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o’clock noon.

Finnish Meteorological Institute
Helsinki, 2016



Supervisors Professor Heikki Järvinen
Department of Physics
University of Helsinki, Finland

Dr. Johan Silén
Climate Research unit
Finnish Meteorological Institute, Finland

Reviewers Associate Professor Nedjeljka Ẑagar
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1 Introduction

All life on Earth is regulated by some key climate variables, such as temperature and

precipitation. Those variables are characterized by their long term mean values and the

range of fluctuation around the mean. The extreme phases of the fluctuations, e.g. severe

drought or flooding, have major, sometimes devastating, impacts on the ecosystems and

societies. Thus, it is important to understand the behaviour of the climate system,

including its components and their interaction.

It is generally easier to quantify the mean value of a climate variable, such as tem-

perature, than the phenomena associated to its fluctuations. The objective of climate

research is to understand and quantify the observed variability in the Earth system

and to estimate its predictability. The ultimate goal is to exploit this understanding

in reliable simulations of the future climate which is again relevant for societal decision

making.

As climate is changing, it is of great importance to separate the contribution of the

natural variability and anthropogenic forcing to the global temperature change. Accord-

ing to Flato et al. (2013) and Fyfe et al. (2016), most climate model simulations are not

able to produce the slow-down in the warming trend of surface temperature in the early

2000s. A major contributor to this discrepancy to observations is thought to be the

models having deficiencies in simulating the internal climate variability. On the other

hand, there are several studies arguing against the existence of the slow-down in the ob-

servational surface temperature trend (e.g. Karl et al., 2015; Foster and Abraham, 2015;

Lewandowsky et al., 2016). This, however, does not remove the discrepancy between

the climate models and observations in the early 2000s.

The debate around the early 2000s surface temperature warming slow-down high-

lights the importance of quantifying the climate signals associated with natural internal

variability, natural external forcing, and anthropogenic forcing. However, compared to

the length of the longest time scales of climate variability, the direct observational record

is quite short and sparse, especially in the beginning of the observational era. For ex-

ample, the longest set of instrumental temperature observations is the Central England

Temperature (Parker et al., 1992) which is available since 1659.

Considering the short direct observational record, the evaluation of the ability of

climate models to simulate low-frequency (e.g. multi-decadal) climate variability is chal-

lenging. This is further complicated by the fact that the internal and external processes

in driving the climate variations and the non-linear interactions between these mecha-

nisms are not fully understood. Non-linearity means that there is no simple proportional
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relation between cause and effect and the forcing may be amplified, dampened or delayed

because of the complex feedback mechanisms in the Earth system.

As computing power is continuously increasing, the complexity and resolution of cli-

mate models is advancing accordingly. This is of course desirable, but poses a challenge

for post-processing and analysing the high-dimensional output of complex models. Ad-

vanced spatio-temporal data-analysis is extremely useful in studying the climate signa-

tures associated with internal variability and external forcing, but computation requires

substantial amounts of memory and time in case of high-dimensional data.

The motivation of this thesis is two-fold: Firstly, the aim has been to develop efficient

methods for studying high-dimensional spatio-temporal data, and secondly, to study

the 20th century low-frequency variability patterns in the Earth system and how these

patterns are represented by the current modelling systems.

The main research problems are:

• What is the level of knowledge on the decadal climate variability and predictability

in the Nordic region?

• How to handle high-dimensional data sets in advanced spatio-temporal data-analysis?

• What are the current capabilities of modelling the inter-annual to multi-decadal

climate variability in the Earth system?

This thesis is organized as follows: climate variability on inter-annual to multi-

decadal scales is introduced in Section 2, Section 3 explains the methods and Section

4 introduces the data sets used in this thesis. The main results of the Papers I-IV are

presented in Section 5, and finally discussed in Section 6.
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2 Climate variability

Climate variability refers to the fluctuations in key climate variables that are due to

internal natural processes within the climate system, or to external forcing, that has

either natural (such as volcanic eruptions and solar activity) or anthropogenic origin (e.g.

changes in greenhouse gas emissions). Figure 1 shows a diagram of climate variability

scales and processes.

Climate variability is usually described with anomalies, which are differences between

momentary states of the climate system and its longer-term climatology. Climatology

is the mean state computed over some time interval, such as months, years or decades

(Hurrell and Deser, 2009).

Climate variability occurs at practically all conceivable time scales. Short time scale

variability (monthly to inter-annual) are likely attributed to the atmospheric processes,

whereas oceans have a crucial role on decadal and longer term climate variability (up to

centuries or even millennia) due to their large heat capacity. In this thesis the focus is

on the inter-annual to multi-decadal variability, and the related processes are reviewed

in Paper I.

years decades

Atlantic 
multidecadal 
oscillation 
(AMO)

centuries

CO2-
emissions

Solar
forcing

Volcanic 
eruptions

Pacific 
decadal 
oscillation 
(PDO)

El niño – 
Southern 
oscillation 
(ENSO)

INTERNAL VARIABILITY

EXTERNAL FORCING

Figure 1: Climate variability time scales and processes.

2.1 Variability on inter-annual to multi-decadal scales

Internal climate variations such as the North Atlantic oscillation (NAO), the El Niño/

Southern oscillation (ENSO), the Pacific decadal oscillation (PDO) and the Atlantic

multi-decadal oscillation (AMO) have major contribution on the longer-term climate

variations. These phenomena are briefly presented in the following.
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The internal variability on the multi-decadal scale is prominently related to the ocean

dynamics. The Atlantic multi-decadal oscillation (AMO) is a major mode of variability

manifested as a fluctuation of sea surface temperatures (SSTs) in the Atlantic Ocean.

It is estimated to have periods of about 50–70 years (e.g. Kushnir, 1994; Delworth and

Mann, 2000), but there is some controversy regarding its amplitude. AMO has support in

the historical observations, such as in the longest instrumental record, Central England

Temperature (Tung and Zhou, 2013). AMO has mostly been explained to be driven by

the changes in ocean circulation (O’Reilly et al., 2016), especially the Atlantic Meridional

Overturning Circulation (AMOC) (e.g. Delworth et al., 1993; Delworth and Mann, 2000;

Ba et al., 2014). It has also been suggested that instead of being driven by the ocean

circulation variability, AMO is the response to forcing from the mid-latitude atmospheric

circulation (Clement et al., 2015).

Whereas the AMO is the leading mode of internal variability in the North Atlantic

SSTs, the Pacific decadal oscillation (PDO) is a leading pattern of North Pacific inter-

nal SST variability. It has a roughly 20–30 yr period, and it is manifested as positive

or negative SST anomalies in the Tropical Pacific and opposite anomalies in the west-

ern extra-tropical North and South Pacific. North Pacific SST variability has also a

multi-decadal signal with a 50–70 yr period, which may partly be related to the AMO

(Steinman et al., 2015). PDO has been associated with variations in surface tempera-

ture and precipitation in the land areas surrounding the Pacific Ocean, as well as with

variability of the Pacific marine ecosystem and the Indian monsoon (Keenlyside and Ba,

2010).

On the inter-annual to decadal scale the El Niño Southern Oscillation (ENSO) is a

prominent phenomenon having profound effects on the global weather and climate. It

is related to coupled atmosphere-ocean variations: warming (cooling) of eastern tropical

Pacific SST and high (low) surface pressure in the western tropical Pacific (Trenberth

and Caron, 2000). ENSO is a quasi-periodic oscillation with a 2–7 yr period, but has a

highest spectral density around 4 years. the anomalous warming of the tropical Pacific

SSTs is known as El Niño and the opposite cooling phase is called La Niña. ENSO

diversity (Capotondi et al., 2015) refers to the different ENSO types, with emphasis on

the warm El Niño phase. For example, Kao and Yu (2009) have contrasted an eastern-

Pacific (EP) type and a central-Pacific (CP) type having distinct spatial patterns and

related atmospheric, surface and subsurface characteristics.

The North-Atlantic Oscillation (NAO) has variability on sub-seasonal to multi-decadal

scales (Delworth and Zeng, 2016). It is measured by the difference in sea-level pressure

between the subtropical (Azores) high and the subpolar (Island) low. The NAO is

12



primarily an atmospheric phenomenon, that produces changes in the large-scale atmo-

spheric circulation and associated changes in temperature, precipitation and winds over

the Atlantic as well as over North America and Europe (Trigo et al., 2002; Scaife et al.,

2008; Hurrell and Deser, 2009). Positive phase of the NAO is associated with anoma-

lous low pressure in the subarctic and high pressure in subtropics with stronger westerly

winds and enhanced flow of warm and moist air across the North Atlantic and Europe

(Hurrell, 1995).

Inter-annual to multi-decadal climate variations may partly be induced by processes

that are external to the climate system. These are variations in solar activity, volcanic

eruptions and anthropogenically forced changes in greenhouse gas concentrations and

aerosols. The ∼11-yr sunspot cycle is quite well known but its climate effects are much

debated (e.g. Rind et al., 2008). Over the past millennia, the solar forcing effect is

deemed small on the Northern Hemisphere climate (Schurer et al., 2014), while e.g.

Shindell et al. (2001) and Ineson et al. (2011) suggest connection between the low solar

activity and negative phase of the NAO leading to colder temperatures over the Northern

Hemisphere continents. Strong volcanic eruptions have climate effects that can persist

for about a decade (Latif and Keenlyside, 2011). Anthropogenic changes in greenhouse

gases and aerosols are an important forcing for climate on longer time scales.

The relative roles of internal and external processes in driving the climate variations

are not well understood and there is a need for more precise quantification (Solomon

et al., 2011). This is a challenging task, which is further complicated by the non-linear

interactions between these mechanisms.

2.2 Predictability

Climate predictability refers to its ability to be predicted rather than to ability to predict

it (Boer et al., 2013). In other words, predictability of a climate system is a measure

of the extent to which it can be predicted in idealized conditions. Two main types of

predictability studies can be found in the literature and these are potential (or diagnostic)

and classical (or prognostic).

Potential predictability is the upper limit of the forecast skill and it can be defined as

the ratio of the potentially predictable variance to the total variance. Internal and ex-

ternally forced climate variability are both important sources of potential predictability

(Boer, 2011).

Prognostic predictability studies are conducted by performing ensemble experiments

of perturbed initial conditions with a single model and the predictability is given by the
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ratio of the actual signal variance to the ensemble variance.

Predictability is usually estimated in modelling studies, which can only approximate

the predictability of the actual variability in the real climate system. The studies of

the climate predictability must presume that the modern climate models are sufficiently

similar to the actual climate system. Otherwise the predictability information provided

by the model studies would be useless. In this respect it is important to understand the

behavior of the current climate models and their capability to produce realistic climate

variability.

3 Methods for studying climate variability and the prob-

lem of high dimensionality

Climate variability can be studied based on observations and climate model simulations.

Since direct observational record is relatively short and sparse, especially over the oceans,

modelling studies are often used for studying climate fluctuations. Time series (generated

by observations or models) can be studied in time-domain or in frequency-domain. In

the time domain the analysis is conducted with respect to time (continuous or discrete),

whereas in frequency-domain with respect to frequency. Frequency domain approach

includes spectral methods, which are motivated by the observation that the most regular

behavior of a time series is to be periodic. Spectral analysis deals with determining the

periodic components in the time series by computing periods, amplitudes and phases

(Ghil et al., 2002). Spectral analysis includes a wide selection of methods, such as

Fourier transform -based ones, Wavelet analysis, Principal component analysis (PCA),

Singular spectrum analysis (SSA) and its multivariate version MSSA.

As climate simulation data are often high-dimensional, with thousands of time steps

and grid points representing the state variables, some dimensionality reduction would

be desirable before performing any complex data analysis. Averaging in time or space

is of course one solution reducing the computational cost and allowing the use of well-

established spectral analysis methods, such as Fourier-analysis. On the other hand,

the averaging may lose some important aspects of the variability patterns. Another

frequently-used method for dimension reduction is PCA, which retains most of the vari-

ability of the original data set in a small set of principal components. The drawback

of PCA is that it might not be applicable with large data sets, since its computational

complexity increases notably with increasing data dimension.

This section introduces the methods used in this thesis. First, PCA and MSSA are

14



briefly explained, and second, Random projections (RP) are introduced as a method for

reducing the dimensionality and enabling analysis of high-dimensional data sets. Finally,

a randomized version of the MSSA algorithm is presented.

3.1 Principal component analysis

In climate science, PCA is a widely-used method to extract the dominant spatio-temporal

signals from multi-dimensional data sets and to reduce the dimensionality of the data

(Von Storch and Zwiers, 2001; Hannachi et al., 2007). The idea of PCA is to find an

orthogonal basis (i.e. the eigenvectors, or empirical orthogonal functions (EOFs), of the

covariance matrix) to represent the original data set. By projecting the original data set

onto the basis, the data set can be represented by uncorrelated linear combinations of the

original variables which are called the principal components (PCs). PCA also enables

dimensionality reduction, as most of the variance in the data set can be explained by

only a small subset of PCs. An efficient technique for solving the eigenvectors and -values

is singular value decomposition (SVD).

Let’s say we have a data matrix Xn×d, where n represents the number of samples

and d is the sample dimension. In case of gridded climate data, n is the number of time

steps and d is the number of gridpoints. The singular value decomposition of X is

X = UDVT (1)

The vectors of U are the eigenvectors of Z = 1
dXXT and V contains the eigenvectors

of C = 1
nX

TX. The vectors of V are also known as EOFs. Diagonal elements of D are

the singular values of C or Z. The PCs (S) can be calculated as follows:

S = XV = UDVTV = UD (2)

Although PCA is widely used, it is not an ideal tool for extracting and illustrating spatio-

temporal eigenmodes in climate data. Because of the orthogonality constraint, the PCs

do not necessarily correspond to any physical phenomena or patterns (Demšar et al.,

2013). In addition, the PCs may be a mixture of different physical phenomena, because of

the constraint for the successive components to explain the maximum remaining variance

(Aires et al., 2000). Nevertheless, PCA has been used in Paper II to demonstrate the

structural similarity of an original data set and its compressed version.

In this respect, there are also other options for finding the spatio-temporal patterns.

The Multi-Channel Singular Spectrum Analysis (MSSA; Broomhead and King, 1986a,b)
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takes also into account the temporal autocorrelation in the original data set and provides

a deeper insight into the dynamics of the system that generated the data set (Vautard

and Ghil, 1989).

3.2 Multi-channel singular spectrum analysis (MSSA)

Singular spectrum analysis (SSA) and its multivariate extension Multi-Channel SSA

(MSSA) were introduced into the study of dynamical systems by Broomhead and King

(1986a,b). (In this connection, multivariate is a synonyme for multi-channel.) SSA

and MSSA have similarities to PCA where spatial correlations are used in determining

the patterns that explain most of the variability in a data set. The main difference to

PCA is that MSSA finds the spatially and temporally coherent patterns that maximize

the lagged covariance of the data set. As an analogue to PCA, MSSA eigenvectors are

often called space-time EOFs (ST-EOFs), and the projections of the data set onto those

ST-EOFs are called space-time principal components (ST-PCs).

In MSSA, an augmented data matrix A is constructed, containing M lagged copies

of each column (or channel) in Xn×d. M represents the lag window. A has Md columns

and n′ = n −M + 1 rows, and SVD of A is calculated as in eq. 1 to obtain ST-EOFs

and ST-PCs.

It is not trivial to choose the the lag window in MSSA. Large lag window enhances

the spectral resolution, i.e. the number of different frequencies that can be identified,

but at the same time the variance is distributed on a larger set of components. Because

of the lag window, ST-PCs have reduced length (n′) and they cannot be located into the

same index space with the original time series. Instead, they can be represented in the

original coordinate system by the reconstructed components, RCs (Plaut and Vautard,

1994; Ghil et al., 2002).

Similarly to PCA, the ST-PCs/ST-EOFs of MSSA do not necessarily correspond to

any physical phenomena, but can be generated by some noise processes, such as first-

order autoregressive (AR(1)) noise, so called ’red noise’. A significance test called Monte-

Carlo MSSA (MC-MSSA) was formulated by Allen and Robertson (1996) to distinguish

the ’true’ oscillations from noise. In the test, the MSSA components are tested against a

null-hypothesis of the data being generated by red noise, which is typical for geophysical

processes.

The computational burden of MSSA becomes soon prohibitively high if the original

data set is high-dimensional and lag window is chosen to be large. This is typically

the situation in studies of low-frequency variability in climate data sets. Traditionally,
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the dimensionality reduction has been obtained by calculating first a conventional PCA

and retaining a set of dominant PCs for the following MSSA (e.g. Plaut and Vautard,

1994; Moron et al., 2012). Transformation to conventional PCs is a useful preprocessing

step before MSSA, but according to Groth and Ghil (2015), its implications to signal

detection are rather complex. For example, the compression of the data set into a

small set of leading PCs may interfere with the detection of weak but significant signals.

With high-dimensional data sets it may be the case that even PCA is not applicable.

Clearly there is a need for a computationally more reasonable method for dimensionality

reduction.

3.3 Random projections in dimensionality reduction

Random projection (RP) as a dimensionality reduction method is studied in Paper II.

Before application to climate data, it has been successfully applied, for example, in image

processing (Bingham and Mannila, 2001; Goel et al., 2005; Qi and Hughes, 2012) and

for text data (Bingham and Mannila, 2001).

The core idea for random projections emerges from the Johnson-Lindenstrauss lemma

(Johnson and Lindenstrauss, 1984).

Suppose we have an arbitrary matrix X ∈ Rn×d. Given any ε > 0, there is a mapping

f : Rd → Rk , for any k ≥ O logn
ε2

, such that, for any two rows xi, xj ∈ X, we have

(1− ε)||xi − xj||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj||2 (3)

In the lemma it is stated that the data points in d-dimensional space can be embed-

ded into a k-dimensional subspace in such a way that the pairwise euclidean distances

between the data points are approximately preserved with a factor of 1± ε.

In the experiments of Papers II-IV, a commonly-used Gaussian mapping has been

employed. Elements of R are rij ∼ N(0, 1) and the row/column vectors of the random

matrix are normalized to unit length. There are also other random distributions that

satisfy the lemma (3). Those are presented for example in Achlioptas (2003).

In the data matrix Xn×d, n represents the number of samples and d is the sample

dimension. In case of gridded climate data, n is the number of time steps and d is the

number of gridpoints. The dimension reduction is performed in two steps: 1) generate

a random matrix Rd×k and 2) project X onto R:

Pn×k = Xn×dRd×k, (4)

17



where k � d. In the projection, the number of samples are preserved but the dimension

is reduced from d to k.

In the literature there are some estimates of a sufficient value for k (e.g. Frankl and

Maehara, 1988; Dasgupta and Gupta, 2003). According to Johnson and Lindenstrauss

(1984), the lower bound for k is of the order of O(logn/ε2), as stated in the lemma 3.

There has also been some attempts to reveal an explicit formula, for instance, Dasgupta

and Gupta (2003) showed that k ≥ 4(ε2/2− ε3/3)−1 log n is enough. It is notable that in

these estimates the subdimension k does not depend on d, but on the number of samples

n and the error rate ε.

It should be noted that these theoretical lower bounds for k are conservative esti-

mates and usually much lower values for k still give good results, retaining most of the

information of the original data set (e.g. Bingham and Mannila, 2001). This was also

observed in Paper II. In practice, the value for k is usually chosen in an adaptive manner,

according to the desired size for lower-dimensional approximation and by monitoring the

associated error rate.

Figure 2 shows the error (in %) produced by RP as a function of retained dimensions

(in % of the original dimensions). The original data set is the monthly mean near-

surface temperature from the 20th century reanalysis (Compo et al., 2011). In this data

set n = 1704 and d = 18048. The error is measured by the difference in euclidean

distance between 100 pairs of data vectors in the original and dimensionality reduced

space. Figure also shows the 95% confidence interval for the error, calculated over 500

realisations of RP with different random numbers. It can be seen that even with very

low dimensions the error produced by RP is quite low, although the error confidence

interval increases with decreasing number of retained dimensions.

RP is powerful, since it can be used in constructing a much lower-dimensional (ε-

approximate) version of any algorithm depending only on the geometry of the data

(i.e. the distances between the data points). RP is also easy to implement and can

reduce complexity of algorithms with small costs. It is linear and indifferent to the data

used, subdimension k does not depend on the dimensionality d of the original data,

and it preserves the distances. RP can also be used in constructing efficient parallel

implementations of existing algorithms.

RP has been applied in several fields or computational methods. It allows random-

ized matrix factorisations, such as randomised SVD (Halko et al., 2011). Some other

applications include for example nearest-neighbour (e.g. Deegalla and Boström, 2006)

and clustering (e.g. Fern and Brodley, 2003) algorithms.

Of course, RP is not a lossless method and some accuracy may be lost especially in
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Figure 2: Error (in %) produced by RP and 95% confidence intervals, as a function of
retained dimensions (%).

very low dimensions (Fig. 2), but on the other hand, computational and data storage

expense is reduced. It should also be emphasized, that RP alone does not provide

physical interpretation of the climate data, but is aimed to be used in conjunction with

other methods, such as PCA or MSSA.

3.4 Randomised multi-channel singular spectrum analysis

The main achievement of Paper III was to introduce a randomised version of the MSSA

algorithm, called RMSSA. This algorithm was motivated by the increasing computa-

tional complexity of MSSA with the increasing data dimension. The RMSSA-algorithm

1) reduces the dimension of the original data set by RP, 2) decomposes the data set by

calculating standard MSSA steps in a reduced space, and 3) reconstructs the components

in the original high-dimensional space.

• Step 1) is straightforward and is implemented as described in the previous section.

The lower-dimensional matrix Pn×k is obtained by eq. 4.

19



• Step 2) follows the conventional MSSA procedure as described in section 3.2, but

in much lower dimensional space (k) compared to the original data dimensions (d).

The augmented matrix ARP is constructed from P and SVD is calculated:

ARP = URPDRPV
T
RP (5)

• Step 3) requires calculating the eigenvectors (ST-EOFs) in the original d-dimensional

space in order to represent the ST-PCs in the original coordinate system:

VA ≈ ATURP (DRP )
−1 (6)

The calculation can be limited only to the eigenmodes that are of interest.

Significance test of MSSA components requires solving conventional PCs of the orig-

inal data set. The RMSSA implementation presented in Paper III also contains another

version of the algorithm where the PCs are solved in the dimension-reduced space. This

makes the computations feasible and affordable even in very high-dimensional problems.

In summary, RMSSA-algorithm is powerful when the dimensions of the data sets

become prohibitively large. It allows a computationally efficient way of decomposing a

data set into its spatio-temporal patterns.

4 Data sets

The monthly mean near-surface air temperature fields from the reanalysis data sets and

climate model simulations were analysed in this thesis. Surface temperature was chosen,

because it is routinely examined variable in atmospheric models and many processes must

be adequately represented in models to realistically capture the observed temperature

distribution (Flato et al., 2013). In the following subsections the reanalysis and model

simulation data sets are described in more detail.

4.1 The 20th century reanalyses

Two 20th century reanalysis data sets were analysed in Papers III and IV: the 20th

Century Reanalysis V2 data (hereafter 20CR) provided by the NOAA/OAR/ ESRL

PSD (Compo et al., 2011), and ERA-20C data provided by ECMWF (Poli et al., 2013).

These analyses provide a means to study the 20th century climate variability.

In 20CR the surface and sea level pressure observations are combined with a short

term forecast to produce an ensemble of perturbed reanalyses, and the final data set
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corresponds to the ensemble mean. The observed monthly sea-surface temperature and

sea-ice distributions from HadISST1.1 (Rayner et al., 2003) are used as boundary con-

ditions, and the reanalysis is forced by historical record of changes in climate forcing

factors (greenhouse gases (CO2), volcanic aerosols and solar variations). Analysis is

performed with an Ensemble Kalman Filter to produce an estimate of the complete

state of the atmosphere and its uncertainty (Compo et al., 2011). 20CR has ∼2.0 degree

horizontal resolution (approximately 210 km) and the gaussian gridded (192× 94) data

from 3-hour forecast values is used. The vertical resolution is 28 levels. The data set

spans from 1871 to 2012.

ERA-20C is the first 20th century atmospheric reanalysis of ECMWF. In ERA-

20C, observations of surface pressure and surface winds over the oceans are assimilated

(Poli et al., 2013). ERA-20C is forced by historical time-varying changes in sea-surface

temperature and sea-ice fraction, as well as climate forcing factors. Compared to 20CR,

a more recent sea-surface temperature and sea ice cover from HadISST2 (Rayner et al.,

2006) are used. ERA-20C uses a 24-hour four-dimensional variational (4D-Var) data

assimilation scheme. The horizontal resolution of ERA-20C is approximately 125 km

(T159) in a grid of 360×181 points and the vertical resolution is 91 levels. The data set

covers the time sequence from 1900 to 2010. Thus, ERA-20C is shorter, but has finer

resolution compared to 20CR.

Both reanalyses are affected by changes in the observing system and coverage of

observations. They also omit the upper-air and satellite observations which means that

they are not the best estimates beginning from those years when these observations

have become available (Poli and NCAR Staff (Eds.), 2016). On the other hand, the 20th

century data sets provide a means to study long time scale climate processes.

4.2 The climate model simulations

A monthly surface temperature data set from a millennial full-forcing Earth system

model simulation (Jungclaus, 2008) was used in the experiments of Paper II. Purpose

of the Millennium Earth System Model (M-ESM) has been to simulate the full Earth

system over periods of hundreds to thousands of years. The simulations are forced by

volcanoes, variations of solar irradiance, and land use changes. The ESM has four main

components: the atmosphere model ECHAM, the land model JSBACH, the Max-Planck-

Ocean-Model MPI-OM and the ocean-biogeochemistry-model HAMOCC (Budich et al.,

2010). The data set used in Paper II has a resolution of 96 points in longitude and

48 points in latitude. Purpose of using this data set was to demonstrate the structure
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preservation properties of RP.

The historical (1901–2005) simulations from the coupled model intercomparison

project 5 (CMIP5) data archive, following the CMIP5 experimental protocol (Taylor

et al., 2012), were analysed in Papers III and IV. In the 20th Century simulations the

historical record of climate forcing factors are used. The simulations are produced by

Atmosphere-ocean general circulation models (AOGCMs) or ESMs.

AOGCMs include atmosphere, ocean, land and sea ice components. They are pri-

marily used for studying the dynamics of the climate system, and for making projections

based on future greenhouse gas and aerosol forcing (Flato et al., 2013). AOGCMs are

still extensively used in applications where the biogeochemical feedbacks are not critical

(e.g. seasonal and decadal predictions). ESMs include also the biogeochemical cycles,

which play an important role in simulating the response of the climate system to external

forcing (Flato et al., 2013).

The CMIP5 simulations that were analysed in Papers III and IV have originally

different resolutions, but all the model data sets were interpolated into a common grid

of 144 × 73 points. A single ensemble member of each model was used in the analysis.

In selecting the models, a major principle was to use only one model per institution.

Furthermore, all the chosen models have undergone a long (generally several generations

of) history of development, suggesting that the selected models collectively represent the

state-of-the-art. The models that were used, are listed in Table 1.
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Table 1: CMIP5 climate models used in this thesis.
Model name Modeling center Country

CanESM2 Canadian Centre for Climate Modelling
and Analysis (CCCMA)

Canada

CESM1(CAM5) Community Earth System Model Contrib-
utors (NSF-DOE-NCAR)

USA

CNRM-CM5-2 Centre National de Recherches
Mtorologiques / Centre Europen de
Recherche et Formation Avance en Calcul
Scientifique (CNRM-CERFACS)

France

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial
Research Organization in collaboration
with Queensland Climate Change Centre
of Excellence (CSIRO-QCCCE)

Australia

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Lab-
oratory (NOAA GFDL)

USA

GISS-E2-R NASA Goddard Institute for Space Studies
(NASA GISS)

USA

HadGEM2-ES Met Office Hadley Centre (MOHC) UK
INM-CM4 Institute for Numerical Mathematics

(INM)
Russia

IPSL-CM5B-LR Institut Pierre-Simon Laplace (IPSL) France
MIROC-ESM Japan Agency for Marine-Earth Sci-

ence and Technology, Atmosphere and
Ocean Research Institute (The Univer-
sity of Tokyo), and National Insti-
tute for Environmental Studies (JAM-
STEC/AORI/NIES )

Japan

MPI-ESM-MR Max Planck Institute for Meteorology
(MPI-M)

Germany

MRI-CGCM3 Meteorological Research Institute
(MRI/JMA)

Japan
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5 Main results

This section summarises the main results of the Papers I–IV.

