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Abstract

The universe is populated with magnetically active stars. This magnetic activity is
thought to be generated by dynamos operating in turbulent stellar convection zones,
a process by which kinetic energy is converted into magnetic energy. The solar
dynamo is but one dynamo type possible for stars. Rapidly rotating late-type stars
are observed to have large spots, activity cycles, flip-flops, and active longitudes, all
indicating a different dynamo mechanism may be responsible. Numerical simulations
provide a tool for better understanding some of the mechanisms responsible for these
dynamos.

In this thesis, direct numerical simulations in spherical wedges are used to study
dynamo mechanisms in the stellar convection zone. These spherical wedges are used
to investigate the dependence of the resulting magnetic field on input parameters
such as the density stratification and rotation rate. Mean-field models are used to
evaluate the assumption that the wedges can be used to approximate full spheres.

As rotation increases, differential rotation decreases in the models, in agreement
with observations where more rapidly rotating stars have smaller estimates for dif-
ferential rotation. As density stratification approaches more realistic values, a lat-
itudinal dynamo wave with equatorward propagation is found. The impact of the
domain size in the azimuthal direction on the results is explored. When the domain
size is increased to 2π in the azimuthal direction, a non-axisymmetric m = 1 mode
is excited. This non-axisymmetry is reminiscent of the field configurations of rapidly
rotating late-type stars. The azimuthal dynamo wave rotates nearly independently
of latitude and depth, and its rotation rate is slower than that of the mean rotation
of the model. This azimuthal dynamo can provide a possible explanation for the
observed rotational difference of spots from the mean rotation observed on stars.

The wedges use the perfect conductor boundary conditions at the latitudinal
boundary to compensate for the omission of polar regions due to the time step be-
coming prohibitively small there. Simple mean-field models with only a latitudinal
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extent and perfectly conducting boundaries do not oscillate when the model is ex-
tended to the poles. Thus oscillations near the polar region may be an artifact of
the boundary condition. However, when the α effect from mean-field dynamo the-
ory and magnetic diffusivity are concentrated towards lower latitudes, oscillatory
solutions with equatorward migration are found. When sufficient shear is added,
oscillatory solutions are again found, and the Parker-Yoshimura rule for latitudinal
dynamo wave propagation is obeyed. It is concluded that numerical simulations
where the α effect and diffusivity are found to be stronger at lower latitudes and
simulations with sufficient shear are considered good approximations of full spheres.

These numerical simulations are put into context with stellar observations. Two
young solar analogs are selected, V352 Canis Majoris and LQ Hydrae. V352 CMa
is considered an active star, while LQ Hya is classified as a super-active star. The
continuous period search method is applied to the low-amplitude light curves of
V352 CMa. Stable active longitudes with rotation periods of 7.157 days are found.
This is faster than the mean rotation of 7.24 days. Such active longitudes may be
due to the underlying magnetic structure with azimuthal dynamo waves competing
with differential rotation.

LQ Hya rotates even more rapidly with a rotation period of only 1.600 days. A
carrier period is selected of 1.605 days using the D2 statistical analysis. Primary and
secondary light curve minima are found with the carrier fit analysis. No stable active
longitudes are found, instead, there is only a short period spanning a few years where
an active longitude may exist, but the rotation period is poorly defined. Several
possible flip-flop events are identified. The azimuthal dynamo waves in numerical
simulations with comparable rotation rates have a similar chaotic nature.

The Doppler Imaging technique is applied to LQ Hya to examine the latitudinal
spot structure. Spots at high and low latitudes are in agreement with the bimodal
structure of the D2 statistic used in the carrier fit analysis. Temperature maps of
LQ Hya spanning four years show an increase and a decrease in spot coverage, but no
cycle can be found. Because LQ Hya is a rapidly rotating star, differential rotation
is estimated to be very small. The azimuthal dynamo wave presents a new possible
explanation for the jumps and trends of the spots in observations of this star.
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1 Introduction

The Sun is the best studied star in the universe and yet there is still much to learn
about the star which is the basis of human life. Its proximity and importance make
it an object of great interest to humanity. Modern observation techniques have
advanced over the centuries from naked-eye observations of the larger sunspots, to
methods of projecting the solar disk to observe the surface, to using techniques
to probe the interior through helioseismology and making direct observations from
space-based observatories. However, the Sun itself is billions of years old, granting
humanity only the briefest of glimpses as to how the Sun evolves over time.

The Sun is magnetically active, with a field thought to be generated in the con-
vection zone and extending out through the corona and beyond to Earth, where it
interacts with the terrestrial magnetic field to create auroras and magnetic storms,
among other phenomena. The solar cycle is fascinatingly complex, but certain trends
are observable and predictability of the solar magnetic cycle is an important goal to-
wards protecting space-based instrumentation and Earth-bound power grids from
disturbances caused by magnetic activity. There is approximately an 11-year cy-
cle of solar activity during which magnetic activity increases and decreases, at each
polarity, making a total approximate 22-year cycle for the Sun to return to the
same polarity. At the beginning of the 11-year cycle, spots tend form at higher lat-
itudes and as the cycle progresses, spot activity moves towards the equator. This
is evidence of an underlying mechanism that continually generates a magnetic field.
One such mechanism of maintaining or amplifying a magnetic field is called the dy-
namo, by which kinetic energy is converted into magnetic energy. The Sun can be
considered to be a rotating sphere containing electrically conductive fluid, a strong
toroidal magnetic field, and a weaker poloidal field. The poloidal field is converted
into a toroidal field as differential rotation winds up the magnetic field lines in the
azimuthal direction. Mean-field theory closes the cycle by proposing smaller-scale
helical fluctuations, quantified by the α tensor in the electromotive force, that can
in turn regenerate the poloidal field via the α effect.

