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Abstract Immunosuppression plays a pivotal role in

assisting tumors to evade immune destruction and pro-

moting tumor development. We hypothesized that genetic

variation in the immunosuppression pathway genes may be

implicated in breast cancer tumorigenesis. We included

42,510 female breast cancer cases and 40,577 controls of

European ancestry from 37 studies in the Breast Cancer

Association Consortium (2015) with available genotype

data for 3595 single nucleotide polymorphisms (SNPs) in

133 candidate genes. Associations between genotyped

SNPs and overall breast cancer risk, and secondarily

according to estrogen receptor (ER) status, were assessed

using multiple logistic regression models. Gene-level

associations were assessed based on principal component
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analysis. Gene expression analyses were conducted using

RNA sequencing level 3 data from The Cancer Genome

Atlas for 989 breast tumor samples and 113 matched nor-

mal tissue samples. SNP rs1905339 (A[G) in the STAT3

region was associated with an increased breast cancer risk

(per allele odds ratio 1.05, 95 % confidence interval

1.03–1.08; p value = 1.4 9 10-6). The association did not

differ significantly by ER status. On the gene level, in

addition to TGFBR2 and CCND1, IL5 and GM-CSF

showed the strongest associations with overall breast can-

cer risk (p value = 1.0 9 10-3 and 7.0 9 10-3, respec-

tively). Furthermore, STAT3 and IL5 but not GM-CSF were

differentially expressed between breast tumor tissue and

normal tissue (p value = 2.5 9 10-3, 4.5 9 10-4 and

0.63, respectively). Our data provide evidence that the

immunosuppression pathway genes STAT3, IL5, and GM-

CSF may be novel susceptibility loci for breast cancer in

women of European ancestry.
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BCAC Breast Cancer Association Consortium

CCND1 Cyclin D1

CI Confidence interval

COGS Collaborative Oncological Gene-Environment

Study
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factor

EM Estimation maximization

ENCODE Encyclopedia of DNA elements
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ER Estrogen receptor

GWAS Genome-wide association study

HWE Hardy–Weinberg equilibrium

IL5 Interleukin 5
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PCs Principal components
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transcription 3
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Introduction

Breast cancer is the most frequent cancer among women

and the second leading cause of cancer-related death after

lung cancer in Europe. In addition to genetic variants with

high and moderate penetrance, more than 90 common

germline genetic variants contributing to breast cancer risk

have been identified, comprising about 37 % of the familial

relative risk of the disease (Michailidou et al. 2013, 2015).

This suggests that a substantial portion of inherited varia-

tion has not yet been identified. In addition, most of the

known common susceptibility variants reside in non-coding

regions and result in subtle regulation of gene expression.

The biological mechanisms through which genetic variants

exert their functions are still not entirely understood.

The ability to evade immune destruction has been

increasingly recognized as a key hallmark of tumors

(Hanahan and Weinberg 2011). Tumor cells may secrete

immunosuppressive factors like TGF-b which hampers

infiltrating cytotoxic T lymphocytes and natural killer cells

(Yang et al. 2010). Inflammatory cells like regulatory T

cells (Treg cells), a subset of CD4? T lymphocytes, as well

as myeloid-derived suppressor cells (MDSCs) may be

recruited into the tumor environment, which are actively

immunosuppressive (Lindau et al. 2013; Reisfeld 2013).

Higher prevalence of Treg cells has been found in various

cancers (Chang et al. 2010; Michel et al. 2008; Watanabe

et al. 2002), including breast cancer (Bates et al. 2006).

There is evidence that tumor infiltrating Treg cells endowed

with immunosuppressive potential are associated with

tumor progression and unfavorable prognosis, especially in

estrogen receptor (ER)-negative breast cancer (Bates et al.

2006; Kim et al. 2013; Liu et al. 2012a). In addition, infil-

trating MDSCs were also found in murine mammary tumor

models (Aliper et al. 2014; Gad et al. 2014), but their rel-

evance for breast cancer patients also in terms of prognosis

is not well-understood. Furthermore, previous association

studies have identified susceptibility alleles for breast can-

cer in two genes, TGFBR2 (transforming growth factor beta

receptor II) (Michailidou et al. 2013) and CCND1 (cyclin

D1) (French et al. 2013), which may be involved in immune

regulation in cancer patients (Gabrilovich and Nagaraj

2009; Krieg and Boyman 2009), including those with breast

cancer. We hypothesized that immunosuppression pathway

genes, particularly those relevant to Treg cell and MDSC

functions, may harbor further susceptibility variants asso-

ciated with breast cancer tumorigenesis, with a possible

differential association by ER status.

