http://www.quasarusa.com/technology_applications.htm
http://www.quasarusa.com/technology_applications.htm
http://www.advancedbrainmonitoring.com/eeg-based-metrics
http://www.advancedbrainmonitoring.com/eeg-based-metrics
http://jins-meme.com/
http://www.optalert.com/
http://www.lumeway.com/
http://www.bitalino.com/
https://www.cooking-hacks.com/ehealth-sensors-complete-kit-biometric-medical-arduino-raspberry-pi
https://www.cooking-hacks.com/ehealth-sensors-complete-kit-biometric-medical-arduino-raspberry-pi
https://www.cooking-hacks.com/ehealth-sensors-complete-kit-biometric-medical-arduino-raspberry-pi
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Achieving data fusion in real time is a challenging and computationally
intensive task. However, that task can be addressed by utilising stream
processing systems, such as those we have reviewed here.



4
Overview and application

The 12 sections above on the state of the art have brought us to the
point of understanding the nature of and application possibilities for a
broad range of psychophysiological signals and topics. For continuing
from this point, advice on practical application is given in sections 4.1
and 4.2. Before that, we present a reference to psychophysiological in-
dices in HCI, in Table 4.1, for readers to be thoroughly prepared to
plan their psychophysiological work with the aid of later sections.

Chapter 3 considered many examples of how one or more physio-
logical signals can be used to index a psychological variable, a cognitive
state, or an affect. Often, indices are more reliable and/or interpretable
when additional variables are used to model the context, such as user
behaviour in a computer interface. Table 4.1 is a synthesis covering
several studies that have classified each index, with the relevant sec-
tion describing the work done (where applicable). This general reference
should assist the reader in performing a targeted literature review when
working with one or more indices.
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4.1 Application areas

A practitioner’s purpose in using psychophysiology tends to fall into
one of the four categories outlined below. In practice to date, outside
specialised clinical uses, the most biosignal applications have been in
the realm of classification, slightly fewer in that of prediction.

1. Among other applications, biosignals have been used for clas-
sification of a subject’s psychological state; the task being per-
formed, from among a set of predefined tasks; or trait-like features
such as a depressive tendency (Weinberg et al., 2016).

2. The second most common area of application is prediction of
behaviours, by learning a model of behaviour-associated physiol-
ogy. Data can come from either a group of other individuals (in
a between-subjects scenario) or a ‘user model’ of prior record-
ings (in a within-subjects design). Another prediction option is
imminent concept drift/shift (Black and Hickey, 1999).

3. Biofeedback can be used in setting up, for example, an explicit
control loop, psychological reinforcement directed toward desired
states, navigation of information spaces, or clustering information
presentation that is based on self-similarity of evoked physiology.

4. Entrainment may be applied to influence physiology toward de-
sired states without biofeedback – for example, through rhythmic
audio stimuli.

Classification The canonical use case is classification of some psycho-
logical state in line with biosignals. It is most often performed in a basic
research setting. While this work would seem straightforward, there is
a large amount of hidden complexity, in elements ranging from signal
processing (see the discussion on feature extraction in section 3.2) to
establishing psychological ‘ground truth’ by choosing some model of
cognitive/affective state. For example, using the circumplex model of
emotion, as described in section 3.2, is only one of many options (see
chapter 5, below).



260 Overview and application

It is clear from the foregoing discussion that, the maturity of the
field notwithstanding, there is still a wealth of open questions. For just
one example, we can consider EDA. Whilst it provides a robust, re-
sponsive, and feature-rich measure of autonomic arousal, many studies
of EDA have used a model with only a single dimension, of low to high
arousal, recorded from a single hand. One possible future improvement
would be to link any feature of EDA to specific cognitive states. It is
known that the CNS origins of EDA are multi-level and complex, with
both ipsilateral and contralateral influences (Dawson et al., 2000), and
that sympathetic arousal is not always symmetric across the body (Pi-
card et al., 2015). If a novel EDA metric were established that considers
the difference between right- and left-hand EDA features, hemispheric
asymmetry in the brain might be determined to be responsible for
the signal differential. Accordingly, cognitive indications could be com-
passed. Although highly speculative, this example illustrates well the
untapped potential of an area of study that is more than 100 years old,
and similar issues exist for most other signals.