5.1 Decadal variability and predictability in the Nordic region

Paper I reviewed the decadal (to multi-decadal) climate variability and predictability

with emphasis on the Nordic region. The published studies indicate that the relative

roles of internal and external mechanisms driving the long-term climate variability are

not well understood. Decadal variability and predictability is found predominately over

mid- to high-latitude oceans, especially in the North-Atlantic (NA) sector. The most

prominent internal variability mechanism contributing to the decadal variability in the

North-Atlantic sector is the NAO and the AMOC. Furthermore, the NA predictability

is mainly due to the AMOC-variability, but over land areas predictability is deemed to

be low.

Based on the review, the potential predictability of decadal scale variations in the

Nordic region is highly uncertain. Some results indicate that the closeness to the North-

Atlantic might imply some predictability in the coastal areas. On the other hand, some

studies indicate that the potential decadal predictability may be generally reduced be-

cause of global warming.

The published papers on the decadal variability and predictability indicate that the

climate variability patterns and their mutual interaction calls for more study. This

subject is addressed in the following Papers II-IV by refining methods for studying the

variability patterns, and finally comparing the low-frequency variability in reanalyses

and contemporary climate models.

5.2 Random projections and climate data

Paper II introduced RP as a dimensionality reduction method applied to climate data

sets. The structure-preservation properties of RP were demonstrated by applying PCA

on the original and dimensionality reduced data sets. Experiments with lower-dimensional

subspaces of 10% and 1% of the original data dimensions showed that even at 1 % of

the original dimensions the main spatial and temporal patterns of the original surface

temperature data set were approximately preserved. Figure 3 compares the eigenvectors

1–8 of the original and dimensionality reduced data sets and additionally, Figure 4 shows

the correlation of the eigenvectors 1–15.

With a subspace of 10% of the original dimensions the PCs explaining 96 % of the
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variance in the original data set were recovered, and with 1% the recovery was still

successful until the PCs explaining 94 % of the original variance. Large part of the

variance can be attributed to the annual cycle that was not removed from the data set

in the experiments of Paper II.

The stability of the obtained results was also investigated by projecting the original

data matrix onto a set of different realisations of random matrices. The PCA of each,

slightly different projection was calculated, which allowed approximating confidence lim-

its for the eigenvalues, i.e. the amount of variance explained by each PC. The results

showed that some differences in the results can occur due to different random matrices,

especially when the subspace is very small compared to the original size of the data set.

The orthogonalisation of the random matrix may enhance the stability of the results,

but this was not covered in Paper II.

Paper II further demonstrated the application of RP + PCA on a higher-dimensional

atmospheric temperature data set including the vertical component. This allowed inves-

tigating the temperature patterns in three dimensions. A signal reminiscent of the ENSO

was identified in the analysis and the spatial patterns related to this signal were studied

in more detail. The three-dimensional analysis revealed, for instance, that the spatial

pattern of the ENSO-related temperature signal is in an opposite phase in the upper

atmosphere compared to the lower levels. However, one must be aware of the limitations

of PCA in providing a physical interpretation of the results. Also, the characteristics of

the data set must be considered, i.e. the ENSO representation of the Millennium simu-

lations (Jungclaus et al., 2006). The main idea of the experiment was to show that RP

can be applied as a preprocessing of high-dimensional data sets, reducing computational

burden of further analysis, or even enabling it.
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Figure 3: Comparison of eigenvectors 1–8 computed from the original and dimension-

ality reduced data sets (RP10% and RP1%). The unit of the colour scale is arbitrary.

(Reproduced from Fig. 4 of Paper II)
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from Fig. 6 of Paper II)
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5.3 The 20th century near-surface temperature variability in reanaly-

ses and climate model data sets

In Papers III and IV the variability patterns of the reanalysis and climate model data

sets extracted from the CMIP5 data archive were analysed and compared. The main

goal of Paper III was to introduce the RMSSA -algorithm, and the use of the algorithm

was demonstrated on the 20CR data set as well as on two historical climate model sim-

ulations (HadGEM-ES and MPI-ESM-MR). Paper IV extended the analysis by another

reanalysis data set, ERA-20C, and 12 climate model simulations from the CMIP5 data

archive. The data sets were standardised to avoid overweighting the high-latitude vari-

ance. Furthermore, the data sets were detrended and the dominating annual cycle was

removed.

In Paper IV The spectral characteristics of the data sets were further studied by

conducting a more detailed analysis on the oscillatory components (ST-PCs) extracted

from the data sets. The spectral densities of the ST-PCs were estimated and summed

up to obtain so called total spectrum for each data set. The total spectrum of each

data set summarises the spectra of its components and facilitates the comparison of the

climate model and reanalysis data sets. In addition, the statistical significance of the

identified oscillatory modes was studied by MC-MSSA. Because one century covered

by the reanalysis data sets is very short for analysing the decadal to multi-decadal

variability, Paper IV concentrates on the multi-annual variability modes.

5.3.1 Comparison of variability modes in the two reanalyses

RMSSA of the 20CR and ERA-20C revealed that the decomposition of the two reanalyses

data sets is very similar: the variance is distributed in a similar way to the components

representing the different oscillatory modes.

In both data sets so-called trend components with multi-decadal scale period explain

largest fraction of the variance compared to the following components. The multi-decadal

components have relatively somewhat more explanatory power in 20CR compared to

ERA-20C. One has to bear in mind, though, that the length of the time series (105

years) restricts the analysis of multi-decadal oscillations.

The multi-annual modes, explaining together the second largest fraction of the vari-

ance in both data sets, have periods of about 3–4 years and around 5 years. These

modes may be related to the El Niño-Southern Oscillation (ENSO) which is a prominent

phenomenon on those time scales. After the ENSO-type components, some differences

between 20CR and ERA-20C start to occur, but the overview of the spectra in both data

28



sets is similar. This can also be seen in Figure 5 a, showing the total spectra of both data

sets. The only clear difference is that the spectral power in ERA-20C is systematically

slightly higher than in 20CR. This is most likely due to generally higher temperature

variance in ERA-20C compared to 20CR. In addition, the 3–4 yr and 5 yr spectral peaks

are relatively more pronounced in 20CR than in ERA-20C.

The statistical significance testing of the components shows that approximately the

same multi-annual periods (in the range of 3.5–5.7 years) are significant in both reanalysis

data sets (Figure 5 b–c). The annual cycle is removed from the data sets and therefore

the eigenvalues corresponding to that mode are very low.

The representation of climate variability in 20CR data set has been studied in Compo

et al. (2011). 20CR represents the longer time-scale variability fairly well, as measured

by a few climate indices (the NAO, the Pacific Walker Circulation index (PWC) and the

Pacific-North American Pattern (PNA)). The variability has been compared to other re-

analysis data sets (ERA-Interim, NCEP-NCAR Reanalysis, ERA-40) and the correlation

of indices between various estimates is very high.

In Poli et al. (2016), the climate fidelity of ERA-20C was also studied by investigating

a selection of common climate indices calculated from the monthly mean data (the Niño

3.4 index, the Southern Oscillation index (SOI), the NAO index and the PNA index).

These four monthly climate indices show excellent agreement for ERA-20C with other

reanalysis products (20CRv2c, JRA-55, and ERA-Interim) especially after 1980, but

there are more discrepancies at earlier times and regions where observation coverage is

low.

Otherwise the literature evaluating the long-term climate variability in 20CR and

ERA-20C data sets is scarce. The work in Paper IV adds to this literature by comparing

the oscillatory modes identified in the two 20th century reanalysis products.
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Figure 5: (a) Total spectrum of 20CR and ERA-20C near-surface temperature. (b)

Significance test of the near-surface temperature variability in 20CR. Colored squares

show the data eigenvalues plotted against the dominant frequency of the ST-PC corre-

sponding to each eigenvalue. The vertical bars show the 95% confidence intervals for

the eigenvalue distribution. The ST-PCs that correspond to eigenvalues rising above the

97.5th percentiles are considered significant at the 5 % level. (c) Same as (b), but for

ERA-20C. The grey shaded area denotes the frequencies beyond the lag window (20 yr).

(Reproduced from Fig. 4 of Paper IV)
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5.3.2 Comparison of variability modes in the reanalyses and CMIP5 models

The ability of a model to simulate the climate variability, in addition to the mean state

and externally forced change, is crucial in determining the model performance. To study

this aspect, 12 climate model simulations for period 1901–2005 were analysed in exactly

the same way as the reanalysis data sets. Figure 6 shows the total spectra for the

climate models. The statistically significant (at the 5% level) multi-annual modes with

period less than 7 yrs are denoted by dashed vertical lines. The total spectra of the

reanalyses are plotted in the background as a reference. Although the models cannot

be simply ranked based on how different or similar the model spectra are from the

reference, a comparison of the simulated and the reanalysis spectra provides useful hints

of the strengths and weaknesses of the models.

The analysis of Paper IV shows that there are significant multi-annual (2–7 yr) vari-

ability patterns in most of the climate model data sets. However, the level of variability

varies a lot among the models. For example, there is a group of models (a, b, d and e

in Fig. 6) that are overactive on multi-annual scales. In most of the other models, the

multi-annual variability is relatively less prominent than in the reanalyses.

Paper IV concentrates on the multi-annual scale, but it is also noted that the level

of decadal scale variability (10–20 yr) is quite close to the reanalyses in majority of the

models. However, some models, such as HadGEM2-ES (Fig. 6g), overestimate it. Also,

some of the climate models seem to underestimate the level of multi-decadal variability

(> 20 yr) but the shortness of the time series (105 yrs) constrains the analysis.

Results of Paper IV indicate that the number of statistically significant periods (at

5% level) is larger in several models, in comparison to the reanalyses. This is explained,

at least partly, by the fact that the modes have irregular periods captured by a range

of adjacent frequencies. In addition, some models have several significant and distinct

periods between 2 and 7 yrs, which are not detected in the reanalyses. Models a, i, j

and k in Fig. 6 seem to be somewhat closer to the reanalysis in terms of number of

significant periods.

In Paper IV the spatial pattern related to a 3–4 yr oscillatory mode was also analysed.

This mode was identified as significant in 20CR and ERA-20C, and most of the climate

model data sets. Phase composites, following the procedure of Plaut and Vautard (1994),

were constructed from the 3–4 yr mode. These are illustrated in detail in the Supplement

(S3) of Paper IV.

The 3–4 yr mode has a typical ENSO related temperature anomaly pattern in both

reanalysis data sets, and climate model anomaly patterns are similar to the reanalyses in
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many areas. However, some differences also exist (see the Supplement S3 of Paper IV).

Especially some overestimation of the anomalies related to the 3–4 yr pattern is seen in

several models. Furthermore, the equatorial Pacific anomalies tend to extend too west

in about half of the models. The anomaly pattern in the northwestern North-America

is present in all the models to some extent, but in most of them it is either somewhat

misplaced or extends to the adjacent sea areas and the Eurasian continent.

Representation of inter-annual to multi-decadal climate variability in CMIP5 models

has been analysed in a wide range of studies (e.g. Bellenger et al., 2014; Knutson

et al., 2013; Ba et al., 2014 and Fredriksen and Rypdal, 2016). In Flato et al. (2013)

it is stated that the ENSO representation in CMIP5 models has improved since CMIP3

and most CMIP5 models have variability maximum at the observed time scale (2–7

years). However, models still have biases in ENSO amplitude, period and spatial pattern,

identified both in CMIP3 and CMIP5 simulations (e.g. Guilyardi et al., 2009; Bellenger

et al., 2014).

Longer-term variability is also biased in some of the climate models. Many studies

(e.g. Kumar et al., 2013; Ba et al., 2014) indicate that the Atlantic multi-decadal vari-

ability is weaker than observed in CMIP5 models. In Knutson et al. (2013) it is shown

that on average, the CMIP5 models tend to overestimate the low-frequency surface tem-

perature variability (> 10 years) in high-latitude regions of the Northern Hemisphere,

but underestimate it over much of the remaining lower latitude regions. Although the

results of Paper IV also indicated that some of the models are underestimating the power

at lower frequencies, the relatively short temporal coverage of the data sets restricts the

analysis of decadal to multi-decadal variability. In addition, the choice of the lag-window

(20 years) in RMSSA has also effect on the identified frequencies. The frequencies within

the lag window are emphasized while the frequencies longer than 20 yr have relatively

less power because those are not covered by the lag window.

5.3.3 Erratum to Paper III

In Paper III, Fig. 8, the latitudinal climate model temperature anomalies (HadGEM2

and MPI-ESM) have been plotted mistakenly in reverse order.
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Figure 6: Total spectrum of the near-surface temperature in climate model data sets.

The dashed vertical lines indicate the climate model multi-annual periods significant at

5% level. The total spectra of the reanalysis data sets are plotted with green and red

lines. The grey shaded area denotes the frequencies beyond the lag window (20 yr).

(Reproduced from Fig. 5 of Paper IV)
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6 Summary and discussion

Understanding the climate model performance is of great importance when considering

the reliability of, for instance, decadal or longer-term predictions or assessing the decadal

predictability. The evaluation of the low-frequency variability in models is challenging for

many reasons. First, the direct observational record, especially in the oceans, is relatively

short and sparse for comparing low-frequency variability in models and observations.

Secondly, internal and external processes in driving the climate variability and the non-

linear interactions between these mechanisms are not fully understood. In addition, the

increasing complexity and resolution of models hinders the analysis of the model output.

The main contribution of this thesis has been in applying efficient dimensionality

reduction to the climate data sets, and refining decomposition methods (PCA, MSSA)

to enable analysis of high-dimensional spatio-temporal data sets. In addition, the focus

has been on extracting and comparing the low-frequency variability patterns of the 20th

century near-surface temperature in reanalyses and current modelling systems. The

present knowledge on the decadal variability and predictability, with a focus on the

Nordic region, has also been summarised in this study. In the following, the research

questions are self-assessed based on the obtained research results and available literature.

• What is the level of knowledge on the decadal climate variability and predictability

in the Nordic region?

Paper I reviewed the existing knowledge on decadal climate variability and pre-

dictability, with emphasis on the Nordic region. It was found out that the internal

variability mechanisms in the North Atlantic associated with decadal variability (such

as AMOC and NAO) also affect the climate variability in the Nordic region. On the

other hand, the decadal predictability in this area is low, although closeness to the North-

Atlantic sector may also contribute to predictability in the Nordic region. Although the

focus of Paper IV was on the multi-annual variability modes of the near-surface temper-

ature, it was also noted that the level of the decadal scale variability is quite close to

the reanalyses or overestimated in the studied CMIP5 models.

The findings in Paper I indicated that there is a need for better understanding of

the variability patterns in the climate system and how those patterns are captured by

the climate models. Paper I served as a background for the following studies, guiding

to focus on the global scale. It also acted as a motivation to extract the inter-annual

to multi-decadal modes of climate data sets and to study their spatial and temporal

signatures.
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• How to handle high-dimensional data sets in advanced spatio-temporal data-analysis?

This question was addressed in Papers II and III. Paper II introduced random pro-

jections as a powerfull, distance preserving solution for dealing with high-dimensional

problems. The experiments showed that at notably lower dimensions the main spatial

and temporal patterns of the original data set were preserved with high accuracy. It

was also shown that random projections are very easy to implement, involving only ran-

dom number generation and matrix multiplication. One question that was still left a

bit open, was the lower bound for the dimensionality reduction. As noted, the theoret-

ical lower bounds were much higher than the ones that were actually implemented in

the experiments of Paper II. This question would deserve more attention in the future

studies.

Taking into account the rapidly accumulating amount of data and increasing di-

mensionality of data sets, the results of Paper II are encouraging. Apart from enabling

heavy data-analysis, random projections could also have other applications, for instance,

it might be useful in reducing the data storage costs. Modelling results could be stored in

a low-dimensional form and then recovered back to the original dimension when needed.

However, this requires more study and is not covered by this thesis.

Paper III further developed the idea of Paper II and combined random projections

with an effective spectral analysis tool, MSSA. The main achievement of Paper III was

a randomised version of the MSSA algorithm, called RMSSA, which was shown to be

efficient in finding spatially and temporally coherent patterns in high-dimensional prob-

lems.

• What are the current capabilities of modelling the inter-annual to multi-decadal

climate variability in the Earth system?

Paper IV further showed the usefulness of the RMSSA-algorithm presented in Paper

III, and compared the 20th century near-surface temperature variability patterns in the

reanalysis and climate model data sets. Although the decadal to multi-decadal variability

was also of interest, the Paper IV concentrated on the multi-annual modes of variability.

This was constrained by the temporal coverage of the analysed data sets. In paper IV it

was shown that the total spectra of the two reanalysis data sets (20CR and ERA-20C)

are very similar on almost all time scales, the only difference being that the spectral

power of ERA-20C is systematically slightly higher than in 20CR. It was also shown

that the 3.5 and 5 yr oscillations were the prominent multi-annual variability modes in

the reanalysis data sets. The literature comparing the low-frequency variability in the
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two reanalysis data sets was found to be scarce and these results add to this literature. It

was also shown that there are significant multi-annual (2–7 yr) variability patterns in the

majority of the studied climate models. None of the studied models closely reproduce

all aspects of the reanalysis spectra, although many aspects are represented well.

The results of Paper IV are aimed at providing guidance for model development by

pointing towards the deficiencies in simulating the multi-annual temperature variability.

RMSSA is efficient in identifying the relative power of different oscillatory modes in each

model and analysing the corresponding spatial signatures. Different versions of existing

models could be studied to identify the impact of, for example, stochastic parameterisa-

tions on the variability patterns. Total spectra of the data sets were calculated to enable

comparisons between the reanalysed and simulated modes of variability. However, good

agreement with the reference spectra might occasionally result from compensating errors

in model processes. The weakness of this study is also the limited temporal coverage of

the data sets, which restricted the analysis of the decadal to multi-decadal variability

patterns. In this connection, one must note that there is a wide archive of proxy records,

covering the last millennium and even longer. These records provide a means to asses

the ability of state-of-the-art climate models to simulate the variability upto centennial

time scales (Otto-Bliesner et al., 2016).

The future studies on this subject would also cover the inclusion of several variables

in the analysis, not just near-surface temperature. The multivariate analysis could reveal

the common oscillatory patterns among the different variables and give a deeper insight

into the underlying dynamics. This thesis has contributed in answering the what and

how -questions, but the question why is still unanswered and requires more study.
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Summaries of the original publications

I Seitola, T., Järvinen, H., 2014. Decadal climate variability and potential pre-

dictability in the Nordic region: a review. Boreal Env. Res., 19, 387–407.

Paper I reviews decadal climate variability and predictability with emphasis on the

Nordic region. In the published studies, the decadal variability and predictability

is found predominately over mid- to high-latitude oceans, especially in the North

Atlantic (NA) sector. The most prominent internal mechanisms explaining the

variability in the NA are the North Atlantic oscillation (NAO) and the Atlantic

meridional overturning circulation (AMOC). The conclusions regarding the vari-

ability in the Nordic region are uncertain at the moment, despite the fact that

new knowledge is rapidly accumulating. In general, the published studies indicate

that the relative roles of internal and external mechanisms driving the long-term

variability and their mutual interactions are not sufficiently understood.

I was responsible for all the analysis of the published studies and major part of the

writing.

II Seitola, T., Mikkola, V., Silén, J., Järvinen, H., 2014. Random projections

in reducing the dimensionality of climate simulation data. Tellus A, 66, 25274,

http://dx.doi.org/10.3402/tellusa.v66.25274.

Paper II introduces Random projection (RP) as a dimensionality reduction method

for climate data. In the experiments, RP is applied to simulated global surface

temperature data set, and principal component analysis (PCA) is utilized to analyse

how the structures are preserved in the lower dimensional data space of 10% or 1% of

the original volume. The experiments show that even at 1% of original dimensions,

the main spatial patterns and temporal signatures can be recovered.

I was responsible for all the computations, and for major part of the analysis and

writing.

III Seitola, T., Silén, J., and Järvinen, H. 2015. Randomised multichannel sin-

gular spectrum analysis of the 20th century climate data. Tellus A, 67, 28876,

http://dx.doi.org/10.3402/tellusa.v67.28876.

In Paper III, a new algorithm called Randomized Multi-Channel Singular Spectrum

Analysis (RMSSA) is introduced. RMSSA is a generalization of the traditional

MSSA into problems of arbitrarily large dimension. RMSSA is applied to decompose

the 20th Century global monthly mean near-surface temperature of a reanalysis
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data set and two climate model simulations. The decomposition into low-frequency

patterns reveals, for example, that the 2–6 year variability centered in the Pacific

Ocean is captured by all the data sets with some differences in statistical significance

and spatial patterns.

I was responsible for all the computations, and for major part of the analysis and

writing.

IV Järvinen, H., Seitola, T., Silén, J., and Räisänen, J., 2016. Multi-annual modes in

the 20th century temperature variability in reanalyses and CMIP5 models. Geosci.

Model Dev. Discuss., doi:10.5194/gmd-2016-61, accepted, in press.

Paper IV compares the multi-annual near-surface temperature variability modes in

12 CMIP5 model simulations and two reanalysis data sets using the randomised

multi-channel singular spectrum analysis (RMSSA). The two reanalysis data sets

are very similar on all time scales, except that the spectral power in ERA-20C

is slightly higher than in 20CR. None of the climate models closely reproduce all

aspects of the reanalysis data sets, although some models represent many aspects

well.

I was responsible for all the computations and wrote the data and method descrip-

tions. I also participated in the analysis and writing of the results.
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Stevens, B. The Atlantic Multidecadal Oscillation without a role for ocean circulation.

Science, 350(6258):320–324, doi:10.1126/science.aab3980, 2015.

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X.,

Gleason, B. E., Vose, R., Rutledge, G., Bessemoulin, P., et al. The twentieth century

reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137(654):1–

28, 2011.

Dasgupta, S. and Gupta, A. An elementary proof of a theorem of Johnson and Lin-

denstrauss. Random Structures and Algorithms, 22(1):60–65, doi:10.1002/rsa.10073,

2003.

Deegalla, S. and Boström, H. Reducing high-dimensional data by principal component

analysis vs. random projection for nearest neighbor classification. InMachine Learning

and Applications, 2006. ICMLA’06. 5th International Conference on, pages 245–250.

IEEE, 2006.

Delworth, L. T. and Mann, E. M. Observed and simulated multidecadal variability in the

Northern Hemisphere. Climate Dynamics, 16(9):661–676, doi:10.1007/s003820000075,

2000.

Delworth, T., Manabe, S., and Stouffer, R. J. Interdecadal variations of the thermohaline

circulation in a coupled ocean-atmosphere model. Journal of Climate, 6(11):1993–

2011, doi:10.1175/1520-0442(1993)006¡1993:IVOTTC¿2.0.CO;2, 1993.

Delworth, T. L. and Zeng, F. The impact of the North Atlantic Oscillation on climate

through its influence on the Atlantic Meridional Overturning Circulation. Journal of

Climate, 29(3):941–962, doi:10.1175/JCLI-D-15-0396.1, 2016.
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This paper reviews decadal climate variability and predictability and its potential implica-
tions for adaptation decisions with emphasis on the Nordic region. In the North Atlantic 
sector, there is strong decadal to multi-decadal climate variability. The most prominent 
internal mechanisms explaining the variability are the North Atlantic oscillation (NAO) 
and the Atlantic meridional overturning circulation (AMOC). These affect also the climate 
variability in the Nordic region, but their impacts vary depending on local and regional 
conditions. The published studies also indicate that there appears to be potential for pre-
dictability of the decadal climate variations in the North Atlantic sector, mainly due to 
the AMOC variations. This also contributes to the predictability in the Nordic region, 
especially in the coastal areas adjacent to North Atlantic. The conclusions are uncertain at 
the moment, despite the fact that new knowledge is rapidly accumulating. Potential dec-
adal predictability may generally be reduced due to global warming which is the largest 
over the high latitude oceans. For instance, weakening of the AMOC is generally noted 
in warmer world simulations. This may have consequences also on climate in the Nordic 
region, although the response is still uncertain.

Introduction

Adaptation to anthropogenic climate change has 
a typical time perspective of 10 to 30 years into 
the future. This is too far considering the cur-
rent capabilities of weather centres regarding 
seasonal to inter-annual forecasting. At the same 
time, it is too close for the long-term climate 
change projections of climate service centres. 
An entirely new field of Earth science — decadal 
climate prediction — is thus emerging to bridge 
this gap and to provide guidance for planning 
and decision making.

Worldwide climate records contain plenty 

of evidence of climate variations at decadal 
time-scales. Of direct relevance to society, dec-
adal to inter-decadal fluctuations are found in 
atmospheric circulation patterns, precipitation, 
and climate extremes (Keenlyside and Ba 2010). 
One extreme example is the Sahel drought in the 
1980s which had profound effects on ecosystems 
and societies. In fact, the 1980s drought is just 
the latest one in a sequence of recurring events. 
It seems plausible that past and future drought 
events in the Sahel region are linked with the 
atmosphere–ocean–biosphere coupling at multi-
decadal time-scales, driven by the low-frequency 
ocean fluctuations (Held et al. 2005, Zhang and 
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Delworth 2006, Shanahan et al. 2009). Another 
example is the inter-decadal variation associated 
with North Atlantic oscillation such as strong 
changes in wintertime storminess, and European 
and North American surface temperature and 
precipitation (Hurrell et al. 2003). European 
temperature extremes also exhibit multi-decadal 
variations (Beniston and Stephenson 2004). 
Consequently, these events could in principle be 
predicted if the ocean state was known and the 
coupled Earth system models were initialized 
with faithful representations of the true Earth 
system state (Keenlyside et al. 2008). This is in 
sharp contrast to the common practice in long-
term climate simulations which are initialized 
without sophisticated Earth system initial states. 
In these simulations, decadal scale climate vari-
ations appear somewhat realistic but are not in 
close correspondence with the actual variations.

Extensive resources are currently used to 
build decadal climate prediction capabilities in 
U.S., Europe and elsewhere. These aim at using 
climate observations in the context of Earth 
system models to explore the limits of pre-
dictability, formulated as initial value problems 
(Meehl et al. 2009). The initialization method-
ologies bear close resemblance to the data assim-
ilation techniques used in numerical weather 
prediction. These industrial-scale research and 
development lines are beyond capacities of indi-
vidual small nations. By clever networking we 
can however take full advantage of these interna-
tional efforts, and feedback meaningful contribu-
tions in selected areas.

Decadal climate prediction technology is still 
in its infancy. While worldwide developments 
are taking place in key areas of predictive capa-
bilities, basic research is needed to assess the 
level decadal predictability in the Nordic region, 
and its possible implications for preparation of 
adaptation decision. This article will review the 
current knowledge on decadal climate variabil-
ity and potential predictability. The emphasis 
will be on how to interpret this knowledge from 
Nordic region’s viewpoint.

Decadal climate variability

Climate variability can be described with anom-

alies, which are differences between momentary 
states of the climate system and the longer-term 
climatology. Climatology is the mean state com-
puted over months, years, decades or centuries 
(Hurrell and Deser 2009). Climate variability 
may be due to natural internal processes within 
the climate system (internal variability), or to 
variations in natural (volcanic eruptions, solar 
activity) or anthropogenic external forcing.

Climate variations occur at practically all 
conceivable time-scales. Oceans play a crucial 
role in decadal and longer-term climate vari-
ability because the effect of the annual cycle and 
month-to-month variability in the atmospheric 
circulation decays rapidly with depth (Hurrell 
and Deser 2009). The mechanisms behind the 
decadal-to-multi-decadal variability are not well 
understood, but there is some consensus that 
the longer-term variability is driven by internal 
climate variations like the North Atlantic Oscil-
lation (NAO), the El Niño/Southern Oscillation 
(ENSO), the Pacific Decadal Variability (PDV), 
the Atlantic Multi-decadal Variability (AMV) 
and the Atlantic Meridional Overturning Circu-
lation (AMOC).