In this analysis, we investigated associations between

breast cancer risk and single nucleotide polymorphisms

(SNPs) in 133 candidate genes in the immunosuppression

pathway in individual level data from the Breast Cancer

Association Consortium (BCAC). We also assessed asso-

ciations with breast cancer risk at the gene and pathway
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levels. Furthermore, we used publicly available datasets

through the UCSC Genome Browser (2015) to examine the

putative genetic susceptibility loci for potential regulatory

function.

Materials and methods

Study participants

In this analysis, participants were restricted to 83,087

women of European ancestry from 37 case–control studies

participating in BCAC, including 42,510 invasive breast

cancer cases with stage I–III disease and 40,577 cancer-

free controls. Of all breast cancer patients, 26,094 were

known to have ER-positive disease and 6870 to have ER-

negative disease. Details of included studies are summa-

rized in Online Resource 1. All studies were approved by

the relevant ethics committees and all participants gave

informed consent (Michailidou et al. 2013).

Candidate gene selection

Candidate genes relevant to the Treg cell and MDSC

pathways were identified through a comprehensive litera-

ture review in PubMed (DeNardo et al. 2010; DeNardo and

Coussens 2007; Driessens et al. 2009; Gabrilovich and

Nagaraj 2009; Krieg and Boyman 2009; Mills 2004;

Ostrand-Rosenberg 2008; Poschke et al. 2011; Sakaguchi

et al. 2013; Sica et al. 2008; Wilczynski and Duechler

2010; Zitvogel et al. 2006; Zou 2005), using the search

terms ‘‘immunosuppression’’/‘‘immunosuppressive’’,

‘‘regulatory T cells’’/‘‘Treg cells’’/‘‘FOXP3? T cells’’,

‘‘myeloid derived suppressor cells’’/‘‘MDSCs’’, ‘‘im-

munosurveillance’’, and ‘‘tumor escape’’. The final candi-

date gene list included 133 immunosuppression-related

genes (Online Resource 2). SNPs within 50 kb upstream

and downstream of each gene were identified using Hap-

Map CEU genotype data (2015) and dbSNP 126.

SNP association analyses

For the BCAC studies, genotyping was carried out using a

custom Illumina iSelect array (iCOGS) designed for the

Collaborative Oncological Gene-Environment Study

(COGS) project (Michailidou et al. 2013). Of the 211,155

SNPs on the array, 4246 were located within 50 kb of the

selected candidate genes. Centralized quality control of

genotype data led to the exclusion of 651 SNPs. The

exclusion criteria included a call rate less than 95 % in all

samples genotyped with iCOGS, minor allele frequency

(MAF) less than 0.05 in all samples, evidence of deviation

from Hardy–Weinberg equilibrium (HWE) at p value

\10-7, and concordance in duplicate samples less than

98 % (Michailidou et al. 2013). A total of 3595 SNPs

passed all quality controls and was analyzed.

49 Department of Cancer Epidemiology, Clinical Cancer

Registry, University Medical Center Hamburg-Eppendorf,

Hamburg, Germany

50 Unit of Molecular Bases of Genetic Risk and Genetic

Testing, Department of Preventive and Predictive Medicine,

Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere

Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy

51 IFOM, Fondazione Istituto FIRC (Italian Foundation of

Cancer Research) di Oncologia Molecolare, Milan, Italy

52 Department of Laboratory Medicine and Pathology, Mayo

Clinic, Rochester, MN, USA

53 Cancer Epidemiology Centre, Cancer Council Victoria,

Melbourne, Australia

54 Department of Preventive Medicine, Keck School of

Medicine, University of Southern California, Los Angeles,

CA, USA

55 Genomics Center, Centre Hospitalier Universitaire de
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Per-allele associations with the number of minor alleles

were assessed using multiple logistic regression models,

adjusted for study, age (at diagnosis for cases or at

recruitment for controls) and nine principal components

(PCs) derived based on genotyped variants to account for

European population substructure. We assessed the asso-

ciations of SNPs with overall breast cancer risk as primary

analyses, and then restricted to ER-positive (26,094 cases

and 40,577 controls) and ER-negative subtypes (6870 cases

and 40,577 controls) as secondary analyses. Differences in

the associations between ER-positive and ER-negative

diseases were assessed by case-only analyses, using ER

status as the dependent variable. To determine the number

of ‘‘independent’’ SNPs for adjustment of multiple testing,

we applied the option ‘‘–indep-pairwise’’ in PLINK (Pur-

cell et al. 2007). SNPs were pruned by linkage disequi-

librium (LD) of r2\ 0.2 for a window size of 50 SNPs and

step size of 10 SNPs, yielding 689 ‘‘independent’’ SNPs.

The significance threshold using Bonferroni correction

corresponding to an alpha of 5 % was 7.3 9 10-5.