Numerical simulations present a way of testing dynamo theory, mean-field theory
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and exploring possible mechanisms to explain observed phenomena. While dynamos
can be created and observed in a laboratory, these experiments have limited length
and time scales that cause very different behavior than that present in the solar
convection zone. Although full modeling with the parameters of the Sun and details
to the level of observations is still beyond modern computational limits, numerical
simulations can provide invaluable insight into details of the dynamo processes. The
convection zone, with differential rotation and turbulence, is of particular interest
to investigate via numerical simulations to find specific regimes where dynamos ex-
hibit solar-like behavior, such as cycles on the order of decades and equatorward
propagation of the magnetic field. It is also worth investigating assumptions about
the models used for numerical simulations, as there exists computational limitations
of resolution and input parameters. Often, numerical simulations must use special
techniques to circumvent these limitations, such as limiting a latitudinal extent of
a spherical model to avoid singularities at the pole, and the effect of these choices
must be examined to determine the impact such changes have on the final results.

In addition to computer simulations, the universe itself offers a rich laboratory of
sample stars similar to the Sun but at varying ages, thus allowing observations of the
possible past and future of the Sun. Of particular interest to this thesis are magnet-
ically active stars, specifically focusing on the long term cycles and spot structures
(and therefore possible underlying magnetic fields) of two young solar analogs. By
observing the light curve photometry, statistical methods such as the Continuous
Period Search method and the Carrier Fit method can be used to analyze both short
and long term cycle periods, as well as the fluctuations and changes of rotation and
cycle periods. Inverse methods such as Doppler Imaging use spectroscopy to create
temperature maps of stellar surfaces, providing information about spot latitudes,
longitudes, and the temperature deviations from the average temperature. The ac-
tivity of the selected young solar analogs suggests that the Sun itself was once far
more active than observed today.

This thesis combines both theory and observation. Certain predicted phenomena
of dynamo theory and mean-field theory are explored through numerical simulations,
with promising results that have a strong toroidal field with equatorward drift, sim-
ilar to that of the Sun’s magnetic field. By relaxing the wedge assumption in the
azimuthal direction and extending parameters to rapidly rotating stars, an azimuthal
dynamo wave predicted by mean-field theory is observed. While this stands alone
as an interesting result, if combined with observations the azimuthal dynamo wave
provides alternative mechanisms to explain certain aspects of observed behavior of
stellar objects, such as the drift of preferred longitudes of spot formation with respect
to the rotation period.
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2 Magnetically Active Stars

Of all the magnetically active stars in the universe, the Sun, as the closest star, was
the first to be observed to have a magnetic field. As observing techniques progressed,
magnetic fields were also detected in stars, galaxies, and other astronomical objects.
These magnetic fields behave very differently in many respects from the solar mag-
netic field, but some basic underlying principles are thought to be shared, including
the mechanism that theoretically regenerates and amplifies the observed magnetic
fields in stars.

2.1 Solar Activity

The Sun is located approximately 149 ·106 km away, making some details of the solar
surface discernible with the human eye. Advanced techniques such as helioseismology,
solar neutrino measurements, and observed elemental abundances combined with
theoretical models are used to probe the interior of the Sun, and improved terrestrial
and space-based observatories continually monitor the Sun in greater detail. Certain
phenomena such as sunspots and solar storms have been used to understand the
activity cycle of the Sun and the underlying mechanisms.

Sunspots, or cooler regions on the solar surface that appear darker than the
surrounding plasma, have been observed as early as 364 BCE by Chinese astronomer
Shi Shen (Vaquero and Vázquez, 2009). Beginning in 1610, Galileo Galilei started
making regular observations of spots on the solar surface (Galilei, 1613). His student
Benedetto Castelli developed a method of using a telescope to project the solar disk,
allowing Galileo to sketch sunspots in detail over time. Certain observations were
made as a result of this time series of observations: the spots took approximately 11
days to cross the solar disk, the spots appeared and disappeared in clusters, and the
speed with which spots crossed the disk varied for different clusters.

This documented behavior is better understood today, but there is much still
to learn about the solar cycle and its manifestation in sunspots. Schwabe (1843)
observed sunspots for over 17 years and reconstructed an 11-year cycle based on
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2.1. Solar Activity

Figure 2.1: Top: Sunspot area in a butterfly diagram. Data is from the Royal
Greenwich Observatory and updated monthly at http://solarscience.msfc.nasa.gov.
Middle: Total sunspot area with solar cycle. Bottom: Butterfly diagram of the
longitudinally averaged solar radial magnetic field, based on measurements from the
Kitt Peak National Observatory and Solar and Heliospheric Observatory (Hathaway,
2010).
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Chapter 2. Magnetically Active Stars

the number of observed sunspots. Rudolph Wolf combined these observations with
historical sunspot observations such as those by Galileo, and in 1848 he introduced
the relative sunspot number,