Moving beyond basic research to explore applications is the true
cutting edge. For example, cardiovascular metrics are already fairly
well established as indicators of, for example, mental workload (see
section 3.1). However, such classifiers tend to require offline analysis,
especially on account of the problem of accounting for variation stem-
ming from the context; accordingly, using ECG in an online manner as
a control signal in physiology-responsive systems remains problematic.

Prediction Predicting future behaviour, whether between or within
subjects, is a large research area with ramifications for work in such
fields as operator safety, online recommendations, and games. Using
biosignals for this purpose is rendered difficult by their inherent noise.
At present, brain–computer interface technology is being developed pri-
marily to aid incapacitated individuals. The system must predict the
user’s intentions on the basis of an EEG signal for appropriate control of
a system such as a wheelchair; however, in most real-world conditions,
this is a very difficult task, as EEG signals are noisy and multidimen-
sional. Another possible use of predicting changes in a user’s state is
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in helping to address ‘concept drift’, wherein change over time invali-
dates existing classifications. For example, classification of autonomic
arousal can be sensitive to ambient temperature, as the user’s thermo-
regulatory sweating alters the tonic conductance level. A system with
predictive capacity can adapt to this change by updating its classifier.

Biofeedback Biofeedback is an established clinical application but
also is seeing increasing popularity in consumer products. For exam-
ple, respiration is partly conscious and partly unconscious; it thereby
exemplifies in one signal the concepts of implicit and explicit biofeed-
back – i.e., feedback coming from signals outside or within conscious
control. Breathing techniques have been used over much of recorded
history as an aid to self-control of body and mind. Hence, studying the
explicit/implicit use of respiration can aid in illustrating how the bal-
ance between explicit and implicit feedback is handled in signals that
are less easy to control.

Entrainment Entrainment is the least mature of the four areas and
hence the least application-ready. Research in this area points to
the possibility of cognitive enhancement via physiological entrainment
(Reedijk et al., 2015). Individual-to-individual differences in biological
characteristics relevant in respect of cognition are one modulating fac-
tor that must be accounted for. This is a thorny issue, because usually
which particular individual difference is relevant is far from unambigu-
ous.

Summary Though these areas of application are conceptually funda-
mental, the practice in each of them is going to be radically altered by
novel technology in sensors and signal processing, driven by miniatur-
isation, remote sensing, and constantly increasing computation power
and algorithmic sophistication. For example, remote methods have re-
cently been demonstrated as able to measure heart rate in the absence
of physical contact, by such means as video (see section 3.9, above)
or radar (Ren et al., 2015; Sakamoto et al., 2015). Remote sensors
can, in turn, be connected directly to high-performance computers, a
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combination that creates possibilities for real-time analyses of the sort
previously limited to offline application.

4.2 Practical guidelines

As chapter 3 makes clear, numerous signals and devices are available,
and the development of novel measurement and analysis methods is
advancing rapidly. While on the surface it appears as if almost every-
thing is possible, with a large proportion of the current solutions there
are specific limitations to applicability due to technical, physiological,
and model-dependent demands.

To arrive at valid, reproducible results, one should possess a sound
theoretical understanding as to where and how a given psychophys-
iological signal originates, how the physiological signal behaves un-
der variable conditions, and the way in which the index in question
is derived from the signal. In the literature on applied integration of
psychophysiology and HCI, there is a tendency to rely on a specific
commercial device manufacturer’s methods in calculating an index for
factors such as stress, without any consideration of methodology. Be-
fore making a selection, the practitioner should understand the signal
origin and the underlying psychophysiological model/mechanisms. The
constraints and limitations these impose on the relevant use case must
be borne in mind.