In order to identify more strongly associated variants,

genotypes were imputed for SNPs at the locus for which

strongest evidence of association was observed, via a two-

stage procedure involving SHAPEIT (Howie et al. 2012)

and IMPUTEv2 (Howie et al. 2009), using the 1000 Gen-

omes Project data as the reference panel (Abecasis et al.

2012). Details of the imputation procedure are described

elsewhere (Michailidou et al. 2015). Models assessing

associations with imputed SNPs were adjusted for 16 PCs

based on 1000 Genome imputed data to further improve

adjustment for population stratification. To determine

independent signals within imputed SNPs at STAT3, we ran

a stepwise forward multiple logistic regression model

including the most significant genotyped SNP rs1905339

and all imputed SNPs, adjusted for study, age and 16 PCs.

SNP association analyses and case-only analyses were

all conducted using SAS 9.3 (Cary, NC, USA). All tests

were two-sided.

For multiple associated SNPs located at the same gene, a

Microsoft Excel SNP tool created by Chen et al. (2009) and

the software HaploView 4.2 (Barrett et al. 2005) were used to

examine LD structure between these SNPs. To be able to

inspect LD structures and also for gene-level analyses, allele

dosages of imputed SNPs had to be converted into the most

probable genotypes. Therefore, we categorized the imputed

allele dosage between [0, 0.5] as homozygote of the refer-

ence allele, the value between [0.5, 1.5] as heterozygote, and

the value between [1.5, 2.0] as homozygote of the counted

allele. The regional association plot was generated using the

online tool LocusZoom (Pruim et al. 2010).

Gene-level and pathway association analyses

Gene-level associations were determined by a subset of

PCs, which were derived from a linear combination of

SNPs in each gene explaining 80 % of the variation in the

joint distribution of all relevant SNPs. Associations with

derived PCs were assessed within a logistic regression

framework (Biernacka et al. 2012), for overall breast can-

cer, ER-positive and ER-negative diseases, respectively.

Pathway association of the immunosuppression pathway

was assessed based on a global test of association by

combining the gene-level p values via the Gamma method

(Biernacka et al. 2012). For gene-level associations, asso-

ciations with p value\3.8 9 10-4 (Bonferroni correction)

were considered statistically significant. To gain empirical

p values for gene-level associations of TGFBR2 and

CCND1 as well as for the pathway association, a Monte

Carlo procedure was used with up to 1,000,000 random-

izations (Biernacka et al. 2012). An exact binomial test

based on the results of the single SNPs association analyses

was carried out to estimate enrichment of association in the

immunosuppression pathway. Gene-level and pathway

association analyses were carried out in R (version 3.1.1)

using the package ‘GSAgm’ version 1.0.

Haplotype analyses

To follow up the interesting gene associations observed,

haplotype analyses were performed to identify potential

susceptibility variants. Haplotype frequencies were deter-

mined with the use of the estimation maximization (EM)

algorithm (Long et al. 1995) implemented in PROC

HAPLOTYPE in SAS 9.3 (Cary, NC, USA). Haplotypes

with frequency more or equal than 1 % were examined and

the most common haplotype was used as the reference.

Rare haplotypes with frequency less than 1 % were

grouped into one category. Haplotype-specific odds ratios
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(ORs) and 95 % confidence intervals (CIs) were estimated

within a multiple logistic regression framework, adjusted

for the same covariates as in the single SNP association

analyses. Global p values for association of haplotypes

with breast cancer risk were computed using a likelihood

ratio test comparing models with and without haplotypes of

the gene of interest.

Gene expression analyses

In order to examine whether potential causative genes

influence RNA expression in breast tumor tissue, we

downloaded RNA sequence level 3 data from The Cancer

Genome Atlas (TCGA) (2015). We retrieved the

RNA expression level as the form of RNA-Seq by expec-

tation–maximization (RSEM) based on the Illumi-

naHiSeq_RNASeqV2 array. Gene expression differences in

RNA levels between 989 invasive breast cancer tissues and

113 matched normal tissues for four genes of interest

(STAT3, PTRF, IL5, and GM-CSF) were analyzed using a

two-sided Wilcoxon–Mann–Whiney test. In addition, data

from 183 breast tissues in the GTEx (V6) (2015) publically

available online databases were evaluated to obtain infor-

mation on whether the most interesting variants (rs1905339,

rs8074296, rs146170568, chr17:40607850:I and rs77942990)

were expression quantitative trait loci (eQTL) for any gene.

Also, GTEx was queried to obtain information on whether

the five variants were eQTL for STAT3 or PTRF.