Decadal climate variability can be studied 
based on observations and climate model simu-
lations. Since direct observational records are 
relatively short and sparse, especially over the 
oceans, modelling studies are often used for 
studying decadal-scale climate fluctuations.

Observed mechanisms of decadal 
climate variability

Changes in naturally-occurring patterns of atmos-
pheric and oceanic climate variability affect large-
scale variations in weather and climate globally 
at inter-annual and longer time-scales (Hurrell 
and Deser 2009). The Atlantic multi-decadal vari-
ability (AMV) or oscillation (AMO) is a mode 
of variability which occurs in the Atlantic Ocean 
and is mainly manifested as sea surface tem-
perature (SST) anomalies (Fig. 1a). AMO has 
been linked to changes in Sahel, North American 
and European precipitation (Sutton and Hodson 
2005), Atlantic hurricane activity and northern 
hemisphere (NH) surface temperature (Zhang et 
al. 2007). AMV has some support in historical 
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Fig. 1. (a) Atlantic Multi-decadal Oscillation (AMO) index, defined as detrended North Atlantic (0–70°N) area 
weighted average sst anomalies, and (b) Pacific Decadal Oscillation (PDO) index, derived as the leading PC of 
monthly detrended SST anomalies in the North Pacific Ocean, poleward of 20°N. Thin lines indicate annual mean 
and thick grey lines give smoothed annual values (smoothed with 21-point binomial filter). The AMO index data 
were obtained from http://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data and PDO index data from 
http://jisao.washington.edu/pdo/PDO.latest.

observations but there is controversy regarding its 
amplitude and it is estimated to have periods of 
about 40–70 years (e.g. Kushnir 1994, Delworth 
and Mann 2000).

The most prominent mechanism associated 
with AMV is the Atlantic Meridional Overturn-
ing Circulation (AMOC). It is a giant conveyor 
belt that brings warm water northwards into the 
North Atlantic, releases its heat to the atmos-
phere, and returns the cooled water to the south 
(Wood 2008). It consists of a wind-driven part 
and the thermohaline circulation (THC) (Pohl-
mann et al. 2006). There is evidence that the 

strength of this circulation can fluctuate naturally 
over periods of decades and it has the potential 
to influence North Atlantic and European climate 
(e.g. Pohlmann et al. 2006, Shaffrey and Sutton 
2006). Since AMOC can affect the climate at 
multiple time-scales, there has been increasing 
interest in understanding the mechanisms behind 
the AMOC variability.

The North Atlantic Oscillation (NAO) is a 
leading pattern of weather and climate vari-
ability over the northern hemisphere. NAO is 
measured by an index which is defined as a dif-
ference in sea-level pressure between the Azores 
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high and the Iceland low (Hurrell 1995). NAO 
fluctuates from one phase to other producing 
large changes in surface air temperature, winds, 
storminess and precipitation over the Atlantic as 
well as the surrounding continents (Hurrell and 
Deser 2009). A positive phase of NAO is associ-
ated with anomalous low pressure in the subarc-
tic and high pressure in subtropics with stronger 
westerly winds and enhanced flow of warm and 
moist air across the North Atlantic and Europe 
(Hurrel 1995).

According to Hurrel (1995), NAO exhib-
its quite strong inter-annual variability, but also 
some considerable decadal to multi-decadal vari-
ability. It has been shown that decadal to multi-
decadal variations coherent with those in NAO 
can be also observed in the ocean (Curry et al. 
1998), which indicates that there exists some 
kind of atmosphere–ocean interaction. However, 
Hurrel and Deser (2009) argued that there is little 
evidence for NAO to vary at any preferred time-
scale: large changes can occur from one winter to 
the next, as well as from one decade to the next. 
In some studies decadal to multi-decadal changes 
in NAO have been linked to SSTs in the tropical 
Atlantic (Okumura et al. 2001) and Indo-Pacific 
region (e.g. Hoerling et al. 2001). Rodwell et al. 
(1999) suggested that NAO variability is mainly 
dependent on North Atlantic SST.

It is not clear which parts of the World 
Ocean drive the low frequency variations of 
NAO. Therefore it is important to take a global 
view on patterns of climate variability when 
considering the possible mechanisms of decadal 
climate variability in the North Atlantic sector. 
Similar decadal to multi-decadal variability as 
in the North Atlantic sector is seen in the North 
Pacific. Pacific Decadal Variability (PDV) or 
Pacific Decadal Oscillation (PDO) is a pattern of 
Pacific climate variability that is manifested as 
positive or negative SST anomalies in the tropi-
cal Pacific and opposite anomalies in the western 
extra-tropical North and South Pacific. The PDO 
index is derived from the monthly detrended 
SST anomalies in the North Pacific (Fig. 1b). 
PDO has been associated with variations in sur-
face temperature and precipitation in the land 
areas at the rim of the Pacific, the Pacific marine 
ecosystem, and the Indian monsoon (Keenlyside 
and Ba 2010).

It has also been shown by Fraedrich and 
Müller (1992) and by Merkel and Latif (2002) 
that there is a significant response of the atmos-
phere over the North Atlantic to ENSO-related 
variations in tropical Pacific SST. ENSO is a 
climate pattern that is related to coupled atmos-
phere–ocean variations: warming (cooling) of 
eastern tropical Pacific SST and high (low) sur-
face pressure in the western tropical Pacific 
(Trenberth et al. 2007). ENSO has an average 
period of five years but since it can influence 
the global circulation patterns far away from the 
tropical Pacific through the atmospheric bridge 
(Liu and Alexander 2007), it is also interesting 
from decadal climate variation point of view.

Inter-decadal climate variations may partly 
result from processes that are external to the 
climate system. These are variations in solar 
activity, volcanic eruptions and anthropogeni-
cally forced changes in greenhouse gas con-
centrations and aerosols. The amplitude of past 
variations in solar forcing is much debated but 
the irradiance variations over the 11-year sun-
spot cycles are quite well known, as they can be 
calibrated against satellite measurements since 
1979 (Gouirand et al. 2007). The climate effects 
of strong volcanic eruptions can persist for about 
a decade (Latif and Keenlyside 2011). How-
ever, volcanic eruptions cannot be predicted but 
because of strong effects, they should be con-
sidered in decadal predictions. Anthropogenic 
changes in greenhouse gases and aerosols are 
an important forcing for climate at longer time-
scales and should be taken into account when 
analysing multi-decadal variability. The role of 
uncertainties in forcing of anthropogenic emis-
sions is anyhow likely to be relatively small at 
decadal time-scales (Meehl et al. 2009).

There is a controversy on how internal vari-
ability and external forcing affect the decadal 
variability. According to some studies natural 
decadal to multi-decadal climate variability has 
a potential to mask or enhance anthropogenic 
climate change, particularly at a regional level 
(e.g. Meehl et al. 2009, Keenlyside and Ba 
2010). On the other hand, unpredictable external 
forcing through explosive volcanic eruptions and 
anomalous solar radiation may offset the internal 
variations (Latif and Keenlyside 2011). The rela-
tive roles of internal and external processes in 
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driving decadal and multi-decadal climate vari-
ations are not well understood and more precise 
quantification is needed. In addition, apart from 
separating the effects of external forcing and 
internal variability on inter-decadal variability, 
nonlinear interaction between these mechanisms 
should also be considered.

Decadal climate variability in modelling 
studies

Climate models can produce climate variability 
to some extent and therefore decadal climate 
variability can also be estimated based on cli-
mate model simulations. There are several stud-
ies that have investigated the contribution of 
AMOC to climate variability. For example, Latif 
et al. (2006a) investigated AMOC by analysing 
relationship between AMOC and SST found in 
global climate models. The strength of AMOC 
was defined as the SST difference between North 
and South Atlantic. Their results indicate that 
the AMOC variations are driven by the low-
frequency variations of NAO through changes in 
the Labrador Sea convection and lag the corre-
sponding variations of NAO by about a decade. 
In a more recent study, Ortega et al. (2012) 
analysed the AMOC variability in an unforced 
present-day control run, two forced runs for the 
last millennium, and two IPCC scenarios with 
ECHO-G atmosphere–ocean general circulation 
model. They suggest that at low frequencies 
(decadal to multi-decadal time-scales) AMOC is 
largely controlled by convection activity south 
of Greenland (Labrador and Irminger Seas) and 
the influence of NAO on AMOC through con-
vection changes in this area is also identified. 
These results are in line with the findings in Latif 
et al. (2006a). In addition to Latif et al. (2006a) 
and Ortega et al. (2012), several other model-
ling studies suggest that AMOC may contribute 
to climate variability at inter-annual and dec-
adal to multi-decadal time-scales (e.g. Delworth 
et al. 1993, Delworth and Mann 2000, Sutton 
and Hodson 2005). However, some observa-
tion-based studies indicate that the NAO–AMO/
AMOC relation calls for further research. For 
example Walter and Graf (2002) identified a 
non-stationary relation between NAO and AMO: 

during the negative phase of AMO, North Atlan-
tic SST is strongly correlated with the NAO 
index, but during the positive phase the correla-
tion is weak. Vukcevic (2011) also showed the 
complexity of AMO–NAO multi-decadal rela-
tionship.

Modelling studies also indicate that external 
forcing has considerable effect on climate varia-
tions at multiple time-scales. For example Bauer 
et al. (2003) estimated the effects of natural 
and anthropogenic external forcing on climate 
variability for the past millennium. Their results 
indicate that the pre-industrial variations in the 
northern hemisphere (NH) temperature at annual 
to multi-centennial scales are predominantly 
caused by solar and volcanic activity. In the 
industrial period, increasing greenhouse gases 
and deforestation additionally affect temperature 
variability. However, Bauer et al. (2003) did 
not take any stand on what is the role of natural 
internal processes on NH temperature variations.

Ineson et al. (2011) investigated solar forcing 
of winter climate variability in NH. An ocean–
atmosphere climate model was driven with 
ultraviolet variations estimated from satellite 
observations of solar variability. Their modelling 
results show that the solar minimum is connected 
to pressure and surface temperature patterns that 
resemble the negative phase of NAO and Arctic 
Oscillation (AO). Ineson et al. (2011) suggested 
that this result could have important implications 
in decadal prediction of the NAO.

Nonlinear interaction between external forc-
ing and internal variability and its effect on inter-
decadal variability is also estimated in model-
ling studies: e.g., in Dunstone et al. (2013) it is 
shown that decadal variability in tropical storm 
frequency is well reproduced through aerosol-
induced north–south shifts in the Hadley cir-
culation and only after incorporating aerosol 
effects in the model. In addition, the sensitivity 
of AMOC to external forcing was investigated 
by Ortega et al. (2012). Their results show that 
starting from the industrial era, increasing green-
house gases have a major impact on AMOC 
weakening. There is also a weak but significant 
signal of AMOC strengthening because of major 
volcanic eruptions. This is due to the fact that 
volcanic eruptions produce colder and saltier 
surface conditions over the main convection 
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regions driving AMOC. The impact of solar 
forcing on AMOC is deemed small.

Decadal climate variability in the Nordic 
region

At northern high latitudes, climate is character-
ized by large inter-annual and inter-decadal vari-
ability. For example, Tietäväinen et al. (2010) 
studied the annual and seasonal mean tempera-
ture climatology in 1847–2008 in Finland and 
showed that there is a distinct division into 
periods of cold and warm years with decadal-
scale fluctuations (Fig. 2). Long-term climate 
variability in the Nordic region can be estimated 
based on observational data and simulations. 
However, the observational record is relatively 
short for estimating decadal-scale variability. 
According to Gouirand et al. (2007) there are 
few proxy-based temperature reconstructions for 
Scandinavia available for the entire millennium 
but they reflect only a fraction of the true climate 
variations and only for certain parts of the year.

The most prominent internal mechanisms 
affecting the climate variability in the Nordic 
region are NAO and AMOC. NAO has a sig-
nificant influence on wintertime temperatures 

and precipitation in the Nordic region. Winters 
with positive the NAO index are associated with 
warmer than normal surface air temperatures 
and wetter than normal conditions over northern 
Europe (e.g. Hurrell and van Loon 1997, Serreze 
et al. 1997, Alexandersson et al. 1998, Visbeck 
et al. 2003). However, impacts of atmospheric 
circulation pattern depend crucially on local or 
regional details (Hurrell and Deser 2009) and 
according to Blenckner et al. (2004) it appears 
as if the influence of NAO on the local climate is 
less pronounced north of 65°N.

Modelling studies show that AMOC fluctua-
tions have also the potential to influence the 
climate in the Nordic region. Persechino et al. 
(2013) studied the regional impact of AMOC 
variability at the decadal time-scale with the 
IPSL-CM5A-LR model. Their study results show 
that the AMOC impact on surface temperature 
at the decadal time-scale is dominant over the 
North Atlantic. Impact is much weaker over land 
but some marine influenced regions of western 
Europe show weak signal including parts of Scan-
dinavia. The signal of the impact of AMOC vari-
ability on precipitation at the decadal time-scale 
largely resembles the corresponding signal of sur-
face temperature. As for temperature, the impact 
over land can be seen in areas close to the ocean. 
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Fig. 2. Annual mean temperature (°C) of Finland 1900–2012 based on spatially interpolated monthly mean tem-
perature records. Black line indicates annual values and grey line gives smoothed annual values (smoothed with 
21-point binomial filter). Time series was extended at the end points before filtering to make the filtered time series 
cover the whole time range. After Tietäväinen et al. (2010).
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For the Nordic region, the study indicates that in 
the case of strong AMOC there might be drier in 
Norway and wetter in northern Finland. An ear-
lier study by Pohlmann et al. (2006) investigated 
the influence of AMOC on European surface air 
temperature (SAT) by calculating the probabil-
ity density functions (PDFs) of European SAT 
for strong and weak overturning conditions and 
using Atmosphere–Ocean General Circulation 
Model (AOGCM) ECHAM5/MPI-OM. In the 
case of weak AMOC conditions, SAT averaged 
over Europe is colder than in the case of strong 
AMOC conditions, and vice versa. The differ-
ence of mean SAT between years with strong and 
weak AMOC conditions increases from southern 
to northern Europe. According to Pohlmann et al. 
(2006) the difference of the mean precipitation 
between strong and weak AMOC displays also an 
enhancement over northern Europe.

In addition to internal variability, the external 
mechanisms, such as changes in radiative forc-
ing caused by variations in greenhouse gases, 
solar irradiation and volcanic aerosols can affect 
the climate in the Nordic region. According to 
simulations of Gouirand et al. (2007), decadal 
and multi-decadal deviations from the centennial 
cooling–warming pattern in Scandinavia are the 
result of different causes. Some cold intervals 
can be explained with temporary decreases in 
solar radiation and sequences with strong vol-
canic eruption events. Negative phase in NAO 
can also explain especially low winter tempera-
tures through a weakened westerly flow, but also 
cold summer temperature because of the large 
heat capacity of the nearby ocean.

Decadal potential predictability

Decadal predictability has been estimated based 
mainly on modelling studies. Most of the pre-
dictability studies are concentrated at the global 
scale and decadal predictability is found pre-
dominately over the mid- to high-latitude oceans 
(e.g. Boer 2004, Pohlmann et al. 2004, Boer and 
Lambert 2008). In addition to North Atlantic, 
the Southern Ocean has been identified to be the 
most prominent region in decadal predictability 
studies (e.g. Boer and Lambert 2008, Koenigk 
et al. 2011). Climate model studies indicate 

that in these regions the potential predictability 
of decadal variations is due to variations in the 
ocean circulation and heat storage (Pohlmann et 
al. 2004). Several studies agree with the idea that 
predictability at decadal time-scales resides in 
the ocean, where information can be stored and 
later transferred to the atmosphere (Latif et al. 
2006a). According to Boer (2010) internal and 
externally forced variability are both important 
sources of potential predictability in global-scale 
projections. However, at regional level, relative 
importance of these factors varies substantially.

Methods for measuring decadal 
predictability

In the literature usually two types of predictabil-
ity studies are described: potential and classical. 
Decadal potential predictability can be defined 
as the ratio of the variance at decadal time-scales 
to the total variance (Latif et al. 2009).

Potential or diagnostic predictability studies 
(e.g. Boer 2004, Boer and Lambert 2008, Boer 
2010, Persechino et al. 2013) try to quantify the 
fraction of long-term variability from the inter-
nally generated natural variability, which is not 
predictable at long time-scales and considered 
noise. The long-term variability signal that may 
be distinguished from this noise is thought to 
arise from potentially predictable processes in 
the physical system (Latif and Keenlyside 2011).

In classical or prognostic predictability stud-
ies (e.g. Pohlmann et al. 2004, Koenigk et al. 
2011, Branstator et al. 2012, Persechino et al. 
2013) ensemble experiments are performed with 
a single coupled model by perturbing the initial 
conditions. Predictability of a variable is given 
by the ratio of the actual signal variance to the 
ensemble variance. This method assumes a per-
fect model and often near-perfect initial condi-
tions that usually gives an upper limit of predict-
ability (Latif and Keenlyside 2011).

A method called ‘ocean dynamics approach’ 
(Park and Latif 2005) has also been used. This 
method compares the variability simulated with 
and without the ocean–sea ice dynamics and 
identifies those regions in which ocean dynam-
ics are important in generating the decadal-scale 
variability. Those regions are believed to be the 
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regions of high decadal predictability potential.
Persechino et al. (2013) studied decadal 

predictability of AMOC with the IPSL-CM5A-
LR model using both diagnostic and prognostic 
potential predictability measures. Their results 
showed that both diagnostic and prognostic 
approaches generally brought out the same main 
features concerning both temperature and pre-
cipitation predictability. According to Latif et 
al. (2006b), all the three methods (diagnostic, 
prognostic and ocean dynamics approach) yield 
similar patterns of decadal predictability.

Decadal potential predictability in the 
North Atlantic and Nordic Region

Decadal predictability studies done so far were 
mostly concentrated at the global scale. The 
aim was to point out the areas that have most 
potential for decadal predictions. Decadal pre-
dictability studies concentrated especially on the 
Nordic region were not found during this review 
study, but there are several studies that pre-
sent regional information on predictability over 
ocean and land areas in the North Atlantic sector 
(e.g. Collins et al. 2006, Boer 2009, Boer 2010, 
Hermanson and Sutton 2010, Koenigk et al. 
2011, Persechino et al. 2013). A summary of the 
studies is presented in Table 1, with emphasis on 
the Nordic region.

Potential of decadal predictability appears to 
be quite large in the North Atlantic sector. The 
most prominent mechanism driving some of the 
decadal-scale variability seems to be AMOC 
which is a focus of many recent predictability 
studies (e.g. Msadek et al. 2010, Ortega et al. 
2011, Tulloch and Marshall 2012, Persechino 
et al. 2013). Early analysis of Delworth et al. 
(1993) showed that there is a broad resemblance 
between simulated and observed multi-decadal 
SST variability patterns in the North Atlantic and 
that is usually associated with AMOC. Based 
on these results variability of AMOC may be 
predictable at decadal or longer time-scales. A 
multi-model-ensemble study of Collins et al. 
(2006) indicated potential predictability of inter-
annual–decadal AMOC variations for one to two 
decades into the future. Persechino et al. (2013) 
showed that modelled AMOC has an average 

predictive skill of eight years. Studies of Collins 
and Sinha (2003), Sutton and Hodson (2005) and 
Pohlmann et al. (2006) showed that multi-dec-
adal AMOC predictability in the HadCM3 and 
ECHAM5/MPI-OM models leads to some pre-
dictability of European climate. More recently 
Ortega et al. (2011) studied the processes that 
influence predictability of decadal variability 
in AMOC with the ECHO-G coupled climate 
model. They identified two predictors of AMOC 
variability: the anomalous heat flux averaged 
over a region in the Eastern Labrador Sea and 
an anomalous ocean density in a region of the 
Western Irminger Sea. These predictors together 
account for over 80% of the inter-annual vari-
ance of AMOC (Ortega et al. 2011). Thus, most 
state-of-the-art climate models seem to indicate 
that AMOC variations are predictable at decadal 
scales although there are still major uncertainties 
regarding the level and extent of predictability 
of different oceanic and atmospheric variables 
(Latif et al. 2006b).

Boer (2010) estimated the potential predict-
ability of temperature and precipitation and its 
forced and internal components for the first 
part of the 21st century based on simulation 
data from a collection of coupled climate model 
results in the CMIP3 data archive. He used two 
measures of potential predictability. First, the 
multi-decadal view considered the forced com-
ponent to be the difference from the beginning of 
the century. Second, the next-decade view con-
sidered the change in the forced component from 
the previous decade, thus putting emphasis on 
the change from the present rather than from an 
earlier period. Results of Boer (2010) show that 
in case of temperature, the forced component of 
potential predictability is generally largest over 
tropical oceans and declines with latitude being 
relatively low over mid- to high-latitude land. In 
contrast, internally-generated decadal potential 
predictability for temperature is largest over mid- 
to high-latitude oceans. It seems that internally-
generated decadal potential predictability in the 
Nordic region is quite weak (2%–10%), but it 
is still slightly higher as compared with that for 
other land areas (2%–5%) (Table 1). However, it 
should be kept in mind that over land, the long 
time-scale internally-generated variability in 
temperature (the “signal”) is masked by the rela-
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tively strong short time-scale climate variability 
(the “noise”). Decadal potential predictability 
for precipitation for the unforced control climate 
is very weak. There is some, although relatively 
small potential predictability for precipitation 
due to the forced component mainly at middle to 
high latitude land areas (Boer 2010).

In line with previous studies, Persechino et 
al. (2013) found that potential predictability of 
surface temperature over land is less signifi-
cant than over the ocean. Predictability over 
the coastal areas is found to be close to that 
of some of the potentially predictable oceanic 
regions and it is linked with AMOC fluctua-
tions. In the Nordic region, internally-gener-
ated decadal potential predictability of surface 
temperature is 10%–20% in the coastal areas 
close to North Atlantic, and 5%–10% elsewhere 
(Table 1). These results are somewhat more posi-
tive than those of Boer (2010). Potential decadal 
predictability of precipitation is clearly smaller 
than for surface temperature and link to decadal 
AMOC fluctuations is less clear. However, the 
Nordic Seas are the most prominent regions 
where precipitation seems predictable at decadal 
time-scales. Persechino et al. (2013) also found 
convincing evidence that extreme changes in 
AMOC might be potentially predictable up to 
two decades ahead from the monitoring of its 
high-latitude Atlantic precursors (Sea Surface 
Salinity in the Labrador sea and the East Green-
land Current (EGC) index). In line with the 
earlier study of Collins et al. (2006), results of 
Persechino et al. (2013) also show that the initial 
state corresponding to an anomalously strong 
AMOC is more predictable than those corre-
sponding to weak AMOC.

A study of Koenigk et al. (2011) used prog-
nostic methods for analysing the upper limit of 
climate predictability at decadal time-scales and 
its dependency on sea ice albedo parameteri-
zation with two perfect ensemble experiments 
with the global coupled climate model EC-Earth. 
Compared with experiment 1, in experiment 2, 
the sea-ice albedo was reduced by 0.03. Their 
results show that AMOC is highly predictable in 
both experiments and governs most of decadal 
climate predictability in the northern hemisphere. 
They found highest potential predictability for 
2-m air temperature (T2m) over the northern 

North Atlantic and the southern South Atlantic. 
Also sea surface salinity and sea surface temper-
ature show high predictability in these regions. 
Over most land regions, prognostic potential 
predictability of T2m is quite small and not 
significant. However, both experiments show a 
significant predictability of air temperature over 
northwestern Europe and most of the high poten-
tial predictability areas over land are located 
close to high predictability over sea (Table 1). 
In both experiments, precipitation shows largest 
decadal potential predictability in the northeast-
ern North Atlantic and in the Barents Sea region 
as well as in the Labrador Sea. Compared with 
previous studies, results of Koenigk et al. (2011) 
indicate higher decadal predictability over land 
regions. The authors hypothesize that this might 
be due to higher resolution in EC-Earth as com-
pared with that in the models used in most of the 
previous studies.

Hermanson and Sutton (2010) took a perfect 
model-based case study approach to investi-
gate predictability of ocean and climate vari-
ables. They used the Hadley Centre HadCM3 
coupled atmosphere–ocean model. Their results 
indicate that large-scale ocean variables such as 
volume-integrated ocean heat content, salinity or 
AMOC generally show significant predictability 
for several years or more. On the other hand, 
predictability of surface annual-mean climate 
variables is generally limited to two years at 
the most. Their results also indicate that there 
is no significant longer time-scale predictability 
for temperature or precipitation in the Nordic 
region. However, Hermanson and Sutton (2010) 
admitted that a single climate model of modest 
resolution they used and a small number of cases 
is the limitation of their study.

As mentioned before, some studies have 
identified connections between NAO and 
AMOC. According to Latif et al. (2006b) there 
is some evidence from observations of the last 
century and from forced ocean model simula-
tions that the future state of AMOC may be 
predictable from past low-frequency variations 
of NAO. However, when considering predict-
ability in the Atlantic sector, a global approach 
is needed because forcing from the other climate 
patterns in the tropics and extra tropics should 
also be considered.
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Apart from potential predictability, actual 
near-term prediction skill is estimated for exam-
ple in a recent study of Doblas-Reyes et al. 
(2013). Their study illustrates the forecast skill 
of initialized regional near-term climate predic-
tions conducted as a part of the Fifth Coupled 
Model Intercomparison Project (CMIP5). The 
main result is that the climate forecast sys-
tems have a substantial skill in predicting multi-
annual near-surface temperature anomalies at 
regional scales and most of the skill is due to 
changes in atmospheric composition, but also 
partly due to the initialization of predictions. In 
more detail, their results show significant skill in 
the North Atlantic for near-surface temperature 
predictions up to 6–9 years. In the Nordic region 
there is also some positive forecast skill but it 
is not statistically significant. The skill for land 
precipitation is much lower than for near-surface 
temperature, but there is some positive, although 
not statistically significant skill for predictions 
up to 6–9 years especially in the northern hemi-
sphere and also in the Nordic region.

In summary it can be concluded that a poten-
tial for decadal predictability appears to be quite 
large in the North Atlantic sector and predict-
ability is based on the variations of AMOC. This 
potential decadal-scale predictability of AMOC 
might also contribute to predictability in the 
Nordic region, especially the coastal areas close 
to North Atlantic, but any definite conclusions 
cannot be made yet. State-of-the-art climate pre-
diction systems also show a substantial skill in 
predicting near-surface temperature up to 6–9 
years in the North Atlantic. However, it should 
be kept in mind that the models used, the initial 
states employed and the measures of predictabil-
ity differ among studies.

Decadal predictability under global 
warming

There are some studies that consider decadal cli-
mate variability and predictability under global 
warming (e.g. Parker et al. 2007, Boer 2009, 
Boer 2010). For example Parker et al. (2007) 
reviewed the most prominent modes of climate 
variability (e.g. PDO, ENSO, NAO, AMO) in 
the instrumental record and compared these 

with background signal of global warming. 
Their results show that regional climate vari-
ations result from these natural modes of dec-
adal to inter-decadal variability as well as from 
anthropogenically-induced climate change in 
these modes. For example, the increase in NAO 
during 1965–1995 was partly naturally-induced 
but simulations also indicate that anthropogenic 
forcing was affecting the increase (Parker et al. 
2007). According to Hurrell and Deser (2009) 
significant part of global warming in recent 
decades is attributed to decadal changes in two 
dominant climate patterns, NAO and ENSO. 
In addition, Corti et al. (1999) argued that the 
spatial pattern of the response to anthropogenic 
forcing may project principally onto these domi-
nant modes of natural climate variability. Natural 
decadal to multi-decadal climate variability may 
also mask anthropogenic climate change (Latif 
et al. 2006b). Distinguishing the roles of natural 
internal and anthropogenically-forced variability 
is actually one of the major challenges in assess-
ing decadal predictability and making regional 
decadal predictions (e.g. Solomon et al. 2011).