R = k(10g + s). (2.1)

Here s is the number of individual spots, g is the number of groups of spots, and
k is a so-called “observatory factor” dependent on location and instrumentation.
Carrington (1858) observed that the latitude of spots changed during a cycle, moving
from intermediate (∼ ±35◦) to low latitudes and then forming anew at intermediate
latitudes to repeat the cycle. The difference in motion of spots based on latitude
was attributed to differential rotation, where the rotational velocity at the equator
differs from that at high latitudes. Details of this cycle were later refined by Spörer
(1890), who noted that the appearance of high latitude spots towards the end of
a cycle indicated the beginning of a new cycle. The visualization technique of the
change of these spot latitudes is called a “butterfly diagram”, created by Maunder
(1904) as a means to represent both spot latitude changes and spot density over the
course of a solar cycle. The sum or average over one latitude of a value such as solar
sunspots or magnetic field strength, when plotted over time, resembles the wings of
a butterfly, hence the name, shown in Figure 2.1 (top).

Hale (1908) examined the magnetic fields within spots, based on the work of
Zeeman (1897), who observed the splitting of spectral lines when under the influence
of magnetic forces. Hale theorized that a magnetic field within a spot would similarly
create observably different spectral lines than the surrounding gas due to the Zeeman
effect, and confirmed this with a series of observations made at the Mount Wilson
telescope. Further studies by Hale (1913) found that spots typically occur in pairs
and that these pairs are bi-polar. Observations in 1919 revealed leading spots with
opposite polarity from the 1913 observations, indicating a switch in polarity after
each 11-year cycle. Lines drawn between the spots in such pairs had similar angles
relative to the equator. This phenomenon was defined by Hale et al. (1919) as Joy’s
Law, after astronomer and co-author of the 1919 paper Alfred Harrison Joy. Joy’s
Law dictates that with bipolar spot structure, the leading spot usually is closer to
the equator and leading spots usually have the same polarity in the one hemisphere,
and the opposite polarity in the other hemisphere. The Sun’s change in polarity was
confirmed by Hale and Nicholson (1925), who concluded that combining two 11.5
year cycles of each polarity make a complete magnetic solar cycle of about 23 years.
This cycle is evidence that the magnetic field is not created by the spots themselves,
but rather indicative of much larger and more complex magnetic structures within
the Sun itself.
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2.1. Solar Activity

Babcock and Babcock (1955) studied the entire solar disk in detail, focusing on
the general magnetic field. A general field strength of about 1 G was measured near
the poles. The bulk of the strong field was observed at higher latitudes (greater than
±55◦), although fluctuations of over 2 G were also observed around spotted or active
regions. If the magnetic field lines were frozen in (see Section 3.1, Equation 3.7 for an
explanation of frozen-in field lines), then differential rotation near the surface of the
Sun would wind up the poloidal field and amplify the solar toroidal magnetic field.
A rough calculation based on the observed differential rotation of the Sun shows
that magnetic field lines would be wound up over 5 turns in 3 years, significantly
amplifying the toroidal field (Babcock, 1961). If the magnetic field is envisioned
as ropes of magnetic flux, these would rise to the surface in loops, creating bipolar
structures on the surface and providing a possible explanation for the bipolarity of
sunspot pairs. Over time, this bipolar structure would drift towards the equator and
poles, expand, and become neutralized. The reconnection and expulsion of these
flux ropes would eventually reverse the polarity of the solar magnetic field every 11.5
years. The poleward component of the magnetic field is evident at higher latitudes in
Figure 2.1, bottom. Leighton (1969) performed a quantitative analysis of this cycle
using a simple kinematic model based on a closed series of magnetohydrodynamical
equations and found that the model that agreed best with observations required
radial variation for rotation and a strong concentration of shear near the equator.
Leighton (1969) noted that the presence of flux ropes was not crucial to the model.
The resulting field is never purely poloidal and the equatorward drift was noted as
not due to differential rotation, but rather the propagation of the magnetic field
itself. This is now termed the Babcock-Leighton mechanism.

Conventional thought until the 1970’s was that the electromagnetic radiation of
the Sun was constant. However, increasingly detailed measurements of the solar
magnetic field implied an underlying process that would theoretically impact the so-
lar irradiance (the outward radiant flux detected over a defined surface area) over the
solar cycle. Missions such as the Solar Maximum Mission were launched to measure
solar irradiance and compare results to other activity indicators, such as sunspots.
Willson and Hudson (1991) used 9.75 years of flux measurements and found a cor-
relation between luminosity and the photospheric changes that suggested that an
underlying mechanism beyond thermal diffusion is responsible for the variations in
irradiance. After over 30 years of such missions, Fröhlich (2012) examined the solar
cycle with respect to irradiance and other factors and observed a correlation between
changes in the radial component of the solar magnetic field and total solar irradiance,
where the maximum (minimum) irradiance corresponded with the maximum (min-
imum) magnetic activity levels. This change is about 0.1% based on observations
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Chapter 2. Magnetically Active Stars

Figure 2.2: Rotation profile of the solar interior from helioseismology. Image credit:
GONG/NSO/AURA/NSF.

beginning in 1978, and proxies such as sunspot number are needed to reconstruct so-
lar irradiance from earlier time periods (Krivova et al., 2007). The higher irradiance
corresponds to the higher magnetic activity level of the Sun, because although spots
themselves are cooler and contribute negatively to the irradience, they cover a very
small fraction of the surface as compared to the brighter phenomena, such as faculae
produced by strong concentrations of magnetic field lines that contribute positively
to the irradience.