Functional annotation

To investigate potential regulatory functions of interesting

polymorphisms, we used the Encyclopedia of DNA Ele-

ments (ENCODE) database through the UCSC Genome

Browser as well as Haploreg v4 (Ward and Kellis 2012).

Results

Selected characteristics of the study population are

described in Table 1. The controls and breast cancer

patients included in this study had comparable mean ref-

erence ages of 54.8 and 55.9 years and also the proportion

of postmenopausal women was similar (68 % in controls

and 69 % in breast cancer patients). The proportion of

women indicating a family history of breast cancer in first

degree relatives was as expected greater in breast cancer

patients (25 %) than in controls (12 %).

Single SNP associations

Excluding the known TGFBR2 and CCND1 breast cancer

susceptibility loci, the quantile–quantile (QQ) plot for

associations with overall breast cancer risk for the geno-

typed SNPs of the other candidate genes indicated deviation

from expected p values and thus evidence of further SNPs

associated with breast cancer risk (Online Resource 3).

Genetic associations with overall breast cancer risk for all

assessed 3595 SNPs are summarized in Online Resource 4.

Four independent genotyped SNPs (LD r2\ 0.3) were

significantly associated with breast cancer risk at p value

\7.3 9 10-5, accounting for the multiple comparisons

(Table 2). The four significant SNPs were located in or

near TGFBR2, STAT3 and CCND1. Since TGFBR2 and

Table 1 Characteristics of breast cancer cases and controls

Characteristic Controls Cases

No. % No. %

Total number 40,577 42,510

Age (mean, SD) 54.8 12.0 55.9 11.6

Family history of breast cancer

No 20,940 88 24,397 75

Yes 2829 12 7971 25

Unknown/missing 16,808 10,142

Menopausal status

Pre/perimenopausal 9174 32 9296 31

Postmenopausal 19,753 68 20,714 69

Unknown/missing 11,650 12,500

Estrogen receptor status

Negative 6870 21

Positive 26,094 79

Unknown/missing 9546

Progesterone receptor status

Negative 9299 33

Positive 19,017 67

Unknown/missing 14,194

Triple-negative cancer

No 13,675 84

Yes 2600 16

Unknown/missing 26,235

Stage

0 25 0.1

I 12,044 50

II 9711 40

III 1975 8

IV 496 2

Unknown/missing 18,259

Grade

Well differentiated 6125 21

Moderately differentiated 14,092 48

Poorly/un-differentiated 8937 31

Unknown/missing 13,356

SD standard deviation
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CCND1 have been identified as breast cancer susceptibility

loci in previous studies (French et al. 2013; Michailidou

et al. 2013; Rhie et al. 2013), we focused on the association

of the SNP at STAT3. The variant rs1905339 (A[G) at

STAT3 was positively associated with overall breast cancer

risk (per allele odds ratio (OR) 1.05, 95 % confidence

interval (CI) 1.03–1.08, p value = 1.4 9 10-6). It showed

similar associations with ER-positive and ER-negative

cancers (Online Resource 5). We did not observe further

SNPs that were significantly associated with ER-positive or

ER-negative disease (data not shown).

To identify additional susceptibility variants at STAT3,

we further investigated 707 SNPs that were well-imputed

(imputation accuracy r2[ 0.3) and with MAF [0.01

spanning a ±50 kb window around STAT3. Seven inde-

pendent signals at STAT3 were found through the stepwise

forward selection procedure. The genotyped SNP

rs1905339 was not selected. The imputed SNP rs8074296

(A[G), which was in high LD with rs1905339 (r2 = 0.99),

showed a comparable OR for the association with overall

breast cancer risk with a more extreme p value (per allele

OR 1.05, 95 % CI 1.03–1.08, p value = 8.6 9 10-7,

Table 3). A second imputed SNP rs146170568 (C[T),

associated with a per allele OR of 1.32 (95 % CI

1.16–1.50, p value = 2.1 9 10-5), was still strongly

associated at a p value of 3.2 9 10-4 after accounting for

rs8074296 (Table 3). None of the independently associated

imputed SNPs besides rs8074296 were correlated with

rs1905339 or with each other (r2 B 0.01, Fig. 1). As

rs8074296 and rs1905339 are located closer to PTRF than

to STAT3, we additionally analyzed data of 178 imputed

variants located within ±50 kb of PTRF. Associations of

most additional variants in the PTRF region with breast

cancer risk were attenuated in analyses conditioning on

rs8074296 (Table 4). The variants chr17:40607850:I and

rs77942990 still showed a strong association with breast

cancer risk (per allele OR 1.09, 95 % CI 1.04–1.15,

p value = 0.0005; and per allele OR 1.09, 95 % CI

1.04–1.15, p value = 0.0007, respectively). These two

variants were also not in LD with rs8074296 (r2 = 0.09

Table 2 TGFBR2, CCND1 and STAT3 SNPs associated with overall breast cancer risk in women of European ancestry after Bonferroni

correction (p value\7.3 9 10-5)