Boer (2009) compared the internally gener-
ated variability of the unforced climate with 
that of the warmer conditions for simulations 
with the B1 and A1B climate change scenarios. 
He investigated the changes in the variability 
of annual mean temperature and precipitation 
and in the variability of decadal potential pre-
dictability based on the collection of coupled 
climate model simulations in the Coupled Model 
Intercomparison Project phase 3 (CMIP3) data 
archive. According to the results of Boer (2009), 
global warming may induce a general decrease 
in decadal potential predictability for tempera-
ture and the decrease seems to be largest over 
the high-latitude oceans. Potential predictability 
of precipitation also decreases although it is 
already small in the beginning. In the Nordic 
region, decadal potential predictability of annual 
mean temperature is 0%–10% and there is no 
predictability for precipitation (unforced prein-
dustrial control simulation). In a warmer world 
(B1 and A1B scenarios) decadal potential pre-
dictability of temperature and precipitation does 
not change or decreases slightly in the Nordic 
region (Table 1). According to Boer (2009) the 
overall decrease in decadal potential predict-
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ability in future, warmer climate indicates that 
decadal potential predictability of the internally 
generated component might decrease. Results of 
Boer (2009) also show that long-term variability 
indices (e.g. AMOC, AMO, ENSO and NAO) 
may change because of global warming.

Weakening of AMOC and associated changes 
in heat transports are noted as a general result in 
warmer world simulations. For example, the 
simulations of Ortega et al. (2012), covering 
the Industrial Era and continuing in the future 
scenarios, show AMOC decreasing finally up 
to 40% when compared with the pre-indus-
trial average. This final weakening is associated 
with a reduced meridional density gradient and 
with decreased convection in the North Atlan-
tic. Therefore, the anthropogenic climate change 
may influence especially the Atlantic sector by 
inducing strong changes in the strength of the 
AMOC which in turn has direct consequences to 
North American and European climates (Latif et 
al. 2006b). However, there are still large uncer-
tainties concerning the response of AMOC to 
global warming.

Decay of ice sheets and associated fresh-
water flux should also be considered in decadal 
predictability studies. According to Vizcaíno 
et al. (2010), ice sheets can modify atmos-
pheric conditions via changes in e.g. albedo 
and orography, and indirectly via changes in 
ocean circulation. For example, Vizcaíno et al. 
(2010) studied the future evolution of global 
ice sheets under anthropogenic greenhouse forc-
ing and its impact on the climate system with 
an Earth system model consisting of a coupled 
atmosphere–ocean general circulation model, 
a dynamic vegetation model and an ice sheet 
model. In their study, the North Atlantic meridi-
onal overturning circulation (NAMOC) weakens 
substantially in just 100 years in all the simula-
tions. Their results show that the freshwater 
fluxes are dominated by increased precipitation 
over the ocean and increased river runoff. The 
freshwater flux from the Greenland ice sheet has 
a minor role. However, the modification of ocean 
density by the increased freshwater flux from 
the Greenland ice sheet seems to play an impor-
tant role in hindering the recovery of the ocean 
circulation (Vizcaino et al. 2010). The experi-
ments of Koenigk et al. (2011) also show that 

decadal variations are substantially smaller in 
the simulations with reduced ice albedo, which 
can be explained by reduced sea-ice thickness in 
these simulations. Koenig et al. (2011) hypothe-
sized that reduced decadal-scale variations in the 
Arctic sea-ice volume reduces sea surface tem-
perature and salinity variations in the Labrador 
Sea which in turn reduces the decadal variability 
of AMOC. This reduces temperature variations 
in mid- and high-latitude northern hemisphere 
regions. According to Latif and Keenlyside 
(2011) virtually all climate models consider-
ably underestimate the observed Arctic sea-ice 
decline during the recent decades in the so-
called 20th century integrations with prescribed 
(known natural and anthropogenic) observed 
forcing. This indicates that the simulations of 
future changes in ice sheets are still uncertain.

Decadal prediction

Seasonal prediction is considered an initial value 
problem (the evolution of the atmosphere-ocean 
system is largely determined by the initial con-
dition) unlike centennial projection, which is a 
boundary value problem (the system evolution 
depends on the external forcing and formulation 
of boundary condition) (e.g. Palmer et al. 2004, 
IPCC 2007). Prediction of climate on decadal 
time-scales is somewhere between seasonal and 
centennial scales and produces both an initial 
and boundary value problems (Fig. 3).

In decadal prediction, initialization of climate 
models offers the potential to make predictions 
of internal variability in addition to external 
forcing. One of the major issues is the initiali-
zation technique used in predictions. The two 
main approaches are full-field initialization (in 
which an estimate of the observed climate state 
is used to initialize the model), and anomaly 
initialization (which uses estimates of observed 
ocean and sea ice anomalies on top of the model 
climatology) (e.g. Hazeleger et al. 2013). A com-
parison of the two methods shows that full-field 
initialization provides more skilful predictions at 
the seasonal time-scale (e.g. Smith et al. 2013a) 
but at the decadal time-scales the two methods 
show similar prediction skill (e.g. Hazeleger et 
al. 2013, Smith et al. 2013a). However, accord-
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Time
Decadal
predictions

Initial value problem

Boundary value problem

Daily weather
forecasts 

Multidecadal to
century projections

Seasonal
predictions

Fig. 3. Illustration of initial 
value problems with daily 
weather forecasts at one 
end, and multi-decadal to 
century projections as a 
boundary value problem 
at the other, with seasonal 
and decadal predictions 
in between. Adapted from 
meehl et al. (2009).

ing to Hazeleger et al. (2013), anomaly initiali-
zation shows poorer skill in some regions (e.g. 
North Atlantic).

Initialized predictions should better quantify 
the uncertainty range in the near future by taking 
into account internal variability and the mean 
forced response. However, climate models are 
not perfect and when initialized with observa-
tions, they tend to drift towards their own and 
biased climatology (Meehl et al. 2009). Pioneer-
ing studies of Smith et al. (2007), Keenlyside et 
al. (2008) and Pohlmann et al. (2009) examined 
the impact of initial conditions on decadal the 
prediction skill with a coupled GCM. In general, 
these studies indicate that initialization improves 
the decadal prediction skill of climate variables. 
Results of Keenlyside et al. (2008) even indicate 
that initialization leads to a significant enhance-
ment in the skill in the Nordic region. In contrast, 
Smith et al. (2007) does not suggest significant 
impact of initialization on the prediction skill for 
annual mean temperature in the Nordic region 
and results even show that in some regions 
initialization can lead to a decrease in the skill. 
Hermanson and Sutton (2010) showed that based 
on knowledge of initial conditions, climate vari-
ables are generally not predictable more than 
two years ahead, and only rarely predictable 
more than one year ahead. This discrepancy 
suggests that an improved skill in initialized pre-
dictions and hindcasts may arise from removing 
biases that exist in uninitialized climate models 
(e.g. Hermanson and Sutton 2010, Solomon et 
al. 2011).

In a recent study, Matei et al. (2012) inves-
tigated how two different ocean initializations 
(GECCO ocean reanalysis and an ensemble of 
ocean-forced experiments) impact the quality of 
decadal hindcasts performed with the ECHAM5/

MPI-OM coupled model. Results show that ini-
tialization considerably increases the predictive 
skill of SST up to a decade ahead over the North 
Atlantic, central North Pacific, and the Mediter-
ranean region. They found also a predictive skill 
of land surface air temperature at a decadal time-
scale in several land areas including northwest-
ern Europe. Branstator et al. (2012) also quanti-
fied the initial-value predictability properties of 
six AOGCMs to help determine the benefit from 
initializing decadal predictions with the observed 
state of the climate system. Their results show 
that with a typical model and typical initial 
conditions predictability in upper-ocean condi-
tions resulting from initialization lasts for about 
a decade in the North Atlantic, and somewhat 
less in the North Pacific. In line with many 
other studies, their study indicates that resources 
should be devoted to development of initializa-
tion of decadal predictions. On the other hand, 
it is highly uncertain to quantify the added value 
of these investments since the modelling results 
vary substantially (Branstator et al. 2012).

There are still many open questions concern-
ing initialization. For example, impact of many 
processes in decadal predictions is still unsolved 
(such as sea ice and ocean conditions under the 
sea ice, snow cover and its modeling, frozen 
soil, soil moisture, stratospheric processes, land 
surface and vegetation). Initialization of these 
factors may have potential to contribute to the 
predictive skill. It has also been suggested that 
the skill of decadal prediction may depend on the 
initial state (e.g. Collins et al. 2006, Koenigk et 
al. 2011, Persechino et al. 2013). For example, 
AMOC seems to be more predictable if ini-
tialized from anomalously strong versus weak 
phase. Initialization is also substantially ham-
pered by the lack of subsurface ocean observa-
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tions and imperfect initialisation may lead to 
degradation of the forecast skill (e.g. Solomon 
et al. 2011). Furthermore, it is not entirely clear 
which is the best method for initialization.

In decadal prediction it is important to con-
struct ensemble forecasts to sample the pos-
sible outcomes consistent with uncertainties in 
initial states and the model (Meehl et al. 2009). 
Constructing ensembles from different available 
GCMs has been shown to provide improved esti-
mates of uncertainty as compared with single-
model ensembles using only perturbed initial 
conditions (Hagedorn et al. 2005). Stochastic-
dynamic parameterization schemes have also 
been proposed in this context to provide uncer-
tainty estimates in decadal climate predictions 
(Palmer et al. 2009). Stochastic-dynamic meth-
ods are based on the fact that the climate system 
has components with different internal time-
scales: fast components are treated as stochastic 
processes and the slow ones evolve follow-
ing dynamical equations with stochastic forcing 
(Hasselmann 1976). There are also some statisti-
cal methods (such as lagged correlations, linear 
inverse modelling, and constructed analogues) 
that are found to have significant skill in predict-
ing the internal variability of Atlantic SSTs for a 
decade ahead (Hawkins et al. 2011).

There is a broad set of decadal experiments 
conducted as part of CMIP5 (Coupled Model 
Intercomparison project) (Table 2). There are 
two core experiments, 10 and 30 year hindcasts 
(i.e., a “prediction” of the observed climate his-
tory of the recent past), or predictions. Ten-
year simulations are initialized at least in every 
five years starting from 1960 and these experi-
ments are meant for assessing the model skill in 
forecasting climate change at time-scales when 
the initial conditions drive the future evolution 
(Taylor et al. 2009). These experiments also try 
to increase the knowledge on decadal predict-
ability and the best ways to initialize models in 
decadal predictions. The other core experiments 
extend the simulations initialized in years 1960, 
1980 and 2005 to 30 years. These 30-year simu-
lations explore the predictability and prediction 
in a longer time-scale when the external forc-
ing from increasing greenhouse gas concentra-
tions should become more important (Taylor et 
al. 2009). In these core experiments, volcanic Ta
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aerosol and solar cycle variability is prescribed 
using actual values for the past and assuming a 
climatological 11-year solar cycle and no vol-
canic eruptions in the future (Meehl et al. 2009). 
There are also few additional experiments that 
are hindcasts without volcanoes and predictions 
with the 2010 Pinatubo-like eruption.

Many of the forecasting centres that have 
produced decadal hindcasts for CMIP5 have also 
made experimental decadal predictions in real-
time. There has been international activity to 
collect the predictions in a multi-model data set 
and results of these experimental decadal predic-
tions are presented in Smith et al. (2013b). Pre-
dictions comprise 9 dynamical climate models 
and 3 empirical techniques. They are initialized 
in the year 2011 and made for 5-year periods 
2012–2016 and 2016–2020. Predictions of AMV 
and PDV show no signal beyond climatology 
after the year 2015, but the Niño3 region is 
predicted to warm 0.5 °C during the coming 
decade. Results also show that initialized fore-
casts of globally averaged temperature are sig-
nificantly cooler than uninitialized projections, 
consistent with the results of Meehl and Teng 
(2012). However, the global mean temperature is 
predicted to continue to rise with a 50% chance 
of every year after 2013 to exceed the current 
record. Uncertainties are still large for individual 

years and in most regions initialization has little 
impact after 4 years.

Challenges in decadal predictability and 
predictions

There are still many challenges and unsolved 
issues in decadal climate predictions and pre-
dictability. The uncertainties that are affecting 
climate projections for the 21st century are also 
affecting decadal climate predictions and pre-
dictability studies. These uncertainties arise from 
three sources: internal variability, model uncer-
tainty and scenario uncertainty (Fig. 4). Accord-
ing to Hawkins and Sutton (2009), for lead times 
of the next few decades the main sources of 
uncertainty are internal variability and model 
uncertainty. For decadal time-scales and regional 
spatial scales the model uncertainty is more 
important. At longer lead times (more than 50 
years) the emissions scenario uncertainty gener-
ally becomes dominant.

The main challenges have been already 
summed up in several studies and are now 
presented here following Meehl et al. (2009), 
Keenlyside and Ba (2010), Latif and Keenlyside 
(2011), Mehta et al. (2011) and Solomon et al. 
(2012):

i. Mechanisms of decadal climate variability 
are not well understood and the coherence 
among the climate models is limited. Interac-
tion between natural and externally forced 
variability and sources of potential predict-
ability should be identified.

ii. There are systematic errors in models that 
affect predictions and these errors should be 
identified, understood and corrected. Higher 
resolution is needed and parameterizations 
and coupling of additional climate subsys-
tems should be improved.

iii. Lack of observations, especially in the ocean, 
are limiting forecast verification as well as 
development and testing of initialization and 
prediction systems. The instrumental record 
is short and properly covers only a few full 
cycles of decadal variability. It is crucial to 
maintain and enhance the existing observa-
tion systems.
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Fig. 4. The relative importance of different sources of 
uncertainty in decadal global mean surface tempera-
ture projections. Fractional uncertainty is the prediction 
uncertainty divided by the expected mean change of 
variable relative to 1971–2000. Adapted from Hawkins 
and sutton (2009).
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iv. Long-lasting effects of solar and volcanic 
activity should be considered in decadal pre-
diction models although they cannot be pre-
dicted.

v. Societal usefulness of decadal climate pre-
dictions should be elevated.

Despite all the challenges, some improve-
ments have also occurred during the last decade 
such as the availability of enhanced ocean obser-
vations with the Argo array (www.argo.ucsd.
edu). It is a global array of over 3000 free-drift-
ing profiling floats that measure the temperature 
and salinity of the upper 2000 m of the ocean. 
This allows continuous in situ monitoring of 
temperature, salinity, and velocity of the upper 
ocean. It is likely that decadal climate predic-
tions will benefit from the Argo data. On the 
other hand, the Argo data have only been avail-
able for approximately 10 years and it will take 
time until they can be used for verification of 
decadal predictions. However, there are already 
some results showing the benefits of the Argo 
data: for example in Zhang et al. (2007) AMOC 
is successfully reproduced only when the Argo 
observations are included in the simulations.

Summary and discussion

Decadal prediction is a new field of Earth science 
that is trying to bridge the gap between seasonal 
to inter-annual forecasting and climate change 
projections. Decadal predictions have a time 
perspective of 10–30 years into the future, which 
is a time-scale important for making societal 
adaptation decisions. This paper has reviewed 
the level of decadal predictability with emphasis 
on the Nordic region.

Understanding the mechanisms behind cli-
mate variability is important in making dec-
adal predictions and assessing decadal predict-
ability potential. Climate variability may be due 
to natural internal processes within the climate 
system, or to variations in natural or anthro-
pogenic external forcing. The relative roles of 
internal and external processes in driving dec-
adal and multi-decadal climate variations are not 
well understood and more precise quantification 
is needed. In addition to observations, modelling 

studies are often used for studying decadal scale 
climate fluctuations.

In the North Atlantic, there is strong decadal 
to multi-decadal variability. The most promi-
nent internal mechanisms associated with this 
variability are the North Atlantic Oscillation and 
the Atlantic Meridional Overturning Circula-
tion (AMOC). These internal mechanisms also 
affect climate variability in the Nordic region: a 
positive NAO index in winter and strong AMOC 
conditions are associated with higher surface 
temperatures and more precipitation than aver-
age. However, impacts of atmospheric circula-
tion pattern may depend crucially on the local or 
regional details.

There is evidence that climate is predictable 
at decadal time-scales. Internal and externally 
forced variability are both important sources of 
potential predictability, but at a regional level, 
relative importance of these factors varies sub-
stantially (Boer 2010). Most of the decadal-
predictability studies were carried out at the 
global scale, but decadal predictability is found 
predominately over mid- to high-latitude oceans 
(e.g. Boer and Lambert 2008). Over land pre-
dictability is usually low. The studies reviewed 
in this article indicate that potential of decadal 
predictability appears to be quite large in the 
North Atlantic sector and predictability is mainly 
based on the variations of AMOC. Some studies 
also indicate that AMOC predictability leads to 
some predictability of European climate (Collins 
and Sinha 2003, Sutton and Hodson 2005, Pohl-
mann et al. 2006). This potential decadal-scale 
predictability of AMOC might also contribute 
to predictability in the Nordic region, especially 
the coastal areas close to the North Atlantic (e.g. 
Koenigk et al. 2011, Persechino et al. 2013), but 
any robust conclusions cannot be made based on 
the current knowledge.

The prediction of climate at decadal time-
scales is somewhere between seasonal and cen-
tennial scales and presents both an initial and 
boundary value problem. Initialization of cli-
mate models has been suggested to significantly 
increase the decadal prediction skill over the 
North Atlantic (e.g. Smith et al. 2007, Keenly-
side et al. 2008). For example, a recent study 
of Doblas-Reyes et al. (2013) shows a signifi-
cant skill in the North Atlantic for near-surface 
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temperature predictions up to 6–9 years. It has 
also been suggested that the skill of decadal 
prediction may depend on the initial state (e.g. 
Persechino et al. 2013) and AMOC seems to 
be more predictable if initialized from anoma-
lously strong phase rather than from a weak 
phase. Based on the study results, it is not clear 
how initialisation affects the prediction skill in 
the Nordic region and there are still many open 
questions concerning initialization.

The main challenges associated with dec-
adal predictions and predictability studies are 
poor understanding of mechanisms of decadal 
climate variability, systematic errors and need 
for improvements in models, lack of observa-
tions (especially in the ocean) and how to take 
into account the long-lasting effects of solar 
and volcanic activities. The societal usefulness 
of decadal predictions should also be elevated. 
Interactions between natural internal variability 
and anthropogenically-induced global warming 
are also important in assessing decadal predict-
ability and making regional decadal predictions. 
According to Boer (2009) global warming may 
induce a general decrease in decadal poten-
tial predictability and the decrease seems to be 
largest over high latitude oceans. For example, 
weakening of AMOC is noted as a general result 
in warmer world simulations and this may have 
consequences also for climate in the Nordic 
region, although the response is still uncertain. 
Weakening of AMOC may result from decay 
of ice sheets and associated fresh-water flux 
(Vizcaíno et al. 2010) as well as reduced varia-
tions in sea surface temperature and salinity in 
Labrador sea (Koenigk et al. 2011). Natural 
decadal to multi-decadal climate variability can 
also mask anthropogenic climate change (Latif 
et al. 2006b).

Based on the current knowledge, there are 
still large uncertainties concerning decadal pre-
dictability in the Nordic region. However, close-
ness to the North Atlantic sector, which is the 
area of high potential decadal predictability, 
indicates that there might be some potential for 
making decadal predictions in this region.

Decadal predictions would offer valuable 
information for the society in making adaptation 
decisions. For example, the energy sector would 
benefit of guidance on climate variations in the 

following decades when making decisions on 
investments in energy production capacities. Cli-
mate conditions will also determine the usage of 
the carbon-intensive capacity, and therefore the 
decadal climate predictions are needed to pro-
duce the emission predictions from this sector.

As decadal predictability information in the 
Nordic region does not really exist or it is highly 
uncertain, there is a need for basic research 
in this field. For example data mining of the 
atmospheric data of the past millennium (CMIP5 
and the COSMOS millennial-scale ESM simula-
tions) could be conducted to find the predictable 
decadal climate signals for the Nordic region and 
to search for factors that are potentially related 
to predictable events. The topics for further 
research would also cover for example analysis 
of decadal climate variability and its relation to 
boreal biosphere as well as energy production 
and demand conditions.
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ABSTRACT

Random projection (RP) is a dimensionality reduction method that has been earlier applied to high-dimensional

data sets, for instance, in image processing. This study presents experimental results of RP applied to simulated

global surface temperature data. Principal component analysis (PCA) is utilised to analyse how RP preserves

structures when the original data set is compressed down to 10% or 1% of its original volume. Our experiments

show that, although information is naturally lost in RP, the main spatial patterns (the principal component

loadings) and temporal signatures (spectra of the principal component scores) can nevertheless be recovered

from the randomly projected low-dimensional subspaces. Our results imply that RP could be used as a pre-

processing step before analysing the structure of high-dimensional climate data sets having many state variables,

time steps and spatial locations.

Keywords: random projection, principal component analysis, dimensionality reduction, climate simulation data,

El Niño � Southern Oscillation

1. Introduction

Climate simulation data are often high-dimensional, with

thousands of time steps and grid points representing the

state variables. High dimensionality is of course desirable,

but it also presents a problem by making post-processing

computations expensive and time-consuming. Data dimen-

sionality reduction methods are therefore attractive, since

they may enable the application of elaborate data analy-

sis methods to otherwise prohibitively high-dimensional

data sets.

Principal component analysis (PCA), also known as

empirical orthogonal function (EOF) analysis (e.g. Rinne

and Karhila, 1979; Von Storch and Zwiers, 1999), has been

widely used in climate science in order to extract the

dominant components of climate data time series. With

large data sets, this method is computationally expensive,

and rather soon becomes non-applicable unless the dimen-

sion of the original data set is significantly reduced. The use

of time averaging, such as monthly or annual means instead

of the original daily data, is an example of dimension

reduction that sometimes enables PCAs use. This, however,

significantly distorts the original information content of

the data set: all temporal variability shorter than the aver-

aging period is lost, and periods longer than the averaging

period are affected. Thus, time averaging is not necessarily

an optimal dimension reduction method.

This paper studies random projection (RP) as a dimen-

sionality reduction method. It has been successfully applied

in image processing (Bingham and Mannila, 2001; Goel

et al., 2005; Qi and Hughes, 2012) and for text data

(Bingham and Mannila, 2001). RPs fall into the theory of

compressive sampling (CS), which has emerged as a novel

paradigm in data sampling after the publications of Candès

et al. (2006) and Donoho (2006). CS relies on the idea that

most data have an inherent structure which can be viewed

as sparsity. This means that, for example, a continuous sig-

nal in time may carry much less information than suggested

by the difference between its upper and lower frequencies

(Candès and Wakin, 2008; Bryan and Leise, 2013).

The aim of this paper is to introduce RP as a dimension-

ality reduction method in climate science. We will present

the basic theory behind RP, and apply the method to cli-

mate data and show how the projected data preserve the

essential structure of the original data. This is demonstrated

by applying PCA to the original and randomly projected
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low-dimensional data sets to show that the leading principal

components of the original data set can be recovered from

the lower dimensional subspace. Section 2 presents the RP

and PCAmethods. In Section 3, we show some experimental

results of applying RP and PCA to the original and

dimensionality-reduced data sets. In addition, Section 4

demonstrates the application of the RP method to a very

high-dimensional data set that represents multiple atmo-

spheric model layers simultaneously.

2. Methods

2.1. Random projections

Random projection means that the n�d original data

matrix (X) of n d-dimensional observations is projected by

a d�k random matrix (R) (where kBd) to produce a lower

dimensional subspace P of n�k:

Pn�k ¼ Xn�dRd�k (1)

In RP we are projecting our data set onto k random

directions defined by the column vectors of R. From

these projections we can construct a lower dimensional

representation of the original data set. The computational

complexity of RP is of the order of O(knd). Due to the

simplicity of RP, involving only matrix multiplication, it

can be applied to a wide range of data sets, even those with

a very high number of dimensions. Figure 1 illustrates how

the dimensionality of the data matrix is reduced by RP.

The idea of RPs stems from the Johnson�Lindenstrauss
lemma (Johnson and Lindenstrauss, 1984):

Suppose we have an arbitrary matrix X 2 Rn�d . Given any

e > 0, there is a mapping f: Rd ! Rk, for any k � O log n
e2 ,

such that, for any two rows xi, xj 2 X, we have

ð1� eÞjjxi � xjjj
2 � jjf ðxiÞ � f ðxjÞjj

2 � ð1þ eÞjjxi � xjjj
2
(2)

In the lemma it is stated that the data points in d-

dimensional space can be embedded into a k-dimensional

subspace in such a way that the pairwise Euclidean dis-

tances between the data points are approximately preserved

with a factor of 1� e. (See, e.g., Dasgupta and Gupta (2003)

for proof of this result.)

Work has been done on finding suitable construc-

tions of such mappings f (e.g. Frankl and Maehara, 1988;

Achlioptas, 2003). In our experiments, we have employed

a commonly used mapping (R) which consists of the

vectors of normally distributed N(0,1) random numbers

and the row vectors of the random matrix are scaled to

have unit length. There are also other random distri-

butions that satisfy the lemma [eq. (2)]. For example,

Achlioptas (2003) has shown that a matrix of elements

(rij) distributed as

rij ¼
ffiffiffi
3

p
�

þ1 with probability 1
6

0 with probability 2
3

�1 with probability 1
6

8<
: (3)

satisfies the requirements of a suitable mapping.

It should also be noted that in eq. (1) we are assuming an

orthogonal projection, although the column vectors of R

are not perfectly orthogonal. Here we can rely on a theorem

of Hecht-Nielsen (1994) stating that as the dimension of the

space increases, the number of almost orthogonal vectors

increases. According to Bingham and Mannila (2001), the

mean squared error between RRT and an identity matrix is

about 1/k per matrix element. We can therefore assume that

the vectors ofR are sufficiently orthogonal for the projection

to work. It is also possible to orthogonalise the vectors of R,

but it is computationally expensive.

We should also address the question of number of

subdimensions (k) needed to get a representation of the

original data set that is accurate enough. Some estimates

can be found in the literature. Originally, Johnson and

Lindenstrauss (1984) showed that the lower bound for

k is of the order of Oðlog n=e2Þ. There has also been

some work on revealing an explicit formula for k. For

example, Frankl and Maehara (1988) came up with the

result that k ¼ 9ðe2 � 2e3=3Þ�1
log n

l m
þ 1 is sufficient to

satisfy the Johnson�Lindenstrauss theorem, while Dasgup-

ta and Gupta (2003) showed that k � 4ðe2=2� e3=3Þ�1
log n

is enough. It is notable that the estimates of k depend only

on the number of data points (observations) n, and are

independent of d.

2.2. Principal component analysis

PCA is a widely used method to extract the dominant

spatio-temporal signals from multidimensional data sets

and to reduce the dimensionality of the data. In climate

science, the principal component loadings are also known

Fig. 1. Dimensionality reduction by random projection. Origi-

nal data X is projected onto a random matrix R to have a lower

dimensional subspace P.

2 T. SEITOLA ET AL.



as empirical orthogonal functions (e.g. Rinne and Karhila,

1979; Von Storch and Zwiers, 1999).

PCA is based on the idea of finding a basis to represent

the original data set (Shlens, 2009). The aim is to find latent

variables that explain most of the variance in the original

data set via uncorrelated linear combinations of the ori-

ginal variables (Hannachi et al., 2007). This also enables

dimensionality reduction, as most of the variance in the

data set can be explained by only a small subset of principal

components.