In this section of the primer, we guide the reader through a practical
process of signal source selection for psychophysiological indices. From
chapter 3, the reader will be aware of the large number of options for
implementing the application in question. A simple process is required
for handling this complexity. The process applied should comprise at
least the following steps, as illustrated in Figure 4.1.

1. Select the desired indices for physiological phenomena

Table 4.1 provides a starting point for mapping out the possible
options.

For example, if you are interested in measuring stress and phys-
ical strain in operation of a large touchscreen interface for stock
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Desirable,
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necessary

indices
Within reach

technologically and
budget-wise

Plausible within
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su�cient

not
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too
expensive,

esoteric
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unacceptable

the sweet
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1. De�ne target
indices

2. Evaluate
technological

feasibility

3. Validate
plausibility

Figure 4.1: Choosing candidate signals.

exchange data, various indices may be suitable. Questionnaire
data show that the operators experience time pressure and worry
about making the right decisions. Additionally, in working with
this large touchscreen interface, they have to hold their hands
up, facing the screen, and then make large movement gestures in
order to operate the interface.

2. Map out psychophysiological metrics within reach, for use in your
system, and consider their parameters
Which physiological phenomena have been shown to indicate the
target internal state? What is the temporal resolution of the sig-
nal, what physiological lags are present, and how well do these
dovetail with the requirements of the system being developed?
What is the ‘resolution’ of the signal – is it suitable for indi-
cating a continuous change or providing a binary classification
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between two states? Which of the possible choices serves as a
credible technical solution for the application? Again, Tables 2.2
and 4.1 can assist you in the selection of candidate metrics.

In the touchscreen example, you might select heart rate met-
rics, EDA, and speech analysis as the stress signal candidates
and choose surface-EMG measurements as a candidate for mea-
suring activity with the touch-based interface and the resulting
physiological strain on the upper torso muscles. You are likely to
find that all of these candidates (ECG, EDA, speech-recording
microphones, and sEMG) can be addressed by existing compact
wearable devices, although each of them comes from a separate
manufacturer and, hence, using all of them would mean having
the user wear a large set of measurement devices.

3. Validate the plausibility of the selected measurement methods in
the use scenario

The next step is to consider the circumstances of use: Does the
subject move extensively or instead stay put at a desk? Is the
environment noisy or perhaps exposed to direct sunlight, with
potential to affect the measurements? What kind of equipment is
the user able (or willing) to wear? What kind of instrumentation
might affect the user’s ability to operate the equipment used in
his or her work? Are there environmental disturbances such as
sources of electrical interference, vibration, or extreme tempera-
tures? Finally, how long does the equipment take to set up, and
is it going to need periodic (re-)calibration?

Continuing with the example above, you may find from analysis
of the operators’ daily behaviour at the screen that the subject is
constantly moving, implying that stress metrics based on heart
rate variability would likely be confounded by changes in heart
function that arise from physical activity. On the other hand,
this scenario speaks in favour of applying ECG, sEMG, and/or
three-dimensional actigraphy for physical strain measurements.
With this continual movement not being great enough to make
the operator sweat, EDA might still prove a viable signal source
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for analysing stress. The operator in the scenario may also speak
regularly with colleagues in the same room and over the phone,
wearing a microphone for phone calls. This gives you the oppor-
tunity to record speech utterances in high quality as a natural
part of the work without having to fabricate subtasks designed
to generate speech for research purposes.

After working through steps 1–3, you should have a compact list of
candidate signals for indicating psychophysiological phenomena. For a
more in-depth application that involves implementing a software client
that takes physiological signals as inputs, the following issues should
be considered too:

• How will you implement the interface of the measurement de-
vice(s) for accessing data (online)? Does the device manufacturer
offer access to the raw data stream or instead a pre-calculated,
proprietary index? Does the device support an open-access in-
terface or provide a well-documented application programming
interface (API), used for interfacing new code with a system’s
existing features)? See section 3.12 for details on this issue.