SNP Chr. Positiona Gene Minor allele MAF cases MAF controls Cases Controls OR (95 %CI)b p value

rs1431131 3 30,675,880 TGFBR2 A 0.37 0.36 42,508 40,574 1.06 (1.04–1.08) 2.6 9 10-8

rs11924422 3 30,677,484 TGFBR2 C 0.40 0.41 42,491 40,572 0.95 (0.94–0.97) 6.9 9 10-6

rs7177 11 69,466,115 CCND1 C 0.46 0.47 42,411 40,496 0.96 (0.94–0.98) 2.7 9 10-5

rs1905339 17 40,582,296 STAT3 G 0.34 0.33 42,504 40,576 1.05 (1.03–1.08) 1.4 9 10-6

SNP single nucleotide polymorphism, Chr. chromosome, MAF minor allele frequency, OR odds ratio, CI confidence interval, TGFBR2 trans-

forming growth factor beta receptor II, CCND1 cyclin D1, STAT3 signal transducer and activator of transcription 3
a Build 37
b OR per minor allele, adjusted for age, study and nine European principal components

Table 3 Associations with overall breast cancer risk for seven independent imputed SNPs at STAT3 in women of European ancestry

SNP Chr. Positiona Counted

allele

AFb Cases Controls Single SNP analysis Conditional analysisd

OR (95 % CI)c p value OR (95 %CI)c p value

rs8074296 17 40,583,421 G 0.336 42,510 40,577 1.05 (1.03–1.08) 8.6 9 10-7 1.05 (1.03–1.07) 2.3 9 10-5

rs146170568 17 40,517,716 T 0.005 42,510 40,577 1.32 (1.16–1.50) 2.1 9 10-5 1.27 (1.11–1.44) 3.2 9 10-4

rs141732716 17 40,469,832 A 0.005 42,510 40,577 1.38 (1.14–1.68) 0.001 1.33 (1.09–1.62) 0.004

rs138391971 17 40,505,106 G 0.003 42,510 40,577 0.60 (0.43–0.83) 0.002 0.61 (0.44–0.85) 0.003

rs12952342 17 40,553,640 G 0.119 42,510 40,577 1.07 (1.03–1.12) 0.002 1.07 (1.02–1.11) 0.005

rs190765034 17 40,428,622 G 0.026 42,510 40,577 1.14 (1.03–1.25) 0.010 1.17 (1.06–1.29) 0.002

rs190137766 17 40,422,371 T 0.002 42,510 40,577 0.68 (0.50–0.94) 0.018 0.66 (0.48–0.90) 0.009

SNP single nucleotide polymorphism, Chr. chromosome, OR odds ratio, CI confidence interval, STAT3 signal transducer and activator of

transcription 3
a Build 37
b Allele frequency (AF) of counted allele
c OR per counted allele, adjusted for age, study and 16 European principal components
d Each SNP was tested adjusting for rs8074296, age, study and 16 European principal components. Estimate for rs8074296 is based on model

including rs146170568
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and 0.07, respectively) while all other variants in Table 4

were at least in moderate LD with rs8074296 (r2 C 0.46,

Online Resource 6). The LD plot (Online Resource 6) also

shows that chr17:40607850:I and rs77942990 are in high

LD (r2 = 0.83). A regional association plot for the geno-

typed SNP rs1905339 and all 885 imputed SNPs with-

in ±50 kb of STAT3 and PTRF included in this analysis is

shown in Fig. 2. Associations of SNPs shown in Table 3 as

well as associations of chr17:40607850:I and rs77942990

with breast cancer risk were not significantly heteroge-

neous between studies (all p values for heterogeneity

[0.1); forest plots can be found in Online Resource 7 to

16.

Gene-level and pathway associations

Gene-level associations with risks of overall breast cancer,

ER-positive and ER-negative diseases, respectively, for the

133 candidate genes in the immunosuppression pathway

are summarized in Online Resource 17. TGFBR2 and

CCND1 showed significant associations with overall breast

cancer risk (p value\10-6 and 3.0 9 10-4, respectively).

In addition, IL5 and GM-CSF may be further potential

susceptibility loci of breast cancer (p value = 1.0 9 10-3

and 7.0 9 10-3, respectively). STAT3 showed a less sig-

nificant association with overall breast cancer risk

(p value = 0.033). The immunosuppression pathway as a

whole yielded a significant association with overall breast

cancer risk (p value\10-6). Similar gene-level and path-

way associations were found for ER-positive but not for

ER-negative breast cancer (Online Resource 17). We found

significant enrichment of association in the immunosup-

pression pathway based on the results of the single SNPs

association analyses (313 of 3595 tests significant at

a = 0.05, exact binomial test p value = 2.2 9 10-16).