One of the techniques for finding the principal compo-

nents of the data matrix is singular value decomposition

(SVD). SVD is based on a theorem stating that any matrix

Xn�d can be broken down into orthogonal matrices Un�n

and Vd�d and a diagonal matrix Dn�d:

X ¼ UDVT (4)

where the columns of V are orthonormal eigenvectors of

C�XTX (C is the covariance matrix of X), the columns

of U are orthonormal eigenvectors of Z�XXT and D is a

diagonal matrix containing the square roots of the eigen-

values of C or Z in descending order. Since the column

vectors of V are the eigenvectors of C, SVD is a direct way

of computing the PCA of the original data matrix X. The

column vectors of V are also known as the PC loading

vectors, and the PC score matrix S can be calculated as

follows:

S ¼ XV ¼ UDVTV ¼ UD (5)

As already mentioned, the PC loadings are also known as

the EOFs (e.g. Rinne and Järvenoja, 1986) in which case

the data set is often represented as a function of space (l)

and time (t)

f ðl; tÞ ¼ fmðlÞ þ
Xw

i¼1

siðtÞviðlÞ þ eðw; l; tÞ (6)

where fm is a mean field, vi is the spatial function of the

ith component (i.e. the PC loading) and the si are time-

dependent coefficients associated with vi. The number of

EOFs is denoted by w. If the EOF series is truncated, that

is, the data set is projected onto a subset of PC loadings,

a residual term eðw; l; tÞ is included.
In PCA, it is generally recommended to use a mean-

centred data matrix (Varmuza and Filzmoser, 2009). If the

data matrix is not centred, then typically the PCs resulting

from the PCA are not uncorrelated with each other and the

eigenvalues do not indicate variance but rather the non-

central second moments of the PCs (Cadima and Jolliffe,

2009). In uncentred PCA, it is often the case that the first

eigenvector (PC loading) is close to the direction of the

vector of column means of the data matrix.

The computational complexity of PCA (implemented

by SVD) is of the order of Oðd2nÞ þOðd3Þ, but there are

also computationally less-expensive methods for finding

only a certain number of eigenvalues and vectors (see e.g.

Bingham and Mannila (2001) and references therein). The

aim of this study is to compare the results of normal

PCA (implemented by SVD) applied to the original and

dimensionality-reduced (RP�PCA) data sets. The compu-

tational complexity of the latter can be expressed as

O(knd)�Oðk2nÞ þOðk3Þ. Now the original dimensions

are reduced from d to k, which means computational

savings in the PCA.

PCA has its own limitations in providing interpretability

of the physical patterns. Because of spatial orthogonality

and temporal uncorrelation, the PCs do not necessarily

correspond to any physical phenomena or patterns (Demšar

et al., 2013). The constraint in PCA for the successive

components to explain the maximum remaining variance

may lead to amixing of physical phenomena in the extracted

PCs (Aires et al., 2000). There are several methods to

overcome these limitations, e.g. rotating the PC loadings.

It has also been argued that the decorrelation assumption

of PCA is not enough, and that the statistical indepen-

dence of the extracted components is needed to analyse the

dynamical complexity of physical phenomena (Aires et al.,

2000). However, in this study we are more concerned with

demonstrating the RP method with the aid of PCA, and

therefore we only utilise the normal PCA without any

rotations. The focus is more on the method than on the

physical interpretation of the data.

3. Comparison of the original and the projected

data

3.1. Data

A monthly surface temperature data set from a millennial

full-forcing Earth system model simulation (Jungclaus,

2008) was used in this experiment. The original monthly

archived simulation data set has 14 472 time steps, but we

selected for our use only 4608 time steps (the dimension n)

from the end of the data set. The simulation data set has

a resolution of 96 points in longitude and 48 points in

latitude, resulting in 4608 locations or grid points (the

dimension d). The dimensions n and d were chosen to be

of equal size so that they could be reduced with RP

equivalently. The 4608�4608 data matrix is quite large,

but it is still manageable when performing PCA on it

for comparison with the projected lower dimensional sub-

spaces. Surface temperature was chosen because it has

some well-known global patterns (e.g. El Niño � Southern

Oscillation, ENSO) that can be identified with PCA.
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3.2. Applying RP and PCA to the climate simulation

data set

RP was applied in two different ways: the original data

matrix was arranged so that (1) the time steps n were in the

rows and the spatial locations d (gridpoints) were in the

columns and (2) the locations were in the rows and the time

steps in the columns. In this way, it was possible to project

the data matrix in order to correspondingly reduce either

the spatial (case 1) or the temporal (case 2) dimension, since

with RP we can only reduce one dimension at a time. The

original data matrix was mean-centred before projection on

the lower dimensional subspace.

When the PCA of the original data matrix is calcu-

lated, the PC loading vectors give us the spatial maps

corresponding to the PC scores. The PC score vectors are the

projections of the original data matrix onto the PC loadings,

and the scores can be presented as time series. After the

dimensionality of the data matrix is reduced by RP, we have

then reduced either the temporal or the spatial dimension.

Therefore it is not possible to get the corresponding PC

scores and loadings when the other dimension has been

reduced. Using SVD to find the PCs of the dimensionality-

reduced data set Pn�k, where the spatial dimension d has

been reduced, gives us

Pn�k ¼ Un�nDn�kV
T
k�k (7)

The loading vectors in V cannot be plotted on the original

grid because we are now in Rk instead of Rd [see the

Johnson�Lindenstrauss lemma; eq. (2)]. If the temporal

dimension is reduced, we have Pk�d and the score vectors

cannot be presented as time series comparable to the original

PC scores. However, in the Appendix we present a novel

method whereby the loadings (or scores) can be approxi-

mated by calculating the matrices U (or V) and D in the

lower dimensional subspace and then multiplying these with

the original data set. This method is applied in Section 4.

The number of subdimensions k needed for RP was

discussed in Section 2.1. If we follow the bound given in

Dasgupta and Gupta (2003), with an arbitrary value o�0.2

and n�4608, the Johnson�Lindenstrauss theorem gives a

limit of k�4(o2/2�o3/3)�1 log n:1947 (42% of the original

dimensions) to make the projections with an accuracy of

19o. However, our experiments will show that, with our

data set, a much smaller k still gives good results, recovering

most of the information of the original data set. In this

work, we are not looking for an exact lower bound for RPs

applied to our data set but instead we are interested in

demonstrating the method itself, keeping practical applica-

tions in mind. We therefore chose the dimensions for the

RPs to be 10% and 1% of the original dimensions (4608).

These percentages are equivalent to k:460 (hereafter

denoted as RP10%) and k:46 (RP1%).

In order to investigate the stability of the results obtained

by RPs, the original data matrix was projected onto 100

different realisations of RP matrices of the same k (where

k is 46 or 460). For the uncertainty estimation, the original

data matrix was arranged as in case 1. The PCA of each

projection was calculated, making it possible to approx-

imate the mean and the 95% confidence limits for the

amount of variance explained by the PCs (Fig. 2). These

confidence limits describe the uncertainties that arise from

different projection matrices. From Fig. 2 we can see that

the results can be somewhat different depending on what

kind of RP matrix has been used. Some differences are to
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and RP1%. The explained variance of the first eigenvalue is

excluded from subfigure (b) to show more details. In RP, the

spatial dimension of the original data matrix is reduced.
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be expected, since the elements in the RP matrix are always

different, although normally distributed N(0,1). Further-

more, as the projection dimension k increases, the 95%

confidence intervals (of the same k) become narrower.

3.3. Results of PCA

3.3.1. Explained variance of PCs. The eigenvalues of

the data covariance matrix are in descending order and

indicate the significance, that is, the amount of variance, of

the principal components. An essential part of EOF studies

(e.g. Hannachi, 2007) is to analyse the eigenvalues in the

detection of the dominant signals or patterns in climate

data.

Figure 3 shows the percentage of explained variance

of the PCs with their 95% confidence limits approxi-

mated from the original and projected data sets (RP10%

and RP1%). The confidence limits are based on boot-

strapping where the original and projected data sets are

re-sampled 100 times with replacement and the PCA of

each bootstrap sample is calculated. The sampling is done

with respect to the temporal dimension and the obtained

samples are arranged in chronological order. In the case

of the projected data sets, the variances of the PCs are

obtained using one realisation of each projection (RP10%

and RP1% and cases 1 and 2 of both). We have also

re-sampled these realisations of projected data matrices

to analyse the uncertainties related to these specific pro-

jections. Notice the difference to the previous section, where

we estimated the uncertainties of RP due to regenerated

random matrices. In Fig. 3, we can see that in case 2, in

which the temporal dimension n is reduced, the 95%

confidence intervals become wider, as can be expected.

Otherwise the confidence intervals are quite narrow because

of large n.
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Figure 3 shows that the eigenvalues (illustrated as the

percentage of the explained variance) decrease monotoni-

cally, and are quite similar in the cases of the original

and projected data sets even when the dimension has

been reduced to only 1% of the original dimensions. The

eigenvalues of PCs 1�4 seem to be separated from the rest

and also from each other, except in the case of RP1% with

reduced temporal dimension n, where the 95% confidence

limits of PCs 2 and 3, 3 and 4 as well as 4 and 5 overlap. The

confidence limits of PCs 4 and 5 of RP10% with reduced

n also overlap. PCs 1�4 explain almost 94% of the variance

of the original and projected data sets. PC1 explains the

majority (approximately 87%), PC2 4%, PC3 2% and PC4

approximately 1% of the variance. The rest of the eigenva-

lues decrease quite smoothly, which causes difficulties in

distinguishing those small eigenvalues due to signal and

those due to noise.

We saw that the eigenvalue spectra of the original and

randomly projected data sets look quite similar. However,

this only tells us that the amplitudes of the dominant

signals are similar in both the original and the projected

data sets. We also need to compare the PC loadings (i.e. the

eigenvectors of the covariance matrix) and the PC scores to

find out whether the spatio-temporal signatures have the

same features.

3.3.2. PC loadings. The PC loadings, or the spatial

patterns of the PCs of the original and dimensionality-

reduced data sets, are shown in Figs. 4 and 5. Visual

inspection shows that the original data and RP10% have

very similar spatial patterns of PCs 1�12, with some dif-

ferences however in PCs 8 and 9. RP1% PCs have mostly

similar spatial patterns with the original PCs up to com-

ponent 5, subsequent loadings of RP1% having more

deviations. It should be noted that a PC loading vector

has an arbitrary sign. To facilitate comparison, some of the

RP10% and RP1% loading vectors were multiplied by �1

if they correlated negatively with the original PC loading

vectors.

Spatial maps (especially PCs 4, 5, 6 and 11) show some

features in surface temperature patterns that can be asso-

ciated with the El Niño � Southern Oscillation (ENSO),

e.g. distinct loadings in the Tropical Pacific and northwest/

midwest North America (Trenberth and Caron, 2000).

These same patterns can be found in the original, the

RP10% and the RP1% maps and mostly in the same

components.

The correlations of PC 1�20 loadings of the original

and dimensionality-reduced (RP10% and RP1%) data sets

are shown in Fig. 6. We can see that the RP10% loadings

are strongly correlated with the original loadings until

PC12 (correlation coefficient r�0.8 and r�0.9 up to PC7)

and the RP1% loadings until PC5. PCs 1�5 already explain

94% of the variance of the data set and PCs 1�12 explain

96%. We can also see that some of the components of

RP10%/RP1% have stronger correlations with adjacent

ones of the original data set; for example, PC9 of RP10%

has a stronger correlation with PC8 than with PC9 of the

original data set. These adjacent components typically have

similar variances.

Results are in line with the findings of Qi and Hughes

(2012), where it is theoretically verified that, although RP

disperses the energy of a PC in different directions, the orig-

inal PC remains as the direction with the most energy. Due

to this, oscillations with similar variance can be assigned to

different, adjacent components, leading to some ambiguity

in the indices. Another, or supplemental explanation for

the switching of adjacent PCs is provided in Jolliffe (1989).

According to that paper, it is a well-known fact that

PCs whose variances (or eigenvalues) are nearly equal are

unstable, but their joint subspace is stable. It has been

shown that small changes in the variances in this subspace

can lead to large changes in corresponding PC loading

vectors, and this may lead to the switching of adjacent PCs.

Thus it is more important to detect the same oscillations

and patterns in the original and projected data sets, not in

having them assigned to exactly the same components.

3.3.3. PC scores. The time series of PC scores were

analysed with the Multitaper spectral analysis method

(Thomson, 1982; Mann and Lees, 1996) to find the most

powerful frequencies in these time series. The power spectra

of the original and projected PC scores are shown in Fig. 7.

Dominant features of the power spectra are the harmonic

component frequencies which are integer multiples of the

fundamental frequency. In the monthly surface tempera-

ture data set, the fundamental frequency is 1/12, which

corresponds to a period of 1 yr and the harmonics clearly

visible in the power spectra of PCs are 1/6, 1/4 and 1/3,

corresponding to periods of 1/2, 1/3 and 1/4 yr that are

related to intra-annual variations of surface temperature.

The peaks at these frequencies are very similar in corre-

sponding components of the original data, RP10% and

RP1%. The peaks at the harmonics may also indicate that

the orthogonality constraint of PCA is not suitable for

this data set. The PCs are global and may have the same

structure so that the first PC possesses the fundamental

frequency while the following ones possess its harmonic

frequencies (Aires et al., 2000).

Apart from the seasonal/harmonic frequencies, there are

distinct peaks in the PC score spectra around the period

of 3 yr. This might be related to ENSO which has a cycle

of 2�6 yr. These peaks are clearly distinguishable in PCs

6 (original), 7 (RP10% and RP1%) and 11 (original and
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RP1%) with some differences between the original and

dimensionality-reduced data sets. We already identified

some ENSO-related features in the spatial maps.

The correlations of the original and RP10%/RP1% PC

scores (Fig. 8) are quite similar to the correlations in the

loadings (Fig. 6). The RP10% correlations to the original
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scores are strong (r�0.8) until about PC13, and PCs 6

and 7 are cross-correlated. The RP1% correlations with

the original scores are also strong until PC5, although the

correlation coefficient of PC5 is slightly less than 0.8.

4. Application of RP to a very high-dimensional

data set

To demonstrate the application of the RP method to a very

high-dimensional data set, we used a monthly temperature

data set from a millennial full-forcing Earth system model

simulation (Jungclaus, 2008) with a vertical resolution of

17 levels in the atmosphere between 1000 and 10 hPa.

Inclusion of the vertical component increased the dimen-

sion d of the data matrix to 4608�17�78336. We extracted

3600 time steps (n) from the end of the data set. The

increase of d from 4608 to 78336 makes in our case PCA

non-applicable (in a laptop computer), and thus we call the

dimension ‘very high’. Therefore the dimensionality of the

data matrix was reduced by RP to make PCA applicable.

The original data matrix is X(n�d) with n�3600 and

d�78336, referring to time step and location, respectively.

The dimensionality of the data matrix was reduced by

projecting it onto a random matrix R(d�k), where k:783

is the subspace dimension (1% of the original dimensions d)

[eq. (8)]. We then calculated the SVD of the lower dimen-

sional data P(n�k) to get the matrix URP(n�k) [eq. (9)].

The PC loadings V(d�k) were then approximated by

multiplying the transpose of the original data matrix

X(n�d) with URP(n�k) and the inverse of the diagonal

matrix DRP(k�k) which we got from the SVD of P

[eq. (10)] (see Appendix).

P ¼ XR (8)

P ¼ URPDRPV
T
RP (9)

V � XTURPD
�1
RP (10)

The diagonal elements of DRP(k�k) are the square roots

of the eigenvalues of the data covariance matrix indicating

the significance of the PCs. Columns of URP(n�k) multi-

plied by DRP(k�k) [see eq. (5)] are the PC scores: these

are analysed with the Multitaper spectral analysis method

(Thomson, 1982; Mann and Lees, 1996) as in Section 3. The

columns of V(d�k) are the PC loading vectors, that is,

the spatial patterns corresponding to the PC scores. The

elements of a loading vector contain the spatial patterns

of a certain PC at 17 standard pressure levels of the

atmosphere. The first 1�4608 elements correspond to level

1 (1000 hPa), elements 4609�9216 correspond to level 2

(925 hPa), and so on until 10 hPa.

Fig. 5. Spatial patterns of PC9�PC12 loadings. Comparison of the original, RP10% and RP1% data sets. In RP, the temporal

dimension is reduced.
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Fig. 6. Correlation of the original and projected (RP10% and RP1%) PC loadings. In RP, the temporal dimension is reduced.
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Figure 9 shows the percentage of the variance the PCs

explain with their 95% confidence limits. The confidence

limits were estimated by bootstrapping, as we did with the

surface temperature data set in the previous section. PCs

1�3 are clearly separated from the rest and also from each

other. PCs 4 and 5 (and maybe even PCs 6, 7 and 8 as

their own subgroup) still seem to be distinguishable from

the remaining eigenvalues which decrease quite smoothly.

PC1 explains the majority of the variance in the data set

(approximately 89%), PC2 explains 3.5%, PC3 approxi-

mately 1.5% and PCs 4 and 5 both explain approximately

0.7%. PCs 1�3 together account for 94% of the variance in

the data set. The confidence intervals are narrow because

of the relatively large sample size n.

Figure 10 shows that the dominant frequencies of

the atmospheric temperature variation are those related

to annual and intra-annual oscillations, which were also

detected in the surface temperature data set in the previous

section. There are also peaks in the PC score spectra around

the period of 3 yr which might be related to ENSO. The

most distinct ENSO-related component is PC5 and its

spatial patterns at the 1000�30 hPa levels are shown in

Figs. 11 and 12. At the lower atmospheric levels, especially

1000�925 hPa, temperature patterns related to ENSO can

be identified in the Tropical Pacific and northwest/midwest

North America. At the 850�600 hPa levels the positive

loadings near the equator decrease but again increase at

levels from 500 to 250 hPa and at the same time spread

both north- and southwards, especially in the Pacific. The

North American pattern attenuates little by little, but is still

identifiable up to 400 hPa. At the upper levels the loadings

around the tropics and subtropics become negative, mean-

ing that the oscillation in the upper atmosphere is in an

opposite phase compared to lower levels, where the pattern

is clearly positive in the same areas.

Some caution is needed in the physical interpretation of

these results. We already mentioned the limitations of PCA

in Section 2.2. It should be noted that PC5 also has a distinct

half-year peak, meaning that this component also carries

an intra-annual signal. This is most likely to be related to

the mixing problem of PCA. The ENSO representation of

the model used in the simulations should also be consid-

ered (See, e.g., Jungclaus et al., 2006; Bellenger et al., 2014).

Despite the limitations in the physical interpretation of the

results, this experiment gives an example of how a large,

multidimensional data set can be preprocessed with RP and

then analysed efficiently to find, for example, the latent

structures in the data set.

5. Summary and conclusions

The dimensionality of a simulated surface temperature data

set was reduced by RP, and PCA was utilised to compare

the structure of the original and projected data sets. Lower

dimensional subspaces of 10% and 1% of the original data

dimensions were investigated. The experiments showed that

even at 1% of the original dimensions the main spatial

and temporal patterns or principal components of the
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Fig. 8. Correlation of the original and projected (RP10% and RP1%) PC scores. In RP, the spatial dimension is reduced.
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original surface temperature data set were approximately

preserved. With a subspace of 10% of the original dimen-

sions, we were able to recover the PCs explaining 96%

of the variance in the original data set and with 1% we

still could recover the PCs explaining 94% of the original

variance.
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The findings of this work are supported by the results

presented in Qi and Hughes (2012). In their paper, it is

theoretically and experimentally shown that a normal PCA

performed on low-dimensional random subspaces recovers

the principal components of the original data set very well,

and as the number of data samples n increases the principal

components of the random subspace converge to the true

original components.

RP is computationally fast compared to other methods

for dimensionality reduction (e.g. PCA) since it involves

only matrix multiplication. It can therefore be applied to

very high-dimensional data sets. Based on our experiments,

it seems to open new possibilities in reducing the dimen-

sionality of climate data. One of the topics of our forth-

coming research is to investigate the applicability of RP

before the use of some other computationally heavy analysis

methods for multivariate climate data, for example, multi-

channel singular spectrum analysis (e.g. Ghil et al., 2002).

As mentioned, there are some estimates available for the

lowest bound for the reduced dimensions k. These esti-

mates depend on the number of observations (dimension n)

in the original data set and the desired accuracy of the

projection (controlled by error o). These estimated bounds

seem to be much higher than the ones we used with good

results. This suggests that the bounds for dimensionality

reduction with RP should be investigated in more detail in
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the case of climate data. We would then also need to know

what is the information content of our data set, that is, the

signals that rise above the noise in the original data set.

We also demonstrated the application of the RP method

to a very high-dimensional data set of the atmospheric temp-

erature in three dimensions. Our results imply that RP could

be used as a pre-processing step before analysing the struc-

ture of large data sets. This might allow an investigation

of the dynamics of truly high-dimensional climate data sets

of several state variables, time steps and spatial locations.
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7. Appendix

A.1. Random projection and the singular value decomposition

In this Appendix we explain the method used in Section 4.

Let’s say we have an original data Xn�d. The singular value

decomposition (SVD) of X is:

Xn�d ¼ Un�nDn�dV
T
d�d (A1)

The covariance matrix of X is C�XTX and the columns

of V are the eigenvectors of C. Also, the columns of U
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are the eigenvectors of Z�XXT. D is a diagonal matrix

containing the square roots of the eigenvalues of C or Z in

descending order.

Since the random projection (RP) of X is P�XR, where

Rd�k is the projection matrix, (the row vectors of R are

scaled to have unit length), we can write:

CRP ¼ ðXRÞTXR ¼ RTXTXR ¼ RTCR (A2)

ZRP ¼ XRðXRÞT ¼ XRRTXT � XXT ¼ Z (A3)

In the previous we have assumed that RRT:I, because

the row vectors of R are nearly orthonormal. It is also

possible to make the vectors of R strictly orthogonal, but

this is computationally quite expensive.

Let’s rewrite eq. (A1) as Xn�d�Un�rDr�rV
T
r�d ; where

r�rank(X). Now we can manipulate eq. (A1):

X ¼ UDVT ðVTV ¼ IÞ
XV ¼ UD ðDD�1 ¼ IÞ

U ¼ XVD�1 (A4)

or

X ¼ UDVT ðUTU ¼ IÞ
UTX ¼ DVT ðD�1D ¼ IÞ
VT ¼ D�1UTX transpose of both sides

V ¼ XTUðD�1ÞT ¼ XTUD�1 (A5)

Because Z:ZRP, we can approximate

U � URP;

D � DRP and

V � XTURPD
�1
RP (A6)

In the previous we have defined URP as n�k and DRP

as a k�k matrix, where k is the rank of matrix Pn�k.

If we have a very high-dimensional data set X we

can first reduce the dimensionality of X by RP and

then approximate U (or V) and D in a lower dimensional

subspace. We can then multiply the original data matrix

with the approximated matrices U (or V) and D, finally

getting the approximations of the PC scores or loadings

depending on which dimension we have reduced in RP.
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ABSTRACT

In this article, we introduce a new algorithm called randomised multichannel singular spectrum analysis

(RMSSA), which is a generalisation of the traditional multichannel singular spectrum analysis (MSSA) into

problems of arbitrarily large dimension. RMSSA consists of (1) a dimension reduction of the original data via

random projections, (2) the standard MSSA step and (3) a recovery of the MSSA eigenmodes from the reduced

space back to the original space. The RMSSA algorithm is presented in detail and additionally we show how to

integrate it with a significance test based on a red noise null-hypothesis by Monte-Carlo simulation. Finally,

RMSSA is applied to decompose the 20th century globalmonthlymean near-surface temperature variability into

its low-frequency components. The decomposition of a reanalysis data set and two climate model simulations

reveals, for instance, that the 2�6 yr variability centred in the Pacific Ocean is captured by all the data sets with

some differences in statistical significance and spatial patterns.

Keywords: multichannel singular spectrum analysis, random projection, dimensionality reduction, El Niño �
southern oscillation, 20th century reanalysis, HadGEM2-ES, MPI-ESM-MR

1. Introduction

Our motivation to focus on advanced spatio-temporal data

analysis is to better understand the decadal climate varia-

bility in the Earth system and illuminate the capabilities

of prediction tools to capture the associated signals (Meehl

et al., 2014). Inter- and intra-decadal climate variability is

inherent to the ocean�atmosphere system and is further

coupled to other Earth system components, such as sea-ice

and land surface (Meehl et al., 2009). The variability appears

as complex four-dimensional (or spatio-temporal) structures

in Earth system variables, such as wind, temperature and

precipitation (Solomon et al., 2011).

These structures are embedded in extremely large-

dimensional data sets gathered and generated in reanalysis

of atmospheric and oceanic observations, and in massive

simulation endeavours using Earth system models world-

wide. Applicability of advanced data analysis tools is

severely hampered by the very large dimensionality of the

climate data.

Many common analysis methods, such as principal

component analysis (PCA; Von Storch and Zwiers, 1999),

involve eigen-problems, which become impossible to solve

with increasing data dimension. Earlier we illustrated the

use of random projections (RP) as a tool to tackle high-

dimensional problems (Seitola et al., 2014). We demon-

strated how PCA can be applied in three-dimensions to

problems that are beyond practical computational limits

without efficient dimension reduction. PCA is not an ideal

tool, however, to extract and illustrate four-dimensional

eigen-features in climate data. In this respect, the multi-

channel singular spectrum analysis (MSSA; Broomhead

and King, 1986a, b) is a much more appealing method since

the MSSA eigen-problem inherently contains the auto-

covariance in the lagged copies of the original data vectors.

The computational burden is, however, even larger than in

PCA.Weovercome thisburdenbyanovel randomised version

of MSSA, called RMSSA. To our knowledge, this approach

has not been suggested before. We note that Oropeza

and Sacchi (2011) incorporate a randomising operator into

MSSA for noise attenuation in seismic data, but their algo-

rithm is not aimed directly at large-dimensional problems.

In RMSSA, RPs are used essentially to enable analysis of

extremely large-dimensional data sets.
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In this article, we present the RMSSA algorithm in

detail and also include a test for the statistical significance

of the results (Monte-Carlo MSSA; Allen and Robertson,

1996) in the algorithm. We demonstrate the use of RMSSA

by decomposing the 20th century global monthly mean

near-surface temperature variability into its low-frequency

components. The data sources are described in Section 2.3.

2. Methods and Data

2.1. Multichannel singular spectrum analysis

MSSA was introduced into the study of dynamical systems

by Broomhead and King (1986a, b). The method is equiva-

lent to extended empirical orthogonal function (EEOF)

analysis (Weare and Nasstrom, 1982), but there are differ-

ences in the choice of some important parameters and in the

interpretation of the results (Plaut and Vautard, 1994).

In traditional PCA or EOF analysis (e.g. Rinne and

Karhila, 1979), spatial correlations (in case of climatic data

sets) are used in determining the patterns that explain

most of the variability in the data set, but MSSA differs

from this traditional method by also taking into account the

temporal correlations. In other words, standard PCA decom-

poses a spatio-temporal field into spatial PC loading patterns

(EOFs) and corresponding PC score time series (PCs), whereas

MSSA also adds a temporal dimension to EOFs. MSSA PCs

andEOFs are often called space-time PCs (ST-PCs) and space-

time EOFs (ST-EOFs), and we have adopted this notation

here.Amore detailed description ofMSSA is presented inGhil

et al. (2002) and in Appendix A.1 here.

2.1.1. Choice of the lag window. The idea of MSSA, in

brief, is to find the patterns that maximise the lagged

covariance of the data set XN�L within M lags. In case of a

gridded climate data set, N represents the time steps and L

is the number of grid points. The columns of the data

matrix X are often called channels. The length of the lag

windowM is a user choice. For example, Elsner and Tsonis

(1996) suggest that the results of MSSA do not change

significantly with varying M as long as N��M and they

recommend using M�N/4. Vautard and Ghil (1989) re-

commend to choose M no larger than approximately N/3.

Clearly, if the number of channels L is large in the

beginning, choosing large M would result in a very high-

dimensional data matrix with M�L columns, including

lagged copies of each channel in X.

Determining the length of the lag window M is a trade-

off between spectral resolution and statistical significance

of the obtained components. The larger M is chosen, the

more temporal information can be extracted but at the

same time the variance is distributed on a larger set of

components. If M is small, the statistical significance of the

obtained components is enhanced. In this study, we used

several values of M in order to test its effects on the results.