Returning to Carrington’s observations of the sunspot angular velcity dependence
on latitude, it was observed that in general spots near the equator rotated faster than
spots at higher latitudes. A formula was calculated from observations of these spots
of ω(degrees/day) ∝ cos7/4 θ, where ω is the angular rotation rate and θ is the angle
between the latitude and the pole (co-latitude). Observations of sunspots by Faye
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2.1. Solar Activity

(1883) found a relationship based on co-latitude where ω(degrees/day) ∝ cos2 θ.
This more closely resembles the modern accepted form based on measurements of
Doppler features of the solar surface by Snodgrass and Ulrich (1990),

ω(degrees/day) = A + Bcos2 θ +Ccos4 θ, (2.2)

where A = 14.71, B = −2.39, and C = −1.78. However, differential rotation in the
Sun also depends on depth, and using tracers such as spots, supergranules, or the
magnetic field requires knowledge of the depth at which such features are anchored.
Helioseismology uses the high-frequency pressure modes to measure the differential
rotation within the Sun at all depths shown in Figure 2.2 (e.g., Scherrer et al., 2012).
The radiative zone of the Sun has largely uniform rotation, although the deepest
interior regions are difficult to observe and may behave differently. This radiative
zone extends until it reaches the bottom of the convection zone at r ≈ 0.7R�. This
transition from the radiative zone to the convection zone occurs in a shear layer
called the tachocline. The bulk of the convection zone then has differential rotation
that has contours along cylinders 25◦ from the rotation axis. At r ≈ 0.95�, the
near-surface shear layer begins, where the rotational velocity decreases outwards at
all latitudes (Howe, 2009; Barekat et al., 2014, 2016, and references therein).

The tendency of spots to form along certain longitudes was noted by Ayyar (1932)
and later by Losh (1939), who both found a tendency for the spot groups to form
along certain longitudinal bands for the duration of a solar cycle, a phenomenon la-
beled an “active longitude”. Vitinskij (1969) used a longer time series of sunspots and
concluded that although active longitudes were a regular feature of solar cycles, they
rarely lasted for more than one or two cycles. Balthasar and Schuessler (1983) noted
that active longitudes with a 27-day period might be tied to the underlying magnetic
structure and not the differential rotation in the convection zone. Berdyugina and
Usoskin (2003) studied over a century of sunspot data and found active longitudes
180◦ apart with primary and secondary longitudes that switch approximately every
3.8 years, dubbed a “flip-flop”, and that by accounting for differential rotation, con-
clude that the active longitudes persist for over 120 years. However, Pelt et al. (2006)
find that the 120-year persistence is a likely artifact of the data analysis method and
not physically real, and that active longitudes persist at most for about one cycle.
Pelt et al. (2010) used a nonparametric statistical approach to analyze sunspot data
and the underlying spot-generating mechanism and found that the underlying mech-
anism was affected by differential rotation. The spot-generating structure remained
cohesive only up to 10–15 Carrington rotations. Furthermore, the northern and
southern hemispheres were found to have slightly varying mean rotation rates with
a difference of about 0.004 degrees/day.
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Chapter 2. Magnetically Active Stars

2.1.1 Solar Activity Summary

The solar magnetic field can be characterized with the following elements:

• The Sun has a high number of spots at the height of solar activity and is
virtually unspotted during periods of low activity. These spots cover a tiny
fraction (≈ 0.5%) of the solar surface, and solar irradiance increases with the
number of spots due to the higher activity level of the Sun. This cycle repeats
every 7–15 years.

• The polarity of the Sun is reversed every cycle, making the complete cycle to
return to the same polarity at a given pole every 14–30 years. With regards
to solar cycles tracked since 1755, the range is actually smaller, with cycles of
only 20–25 years.

• The solar magnetic field is antisymmetric about the equator.

• Spots at the beginning of a cycle form at intermediate latitudes and drift to-
wards lower latitudes. As the cycle progresses, new spots form at the inter-
mediate latitudes. This tendency is referred to as the equatorward drift of the
magnetic field.

• Active longitudes, or longitudes where sunspots tend to form, are influenced
by differential rotation, known as the phase-mixing effect, and last typically
only a year, although some may persist for a full cycle.

• The Sun has differential rotation, where the equator rotates faster than the
poles. Thus it takes the equator about 27 days to rotate once, whereas the
polar regions take 35 days to rotate once.

2.2 Magnetic Activity

It was surmised as early as 1915 by George Ellery Hale that if the Sun was magneti-
cally active, then it was likely that so too were other stars if one was to consider the
Sun as not particularly unique. However, methods to study these fields and exten-
sive observations spanning decades would be needed to detect anything resembling
the Sun’s 22-year magnetic cycle. New techniques were needed in general to observe
magnetic fields on stars based on contemporary knowledge of how the magnetic field
manifests in the Sun.