Haplotype analyses

Despite the evidence for a possible role of IL5 and GM-

CSF in breast cancer susceptibility from the gene-level

analysis, no individual SNPs at IL5 or GM-CSF yielded

significant genetic associations. To identify potential sus-

ceptibility haplotypes, haplotype-specific associations were

assessed based on seven SNPs in or near IL5 (rs4143832,

rs2079103, rs2706399, rs743562, rs739719, rs2069812 and

rs2244012) and nine SNPs in or near GM-CSF

(rs11575022, rs2069616, rs25881, rs25882, rs25883,

rs27349, rs27438, rs40401 and rs743564). The LD struc-

tures for these SNPs at IL5 and GM-CSF are shown in

Online Resource 18 and 19, respectively. In our study

sample of women of European ancestry, 11 and 7 common

haplotypes with frequency[1 % were observed at IL5 and

GM-CSF, respectively. The haplotype AAAACGG in IL5

was associated with a decreased overall breast cancer risk

(OR 0.96, 95 % CI 0.93–0.99, p value = 5.0 9 10-3,

Table 5). In GM-CSF, the haplotype AAGAGCGAA was

Fig. 1 Linkage disequilibrium

plot showing r2 values and color

schemes for the genotyped SNP

rs1905339 and seven

independent imputed SNPs as

well as imputed SNP

rs181888151 within ±50 kb of

STAT3. The linkage

disequilibrium (LD) plot shows

that SNP rs1905339 is in strong

LD with the imputed SNP

rs8074296 (r2 = 0.99), and

independent of the other six

imputed SNPs (r2 B 0.01) at

STAT3. LD was estimated based

on control data
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Table 4 Associations with overall breast cancer risk for 19 imputed variants near PTRF in women of European ancestry

SNP Chr Positiona Counted

allele

AFb Cases Controls Single SNP analysis Conditional analysisd

ORc (95 % CI) p value ORc (95 % CI) p value

rs8074296 17 40,583,421 G 0.336 42,510 40,577 1.05 (1.03–1.08) 8.6 9 10-7 1.04 (1.02–1.06) 0.0006

rs1032070 17 40,618,251 T 0.269 42,510 40,577 1.06 (1.04–1.09) 1.5 9 10-7 1.04 (1.00–1.09) 0.0359

rs34460267 17 40,615,865 C 0.269 42,510 40,577 1.06 (1.04.1.09) 1.9 9 10-7 1.04 (1.00–1.09) 0.0424

rs34807589 17 40,624,656 T 0.264 42,510 40,577 1.06 (1.04–1.09) 2.0 9 10-7 1.04 (1.00–1.09) 0.0423

rs36005199 17 40,597,555 G 0.268 42,510 40,577 1.06 (1.04–1.09) 2.1 9 10-7 1.04 (1.00–1.09) 0.0490

rs12603201 17 40,595,927 T 0.581 42,510 40,577 0.95 (0.93–0.97) 3.1 9 10-7 0.97 (0.93–1.00) 0.0662

chr17:40607850:I 17 40,607,850 CT 0.055 42,510 40,577 1.13 (1.07–1.18) 7.0 9 10-7 1.09 (1.04–1.15) 0.0005

rs4796662 17 40,594,882 C 0.576 42,510 40,577 0.95 (0.93–0.97) 1.8 9 10-6 0.98 (0.94–1.01) 0.2217

rs34349578 17 40,598,129 A 0.195 42,510 40,577 1.07 (1.04–1.10) 2.1 9 10-6 1.04 (1.00–1.08) 0.0809

rs62075801 17 40,593,921 T 0.576 42,510 40,577 0.95 (0.93–0.97) 2.1 9 10-6 0.98 (0.94–1.01) 0.2385

rs12951640 17 40,594,298 A 0.253 42,510 40,577 1.06 (1.03–1.08) 2.1 9 10-6 1.03 (0.98–1.07) 0.2269

rs77942990 17 40,622,538 A 0.046 42,510 40,577 1.13 (1.07–1.19) 2.2 9 10-6 1.09 (1.04–1.15) 0.0007

rs35111218 17 40,595,572 T 0.252 42,510 40,577 1.06 (1.03–1.08) 2.3 9 10-6 1.03 (0.98–1.07) 0.2311

rs6503704 17 40,592,253 A 0.253 42,510 40,577 1.06 (1.03–1.08) 2.3 9 10-6 1.03 (0.98–1.07) 0.2413