2.1.2. Assessing statistical significance with Monte-Carlo

MSSA. ST-PCs/ST-EOFs often appear in pairs (’sinusoi-

dal’) that explain approximately the same variance and are

p/2 out of phase with each other. These pairs are said to

present stationary or propagating oscillatory modes of the

data set (Plaut and Vautard, 1994). Modes with period less

than or equal to M can be only presented by such pairs.

However, existence of such a pair does not guarantee any

physical oscillation, and according to Allen and Robertson

(1996) such pairs can also be generated by non-oscillatory

processes, such as first-order autoregressive noise.

This finding led Allen and Robertson (1996) to formulate a

test for the statistical significance of MSSA components. The

identified components are tested against a null-hypothesis of

the data being generated by independent AR(1) processes

(i.e. red noise) with the same variance and lag-1 autocorrela-

tion as the original input time series. This procedure is called

Monte-Carlo MSSA (MC-MSSA), and it is described in more

detail in the original study of Allen and Robertson (1996) as

well as in Appendix A.1 of this article.

2.1.3. Reconstructed components. ST-PCs cannot be

compared to the original time series as such; instead, they

can be represented in the original coordinate system by

their reconstructed components, RCs (Plaut and Vautard,

1994; Ghil et al., 2002). In the reconstruction, the ST-PCs

are projected back onto the eigenvectors (ST-EOFs) and

each RC is a kind of filtered version of the original

multivariate time series. Construction of RCs is illustrated

in Fig. 1. Several ST-PCs/ST-EOFs can be used in the

reconstructions, and if there is an oscillation that appears

as a sinusoidal pair, both of these ST-PCs/ST-EOFs should

be included in the reconstruction of that certain oscillatory

mode. This is done by summing up the corresponding RCs.

No information is lost in the reconstruction, and the

original time series is a sum of all individual RCs.

2.2. Randomised algorithm for MSSA

As mentioned earlier, the computational burden of MSSA

becomes soon prohibitively high if the original data set

is high-dimensional and M is chosen to be large. This is

typically the situation in studies of low-frequency variability

in climate data sets. Traditionally, the dimensionality reduc-

tion has been obtained by calculating first a conventional

PCA and retaining a set of dominant PCs for the MSSA
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(see chapter 2.2.3). However, in this article we apply a

different approach to dimensionality reduction. That is, we

use RP to reduce the dimensionality of the original data set

before performing MSSA.

In Halko et al. (2011), it is stated that randomised methods

provide a powerful tool for constructing approximate matrix

factorisations. Compared with standard deterministic algo-

rithms, the randomised methods are often faster and more

robust.Halko et al. (2011) present also numerical evidence that

these algorithms succeed for real computational problems.

2.2.1. Description of RMSSA. In our approach, RP is

applied to reduce the dimension of the original data matrix

X after which the traditional MSSA calculation is per-

formed in the lower-dimensional subspace. Finally, we

reconstruct the ST-EOFs and RCs in the original space.

We call this algorithm randomised multichannel singular

spectrum analysis (RMSSA).

In RP, the original data set is projected onto a matrix R

of Gaussian distributed (zero mean and unit variance)

random numbers in order to construct a lower-dimensional

representation P of the data set:

PN�k ¼ XN�LRL�k (1)

In other words, we are projecting our data set onto k

random directions determined by the column vectors of R.

From these projections a lower-dimensional representation

of the original data set can be constructed. Due to the

simplicity of RP, involving only matrix multiplication, it can

be applied to a wide range of data sets, even very high-

dimensional ones.

RP has already been applied to climate data in Seitola

et al. (2014) and it has been shown to preserve structures

of the original data very well. In that article, the theoreti-

cal background of RP is presented in more detail with

additional references.

1 2 3 4
RC1.1

Channel 1

0

Channel 3

Channel 2

L

N

Shifted
copies of
ST-PC1

RC1.2 RC1.3

t –> N–M+2

M   –< t –< N–M+1

t –< M–1

ST-PC1
M

M0

Fig. 1. Example calculation of the reconstructed components (RCs). A matrix of M shifted copies of a ST-PC (ST-PC1 in this example)

is constructed to calculate reconstructions of that ST-PC in a time series of each channel (grid point). This matrix is then multiplied with

that part of ST-EOF that corresponds to each channel. If t5M, the elements of RC are divided by t, if M5t5N�M�1, divided by M,

and if t]N�M�2, divided by N�t�1.
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The projected lower-dimensional data set P can be pro-

cessed through MSSA where instead of original L channels

we have now only k channels. This implies substantial com-

putational savings (see Appendix A.2, algorithm 1). In the

literature, there are some estimates of an appropriate value

for k (e.g. Frankl andMaehara, 1988; Dasgupta and Gupta,

2003). However, these theoretical lower bounds for k are

the worst case estimates and usually much lower values for

k still give good results, retaining most of the information

of the original data set (see e.g. Bingham and Mannila,

2001; Seitola et al., 2014). In practice, the value for k is

usually chosen adaptively keeping the desired size for lower-

dimensional approximation in mind.

A final step of the algorithm is to calculate the recon-

structed components. This requires the recovery of the MSSA

eigenmodes from the reduced space back to the original space,

allowing the reconstruction of the original time series. This

means that the eigenvectors (ST-EOFs) should be calculated

in the original space instead of the reduced one. This part of

the algorithm is also presented in Appendix A.2. Furthermore,

in Appendix A.4 we explain how RP preserves the lagged

covariance structure of the original data set.

2.2.2. Comparison of RMSSA to previous work. To our

knowledge, the proposed RMSSA algorithm is unique. Some

published work comes close to our approach but RMSSA

has some important differences to the randomised MSSA

algorithms used in seismic data processing (Oropeza and

Sacchi, 2011; Chiu, 2013). The aim of Chiu (2013) was to

introduce a new rank-based-reduction denoising algorithm to

perform coherent and random noise filtering concurrently.

Chiu (2013) named this algorithm, or rather filter, MSSARD

(MSSA in the randomised domain). In MSSARD, the ran-

domising operator randomly rearranges the order of the input

data and reorganises the coherent noise into incoherent noise.

The most important difference to our algorithm is in the

randomising operator: In our case, we are using RP to reduce

the dimensionality of the input data whereas Chiu’s (2013)

approach is to randomly rearrange the input data.

The technique of Oropeza and Sacchi (2011) was to embed a

spatial data at a given temporal frequency into a block Hankel

matrix after which a randomised singular value decomposition

(SVD) was adopted to accelerate the rank reduction stage of

the algorithm.Construction of aHankelmatrix corresponds to

the construction of an augmented data matrix A in our

algorithm (see Appendix A.1). Our algorithm is different in

the sense that we apply RP on the original input data before

construction of the augmented (or Hankel) matrix. This

notably reduces the computational burden of MSSA because

we are processing a much smaller data set already in the

augmentation phase of the algorithm (see algorithm 1 in

Appendix A.2).

In addition to these main differences, the above-

mentioned seismological applications involve handling a

data set where each time/frequency slice of spatial (x-y)

data is processed separately through the algorithm. In our

case, we are processing the whole time�longitude�latitude
data set at once through the RMSSA algorithm.

2.2.3. Enhancing PC-based MSSA. In many studies,

where MSSA is used as an analysis method (e.g. Plaut and

Vautard, 1994; Moron et al., 2012), the dimension of the

original data matrix has been reduced by calculating a

conventional PCA of the original data matrix and then

limiting MSSA into the dominant PCs. One has to bear in

mind that the problem dimension may be prohibitive to

contemplate solving even PCA, let alone MSSA. Never-

theless, the number of retained PCs is a somewhat arbitrary

choice, but can be estimated by inspecting the eigenvalue

spectrum and choosing the PCs that account for themajority

of the variance and are separated from the rest of the

spectrum. In geophysical datasets, however, the eigenvalue

spectrum often decreases monotonically and it is difficult to

distinguish the appropriate cut-off point. The aim of the

study does also affect the choice of the PCs. For example,

if the focus is on large-scale patterns, it might be more

convenient to choose the low-frequency PCs for further

analysis. Performing the calculations with different number

of PCs and comparing the results can also help in finding

the appropriate number of PCs. Importantly, RMSSA

(AppendixA.2, algorithm1) does not suffer from this problem

because the lower-dimensional data set has essentially the

same structure as the original high-dimensional data set.

PCA-based dimensionality reduction is, however, a pre-

ferred method if the oscillatory modes identified withMSSA

are tested against a red noise null-hypothesis through

Monte-Carlo simulation. According toAllen andRobertson

(1996) the test is only useful if the channels in the data

matrix are orthogonal or at least very nearly so. The PCs

fulfil the orthogonality condition exactly. The randomised

method can still accelerate � and in the case of a very-high-

dimensional data set even enable � the calculation of the PCs
(see Appendix A.2, algorithm 2).

This also raises the question as to whether the projected

data set [i.e. matrix P in eq. (1)] could be used directly in

MC-MSSA. Like the PCs, RP is also an orthogonal pro-

jection and the columns of P are also nearly orthogonal.

However, this question is beyond the scope of this study

and will not be discussed here any further.

2.3. Data

As an illustration of applying the RMSSA algorithm, we

analysed the monthly mean near-surface air temperature
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field from the 20th Century Reanalysis V2 data, hereafter

20CR, provided by the NOAA/OAR/ESRL PSD (Compo

et al., 2011). In addition, we repeated the analysis for the

historical 20th century simulations by Hadley Global

Environment Model 2 � Earth System HadGEM2-ES

(Collins et al., 2011), hereafter HadGEM2, and MPI Earth

System Model (ESM) running on a medium resolution grid

MPI-ESM-MR (Stevens et al., 2013), hereafter MPI-ESM.

We extended the historical simulations (1901�2005) until

2012 using the rcp45 simulations. The historical and rcp45

simulations were extracted from the CMIP5 data archive

and they follow the CMIP5 experimental protocol (Taylor

et al., 2012). In the 20th century simulations, the historical

record of climate forcing factors such as greenhouse gases,

aerosols and natural forcings such as solar and volcanic

changes is used. Rcp45 simulations follow the RCP4.5 green-

house gas scenario. We used a single ensemble member of

each model: r2i1p1 in case of HadGEM2 and r1i1p1 in case

of MPI-ESM.

The 20CR data set is produced using an ensemble of

perturbed reanalyses, and the final data set corresponds to

the ensemble mean. Only surface pressure observations are

assimilated, and the observed monthly sea-surface tem-

perature and sea-ice distributions are used as boundary

conditions to generate full three-dimensional estimates of

the state of the troposphere (Compo et al., 2011). The

20CR data set is available from 1871 to 2012 but to be

consistent with HadGEM2 and MPI-ESM simulations, the

time sequence analysed here is 1901�2012 (1344 time steps).

20CR has �2.0 degree horizontal resolution and we have

used Gaussian gridded (192�94) data from 3-hour fore-

cast values. HadGEM2 and MPI-ESM have both a global

grid of 144�73 points. Thus, we have original data sets

XN�L with N�1344, L�18048 (20CR) and L�10512

(HadGEM2 and MPI-ESM).

As an illustrative example of the high-dimensionality of

the MSSA problem, let’s choose a lag window of M�240

(months). In the case of the 20CR data set, this would result

in an augmented matrix with M�L�4331520 columns.

Clearly some kind of dimensionality reduction is needed in

order to make the computations more efficient or evenmake

them possible.

3. Results

3.1. Application of RMSSA to climatic data sets

In the previous section, we have introduced the RMSSA

algorithm and the data sets to be analysed. Next we will

proceed to the applications of the proposed method and

discuss the results.

First, the original data sets weremean centred andRMSSA

(algorithm 1 in Appendix A.2) was applied with k�500.

The first 1�30 ST-PCs of 20CR are shown in Fig. 2. In

order to find the most powerful frequencies associated

with the ST-PCs, the Multitaper spectral analysis method

(Thomson, 1982; Mann and Lees, 1996) was applied. The

power spectra of the ST-PCs are shown on the right in Fig. 2.

The first pair of ST-PCs is clearly related to the annual cycle

and this pair together explains the majority of the variance

of the data set (almost 90%). The pairs of ST-PCs 3�4, 7�8
and 12�13 are the subharmonic frequencies of the annual

cycle. The periods of ST-PCs 5, 6 and 11 as well as of ST-PCs

14, 17 and 18 fall outside the lag window length M and are

the so-called trend components. ST-PC5 may be related to

a centennial scale warming trend and ST-PC11 has a multi-

decadal scale variability. ST-PCs 22 and 24 have clear

spectral peaks on a 5�6 yr period and ST-PCs 29 and 30

are oscillating on a period of 3�4 yr. Those ST-PCs might be

related to the El Niño-Southern Oscillation (ENSO) which

is a prominent phenomenon on those time scales. ST-PCs

19�21 are related to a decadal scale variability, but the

spectra of those components are quite broad on a 10�20 yr

time scale.

The above analysis was also performed for theHadGEM2

and MPI-ESM data sets (figures not shown). As the annual

cycle is too dominating in each data set, the analysis in

the following sections will be repeated without the annual

cycle. We also integrate a MC-MSSA step in the RMSSA

algorithm (Appendix A.2, algorithm 2) in order to study the

statistical significance of the obtained components.

3.1.1. Pre-processing the data for Monte-Carlo MSSA.

Some pre-processing of the original data sets was crucial

in order to assess the statistical significance of the low-

frequency variability using MC-MSSA. First of all, the

original data sets were standardised (i.e. the time series of

each grid point was mean centred and divided by its stan-

dard deviation) in order to avoid overweighting the grid

points with higher variance. Furthermore, the annual cycle

of the time series of each grid point was estimated by STL

(Loess based Seasonal-Trend Decomposition) and removed

from the original data set. The STL method is a filtering

procedure for decomposing a time series into trend, seasonal

and remainder components. It includes some parameter

choices controlling, for instance, how rapidly the trend and

seasonal components can change. Themethod is described in

detail in Cleveland et al. (1990) and we have followed their

guidelines in choosing the related parameters. Without this

procedure the annual cycle would dominate the results and

starve the lower ranked MSSA components of power when

tested against the red noise null-hypothesis. Linear trends

were also fitted and removed from the data sets in order to

avoid the dominance of the centennial scale trend.

RANDOMISED MULTICHANNEL SINGULAR SPECTRUM ANALYSIS 5



For the sake of comparison, the annual cycle was also

estimated by calculating the mean values of each calendar

month and those values were subtracted from the data to

get monthly anomaly time series. However, determining the

base for the anomaly calculation is not that straightforward

and the choice of a base period may have severe impacts on

the results (Kawale et al., 2011). Furthermore, the average

annual cycle is only removed and if the annual cycle varies

in the time series, the anomalies still contain a residual

annual cycle.

The dimensions of the original data sets were reduced by

applying RP with k�500 to have a lower-dimensional

approximation PN�k of each data set. To be able to

perform MC-MSSA, we further calculated SVD of P and

retained 30 first PCs of each data set, explaining approxi-

mately 72% (20CR), 67% (HadGEM2) and 64% (MPI-

ESM) of the variance. Those 30 PCs were used as input

channels in the MC-MSSA-step.

3.1.2. Decomposition of the pre-processed data sets. The

ST-PCs 1�30 of each data set and their spectra are

presented in Figs. 3�5. These figures show the results after

applying the steps 1�8 of algorithm 2 in Appendix A.2

(note that the annual cycle and linear trend were removed

from the original data sets). In 20CR (Fig. 3), the ST-PCs

1�2 are so-called trend components explaining together

almost 9% of the variability of the data set. Pairs of
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Fig. 2. ST-PCs 1�30 of 20CR monthly near-surface temperature 1901�2012 and their spectra. The lag window lengthM used in RMSSA

is 20 yr (240 months). The data set is centred and algorithm 1 of Appendix A.2 is applied. The proportion of the variance explained by each

component is also presented in the figure.
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ST-PCs 3�4 and 5�6 in 20CR have clear peaks in

frequencies corresponding to 3�4 yr and over 5 yr periods.

In addition, 2�3 yr periodicities are distributed on several

ST-PCs beginning from the 14th one. When the model

simulations are compared to the 20CR components, the

main differences are the prominent decadal scale compo-

nents of HadGEM2 (ST-PCs 2�3, 9.3% of explained

variance) and the 2�7 yr variability of MPI-ESM that is

distributed on a large set of successive components. For

more details, the readers are advised to study Figs. 3�5.
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Fig. 3. ST-PCs 1�30 of 20CR monthly near-surface temperature 1901�2012 and their spectra. The lag window lengthM used in RMSSA

is 20 yr (240 months). The annual cycle and linear trend are removed from the original data set and algorithm 2 of Appendix A.2 is applied.

The proportion of the remaining variance explained by each component is also presented in the figure.
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3.2. Identifying significant oscillations

In MC-MSSA step, in total of 1000 realisations of red-noise

surrogates were generated and the red-noise basis was used to

estimate the 90, 95 and 99% confidence intervals for the

eigenvalues generated by the noise model that consists

of independent first-order autoregressive processes. Figure 6

shows the results of the Monte-Carlo significance test of

20CR, HadGEM2 and MPI-ESM with a 20 yr lag win-

dow (M�240 months). In that figure, the data eigenvalues

and 2.5th and 97.5th percentiles of the distribution of the

surrogate eigenvalues are plotted against the dominant fre-

quencies of the corresponding red-noise basis vectors (noise

ST-EOFs). The dominant frequencies are estimated using fast
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Fig. 4. ST-PCs 1�30 of HadGEM2 monthly near-surface temperature 1901�2012 and their spectra. The lag window length M used in

RMSSA is 20 yr (240 months). The annual cycle and linear trend are removed from the original data set and algorithm 2 of Appendix A.2 is

applied. The proportion of the remaining variance explained by each component is also presented in the figure.
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Fourier transform (FFT). It should be noted, that the estimate

of the dominant frequency of the noise ST-EOFs may not

be exactly the same as the dominant frequency of the data

ST-EOFs which may cause some small inaccuracies in the

results.

The significant signals (at 5% significance level) in Fig. 6

are those whose data eigenvalues lie above the 97.5th

percentiles of the surrogate eigenvalues. According to the

test these signals have more variance than would be ex-

pected to have from a noise process. According to Plaut and

30
29

28
27

26
25

24
23

22
21

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
15.3

Explained
variance (%) 20 10 5 34 2 1

Total explained
variance 38.99%

1920 1940 1960 1980 2000 20 10 5
Period in years

4 3 2 1

2.9

2.8

2.8

2.5

2.4

2.1

2.0

1.5

1.5

1.3

1.1

0.9

0.9

0.9

0.7

0.7

0.7

0.6

0.6

0.6

0.5

0.5

0.5

0.5

0.5

0.4

0.4

0.4

0.4

Fig. 5. ST-PCs 1�30 of MPI-ESM monthly near-surface temperature 1901�2012 and their spectra. The lag window length M used in

RMSSA is 20 yr (240 months). The annual cycle and linear trend are removed from the original data set and algorithm 2 of Appendix A.2 is

applied. The proportion of the remaining variance explained by each component is also presented in the figure.
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Vautard (1994) the use of a lag window length M typically

allows the distinction of oscillations with periods in the range

[M/5,M]. Therefore we only show the significance test of the

periodicities that are covered by the 20 yr lag window used in

this example. From Fig. 6, we can see that in 20CR data set

there are some significant periodicities (at 5% level) between

1.7 and 5.5 yr. HadGEM2 has somewhat more significant

periodicities compared to 20CR, especially on 10 yr time

scales, butMPI-ESMhas hardly any eigenvalues lying above

the 97.5th percentile.

3.2.1. Results with different lag window lengths. As noted

earlier, the Monte-Carlo simulations were performed with

varying lag windowM to estimate its effect on the statistical

significance of the oscillations. Spectral resolution increases

with lag window length and oscillatory pairs with longer

periodicity can be identified. However, at the same time the

statistical significance of the identified oscillationsmay decline.

We used the following values of M: 5 yr (M�60 months),

10 yr (M�120), 20 yr (M�240), approx. 28 yr [M�340:N/4,

following the recommendation of Elsner and Tsonis (1996)]

and approx. 38 yr [M�450:N/3, following Vautard and

Ghil (1989)].

The identified periodicities and their significance levels

with increasing lag window are presented in Fig. 7. The

numbers in Fig. 7 show the dominant periods associated

with the oscillations. These dominant periods are estimated

using FFT. From Fig. 7 we can see that in 20CR the

significant periodicities are consistently found at 3.6, 2.3

and 1.7 yr, depending to some extent on M. Those periods

are more or less visible in HadGEM2 and to a lesser extent

in MPI-ESM. Significant 5�6 yr oscillations are identified

in all the data sets and especially a �5.5 yr variability is

found consistently.

2�6 yr oscillations are usually attributed toENSOwhich is

a globally dominating form of variability on annual to

decadal time scales (e.g. Kleeman, 2008). It is a broadband

phenomenon with several spectral peaks and the highest

peak is around 4 yr. This can also be seen in our analysis of

20CR, HadGEM2 andMPI-ESM data sets because most of

the significant oscillations are concentrated on 2�6 yr time

scales. However, the spectra of MPI-ESM (Fig. 5) differs

distinctly from the spectra of the other two data sets: the

Fig. 6. MC-MSSA test of the monthly near-surface temperature variability in 20CR, HadGEM2 and MPI-ESM data sets 1901�2012.
PCs 1�30 of RP�PCA (see Appendix A.2, algorithm 2) are used as input channels in the analysis and the lag window length M is 20 yr

(240 months). In MC-MSSA, the red-noise basis is used. Red squares show the data eigenvalues plotted against the dominant frequency of

the ST-PC corresponding to each eigenvalue. The vertical bars show the 2.5th and 97.5th percentiles of the eigenvalue distribution

calculated from 1000 realisations of the red-noise surrogates. The ST-PCs that correspond to eigenvalues rising above the 97.5th percentiles

are considered significant at the 5% level. Note the missing power at 1 yr due to the removal of the annual cycle.
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power on 2�8 yr time scales is distributed on a large set of

components (especially ST-PCs 4�18) which also decreases

the statistical significance of oscillations on those time scales.

In HadGEM2, significant decadal scale oscillations are

identifiedwith all lagwindow lengths.Dominant peak on the

decadal time scales has been noted by Collins et al. (2008)

and one of the possible reasons for this is in deficiencies

of simulation of the ENSO phase-changing process in

HadGEM2 (Martin et al., 2010).

There are also significant multi-decadal components in

20CR data set, but their period decreases with increasing

lag window M. The time series to be analysed become
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Fig. 7. Periodicities (years) detected by RMSSA/MC-MSSA with varying lag window length (years) for each data set (20CR, HadGEM2

and MPI-ESM). The similar periodicities among the data sets are aligned. Numbers in the figure are in bold if the significance level of a

periodicity is 1%, and with grey background if 10%. Otherwise the significance level is 5%. Dominant frequencies of the oscillations are

estimated using fast Fourier transform (FFT).
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shorter with increasing M and this may have an effect on

the identified period length. We did not find significant

multi-decadal components in HadGEM2 and MPI-ESM

data sets, although 27 yr and 26 yr periods are identified

on 10% significance levels, but only with a single lag win-

dow length. However, the use of a lag window M typically

allows only the distinction of oscillations with periods 5M

and thus the interpretation of those multi-decadal compo-

nents remains uncertain.

3.3. Reconstruction of the significant oscillations

The final step of our analysis is to reconstruct the decomposed

signals in the original space. As an illustration, we have chosen

to reconstruct the signal corresponding to approximately

5.5 yr variability, which was identified in all the data sets.

In order to see the time evolution of the �5.5 yr

variability, we have reconstructed the time series in each

gridpoint of the original data set with the ST-PCs corre-

sponding to the signal of interest. I.e., in the reconstruction

we have projected the original (centred) data set onto ST-

PCs (calculated in the reduced space) to obtain ST-EOFs

in the original space and then projected the ST-PCs onto

those ST-EOFs (see Appendices A.2 and A.4 for more

details). In order to see the global effects of the �5.5 yr cycle,

the time series of each grid point has its original variance.

The above calculations were completed for each data set

using their own �5.5 yr patterns. ST-PCs 5 and 6 of the

20CRdata set (Fig. 3), ST-PCs 6 and 7 ofHadGEM2 (Fig. 4)

and ST-PCs 4 and 5 of MPI-ESM (Fig. 5) were used in the

reconstruction.

Once we have reconstructed the time series in each

gridpoint we can plot the anomalies related to the signal

month by month. These plots are presented as animations

of each data set (20CR, HadGEM2 and MPI-ESM) for a

time period of 1901�2012 (the animations are available at

www.youtube.com/channel/UCRjwc6cI-TzbvtShONYZ7cg).

In Fig. 8, we also show the global patterns of the �5.5 yr

variability of near-surface temperature anomaly. The pat-

terns are composites of eight cases, when the oscillation is in

its positive phase in the equatorial Pacific. Positive events are

defined as an average of wintermonths (November�March).

The temperature anomalies of 20CR have many simila-

rities to global El Niño effects, such as above average tem-

peratures in the central and eastern equatorial Pacific Ocean,

in the western and northern parts of North-America and

South-America as well as in South-East Asia, Australia

and southern Africa. Below average anomalies are found in

the south-east parts ofNorth-America, in the north-west and

south-west Pacific as well as in northern parts of Eurasia.

Fig. 8. Global patterns of �5.5 yr oscillation of the near-surface temperature anomaly (8C) in 20CR, HadGEM2 and MPI-ESM data

sets 1901�2012. The patterns are calculated as composites of eight cases, when the oscillation is in its maximum positive phase in the

equatorial Pacific. Those positive events are defined as an average of winter months (Nov�Mar). See the text for more details on the

reconstruction procedure. The identified patterns have similarities to El Niño -phenomenon.
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In 20CR, a typical north-south wave train is also seen, but

the east-west patterns areweaker, except for the anomalies at

the Amazonas.

HadGEM2 and MPI-ESM show similarities to 20CR,

but differences can be seen, for example, in the Pacific

forcing patterns. Especially in MPI-ESM the centre of the

forcing pattern seems to be more western. In the model

simulations, the negative anomaly near the west-coast of

North-America extends to the continent, which is not

detected in 20CR. The positive anomalies in HadGEM2

and MPI-ESM also extend into the northern Eurasia and

there are anomaly patterns in the southern Indian Ocean

which are absent in 20CR. MPI-ESM has a stronger

positive anomaly in the coast of South-East Asia compared

to the other two data sets. In addition, there is a strong

anomaly near the Antarctic Peninsula in the Weddel Sea in

the 20CR data set which is not detected in the model

simulations. The anomaly patterns in the Atlantic Ocean

are also weaker in 20CR compared to simulations.

The animations of the �5.5 yr pattern (available at

www.youtube.com/channel/UCRjwc6cI-TzbvtShONYZ7cg)

show some more features in addition to the ones seen

in Fig. 8. For instance, in 20CR animation there is a quite

strong anomaly pattern to the west of Ural Mountains.

This pattern is not usually associated with ENSO, and its

maximum negative and positive phases seem to occur at

different times compared to the ENSO-related anomaly

patterns in the Pacific. However, this pattern to the west

ofUralmight also reflect someother phenomenon,mixedwith

the ENSO patterns.

The animations also show that the variability has a more

propagating character in 20CR data set whereas the anomaly

patterns in the model simulations are more stationary. In

the northern and southern Pacific Ocean, for example, the

anomalies seem to propagate eastward in the 20CR animation.

Compared to 20CR, HadGEM2 and MPI-ESM show a

richer structure in Fig. 8 and in the animations. One has to

remember that the reanalysis data set is an ensemble mean

whereas the analysis of the climate model simulations is

conducted on a single ensemble member of each model.

This may also contribute to the structure seen in the model

simulations. Different, more or less real, phenomena may

also be mixed in the variability patterns of the simulations.

4. Summary and Discussion

We have introduced an RMSSA algorithm, which allows

the calculation of MSSA of extremely high-dimensional

problems. The RMSSA algorithm first reduces the dimen-

sion of the original data set byRP, then decomposes the data

set into components of different frequencies by calculating

MSSA in a reduced space, and finally reconstructs the com-

ponents in the original high-dimensional space.