Starspots were first theorized by Kron (1947) to explain the light curve observed
for the binary system AR Lacertae. Deviations in the light curve from the expected
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2.2. Magnetic Activity

values for an eclipsing binary were postulated to be caused by large, cool patches on
the surface of AR Lacertae B. Photometric observations of the K6V star HD 234677
revealed variability not adequately explained by flares (Chugainov, 1966). Starspots
with temperatures a few hundred or more K lower than the surrounding gas were
theorized to be the source of the slight but consistent changes in the light curves, as
large, cool spots rotating into the line of sight would decrease the observed magni-
tudes of stars.

Wilson and Vainu Bappu (1957) measured the CaII H and K chromospheric emis-
sion lines for 185 stars. A discrepancy was observed between the intensity of H&K
emission lines for stars belonging to open clusters as opposed to field stars, imply-
ing an inverse relationship between stellar age and emission intensity, assuming field
stars are generally older than open cluster members. A tentative explanation was put
forth by Wilson (1963) that if these H&K emission lines are akin to the ones observed
in the Sun connected to the magnetic field and sunspots, then these lines in stellar
spectra corresponded in a similar way to starspots. In March of 1966, a long-term
project was undertaken to measure the H&K emission of 91 stars (Baliunas et al.,
1995). This group of aptly named Mt. Wilson stars was later enlarged to include
more targets and over 100,000 observations of stars of spectral type F2–M2, moni-
tored for 25 years at Mt. Wilson, California. The observed variability of the H&K
emission with time is used as an indicator of magnetic cycle of a star. Baliunas et al.
(1995) classified these magnetic star cycles as cyclic, flat, variable, irregular, or some
combination thereof. These classifications are not rigid, for example, stars classified
as variable might be cyclic but with periods longer than the decades of observations,
and other stars that are flat may be going through a Maunder minimum-like period
of low activity.

The line emission of the Ca II H and K can be expressed as a non-dimensional
quantity S to describe activity level so that

S =
FH + FK

FR + FV
, (2.3)

where FH and FK are counts in the Ca II passbands and FR and FV are counts in the
violet and red continuous bands, respectively. When this activity indicator is plotted
against the color index of F and G stars, a gap is observed where there is an abrupt
change in activity level from active to inactive stars (Vaughan and Preston, 1980).
This gap containing few stars is the Vaughan-Preston gap, where chromospheric
activity was observed to rapidly decline around an estimated stellar age of 109 years.
Saar and Baliunas (1992) examined possible correlations between certain parameters,
such as rotation rate, activity, and age, and found two distinct branches, one with
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Chapter 2. Magnetically Active Stars

rapidly rotating young, active stars and another with older, slower inactive stars.
One possible parameter that can correlate with activity is the inverse Rossby

number Ro−1 = 4πτc/Prot, where τc is the estimated convective turnover time based
on, among other factors, the depth of the convection zone, and Prot is the rotation
period (Noyes et al., 1984). Brandenburg et al. (1998) found relationships between
Ro−1, the fractional chromospheric radiative loss R′

HK, and Prot/Pcyc where Pcyc is
the dynamo cycle period. Stars were found to be active when log 〈R′

HK〉 > −4.75.
Saar and Brandenburg (1999) expanded the sample to include photometric variable
stars and found a superactive branch at lower ωcyc/Ω, where ωcyc = 2πPcyc and Ω is
the mean angular velocity of the star. This branch decreased with increasing Ro−1

populated by close binaries. Additionally, RS CVn stars were found in a transition
region between the active and superactive branches for Rossby numbers in the range
2.0 ≤ logRo−1 ≤ 2.4. Lehtinen et al. (2016) used a larger sampling of stars including
those from Brandenburg et al. (1998) and found a peak value for Prot/Pcyc at Ro−1 =
1.42, indicating a change from active to inactive branches. The activity of a star is
correlated with the depth of the convection zone and rotation rates; stars with too
shallow of a convection zone or rotating slowly, such as older stars, showed little to
no activity. Furthermore, a division was found at logR′

HK = −4.46 between less
active stars with no observable active longitudes and active stars with long-term
active longitudes.

If the Ro, and by extension, rotation, is examined in terms of X-ray luminosity
following the assumption that X-rays are generated in super-hot plasmas of the
coronas of magnetically active stars, then a relation is found where RX ≡ LX/Lbol ∝
Roβ where LX is the X-ray luminosity, Lbol is the bolometric luminosity, and β may
range from −1.9 (Noyes et al., 1984) to −2.7 (Wright et al., 2011), based on the star
sample and fitting method used. This relation holds only for the unsaturated regime.
As Ro increases to ≈ 0.13, RX saturates at about −3.13 (Wright et al., 2011). This
relationship holds regardless of spectral type, and the implication seems to be that
two different dynamo types operate in the saturated and unsaturated regimes.