rs12943498 17 40,593,901 C 0.253 42,510 40,577 1.06 (1.03–1.08) 2.5 9 10-6 1.02 (0.98–1.07) 0.2529

rs12951549 17 40,593,502 T 0.253 42,510 40,577 1.06 (1.03–1.08) 2.6 9 10-6 1.02 (0.98–1.07) 0.2537

chr17:40593802:I 17 40,593,802 GTTTC 0.251 42,510 40,577 1.06 (1.03–1.08) 3.5 9 10-6 1.02 (0.98–1.07) 0.2943

rs6503703 17 40,592,207 T 0.261 42,510 40,577 1.06 (1.03–1.08) 6.5 9 10-6 1.02 (0.98–1.06) 0.3775

chr17:40595896:D 17 40,595,896 C 0.211 42,510 40,577 1.06 (1.03–1.09) 9.0 9 10-6 1.02 (0.98–1.07) 0.2373

SNP single nucleotide polymorphism, Chr. chromosome, OR odds ratio, CI confidence interval, STAT3 signal transducer and activator of

transcription 3
a Build 37
b Allele frequency (AF) of counted allele
c OR per counted allele, adjusted for age, study and 16 European principal components
d Each SNP was tested adjusting for rs8074296, age, study and 16 European principal components. Estimate for rs8074296 was based on model

including chr17:40607850:I

Fig. 2 Regional association

plot for the genotyped SNP

rs1905339 and 885 imputed

SNPs within ±50 kb of STAT3

and PTRF. Each dot represents

an SNP. The color of each dot

reflects the extent of linkage

disequilibrium (r2) with SNP

rs1032070 (in purple diamond).

Genomic positions of SNPs

were plotted based on hg19/

1000 Genomes Mar 2012

European. Association is

represented at the -log10 scale.

cM/Mb centiMorgans/megabase
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also associated with a decreased overall breast cancer risk

(OR 0.92, 95 % CI 0.87–0.96, p value = 2.7 9 10-4,

Table 6). The global p value for haplotype association was

significant for both IL5 (p value = 0.005) and GM-CSF

(p value = 0.007).

Gene expression analyses

Using TCGA RNA sequencing level 3 data, we found that

RNA expression levels of STAT3 and IL5 were signifi-

cantly higher in 113 normal tissue samples compared to

989 breast tumor samples (p value = 1.3 9 10-3 and

7.0 9 10-4, respectively, Online Resources 20 and 21),

while overall expression of IL5 was low in both tissues.

Also expression levels of PTRF were significantly higher

in normal tissue compared to tumor tissue samples

(p value B0.0001, Online Resource 22). GM-CSF expres-

sion was very low and did not differ between breast tumor

samples and normal tissue samples (p value = 0.49,

Online Resource 23). Among 183 mammary tissues in the

GTEx database, SNPs rs1905339, rs8074296 and

rs77942990 were not significantly correlated with STAT3

(p values = 0.36, 0.36, and 0.2, respectively; Online

Resource 24 to 26) or PTRF expression (p values = 0.4,

0.4, and 0.39 Online Resource 27 to 29). The SNPs

rs1905339 and rs8074296 were significant eQTL for

TUBG2 (both p values = 9.9 9 10-7, Online Resource 30

and 31). The STAT3/PTRF variants rs146170568 and

chr17:40607850:I were not available in the GTEx

database.

Discussion

Our comprehensive examination of associations between

polymorphisms in the immunosuppression pathway genes

and breast cancer risk revealed that STAT3, IL5, and GM-

CSF may play a role in overall breast cancer susceptibility

among women of European ancestry.

The in silico functional analysis revealed that within a

±50 kb window of STAT3, several polymorphisms are

located in regulatory regions that could actively affect

DNA transcription (Fig. 3). The SNP rs181888151, which

is in complete LD with rs146170568 (r2 = 1) but inde-

pendent of rs1905339 (r2 = 0.01, Fig. 1) was significantly

associated with increased risk for overall breast cancer

(per allele OR 1.31, 95 % CI 1.16–1.49, p value =

2.8 9 10-5). Together with a further independently asso-

ciated imputed SNP rs141732716, these polymorphisms

reside in strong DNase I hypersensitivity and transcription

regulatory sites (Fig. 3). This suggests that they may be

functional polymorphisms, but further experimental work

is required for confirmation.T
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STAT3 encodes the signal transducer and activator of

transcription 3, which is a member of the STAT protein

family. Activated by corresponding cytokines or growth

factors, STAT3 can be phosphorylated and translocate into

the cell nucleus, acting as a transcription activator. In

addition, STAT3 plays a key role in regulating immune

response in the tumor microenvironment (Yu et al. 2009).