• Will you be able to create a multimodal set-up? This should in-
crease redundancy, allow you to correlate information across sig-
nals in order to improve the robustness and sensitivity of your
set-up, and possibly aid in disambiguating overlapping analysis
results. Section 3.11 can guide you further in this respect.

• What is the temporal nature of the input – with what frequency do
changes in the signal represent meaningful changes in the underly-
ing state of the subject? For example, a physiological signal indi-
cating drowsiness (exhibiting slow change) could be an input that
causes the UI to be more stimulating or is used by a machine rec-
ommender system to deliver fewer recommendations, whereas a
signal indicating interest (exhibiting rapid change) could prompt
highlighting individual knowledge units as more relevant. See Ta-
ble 2.2 for estimates of each signal’s temporal frame.
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• You should consider the significance of the input: How fundamen-
tal are changes in the signal to the state of the user? How can
you validate against a ground truth? How sensitive is the signal
to a user’s state changes, and how ambiguous are those changes?
In what ways does inherent measurement noise affect validity?
What is the resolution of a relevant change in the signal level,
and how can that be mapped to functionality on the application
side?

• You should investigate the reliability and robustness of the signal
and possible countermeasures to address noise and other external
effects. What are the possible sources of noise (in the relevant
use scenario), and how can they be countered? Should the strap
be tightened, or, in contexts such as laboratory research, should
you use a conducting gel for obtaining better contact for the
measurement?

• There may well be inter-individual variability in signal quality.
What kinds of differences do individuals exhibit with respect to
the physiological phenomenon that is being measured? For in-
stance, resting heart rate might vary by 20% between subjects.
How do differences in physiology between individuals, such as
body shape or amount of hair, influence the signal?



5
Concluding remarks

Challenges

Physiology in HCI is emerging as an important area for study, as is
attested by journal special issues, books, and conference sessions that
explore applications in everyday situations beyond sports and clinical
settings. Diverse technological, methodological, and theoretical chal-
lenges therefore exist in this regard. For assurance of deployability
and acceptance by the user, there must be improvements in sensor
robustness, sensors’ calibration, miniaturisation, and integration into
ergonomically designed and unobtrusive products. Robustness and re-
liability in identifying and recognising physiological states remains an
unresolved problem. Moreover, many psychophysiological metrics rely
on sources that change over time, thereby creating difficulties in user
calibration.

Research in physiology is dispersed across numerous fields and is
often difficult to build upon or compare with previous work. Address-
ing this issue is going to require efforts devoted to standardisation of
methods and procedures, in order to provide established results that
can inform development of solutions. Often, the studies reported upon
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use ad hoc machine learning methods of various types, which are dif-
ficult to replicate. In particular, there is a dearth of standard tools,
equipment, and specifications that could serve building of systems and
applications in HCI, because, when choosing a device, developers are
confronted with a vast range of devices that have various degrees of
validation and many proprietary APIs.

The advantage brought by rapidly improving technology (see sec-
tion 4.1, above) also poses challenges. One drawback of employing novel
methods is that they might generate noisier signals (this is especially
true of remote sensing, as exemplified by radar HR) or more complex
data (in particular, with novel hardware, as in skin imaging). Therefore,
metric extraction algorithms, in turn, need to increase in complexity if
they are to generate meaningful indices.

A key challenge is that physiological responses cannot precisely and
uniquely identify a source, and a given signal may be correlated with
multiple psychophysiological states or phenomena. Research should
move beyond investigating how physiology is linked to certain levels
of any one state (low or high arousal, for instance) to examine how
physiology is linked to multiple states.