Long-term monitoring of active stars continued using various other observation
methods, and properties of the magnetic fields can be observed both directly and
indirectly. Time series of photometric data can be used for light curve modeling,
where starspots cause variations in the light curve based on the phase of the spots,
and longer term activity cycles can be calculated using various statistical methods
such as those used in Papers IV (Kajatkari et al., 2015) and V (Olspert et al., 2015)
as well as others (e.g., Bopp and Evans, 1973; Vogt, 1981; Strassmeier, 1988; Jetsu
and Pelt, 1996). There are numerous Automatic Photometric Telescope projects at
observatories such as SpectraBot, Fairborn, SAAO, among others (see e.g., Berdyug-
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ina, 2005), that provide data by observing photometric target stars repeatedly over
long periods of time. Data spanning decades is necessary for observing stellar cycles
of the order of years. Another approach is to seek periodicities from irregularly sam-
pled time series utilizing special statistical methods. This thesis uses two different
methods of this type, namely the Continuous Period Search method (Lehtinen et al.,
2011) and the Carrier Fit method (Pelt et al., 2011), described in more detail in
Sections 5.1.2 and 5.1.3. Spectroscopy can also be used to measure the Ca II H&K
lines by examining only certain molecular lines that appear in the cooler, spotted
regions of stars with a high effective temperature (Vogt, 1979). Zeeman line splitting
in the presence of a magnetic field and rapid rotation displaces metal absorption
lines and can be measured using polarimetry (Babcock, 1947). High-resolution spec-
tropolarimetry can be used to derive magnetic field vectors of magnetically active
stars from the Stokes I, Q, U, & V parameters (e.g., Semel, 1989). Asteroseismology
is the use of the oscillation modes from gravity and pressure waves observed in the
frequency spectrum of stars to reconstruct the interior, akin to helioseismology albeit
with a much lower resolution (e.g., Brown and Gilliland, 1994; Cantiello et al., 2016).

Certain techniques such as inverse methods can use these observations to recon-
struct magnetic field and activity cycles as well. The assumption that stellar spots
are analogous to sunspots is usually made, in other words, spots are caused by strong
magnetic field lines inhibiting convection thus creating cool spots that then cause
deviations in observations from what could be expected of a uniform surface. In the
inversion method of Doppler Imaging, the Doppler effect of stellar rotation is used
to reconstruct stellar surface maps from small fluctuations in spectral lines over an
observing season. This method is discussed in more detail in Section 6, and is used
for determining spot latitudes as well as longitudes in Paper VI (Cole et al., 2016) of
the thesis. Inverse techniques can also be applied to to photometric data to recreate
surface maps, but latitudes and shapes of recovered spots is largely unknown and
only the longitudes can be recovered with accuracy (Berdyugina et al., 2002).

Stars that show particularly high levels of magnetic activity are categorized in
several groups usually named after a prototype star. These groups include red dwarfs
and BY Draconis stars, T Tauri stars, RS CVn stars, FK Comae stars, W UMa stars,
and Algol stars. Red dwarfs and BY Draconis stars are late-type stars of spectral
class G, K, or M that display luminosity variability due to chromospheric activity
and large spots. BY Draconis stars are covered in more detail in Section 2.3.1.
T Tauri stars are pre-main sequence single stars of spectral type F5–G5 that are
more luminous than main-sequence stars and the initial 11 targets comprising this
group have an observed light curve variability of about three magnitudes (Joy, 1945).
The observed erratic three-magnitude changes are not due to starspots but instead
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are caused by other mechanisms. RS CVn stars, named after the prototype star RS
Canum Venaticorum studied by Hall (1972), are rapidly rotating binaries consisting
of a G–K giant or subgiant and G–M subgiant or dwarf, with observed variability
in the chromospheric emission in the CaII H&K lines, and variability of up to 0.6
magnitudes in the V-band (Hall, 1976). FK Comae stars, with the prototype star
FK Comae, are very rapidly rotating late-type giants of spectral class G or K that
have a 0.1–0.2 magnitude variability in the V-band caused by asymmetrical cool
spots and very strong chromospheric emission (Bopp and Stencel, 1981). W UMa
stars, prototype W Ursae Majoris, are solar-type eclipsing binary systems that share
a common envelope, are of spectral type A5–K9, and have orbital periods of less
than a day (Selam, 2004). Algols are rapidly rotating eclipsing binaries with a main
sequence primary star of spectral type B–F, and a secondary subgiant star of spectral
class G or K with a deep convective envelope (e.g., Chen et al., 2006). Other types
include cataclysmic variables, some rapidly rotating giants, and other main sequence
single stars with indicators of magnetic activity.

Stellar spots can be described in terms of temperature, spot filling factor, latitude,
longitude, and activity cycles. The temperature of spots on a stellar surface can be as
much as 1500K cooler than the unspotted surface (e.g., Hackman et al., 2011). The
spot filling factor describes how much of the total surface area is covered in spots.
The method of calculating the spot filling factor varies based on the observational
technique, and results have stellar spots covering a significant percentage of the
stellar surface for the more active stars. Spots have been observed to appear at any
latitude ranging from the equator to the pole. There is some controversy regarding
whether the central spectral line filling is due to polar spots or chromospheric effects
concentrated near the poles, however, Bruls et al. (1998) found that the spectral
lines are not as sensitive to chromospheric effects as they are to spots. Additionally,
methods such as interferometry can be used to confirm polar spots observed by
other methods (Korhonen et al., 2010). For some stars, spots have been observed to
occur at the same longitude over long periods of time. These active longitudes can
be observed both in photometry and Doppler Imaging, provided there are enough
observing seasons to establish the longitudinal distribution of spots with time. One
of the earliest stars with observed active longitudes is FK Com, where the term “flip-
flop” was used to describe behavior where one longitude where spots developed would
suddenly cease to be active and a longitude approximately 180◦ from it would take
over (Korhonen et al., 2002; Hackman et al., 2013). Some caution must be exercised
when interpreting active longitudes and spots, as certain methods may introduce
a bias, such as fitting light curves to two spot models (Zeilik et al., 1988; Henry
et al., 1995). Some binary RS CVns such as II Peg are of interest because the binary
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system makes the period well-known, and the active longitudes observed rotate with
a different period than the star (Lindborg et al., 2013). Lehtinen et al. (2016) found
that active longitudes calculated from photometric light curves appear on the more
active stars, but the coherence time and rotation rate of these active longitudes may
vary. In general, active longitudes rotate at a faster rate than the star itself.