STAT3 signaling is required for immunosuppressive and

tumor-promoting functions of MDSCs (Cheng et al. 2003,

2008; Kortylewski et al. 2005, 2009; Kujawski et al. 2008;

Ostrand-Rosenberg and Sinha 2009; Yu et al. 2009), as

well as for Treg cell expansion (Kortylewski et al. 2005,

2009; Matsumura et al. 2007). STAT3 has been reported in

several previous genome-wide association studies (GWAS)

to be associated with immune relevant diseases such as

Crohn’s disease (Barrett et al. 2008; Franke et al. 2008;

Yamazaki et al. 2013), inflammatory bowel disease (Jos-

tins et al. 2012), and multiple sclerosis (Jakkula et al. 2010;

Patsopoulos et al. 2011; Sawcer et al. 2011). Additionally,

expression of STAT3 was suggested to be enriched in tri-

ple-negative breast cancer, and negatively associated with

lymph node involvement and breast tumor stage in a study

based on an in silico network approach (Liu et al. 2012b).

However, the association of rs1905339 with triple-negative

breast cancer risk in our study (N triple-negative breast

cancer = 2600) was similar and not stronger compared to

the association observed for overall breast cancer risk (per

allele OR 1.06, 95 % CI 0.99–1.14, p value = 0.11).

The genotyped SNP rs1905339 is also located at 7 kb 50

of PTRF, which encodes the polymerase I and transcript

release factor, and is not known to be directly involved in

immunosuppression. In addition, two independently associ-

ated imputed SNPs rs8074296 and rs12952342 (r2 = 0.99

and 0 with rs1905339, respectively, Fig. 1) are located at

8 kb 50 and 0.8 kb 30 of PTRF, respectively (Fig. 3). PTRF is

known to contribute to the formation of caveolae, small

membrane caves involved in cell signaling, lipid regulation,

and endocytosis (Chadda and Mayor 2008). Recently, down-

regulation of PTRF was observed in breast cancer cell lines

and breast tumor tissue, suggesting that PTRF expression

might be an indicator for breast cancer progression (Bai et al.

2012). The SNPs rs1905339 and rs8074296 were also found

to be eQTL for TUBG2 (tubulin, gamma 2) in the GTEx

database, the expression of TUBG2 decreased with each

variant allele (Online Resources 30 and 31, respectively).

TUBG2 encodes c-tubulin, a protein required for the for-

mation and polar orientation of microtubules in cells. It is

currently unknown, whether TUBG2 plays a role in breast

cancer development or progression.

The other two potential susceptibility loci, IL5 and GM-

CSF, are both located in a known cytokine gene cluster at

5q31. IL5 encodes interleukin 5, a cytokine secreted by

CD4? T helper 2 cells (Mills 2004; Parker 1993). IL5 is aT
a
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growth and differentiation factor for both B cells and

eosinophils, triggering eosinophil- and B cell-dependent

immune response (Mills 2004; Parker 1993). GM-CSF

encodes granulocyte–macrophage colony stimulating fac-

tor, a cytokine that controls differentiation and function of

granulocytes and macrophages. GM-CSF is also a MDSC-

inducing and activating factor in the bone marrow (Os-

trand-Rosenberg and Sinha 2009; Serafini et al. 2004). In

the tumor microenvironment, GM-CSF is the cytokine for

dendritic cell differentiation and function, and it is often

found to be underexpressed (Zou 2005). Additionally, 5q31

has been found to be a susceptibility locus for rheumatoid

arthritis (Okada et al. 2012, 2014) and inflammatory bowel

disease (Jostins et al. 2012).

Immunosuppression is a complex network with plenty

of contributors, including transcription factors (e.g.,

STAT3), as well as immune mediating cytokines (e.g., IL5

and GM-CSF). Results of this analysis indicate that genetic

variation in different components of the immunosuppres-

sion pathway may be susceptibility loci of breast cancer

among women of European ancestry.

The main strengths of the present analysis were its large

sample size, the uniform genotyping procedures and cen-

tralized quality controls used. The imputation of genotypes

in the most interesting susceptibility loci provided an

opportunity to identify more strongly associated variants.

Assessments of gene-level associations also provided evi-

dence for additional putative susceptibility loci. A limita-

tion was the lack of an independent sample to replicate the

observed associations; this will be feasible in the future

using new studies participating in the BCAC. Further

functional studies are still needed to identify causal variants

and to investigate the underlying biological mechanisms.

Conclusions

Overall, our data provide strong evidence that common

variation in the immunosuppression pathway is associated

with breast cancer susceptibility. The strongest candidates

for mediating this association were STAT3, IL5, and GM-

CSF, but we cannot exclude the possibility of multiple

alleles each with effects too small to confirm.
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