We have applied the RMSSA algorithm to decompose

the monthly mean near-surface air temperature of the 20th

century reanalysis and the historical 20th century simula-

tions of HadGEM2-ES and MPI-ESM-MR extracted from

the CMIP5 data archives. We have also performed Monte-

Carlo simulations in order to estimate the significance of

the identified low-frequency components. Our analysis

shows that 2�6 yr oscillations are present in all the data

sets. Their statistical significance is highest in HadGEM2

while in MPI-ESM the power on those timescales is

distributed on a large set of components decreasing their

statistical significance.

2�6 yr oscillations are usually attributed to ENSO which

is a globally dominating form of variability on annual to

decadal time scales. Our global monthly animations of 5�6
yr near-surface temperature cycle match quite well with

the known temperature anomalies related to ENSO. The

reanalysis and the historical simulations have similar

anomaly patterns in the central and eastern Pacific Ocean,

around the northern part of Indian Ocean as well as in the

north-west North-America, but also some notable differ-

ences in several areas, such as Eurasia. Also, our anima-

tions of the 5�6 yr cycle reveal a propagating structure

in the near-surface temperature anomalies of 20CR, while

the variability in HadGEM2 and MPI-ESM data sets is

more stationary. The focus of this study was to introduce

the RMSSA algorithm and the discussion on the possible

causes for the differences in oscillatory patterns of the

data sets is limited. However, this would be a subject for a

further study with a larger set of climate model data sets

included.

RMSSA algorithm is a powerful tool when the dimen-

sions of the data sets become prohibitively large. It allows

a computationally efficient way of decomposing a data

set into its spatio-temporal patterns. Several climatic state

variables can be incorporated in the RMSSA at the same

time in order to find the co-varying signals and illustrate

their propagation. RMSSA can also be used in studying the

oscillations in three dimensions including data from several

atmospheric levels in the analysis.
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Appendix A

A.1. MSSA and Monte-Carlo MSSA

A.1.1. Multichannel singular spectrum analysis

(MSSA)

The aim of MSSA is to identify spatially and temporally

coherent patterns in a multivariate data set. In MSSA

terminology, the columns of the original data matrix XN�L

are called channels. In case of gridded data set, N

represents the time steps and L is the number of grid points:

X ¼

x1;1 x1;2 � � � x1;L

x2;1 x2;2 � � � x2;L

..

. ..
. . .

. ..
.

xN;1 xN;2 � � � xN;L

2
6664

3
7775 (A1)

The next step is to construct an augmented data matrix A,

which contains M lagged copies of each channel in X:

Yi ¼

x1;i x2;i � � � xM;i

x2;i x3;i � � � xMþ1;i

..

. ..
. . .

. ..
.

xN0;i xN0þ1;i � � � xN;i

2
6664

3
7775; i ¼ 1:::L (A2)

and

A ¼ Y1 Y2 � � � YL½ � (3)

In MSSA, M represents the lag window. A has now ML

columns and N 0 ¼ N �M þ 1 rows. The singular value

decomposition (SVD) of A can now be calculated:

A ¼ UAD
1=2
A VT

A ; (4)

The vectors of UA are the eigenvectors of ZA ¼ 1
ML

AAT and

VT
A contains the eigenvectors of CA ¼ 1

N0A
TA. These vectors

are orthogonal and often called space-time principal

components (ST-PCs) and space-time empirical orthogonal

functions (ST-EOFs), respectively. Diagonal elements of

DA are the eigenvalues of CA or ZA.

Optionally the lag-covariance matrix CA (or ZA) and its

eigendecomposition can be calculated to yield eigenvectors

VT
A (or UA) and eigenvalues (diagonal elements of matrix

DA ¼ VT
ACAVAor DA ¼ UT

AZAUA). Matrix UA (or VT
A) can

be obtained by projecting A onto VT
A(or UA). If N

0 > ML

(or ML > N 0), it is more convenient to estimate CA (or ZA)

because it is smaller. See Allen and Robertson (1996) for

details.

A.1.2. Monte-Carlo MSSA

The components obtained by MSSA can be tested against a

null-hypothesis of the data being generated by independent

AR(1) processes (i.e. red noise). The red noise model has

the form:

utþ1;s ¼ csut;s þ aswt;s; (A5)

where gs is the lag-1 autocorrelation of channel s (in the

original data set), as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csð1� c2s Þ

p
(c s is the variance of

channel s) and Wt,s is Gaussian white noise. The data set

generated by the model in (A5) is called the surrogate data

set and it is subjected to MSSA in the same way as the

original data set. Large number of surrogates are generated

in order to estimate the confidence limits for the MSSA

results of the original data set.

In the test of Allen and Robertson (1996), the lag-

covariance matrices of the original data set and the red-

noise surrogates are projected either onto the data-adaptive

basis (i.e. UA or VT
A) or the null-hypothesis basis. The null-

hypothesis basis can be calculated from the expected lag-

covariance matrix CN of the red-noise surrogates. CN can

be estimated analytically by

½CN � ¼
1

ML

XML

s¼1

csc
ii�jjj j
s (A6)

Projection onto the red-noise basis is considered more

reliable because the use of the data-adaptive basis assumes

the existence of an oscillation even in a case where it is

uncertain whether or not the oscillation is significant.

According to Allen and Robertson (1996), the input

channels should be uncorrelated (or at least nearly) at zero

lag for the test to be useful. In the case of a gridded data

set, where all the grid point time series are used as input

channels, the decorrelation condition is not valid. The test

might still be useful if we are using grid points sufficiently

far from each other as the input channels for the test (Ghil

et al., 2002).

A.2. Randomised algorithms for MSSA

1: Original MSSA algorithm enhanced by RP

(1) construct the original data matrix XN�L

(2) (pre-processing of X, if needed)

(3) generate k L-dimensional vectors of Gaussian dis-

tributed random numbers to get matrix R (and

optionally orthogonalise the random vectors)

(4) project the original data matrix onto random

vectors: PN�k ¼ 1ffiffi
k

p XN�LRL�k

(5) generate augmented matrix ARP of P

(6) calculate SVD: ARP ¼ URPD
1=2
RPV

T
RP (or covariance

matrix CRP or ZRP and its eigendecomposition)

(7) calculate ST-EOFs in the original space: VA:
ATURPðD

1=2
RP Þ

�1
(see Appendix A.4 for an explanation)

(8) calculate RCs using ST-EOFs of step 7.
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2: PC-based MSSA algorithm enhanced by RP

(1) construct the original data matrix XN�L

(2) (pre-processing of X, if needed)

(3) generate k L-dimensional vectors of Gaussian

distributed random numbers to get matrix R (and

optionally orthogonalise the random vectors)

(4) project the original data matrix onto random

vectors: PN�k ¼ 1ffiffi
k

p XN�LRL�k

(5) calculate SVD of P (see Appendix A.3 for an

explanation of how the covariance is preserved in

RP�SVD)

(6) retain e.g. 30 first PCs of P to obtain reduced

matrix T

(7) generate augmented matrix APC of T

(8) calculate SVD: APC ¼ UPCD
1=2
PCV

T
PC (or covariance

matrix CPC or ZPC and its eigendecomposition)

(9) (MC-MSSA step)

(10) calculate ST-EOFs in the original space: VA:
ATUPCðD

1=2
PC Þ

�1
(seeAppendixA.4 for an explanation)

(11) calculate RCs using ST-EOFs of step 10.

A.3. RP and SVD

The method to back-project from the reduced space to the

original space in the case of RP�SVD is explained in

Seitola et al. (2014) (Appendix A.1) but we also present it

briefly here:

The SVD of the original data matrix XN�L is:

XN�L ¼ UN�NDN�LV
T
L�L (A7)

U contains the eigenvectors of Z�XXT.

Random projection (RP) of X is P�XR, where RL�k is

the projection matrix and the row vectors of R are scaled to

have unit length. Thus, we can write:

ZRP ¼ XRðXRÞT ¼ XRRTXT � XXT ¼ Z (A8)

In the previous, we have assumed that RRT � I because the

row vectors of R are nearly orthonormal. It is also possible

to make the vectors of R strictly orthonormal, in which

case RRT ¼ I. However, orthogonalisation is often not

necessary, because the difference between the orthogona-

lised and non-orthogonalised random vectors is very small,

especially in high-dimensions.

Let’s rewrite (A7) as XN�L ¼ UN�rDr�rV
T
r�L, where

r�rank(X). Now we can manipulate (A7):

X ¼ UDVT ðUTU ¼ IÞ
UTX ¼ DVT ðD�1D ¼ IÞ
VT ¼ D�1UTX transpose of both sides
V ¼ XTUðD�1ÞT ¼ XTUD�1 ðA9Þ

Because Z:ZRP we can approximate

U � URP;
D � DRP and
V � XTURPD

�1
RP ðA10Þ

In the previous, we have defined URP as N�k and DRP as

a k�k matrix, where k is the rank of matrix PN�k.

A.4. RP and MSSA

In this appendix, we will explain how to get from the

reduced space back to the original space in the case of

RP�MSSA.

Let’s write the original data matrix XN�L as

X ¼

x1;1 x1;2 � � � x1;L

x2;1 x2;2 � � � x2;L

..

. ..
. . .

. ..
.

xN;1 xN;2 � � � xN;L

2
6664

3
7775 ¼

x1

x2

..

.

xN

2
6664

3
7775; (A11)

where xi are the row vectors of X.

The augmented matrix A of X is already defined in

Appendix A.1. Now let’s calculate AAT.

AAT ¼ Y1 Y2 � � � YL½ �

YT
1

YT
2

..

.

YT
L

2
6664

3
7775

¼ Y1Y
T
1 þ Y2Y

T
2 þ � � � þ YLY

T
L

� �
(A12)

After some algebra we get

AAT¼

x1x
T
1 þ x2x

T
2 þ � � � þ xMxT

M x1x
T
2 þ x2x

T
3 þ � � � þ xMxT

Mþ1 � � � x1x
T
N0 þ x2x

T
N0þ1 þ � � � þ xMxT

N

x2x
T
1 þ x3x

T
2 þ � � � þ xMþ1x

T
M x2x

T
2 þ x3x

T
3 þ � � � þ xMþ1x

T
Mþ1 � � � x2x

T
N0 þ x3x

T
N0þ1 þ � � � þ xMþ1x

T
N

..

. ..
. . .

. ..
.

xN0x
T
1 þ xN0þ1x

T
2 þ � � � þ xNx

T
M xN0x

T
2 þ xN0þ1x

T
3 þ � � � þ xNx

T
Mþ1 � � � xN0x

T
N0 þ xN0þ1x

T
N0þ1 þ � � � þ xNx

T
N

2
6664

3
7775 (A13)

RANDOMISED MULTICHANNEL SINGULAR SPECTRUM ANALYSIS 15



Now let’s calculate RP of X:

XR ¼

x1

x2

..

.

xN

2
6664

3
7775R ¼

x1R
x2R

..

.

xNR

2
6664

3
7775 (A14)

The augmented matrix of is ARP:

ARP ¼

x1R x2R � � � xMR
x2R x3R � � � xMþ1R

..

. ..
. . .

. ..
.

xN0R xN0þ1R � � � xNR

2
6664

3
7775 (A15)

Let’s calculate ARPA
T
RP:

ARPA
T
RP ¼

x1R x2R � � � xMR
x2R x3R � � � xMþ1R

..

. ..
. . .

. ..
.

xN0R xN0þ1R � � � xNR

2
6664

3
7775

�

RTxT
1 RTxT

2 � � � RTxT
N0

RTxT
2 RTxT

3 � � � RTxT
N0þ1

..

. ..
. . .

. ..
.

RTxT
M RTxT

Mþ1 � � � RTxT
N

2
6664

3
7775 (A16)

Because RRT � I, the first element of ARPA
T
RP can be

written as x1RR
TxT

1 þ x2RR
TxT

2 þ � � � þ xMRR
TxT

M � x1x
T
1

þx2x
T
2 þ � � � þ xMx

T
M

After calculating all the elements of ARPA
T
RP as above, we

see that AAT � ARPA
T
RP. Therefore, as in Appendix A.3, we

can approximate

UA � URP;
DA � DRP and
VA � ATURPD

�1
RP ðA17Þ

Same kind of reasoning applies also when the PCs of the

data set are used as channels in MSSA. We can write PCs

as UN�rDr�r ¼ XN�LVL�r, where r�rank(X). Vectors of

V are orthonormal, so in the above calculations we can

replace R with V.

References

Allen, M. R. and Robertson, A. W. 1996. Distinguishing modu-

lated oscillations from coloured noise in multivariate datasets.

Clim. Dyn. 12(11), 775�784.
Bingham, E. and Mannila, H. 2001. Random projection in

dimensionality reduction: applications to image and text data.

In: Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’01.

New York, ACM, 245�250.
Broomhead, D. S. and King, G. P. 1986a. Extracting qualitative

dynamics from experimental data. Physica D 20, 217�236.
Broomhead, D. S. and King, G. P. 1986b. On the qualitative analy-

sis of experimental dynamical systems. In: Nonlinear Phenomena

and Chaos (ed. S. Sarkar). Adam Hilger, Bristol, pp. 113�144.

Chiu, S. K. 2013. Coherent and random noise attenuation via

multichannel singular spectrum analysis in the randomized

domain. Geophys. Prospect. 61, 1�9.
Cleveland, R. B., Cleveland, W. S., McRae, J. E. and Terpenning,

I. 1990. STL: a seasonal-trend decomposition procedure based

on loess. J Off. Stat. 6, 373.

Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N.,

Halloran, P. and co-authors. 2011. Development and evaluation

of an Earth-System model HadGEM2. Geosci. Model Dev. 4,

1051�1075.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N.,

Hinton, T. and co-authors. 2008. Evaluation of the HadGEM2

model. Met Office Hadley Centre Technical Note no. HCTN 74,

available fromMet Office, FitzRoy Road, Exeter EX1 3PB. Online

at: http://www.metoffice.gov.uk/publications/HCTN/index.html

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N.,

Allan, R. J. and co-authors. 2011. The twentieth century reanalysis

project. Quart. J. Roy. Meteorol. Soc. 137, 1�28.
Dasgupta, S. and Gupta, A. 2003. An elementary proof of a

theorem of Johnson and Lindenstrauss. Rand. Struct. Algo. 22,

60�65.
Elsner, J. B. and Tsonis, A. A. (eds.). 1996. Singular Spectrum

Analysis: A New Tool in Time Series Analysis. Springer Science

& Business Media, New York, NY, USA.

Frankl, P. andMaehara, H. 1988. The Johnson-Lindenstrauss lemma

and the sphericity of some graphs. J. Combin. Theory Ser. B 44,

355�362.
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D.

and co-authors. 2002. Advanced spectral methods for climatic

time series. Rev. Geophys. 40(1), 1�41.
Halko, N., Martinsson, P. G. and Tropp, J. A. 2011. Finding

structure with randomness: probabilistic algorithms for con-

structing approximate matrix decompositions. SIAM Rev. 53(2),

217�288.
Kawale, J., Chatterjee, S., Kumar, A., Liess, S., Steinbach, M. and

co-authors. 2011. Anomaly construction in climate data: issues

and challenges. In: Proceedings of the 2011 Conference on

Intelligent Data Understanding, CIDU, Mountain View, CA,

USA, pp. 189�203.
Kleeman, R. 2008. Stochastic theories for the irregularity of

ENSO. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci.

366(1875), 2509�2524.
Mann, M. E. and Lees, J. M. 1996. Robust estimation of

background noise and signal detection in climatic time series.

Clim. Change 33, 409�445.
Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson,

S. and co-authors. 2010. Analysis and reduction of systematic

errors through a seamless approach to modeling weather and

climate. J. Clim. 23(22), 5933�5957.
Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G.

and co-authors. 2014. Decadal climate prediction: an update

from the trenches. Bull. Amer. Meteor. Soc. 95, 243�267.
Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G.

and co-authors. 2009. Decadal prediction: can it be skillful? Bull.

Amer. Meteor. Soc. 90, 1467�1485.
Moron, V., Robertson, A. W. and Ghil, M. 2012. Impact of

the modulated annual cycle and intraseasonal oscillation on

16 T. SEITOLA ET AL.



daily-to-interannual rainfall variability across monsoonal India.

Clim. Dyn. 38, 2409�2435.
Oropeza, V. and Sacchi, M. 2011. Simultaneous seismic data

denoising and reconstruction via multichannel singular spectrum

analysis. Geophysics 76, V25�V32.
Plaut, G. and Vautard, R. 1994. Spells of low-frequency oscillations

and weather regimes in the Northern Hemisphere. J. Atmos. Sci.

51(2), 210�236.
Rinne, J. and Karhila, V. 1979. Empirical orthogonal functions of

500 mb height in the northern hemisphere determined from a

large data sample. Quart. J. Roy. Meteorol. Soc. 105, 873�884.
Seitola, T., Mikkola, V., Silen, J. and Järvinen, H. 2014. Random

projections in reducing the dimensionality of climate simulation

data. Tellus A 66, 25274. DOI: http://dx.doi.org/10.3402/tellusa.

v66.25274

Solomon, A., Goddard, L., Kumar, A., Carton, J., Deser, C. and

co-authors. 2011. Distinguishing the roles of natural and

anthropogenically forced decadal climate variability. Bull. Amer.

Meteor. Soc. 92, 141�156.

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T.

and co-authors. 2013. Atmospheric component of the MPIM

Earth System Model: ECHAM6. J. Adv. Model. Earth Syst.

5(2), 146�172.
Taylor, K. E., Stouffer, R. J. andMeehl, G. A. 2012. An overview of

CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93,

485�498.
Thomson, D. J. 1982. Spectrum estimation and harmonic analysis.

Proc. IEEE. 70, 1055�1096.
Vautard, R. and Ghil, M. 1989. Singular spectrum analysis in

nonlinear dynamics, with applications to paleoclimatic time

series. Phys. D Nonlin. Phenom. 35(3), 395�424.
Von Storch, H. and Zwiers, F. W. 1999. Statistical Analysis in

Climate Research. Cambridge University Press, Cambridge.

Weare, B. C. and Nasstrom, J. S. 1982. Examples of extended

empirical orthogonal function analysis. Mon. Weath. Rev. 110,

481�485.

RANDOMISED MULTICHANNEL SINGULAR SPECTRUM ANALYSIS 17





iv





Multi-annual modes in the 20th century temperature variability in
reanalyses and CMIP5 models
Heikki Järvinen1, Teija Seitola1,2, Johan Silén2, and Jouni Räisänen1

1Department of Physics, University of Helsinki, Finland
2Finnish Meteorological Institute, Helsinki, Finland

Correspondence to: Heikki Järvinen (heikki.j.jarvinen@helsinki.fi)

Abstract. A performance expectation is that Earth system models simulate well the climate mean state and the climate vari-

ability. To test this expectation, we decompose two 20th century reanalysis data sets and 12 CMIP5 model simulations for years

1901 – 2005 of the monthly mean near-surface air temperature using Randomised Multi-Channel Singular Spectrum Analysis

(RMSSA). Due to the relatively short time span, we concentrate on the representation of multi-annual variability which the

RMSSA method effectively captures as separate and mutually orthogonal spatio-temporal components. This decomposition is5

a unique way to separate statistically significant quasi-periodic oscillations from one another in high-dimensional data sets.

The main results are as follows. First, the total spectra for the two reanalysis data sets are remarkably similar in all time

scales, except that the spectral power in ERA-20C is systematically slightly higher than in 20CR. Apart from the slow com-

ponents related to multi-decadal periodicities, ENSO oscillations with approximately 3.5 yr and 5 yr periods are the most

prominent forms of variability in both reanalyses. In 20CR, these are relatively slightly more pronounced than in ERA-20C.10

Since about the 1970’s, the amplitudes of the 3.5 yr and 5 yr oscillations have increased, presumably due to some combination

of forced climate change, intrinsic low-frequency climate variability, or change in global observing network. Second, none of

the 12 coupled climate models closely reproduce all aspects of the reanalysis spectra, although some models represent many

aspects well. For instance, the GFDL-ESM2M model has two nicely separated ENSO periods although they are relatively too

prominent as compared with the reanalyses. There is an extensive Supplement and Youtube videos to illustrate the multi-annual15

variability of the data sets.

Keywords: spatio-temporal modes, climate variability, climate model simulation, random projection, RMSSA algorithm, ENSO

oscillation, Youtube video

1 Introduction

The ultimate goal in developing Earth system models (ESM) is to enable exploitation of the inherent Earth system predictability,20

and hence reduce weather and climate related uncertainties in our daily life, and guide societies in making sustainable choices

(e.g., Slingo and Palmer 2011; Meehl et al. 2014). For the predictions to be useful and usable, the expectation is that the climate

mean state and climate variability are well simulated by these tools. Due to the complexity of the models and the data they
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produce, testing the expectation poses a challenge: many aspects of the model performance are gathered under the variability

concept and no single diagnostic alone is sufficient to exhaust its all facets. Yet, understanding the discrepancies between the

observed and simulated variability is crucial feedback for model development.

Representation of climate variability among models participating in climate model inter-comparisons, such as CMIP5, has

been studied by e.g. Bellenger et al. (2014), Knutson et al. (2013), Ba et al. (2014), and Fredriksen and Rypdal (2016). We will5

add to this literature by interfacing a representative set of contemporary coupled climate models with reanalysis data focusing

on spatio-temporal modes of climate variability. One century covered with global reanalysis data is naturally very short for

this purpose and severely constrains inter-comparison studies (e. g. Wittenberg 2009 and Stevenson et al. 2010). First, time

series should cover a sufficient number of recurring "events" for obtaining significance for the findings. Therefore, decadal-to-

multi-decadal variability is of interest but not as informative as focusing on shorter cycles of variability. Second, the applied10

methods have to be very effective in extracting information from the short but high-dimensional data sets. For these reasons, we

concentrate on the representation of multi-annual variability in reanalyses and coupled climate models applying Randomised

Multi-Channel Singular Spectrum Analysis (RMSSA; Seitola et al. 2014, 2015) which effectively separates mutually orthogo-

nal spatio-temporal components from our high-dimensional data sets.

The aim of this study is to decompose the 20th century climate variability into its multi-annual modes, and to assess how these15

modes are represented by the contemporary climate models. We hope this to provide guidance for model development due better

understanding of the deficiencies in representing reanalysed modes of multi-annual climate variability. Ultimately, interpreting

the hints about model deficiencies as development topics are due for the development teams themselves. Our role is to point

towards the potential error sources. For reassuring the teams that high-dimensional time series analysis is possible today, we

emphasise the methodological aspect of this study. RMSSA can, under very weak assumptions on the data, decompose high-20

dimensional data sets in a unique way and separate statistically significant quasi-periodic spatio-temporal oscillations from one

another. This is in contrast to many other approaches which either make assumptions about the oscillation structures, such as

Fourier or spherical decomposition, or resolve only either spatial or temporal aspects of variability. RMSSA can detect spatially

evolving "chains of events" through resolving eigenmodes of spatio-temporal covariance data. This is a significant advantage,

say, over PCA which only resolves eigenmodes of spatial covariances and often projects temporal evolution of an "event"25

onto a number of different eigenmodes. In addition, the novel data compression based on random projections enable here a

vast increase in tractable problem size (i.e., data dimension) - even multi-variate decomposition is now possible, although not

included here.

2 Methods and Data

2.1 Randomised multi-channel singular spectrum analysis30

Multi-channel singular spectrum analysis (MSSA; Broomhead and King, 1986a,b) can be characterised as being a time series

analysis method for high-dimensional problems. It effectively identifies spatially and temporally coherent patterns of a data set

by decomposing a lag-covariance data matrix into its eigenvectors and eigenvalues (e.g., Ghil et al., 2002) using singular value
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decomposition (SVD). The lag window in MSSA is a user choice, recommended typically to be shorter than approximately

one third of the length of the time series (Vautard and Ghil, 1989). Long lag window enhances the spectral resolution, i.e., the

number of frequencies that can be identified, but distributes the variance on a larger set of components. MSSA eigenvectors

are called here space-time EOFs (ST-EOFs), and the projections of the data set onto those ST-EOFs space-time principal

components (ST-PCs). Because of the lag window, ST-PCs have a reduced length and they cannot be located into the same index5

space with the original time series. However, they can be represented in the original coordinate system by the reconstructed

components (RC; Plaut and Vautard, 1994).

MSSA is computationally expensive and practical limits are easily exceeded for large data sets and long lag windows. In

order to overcome this limitation, a computationally more efficient variant, called Randomised MSSA (RMSSA; Seitola et

al., 2015), is applied here. The RMSSA algorithm, in a nutshell, (1) reduces the dimension of the original data set by using10

so-called random projections (RP; Bingham and Mannila, 2001; Achlioptas, 2003), (2) decomposes the data set by calculating

standard MSSA in the low-dimensional space, and (3) reconstructs the components in the original high-dimensional space.

In RP, the original data set is projected onto a matrix of Gaussian distributed random numbers (zero mean and unit variance)

in order to construct a lower dimensional representation. In this study, we reduce the data volume to about 5 % of the original

volume. Since the computational complexity of RP is low, involving only a matrix multiplication, it can be applied to very high-15

dimensional data sets. Although RP is not a lossless compression, it has the important property that the lower-dimensional data

set has essentially the same structure as the original high-dimensional data set. This has been demonstrated for climate model

data in Seitola et al. (2014). The RMSSA algorithm is briefly presented in the Appendix A.

2.2 Computation of spectra

The ST-PCs represent the different oscillatory modes extracted from the data set. In order to estimate the dominant frequencies20

associated with each ST-PC, the power spectrum is calculated with the Multitaper spectral analysis method (MTM) (Thomson,

1982; Mann and Lees, 1996). To further compare the variability modes and their intensities in different data sets, the power

spectrum of all the ST-PCs of each data set is summed up to obtain so-called total spectrum. The ST-PCs are already weighted

by their respective explanatory power, i.e. multiplied by the corresponding eigenvalue. Therefore the components with more

explanatory power have also higher spectral densities compared to the ones that explain only a small fraction of the variance.25

Therefore no extra weighting is needed in this step.

The uncertainty related to the explanatory power of each ST-PC (i.e. the confidence interval of the respective eigenvalue)

is estimated using the Norths rule of thumb for sampling errors (North et al., 1982). The sampling error (ek) is given by

ek ∼ λk(2/N), where λk is the eigenvalue associated with the kth ST-PC and N is the length of the time series. Thus, the

confidence interval of the total spectrum describes the uncertainties related to the explanatory power of each ST-PC.30

2.3 Statistical significance testing

In data sets of dynamical systems, ST-PCs/ST-EOFs of MSSA often appear as quadratic pairs that explain approximately the

same variance and are π/2 out of phase with each other. However, existence of such a pair does not guarantee any physical
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oscillation in the data set, and it may be due to some non-oscillatory processes, such as first-order autoregressive noise. Allen

and Robertson (1996) formulated a test, where the oscillatory modes identified with MSSA are tested against a red noise

null-hypothesis through Monte Carlo simulation.

Significance testing in MSSA requires solving conventional PCs of the original data set. In case of very high-dimensional

problems this easily exceeds practical computational limits. The RMSSA implementation in Seitola et al. (2015) contains5

the Allen-Robertson test such that the PCs are solved in the dimension-reduced space, and is thus affordable even in very

high-dimensional problems. The Appendix A also includes a short description of the significance test.

2.4 Data sources

The data consists of the monthly mean near-surface air temperature from the historical 20th Century simulations of 12 dif-

ferent climate models (Table 1). The selected models originate from different modelling centres, and thus do not have close10

common ancestor models. Furthermore, the selected models have undergone a long (generally several generations of) history

of development, suggesting that the chosen models collectively represent the state-of-the-art. Near-surface temperature was

chosen, because many processes must be adequately represented in coupled models to realistically capture the observed tem-

perature distribution (Flato et al., 2013). These include processes in the Earth system component models (atmosphere, ocean,

etc.) as well as in their mutual coupling models. Also, for the near-surface temperature, there are corresponding reanalysis data15

available.