Long term cycles can be calculated from a time series of activity indicators such as
the previously mentioned CaII H and K emission lines, mean brightness, light curve
amplitude, among others. Calculations of these cycles, however, are limited by the
length of time of observing programs that include these stars as targets. Stars have
indications of cycles as short as a few years and so more than one cycle period may
be observed. For example, calculated cycle periods for LQ Hydrae range from 3.2
years (Messina and Guinan, 2003) up to 12.4 years (Oláh et al., 2009). Longer cycles
are probable, and as pointed out by Baliunas et al. (1995), there exists an artificial
upper limit to observed cycles due to the limited span of years of observing programs
so that stars appearing to have irregular or variable activity might instead just have
cycles of longer than 25 years. There is also the possibility that some otherwise
cyclic stars may be experiencing a Maunder-minimum phase in their activity cycle
and thus appear to have a flat light curve.

2.2.1 Differential Rotation

Differential rotation is usually listed in terms of the rotational shear relative to the
equatorial rotation, or as the relative differential rotation coefficient

k =
ΔΩ

Ωeq
, (2.4)

where Ωeq is the equatorial rotational velocity and ΔΩ is the difference between the
equatorial rotation and polar rotation. Assuming a solar-like differential rotation
profile, an equation for fitting Ω(θ) would be

Ω(θ) = A+B sin2 θ (2.5)

where θ is the latitude, and A and B are parameters obtained usually by a best
fit. Variations in photometric light curves may be due to spots at various latitudes
experiencing differential rotation. Relative differential rotation can be estimated
from period fluctuations observed in photometry, written as

Z =
6ΔPw

Pw
, (2.6)
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where Pw is the observed weighted period of rotation, ΔPw is the standard deviation,
and the factor 6 accounts for the ±3σ variation, and Z ≈ |k| (Jetsu, 1993; Lehtinen
et al., 2012). Another way to quantify differential rotation for stars is to use the
method by Henry et al. (1995) where k = (Pmax − Pmin)/Pavg, in other words, using
the longest period Pmax, the shortest period Pmin, and the average period Pavg. The
solar value is k ∼ 0.2, but stellar values tend to be much smaller. For example,
estimates for k for LQ Hya is of the order 0.02 (Jetsu, 1993; You, 2007; Lehtinen
et al., 2012), with a rotational period of approximately 1.6 days.

There are several ways of determining a star’s relative differential rotation. In-
verse methods can be used to fit spots to photometric light curve variations (Hall,
1972). Period fluctuations can be calculated from the Lomb-Scargle periodogram or
a χ2 fitting method of either photometric or CaII H&K emission (e.g., Jetsu, 1993;
Henry et al., 1995; Donahue et al., 1996; Messina and Guinan, 2003; Reinhold and
Reiners, 2013). Some stars may exhibit anti-solar differential rotation, where the
equator rotates slower than the poles, in which case k should be negative (Reinhold
and Arlt, 2015). However, their method of determining k only gives the amplitude
of the difference in rotation, and if these fluctuations are due to two or more spots
of unknown latitudes, then the calculated k may actually be less than the actual
differential rotation if the spots do not occur at both high and low latitudes at the
same time. Differential rotation can also be estimated from deviations in the rota-
tion period of the chromospheric emission or photometry by using a Fourier analysis
(Lanza et al., 1993). Another way of determining differential rotation in the Sun
is from tracing spots and magnetic features, and similar methods can be applied to
calculating stellar differential rotation. By cross-correlating latitudinal slices of maps
of either spot structures or magnetic structures using Doppler Imaging or Zeeman
Doppler Imaging respectively, an upper limit to the relative differential rotation can
be calculated from the changes in longitude of observed structures (e.g., Donati and
Collier Cameron, 1997; Petit et al., 2002). The spectral lines themselves may also be
used to estimate differential rotation by using a Fourier transform and accounting
for such effects as limb darkening, the inclination angle, and starspots (Reiners and
Schmitt, 2002). A Fourier transform can also be applied to differential interferome-
try (Domiciano de Souza et al., 2004). Another method for determining differential
rotation is to use asteroseismology, where the splitting of the modes of pressure and
gravity wave oscillations provide information regarding surface differential rotation
(Gizon and Solanki, 2004; Lund et al., 2014).