Besides the more established indices listed in Table 4.1, there are
numerous psychological states and phenomena that are starting to be
investigated in earnest, so that applications that bring added value
to users in everyday life can be developed. Examples of novel indices
include relevance in information retrieval (Eugster et al., 2014; Barral
et al., 2015), flow in games (Nacke and Lindley, 2008), mindfulness
related to HRV (Burg et al., 2012), derivatives of social presence in a
mediated virtual environment (Spapé et al., 2013), and mediated touch
through haptic feedback (Spapé et al., 2015). The emerging interest in
many, quite different psychophysiological phenomena and indices raises
the issue of investigating which of these are independent or instead can
be explained in terms of existing indices.

One of the challenges beyond those of signal analysis is the prob-
lem of establishing consensus on the underlying theories that govern or
link the psychological phenomena to physiology. Emotions are a good
example. There is still debate on their definition, exemplified by the
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argument over whether facial expressions are an accurate reflection of
internal emotion (Fridlund, 1991; Hess et al., 1995) (see also the dis-
cussion in section 3.4, above). The competing theories have resulted in
creation of several, very different models, such as the PAD circumplex
of emotion (Posner et al., 2005) (see Figure 2.1, above), the PANAS
model (Watson et al., 1988; Mehrabian, 1997), and the basic Ekmanian
emotions (Ekman and Davidson, 1994).

Another example that can be cited is arousal, which is often ad-
dressed with a uni-dimensional, bipolar model. This is clearly a gross
simplification. Stress is one commonly studied index related to arousal,
and it alone comes in multiple flavours even when one considers only
the difference between positive eustress and negative distress. Further-
more, as mentioned above in section 3.2, arousal can be described not
just in terms of affect but also in connection with effort and prepara-
tory activation. Similar complexity is characteristic of any other aspect
of psychophysiology. This supports the assertion that the average prac-
titioner, who is more interested in applications than in basic research,
stands to benefit from selecting and thoroughly understanding a single
validated model and approach for the problem at hand.

Recent advances in machine learning allow one to develop systems
linking signals and higher-level states through black boxes, particularly
through deep learning approaches. While such approaches do provide a
solution in certain cases, the true challenge is to use machine learning in
support of theory development, so that causal models can be identified
and, thereby, more transferable knowledge can be gleaned.

Conclusion

The application of psychophysiology to HCI is complicated by the ex-
treme breadth and depth of topics and also by the great complexity of
parameter choices and design decisions for algorithms and hardware.
We have addressed this complexity by a) focusing on practical aspects
and b) introducing the topics in an order roughly corresponding to the
depth of the topics and breadth of their range (from the standpoint of
application). Throughout the work, we have aimed for a tight focus on
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the function of a primer. No effort has been made to delve into issues
such as privacy, compliance, or ethics – in part because such issues are
covered elsewhere (Fairclough, 2009a; Ajunwa et al., 2016).

Narrative-style reviews are inexhaustive and non-systematic by na-
ture. Therefore, they are susceptible to bias. The method by which
we compiled Tables 2.1, 2.2, and 4.1 is systematic and replicable (see
chapter 2). Nonetheless, we have deliberately avoided meta-analysis,
because a) the number of such analyses needed is very high (N = at
least the number of indices in Table 4.1) and b) every one of these
analyses requires a detailed report, which should be accessible as a
standalone reference text and, accordingly, is a subject for future work.
Such work could take the form of a systematic review of the mea-
surement properties of a psychophysiological index; for example, the
properties of mental workload. See Vet et al. (2011) for a discussion
of this approach. Finally, quantification of results also necessarily be-
comes dated, while this primer is intended to serve as a relatively stable
reference text.

The medical domain shows great success at answering clearly de-
fined research questions through systematic review – a task with which
psychophysiology for health applications or HCI has not yet engaged.
So long as there remains a lack of systematically derived guidelines
with broad coverage, there is need for a ‘quick and dirty’ guide to
the field such as this, to serve as an introduction and reference point
for non-specialists. The paper addresses said need in a manner that is
modular and very broad in scope, so that the reader can obtain a clear
picture of the entire field yet also focus directly on implementing useful
applications.
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