The historical (1901–2005) simulations were extracted from the CMIP5 data archive and they follow the CMIP5 experi-

mental protocol (Taylor et al. 2012). The 20th Century simulations use the historical record of climate forcing factors such as

greenhouse gases, aerosols, solar variability, and volcanic eruptions. We used a single ensemble member of each model and

the model data sets were interpolated into a common grid of 144× 73 points.20

As a reference, we used two reanalysis data sets: the 20th Century Reanalysis V2 data (hereafer 20CR) provided by the

NOAA/OAR/ESRL PSD (Compo et al., 2011), and ERA-20C data provided by ECMWF (Poli et al., 2013). The data sets

are produced using an ensemble of perturbed reanalyses, and the final data set corresponds to the ensemble mean. In 20CR,

only surface pressure observations are assimilated, and the observed monthly sea-surface temperature and sea-ice distributions

from HadISST1.1 (Rayner et al., 2003) are used as boundary conditions (Compo et al., 2011). In ERA-20C, observations of25

surface pressure and surface marine winds are assimilated (Poli et al., 2013). Unlike 20CR, it uses a more recent sea-surface

temperature and sea ice cover analysis from HadISST2 (Rayner et al., 2006). Both 20CR and ERA-20C are forced by historical

record of changes in climate forcing factors (greenhouse gases, volcanic aerosols and solar variations). In order to be consistent

with the climate model simulations, the same time period is used (1901–2005, i.e., 1260 monthly mean fields) and the reanalysis

data sets were interpolated into the same grid as the model simulations (144× 73 points).30

2.5 Data processing

Some pre-processing of the data was needed before applying RMSSA. At each grid point the data sets were processed as

follows:
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– linear trend was fitted and removed,

– annual cycle was estimated using Seasonal-Trend Decomposition (STL; Cleveland et al., 1990) and removed,

– resulting values were mean-centered and divided by the average standard deviation of all the data sets (see Figure 1).

Average standard deviation was obtained after removal of the trend and the annual cycle.

The reanalysis and climate model data sets have different temperature standard deviations, which would impact the tem-5

perature variability from inter-annual to multi-decadal timescales (e.g., Thompson et al. 2015). To retain these differences, we

have used a common normalization factor (i.e., the average standard deviation of all the data sets). This procedure reduces the

weight of grid points with high variance, typically at higher latitudes, and hence adds weight on the lower latitude features.

After the pre-processing, the dimension reduction step of RMSSA was applied so that approximately 5 % of the original data

dimensions were retained. The lag window in the analysis was 20 yr (240 months). The total spectra were obtained from this10

analysis, and are comparable due to normalisation using the common standard deviation of the data sets.

The statistical significance test uses a red noise null hypothesis. In the test we have used data sets that are normalised by their

own standard deviations. Using a common normalisation interferes with generating the red noise surrogates corresponding to

each data set. The first 50 PCs of each data set were retained as input. Those PCs explain 79 % of the variability in 20CR, 75

% in ERA-20C, and 70 %–80 % in the climate model data sets. A total of 1000 realisations of red noise surrogate data sets15

were generated, and confidence interval (95 %) for the oscillatory modes were estimated. We note that transformation to PCs

may interfere with the detection of weak signals, as demonstrated by Groth and Ghil (2015).

2.6 Data visualization

We used reconstructed components (RC; see Appendix A) for visualisation of the spatial patterns related to ST-PCs. For each

grid point time series, we can calculate the RCs corresponding to the ST-PCs (or modes) of interest. These RC values, reflecting20

the contribution of each grid point to the mode, can be plotted on a map at each time step. We have used these maps to construct

videos of the spatio-temporal modes. In Section 3.5, we have analysed RCs corresponding to 3–4 yr variability. The result is a

time series of the data corresponding to the 3–4 yr mode in each grid point and according to its variance after detrending and

removing the annual cycle. In the analysis we have neglected 5 yrs in the beginning and the end of the time series, because

the reconstruction procedure may be biased there (see the Appendix, eq. A4). The videos can be found at our Youtube channel25

(https://www.youtube.com/channel/UCu1zJdwJfLaXvfvTqsKCLHw).

To summarise the animations, we have calculated composite maps of the modes. The compositing procedure follows the

one described in Plaut and Vautard (1994). The idea is to choose the grid point time series (RCl) for which the variance is

largest, and calculate its time derivative (RC
′
l ). The phase of the mode at each time step is determined by calculating the angle

between the vector (RCl, RC
′
l ) and the vector (0,1). These phases, in the interval (0,2π), are then classified into eight equally30

populated categories. Composite maps are constructed from these categories.
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3 Results

3.1 Reanalysis decompositions

The main outcome of the RMSSA method, the space-time principal components (ST-PCs) characterise both the spatial and

temporal structure of the modes of variability. Sections 3.1 – 3.4 focus on their temporal aspects. The leading 30 ST-PC

time series and the corresponding power spectra are displayed in Figure 2 for 20CR and ERA-20C, ordered according to the5

explained variance. We can see that

– components with predominantly multi-decadal periodicity (1, 2, 5, and 6) explain a total of 7.2 % and 5.9 % of the

variance in 20CR and ERA-20C, respectively, with clear similarities in their time series and spectra

– multi-annual components (3, 4, 7, and 8) explain 4.2 % and 3.2 % of the variance in 20CR and ERA-20C, respectively

– there is a broad multi-annual peak centered at 5 yr and a narrower peak at 3.5 yr in both reanalyses; these are clearly10

separated in ERA-20C at the components 3 and 4 versus 7 and 8. This separation in 20CR is less clear

– there are many spectral peaks in the reanalyses at 2–3 year periods with little explained variance but some are well

separated and distinct

The conclusion based on Figure 2 is that the leading sources of the near-surface air temperature variability at multi-decadal

and multi-annual periods are well identifiable in the reanalysis data sets. 20CR and ERA-20C are composed of very similar15

components explaining the variance in the two data sets. This is of course expected but it is also reassuring from the method-

ological view point: despite its complexity, the RMSSA decomposition is consistent.

It is noteworthy in Figure 2 that the components 3, 4, 7, and 8 in both reanalyses have become more prominent with time.

Since about the 1970’s, the amplitudes of these 3.5 yr and 5 yr oscillations have been at a higher level, presumably due to some

combination of forced climate change, intrinsic low-frequency climate variability, or changes in global observing network20

(the rather sudden increase in the amplitude seems to coincide with the onset of the modern era of satellite observations).

This finding seems to be in support of e.g. Russell and Gnanadesikan (2014). In this connection it should be noted, however,

that apparent low-frequency variations and changes in amplitude may simply arise from random fluctuations of the time series

(Wunsch, 1999; Wittenberg, 2009). Back-projection of these components into the original grid representation (Figure 3), reveals

that the components are indeed associated with the ENSO phenomenon and are geographically similar in 20CR and ERA-20C.25

In the snapshots from January 1987 and January 1998 (Figure 3), there is a typical El Niño pattern with positive anomalies

in the equatorial Pacific Ocean, South-America, and northwestern North-America. These are associated with synchronous

evolution of (i) a dipole structure in the western Antarctica with easterly motion, and (ii) a wave-train type pattern in the

northernmost North-America with north-easterly motion. The components 3, 4, 7, and 8 thus represent a global phenomenon,

with an increased amplitude in recent decades. These features are nicely depicted in our Youtube channel (https://www.youtube.30

com/watch?v=vehbT8fOHeM, https://www.youtube.com/watch?v=xG--SiUqqAI).
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3.2 Reanalysis total spectra

Figure 4a shows the total spectrum for the reanalyses constructed from the ST-PCs, and their confidence intervals (dashed

lines). As in the ST-PCs, there is most power in the slow modes. At periods of about 3.5 yr and 5 yr, there are the spectral peaks

of the components 3, 4, 7, and 8. The dip at 1 yr reflects the removed annual cycle.

As Fig. 2 already suggests, the shape of the two spectra is remarkably similar in all time scales (Fig. 4a). This leaves hardly5

any doubt that the data assimilation systems of 20CR and ERA-20C extract observed information in a very similar manner.

There are some differences, however. The spectral power in ERA-20C is systematically slightly higher than in 20CR. This

difference is statistically significant at almost all time scales. This is most likely due to generally higher temperature variance

in ERA-20C compared to 20CR, especially in the Southern Ocean and Arctic Ocean. Also, in 20CR, the 3.5 yr and 5 yr spectral

peaks are relatively more pronounced than in ERA-20C.10

Statistical significance tests are presented in Figs. 4b and 4c for 20CR and ERA-20C, respectively. The multi-annual periods

(less than 7 yr) rising above the 95 % confidence interval (i.e., the red dots above the region covered by the vertical bars) are

3.5 yr, 3.6 yr, and 5.7 yr in 20CR and 3.6 yr, 5.2 yr, 5.5 yr, and 5.7 yr in ERA-20C. Thus, nearly the same periodicities rise

above the red noise in the two data sets. It is logical that the frequency corresponding to the annual cycle is present in the red

noise surrogates while it is absent from the data, and therefore the red dots fall far below their expected values. Interestingly,15

the period of 2.9 yr in 20CR and ERA-20C fall below the 95 % confidence interval. Our conclusion is therefore that the

multi-annual climate variability in the near-surface air temperature is very similar in 20CR and ERA-20C.

3.3 CMIP5 model total spectra

The total spectra for the 12 CMIP5 model are shown in Fig. 5 (solid lines) with their 95 % confidence intervals (dashed

envelopes) and the reanalysis spectra as a reference (thin lines). Statistically significant multi-annual modes (at 5 % level)20

are denoted by vertical dashed lines. As in the case of reanalyses, these spectra are unique expressions of the low-frequency

variability present in the simulation data. A comparison between the simulated and the reanalysis spectra provides one means

to assess the strengths and weaknesses of these models. However, one cannot simply rank the models based on how "far off"

the model spectra are from the reference, because this comparison focuses on just one (although important) aspect of model

performance and because seemingly good agreement with observations might occasionally result from compensating errors in25

model processes.

Here we will concentrate on the multi-annual aspects but note in passing that the level of multi-decadal variability (> 20 yr)

is close to reanalyses in models a, c, d, e, and g. In the rest of the models, the level seems too low. In the decadal scale (∼10 ...

20 yr), the level of variance is close to reanalyses in a, b, c, f, i, j, and l. Subjectively, the shape of the low-frequency end of the

spectra appears most realistic in models a and c.30

In multi-annual scales, the model performance varies a lot among the models. There is a group of models (a, b, d, and e) with

high spectral density at about 3 – 7 yr periods. The models d and e have a bi-modal spectral structure, as in the reanalyses, while
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models a and b have a broad unimodal peak. Decompositions (available in the Supplementary material, S1) partly explain the

reasons leading to these total spectra.

In model a, for instance, there is a unimodal broad peak at 3.5 – 4 yr periods (Fig. 5a). The decomposition reveals that there

are, in fact, two well separated component pairs at 3.5 yr and 4 yr generating one merged peak to the total spectrum (Fig. S1a in

the Supplement). A development hint is thus to investigate these modes which can help to better understand some underlying5

modelling deficiencies, and to keep monitoring how this aspect of model performance evolves in the future model upgrades.

An additional concern in model a is the excessive spectral density at about 2 yr and 7 – 10 yr periods.

In model e, there is a bimodal total spectrum (Fig. 5e), although far too pronounced as compared with the reanalyses. The

decomposition (Fig. S1e in the Supplement) reveals that the ST-PC components 1 – 10 (except 7–8) are all multi-annual and

peak strongly and well in isolation at 3 yr, 3.5 yr, 4 yr, and 5 yrs, explaining together no less than 13.9 % of the total variance.10

The development hint for model e is thus to investigate the mechanisms behind the components 1 – 10 and thereby obtain

guidance for improving the realism of simulations.

In most other models, the multi-annual variability is less prominent than in the reanalyses. In model c (Fig. 5c), on one hand,

the decomposition points out (Fig. S1c in the Supplement) that there are about 12 ST-PC components with periods between

1.5 – 3 yrs leading to a total spectrum with a broad peak of 2 – 3 yr periods. These components tend to have very regular15

cycles, remotely resembling a coupled harmonic oscillator and seemingly missing the "offbeats" or true quasi-periodicity of

the reanalyses. The task seems to be to find out reasons why model c produces too rapid and regular multi-annual variability. In

model g (Fig. 5g), on the other hand, the leading ST-PC components 1 – 9 are on either decadal or multi-decadal periods and

these overwhelm the total spectrum. It should be important to find out the causes for this accentuated variability, especially on

the decadal scale.20

Finally, Fig. 5 casts light on models’ overall level of variability compared to reanalyses. Clearly, this level in model h (Fig.

5h) is low. Curiously enough, the leading ST-PC component pair in model h explains only 1.4 % of variance and peaks at 3.2

yr. This corresponds to the isolated peak in the total spectrum.

3.4 Significance of multi-annual modes in CMIP5 models

In the reanalyses (Fig. 4), only a few multi-annual periods rise above the red noise (three in 20CR and four in ERA-20C). They25

are at approximately 3.5 yr and 5 yr periods. For the CMIP5 models, the test results are available in the Supplementary material

(S2). In Fig. 5, the multi-annual modes with periods less than 7 yrs at the 5 % significance level are denoted by dashed vertical

lines.

In summary, there are 5 – 15 statistically significant periods in the models, except model k (Fig. 5k) with three and model

g (Fig. 5g) with zero periods. The large number of significant periods (models d and e, for instance) can be explained, at least30

partly by the fact that the modes are quasi-periodic and the spectral density therefore appears on a range of frequencies. This

manifests as excursion of the red-noise threshold on several adjacent frequencies. This is typical for models with large spectral

power on certain time scales. In model l (Fig. 5l), for instance, there are two broad and distinct spectral peaks at about 3.5 yr

and 6 yr periods, and many significant periods are gathered at these and nearby frequencies. In contrast, models f and h (and
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to some extent model c) have several significant and distinct periods between 2 yr and 7 yr. In terms of number of significant

modes, models a, i, j, and k seem to be closest to the reanalyses.

3.5 Spatial patterns of the 3-4 yr mode

ST-PC components can be represented in the original coordinate system as so called reconstructed components (RC) that can

be visualised. In this section, some visualisation results are presented and discussed.5

In ERA-20C, there is a spectral peak at 3.5 yr period, which is significant at 5 % level (Fig. 4). This peak is due to the

ST-PC components 7 and 8 with spectral density closely concentrated on this frequency (Fig. 2). Figure 6 depicts composite

maps of each of the eight phases of the 3.5 yr mode in ERA-20C. Firstly, the mode is global with the largest temperature

anomalies in the Pacific and North-America. Secondly, the mode contains tropical Pacific temperature anomalies, like in the

ENSO phenomenon (e.g. Kleeman, 2008). The cold (warm) maximum is in phase 1 (5) with the anomalies extending to the10

South-American continent. Thirdly, there are traveling temperature anomalies at high latitudes on both hemispheres. These are

described next.

In phase 1 (Fig. 6), there is a small warm temperature anomaly in the North-Pacific (lon 160◦W, lat 30◦N). This pattern

slowly moves northeast reaching Alaska in phase 5 and then gradually dissipating over the northernmost North-America in

phase 8 (and being visible still in phase 1). There is a very similar evolution of a cold anomaly starting in phase 5. At the15

same time, there is an oscillating temperature anomaly over the Eurasian continent in opposite phase. In Fig. 6, there is also

a traveling temperature anomaly in the Southern Hemisphere. In phase 8 (Fig. 6), there is a cold anomaly over the Southern

Ocean (lon 160◦W). This strengthens, moves east, weakens, and crosses the Antarctic Peninsula in phase 4 and remains in the

Weddell Sea until phase 7. Similarly, there is a warm anomaly in phase 4 (lon 160◦W) with similar evolution as the cold one.

Next, 20CR and the CMIP5 model behaviour is studied. The 3.5 yr mode is significant in 20CR and ERA-20C. For the20

illustration, we have chosen component pairs from the model decompositions (Supplementary material Fig. S1) that have

spectral peaks between 3 and 4 years and do not express substantial variability on other time scales. In most climate models,

such a corresponding mode exists, except in models g and k. In model c this mode is not significant at 5 % level, but it is

illustrated anyway. Supplementary material reveals how these modes are represented in different data sets (Fig. S3–S14). The

format is the same as in Fig. 6. A short summary is presented next.25

In 20CR (Fig. S3), the anomalies are weaker compared to ERA-20C (Fig. S4). This is mainly because the 3 – 4 yr mode

is distributed on two component pairs in 20CR whereas in ERA-20C it is concentrated on one pair. Nevertheless, similar

although weaker signal is evident in 20CR, such as the northeast propagation of the North-Pacific temperature anomaly. (Note

that in Fig. 3, the combination of components 3, 4, 7, and 8 produce highly similar global patterns for 20CR and ERA-20C.) A

prominent feature is also the opposite temperature anomalies in the northern Eurasia versus North-America. All models (Figs.30

S5–S14) produce a temperature anomaly to the equatorial Pacific Ocean (and South-America). The amplitude is larger and/or

the area extends further to the west than in ERA-20C in six models (a, b, d, e, h, l). The anomaly pattern in the northwestern

North-America is present in all the models to some extent. In the reanalyses, the anomaly is strictly confined to land areas but

in most models, it is either somewhat misplaced or extends to the adjacent sea areas and the Eurasian continent. Models c, e,
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and f produce the North-American pattern quite similar to reanalyses, and the northeast propagation is captured to some extent

by models b, c, f, i, and l.

4 Discussion

We note that a substantial portion of variance at inter-annual to inter-decadal timescales can be attributed to "climate noise"

associated with processes with timescales much shorter than the inter-annual scale (Wunsch 1999; Feldstein 2000). If the5

amplitude of the variability mode exceeds some noise threshold (such as red noise), then the variability mode is also likely

driven by some process external to the atmosphere, in addition to the climate noise. For example, large part of the inter-

annual atmospheric ENSO pattern is presumably driven by anomalies of tropical diabatic heating associated with sea surface

temperature anomalies (Feldstein, 2000). We assume that for this reason the multi-annual patterns related to ENSO clearly

exceed the noise threshold in the results of this study.10

5 Conclusions

The aim of this study is to decompose the 20th century climate variability into its multi-annual modes, and to assess how

these modes are represented by the contemporary climate models. To this end, two 20th century reanalysis data sets and 12

CMIP5 model simulations for years 1901–2005 of the monthly mean near-surface air temperature have been decomposed

using Randomised Multi-Channel Singular Spectrum Analysis (RMSSA). The statistical significance of the identified modes15

has been estimated with Monte Carlo simulations. The main conclusions are as follows.

Spectral properties of the 20CR and ERA-20C reanalysis data appear remarkably similar. The most prominent forms of

variability in both data sets are related to approximately 3.5 yr and 5 yr modes which are significant at 5 % level. The spectral

power in ERA-20C is systematically slightly higher than in 20CR. The 3.5 yr mode is illustrated in more detail. In ERA-20C,

the mode is associated with typical ENSO pattern of temperature anomalies in the equatorial Pacific Ocean, South-America,20

and northwestern North-America. On top of these, the mode also contains a northeast propagating temperature anomaly over

the northernmost North-America, and another eastward propagating anomaly in the vicinity of western Antarctica. Since about

the 1970’s, the amplitude of this 3.5 yr global mode have increased.

None of the 12 coupled climate models closely reproduce all aspects of the reanalysis spectra, although some models repre-

sent many aspects well. For instance, the GFDL-ESM2M model has two nicely separated ENSO -related periods although they25

are relatively too prominent as compared to the reanalyses. Also, a number of models represent the propagating temperature

anomalies at 3 – 4 yr time frame. Some suggestions are provided in the text for potential model development aspects.

There is an extensive Supplement available presenting the results in visual format for each reanalysis and model data set.

In the future, relaxation of the uni-variate nature of the present study would seem a natural extension. This is now possible

since the use of random projections allow efficient data structures preserving compression. Of special interest would be to study30
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behaviour of variables directly linked with atmosphere-ocean coupling processes, such as heat, momentum, and moisture fluxes

over oceans.

6 Data and code availability

All data used in this study was downloaded from open sources. The RMSSA algorithm and the statistical significance testing

are implemented using GNU licensed free software from the R Project for Statistical Computing (www.r-project.org). Our5

implementation is available on request. The animations of the 3–4 yr mode are available for all data sets at

https://www.youtube.com/channel/UCu1zJdwJfLaXvfvTqsKCLHw.

Appendix A: Randomised multi-channel singular spectrum analysis (RMSSA)

The RMSSA algorithm and the significance test is briefly presented here. The original data matrix is XN×L, where the columns

are called channels. In case of gridded data set, N represents the time steps and L is the number of grid points. It is useful10

to think N as the time steps when the sample of dimension L is collected. The dimension reduction is a projection XN×L →
PN×k, where L� k. In other words, we preserve all samples but reduce the sample dimension from L to k. The dimension

reduction is performed in two steps: (1) generate a random matrix RL×k, where the matrix elements are rij ∼N(0,1) and

column vectors of R are normalised to unit length, and (2) project X onto R:

PN×k =XN×LRL×k. (A1)15

The next step is to construct an augmented data matrix A, which contains M lagged copies of each channel in P. In RMSSA,

M represents the lag window. A now has Mk columns and N ′ =N −M +1 rows. The singular value decomposition of A is

A=UD1/2VT (A2)

The vectors of U are the eigenvectors of Z=
1

Mk
AAT and VT contains the eigenvectors of C=

1

N ′A
TA. These vectors

are orthogonal and often called space-time principal components (ST-PCs) and space-time empirical orthogonal functions (ST-

EOFs), respectively. Note that the ST-EOFs are now in reduced space k. Diagonal elements of D are the eigenvalues of C or20

Z. Finally, the eigenvectors (ST-EOFs) are calculated in the original L-dimensional space by

V ≈AT
o U(D1/2)−1, (A3)

where Ao is the augmented matrix of the original data matrix X. Note that the calculation of ST-EOFs in Eq. (A3) can be

limited only to the eigenmodes of interest.
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The ST-PCs can be represented in the original coordinate system by the reconstructed components, RCs (Plaut and Vautard,

1994; Ghil et al., 2002). This transformation is given by

rcle(n) =
1

Mn

Jn∑

m=In

ue(n−m+1)vle(m), (A4)

where ue are the ST-PCs and vle are the ST-EOFs calculated in Eq. (A3) (the part of ST-EOF corresponding to channel l). e is

the index of the eigenmode that is calculated. The normalisation factor Mn and the summation bounds In and Jn are given in

Ghil et al. (2002) and for the central part of the time series (M ≤ n≤N −M +1) they are (M,1,M), respectively.5

RMSSA with significance testing is briefly presented in the following. Testing the MSSA components against a red-noise

null-hypothesis requires orthogonal input vectors, which are obtained by calculating first a conventional PCA and retaining a

set of dominant PCs. Therefore some additional calculation steps are included in the RMSSA-algorithm:

SVD of lower dimensional matrix P is calculated to obtain the principal components (PCs, calculated as UD1/2). PCs

fullfil the orthogonality constraint exactly. PCs, that explain large part of the variance of the data set (e.g. 50 first), are retained10

to obtain matrix T, where the columns are the PCs. Next, the augmented matrix APC is constructed from T and SVD is

calculated as in Eq. (A2).

Finally, a large number of red-noise processes (i.e. surrogate data sets) are generated, and the confidence limits for the MSSA

eigenmodes are determined. This signicance test (Monte Carlo MSSA) is described in detail in Allen and Robertson (1996).
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Table 1. Climate models used in the study. For more details of the models, see Table 9.1. in Flato et al. (2013).

Model ID Model name Modeling center Country

a CanESM2 CCCMA Canada

b CESM1(CAM5) NSF-DOE-NCAR USA

c CNRM-CM5-2 CNRM-CERFACS France

d CSIRO-Mk3.6.0 CSIRO-QCCCE Australia

e GFDL-ESM2M NOAA GFDL USA

f GISS-E2-R NASA GISS USA

g HadGEM2-ES MOHC UK

h INM-CM4 INM Russia

i IPSL-CM5B-LR IPSL France

j MIROC-ESM JAMSTEC/AORI/NIES Japan

k MPI-ESM-MR MPI-M Germany

l MRI-CGCM3 MRI/JMA Japan
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Figure 1. Map of the common normalisation factor. Shown is the mean standard deviation of 2 metre temperature (degC) across all the data

sets.

16



Explained
variance (%)

Explained
variance (%)

Period (yr) Period (yr)

70 50 30 20 10 5 4 3 2 1 70 50 30 20 10 5 4 3 2 1

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

2.4

1.9

0.9

0.9

0.8

0.8

0.7

0.7

0.7

0.7

0.6

0.6

0.6

0.5

0.5

0.5

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.3

0.3

0.3

0.3

70 50 30 20 10 5 4 3 2 11920 1940 1960 1980

3.0

2.1

1.2

1.1

1.1

1.0

1.0

0.9

0.9

0.8

0.7

0.7

0.7

0.7

0.7

0.6

0.6

0.6

0.5

0.5

0.5

0.5

0.5

0.5

0.4

0.4

0.4

0.4

0.4

0.4

70 50 30 20 10 5 4 3 2 11920 1940 1960 1980

20CR ERA-20C

Figure 2. Reanalysis ST-PC time series (columns 1 and 3) of monthly near-surface temperature 1901–2005 and their spectra (columns 2 and

4) for 20CR and ERA-20C. The components are ordered according to the explained variance (%).
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Figure 3. Global patterns of 2 metre temperature for the components 3, 4, 7 and 8 in 20CR (left column) and ERA-20C (right column).

Snapshots are taken from Jan 1987 (top row) and Jan 1998 (bottom row). Unit degC.
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Figure 4. (a) Total spectrum of 20CR (red line) and ERA-20C (green line) with their min-max confidence intervals. The unit of the spectral

density is arbitrary. (b) Significance of the 20CR periodicities against red-noise null-hypothesis. Shown are the data eigenvalues (red squares)

and the 2.5th and 97.5th percentiles of the eigenvalue distribution of the red-noise surrogates (vertical bars). (c) Same as (b), but for the

ERA-20C data set.
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Figure 5. As Figure 4a but now for each climate model (black line). The reanalysis spectra are shown as a reference (dashed green and red

lines). The dashed vertical lines indicate the climate model multi-annual periods significant at 5 % level.
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Figure 6. ERA-20C phase (1–8) composites of the 3–4 yr variability mode. Unit degC.
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S1 Decompositions of models
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Figure S1: Models a, b, c and d: ST-PCs of monthly near-surface temperature 1901–2005 and their spectra. The
components are ordered according to the explained variance (%).
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Figure S1 (continued): Models e, f, g and h.
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Figure S1 (continued): Models i, j, k and l.
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S2 Significance tests of models
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Figure S2: Significance test of the CMIP5 model eigenvalues against the red-noise null-hypothesis. Shown are the data
eigenvalues (red squares) and the 2.5th and 97.5th percentiles of the eigenvalue distribution of the red-noise surrogates
(vertical bars).
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S3 Phase composites of the 3–4 yr variability modes
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Figure S3: 20CR phase 1–8 composite figures of the 3–4 yr variability mode; ST-PC pair 7–8.
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Figure S4: ERA-20C phase 1–8 composite figures of the 3–4 yr variability mode; ST-PC pair 7–8. (Same as Figure 6
in the article.)
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Figure S5: As Figure S3 but now for model a; ST-PC pair 2–3.
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Figure S6: As Figure S3 but now for model b; ST-PC pair 4–5.
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Figure S7: As Figure S3 but now for model c; ST-PC pair 14–15.
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Figure S8: As Figure S3 but now for model d; ST-PC pair 4–5.
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Figure S9: As Figure S3 but now for model e; ST-PC pair 5–6.
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Figure S10: As Figure S3 but now for model f; ST-PC pair 10–11.
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Figure S11: As Figure S3 but now for model h; ST-PC pair 1–2.
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Figure S12: As Figure S3 but now for model i; ST-PC pair 7–8.
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Figure S13: As Figure S3 but now for model j; ST-PC pair 15–16.
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Figure S14: As Figure S3 but now for model l; ST-PC pair 7–8.
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