All these methods of calculating the relative differential rotation are limits only,
as the rotation velocity of some latitudinal regions may differ even more but contain
no tracer of differential rotation. Direct tracing of the starspots does not account
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for the spot anchorage depth, and it is possible that the magnetic structure, spot
regions, and stellar matter are not always connected to each other (Donati et al.,
2003a). The relation between the differential rotation period ΔP and the rotation
period Prot can be formulated as

ΔP ∝ Pn
rot, (2.7)

where n varies based on spectral type and method of determining differential rotation.
Donahue et al. (1996) found a relation of n = 1.3 for F, K, and G stars, while Messina
and Guinan (2003) found a relation of n = 1.42 from a sample of 6 type G stars.
Henry et al. (1995) and Barnes et al. (2005) found steeper values of n = 1.76 and 1.85
respectively. These values are somewhat close to the theoretical values calculated
from numerical simulations by Rüdiger et al. (1998) where n = 1.15 . . . 1.30. Lehtinen
et al. (2016) found a relation of n = 2.36 of F–K stars of single and multiple star
systems. This last value is the closest to the theoretical value n = 2.6 found by
Kitchatinov and Rüdiger (1995) using numerical models with rotation rates around
solar values. Küker and Rüdiger (1999) hypothesized that stars without a tachocline
such as that in the Sun may have a different dynamo mechanism and it was found
that as rotation increases, an axisymmetric field switches to a non-axisymmetric field
while differential rotation becomes weaker with increasing rotation.

2.2.2 Stellar Activity Summary

Observations have revealed the following characteristics of magnetically active stars:

• Stellar spots for active stars may be much larger than solar spots, covering
over 30% of the stellar surface, as seen in Figure 2.3 The irradiance is therefore
anti-correlated with the magnetic activity level, unlike for the Sun. Due to
resolution limits, it is not known if these starspots are either one large spot or
groups of smaller spots.

• Observations of stellar magnetic activity are made via methods such as photom-
etry, spectroscopy, asteroseismology, Zeeman Doppler Imaging, and Doppler
Imaging. Unlike the Sun, these observations only span decades at best instead
of centuries, which places limits on the observed cycle periods.

• Spots may form at any latitude, including near the pole.

• Similarly to the Sun, spots may exhibit the tendency to appear at certain
longitudes, and this tendency is stronger with the more rapid rotating stars.
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Figure 2.3: Left: Large sunpot group, data from SOHO/MDI. (Image credit: ESA
and NASA) Right: LQ Hya during May–June, 1999. Modified from from Paper VI,
Figure 3.

These active longitudes may persist for several years, and the primary and
secondary minima may also periodically switch (flip-flop).

• The relative differential rotation of active stars may be much weaker than
that of the Sun, and so the spot-generating mechanisms behave differently,
particularly in fully convective stars. Additionally, differential rotation may be
anti-solar, in other words, faster rotation at the poles than the equator.

2.3 Solar Analogues

Stars with properties that resemble the Sun are classified as solar-type stars, solar
analogues, and solar twins (Cayrel de Strobel, 1996). These are of particular interest
for studying as their properties resemble that of the Sun. The criteria for solar-type
star is the least rigid. For a star to qualify as a solar-type star, it must be of types F8V
– K2V, with corresponding B–V color indexes between 0.50 and 1.00. As these stars
have significant convective envelopes, they are also chromospherically active. Solar
analogues are a sub-group of solar-type stars, and typically Population I single stars.
Metallicity, effective temperature, and kinematic properties should not drastically
vary from solar values and these stars should be in the same evolutionary phase, in
other words, on the main sequence, although they may be much younger than the
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Sun. Solar twins are a subgroup of solar analogues which have properties nearly
identical to that of the Sun, including age, magnetic activity, luminosity, rotation
profile, and metallicity. Because of this, solar twins are quite rare, and it is primarily
solar analogues that are studied with respect to magnetic fields and starspots.

2.3.1 BY Draconis-type Stars

BY Draconis-type stars are late-type stars that exhibit variability as a result of
starspots or chromospheric activity. The stellar prototype is the namesake, BY Dra-
conis, a class K4V + K7.5V variable binary star (Popper, 1953). These stars are of
spectral type G–M. The variability is usually less than half a magnitude, and the
time-scale for periodicity found in the light curves is similar to that of mean rotational
velocity of the star, typically 1–10 days for rapid rotators. Activity cycles calculated
from changes in the light curves of these stars are typically of the order of months or
years. Two such BY Draconis-type stars are studied here in detail: LQ Hydrae (HD
81228, HIP 46816) and V352 Canis Majoris (HD 42162, HIP 29568). Both stars are
rapidly-rotating young solar analogues exhibiting strong levels of activity.

V352 Canis Majoris

V352 CMa is one the nearby young solar analogues with rapid rotation and an active
chromosphere. It has a spectral class G6.5 (Gray et al., 2006), and an estimated age of
40−800 Myrs (Gaidos et al., 2000). The star is the parent member of a multiple star
system which includes HD 43162a and HD 43162b (Mason et al., 2001). The nearly
constant vrad = 21.7 (Gaidos et al., 2000) indicates orbital planes of the companions
nearly perpendicular to the line of sight. Although the star has been identified as
having a debris disk, there are no known planets (Kóspál et al., 2009). V352 CMa
has low-amplitude light curves, so while not a candidate for Doppler Imaging, it
is a candidate for testing the reliability of photometric methods and refining the
rotational period. This star is studied in Paper IV of the thesis.

LQ Hydrae

LQ Hydrae (HD 82558, HIP 46816, GL 355) is a young solar analogue located ap-
proximately 18.3pc away. It is of spectral type K2V (Cutispoto, 1991), and classified
as a BY Draconis-type star (Fekel et al., 1986). The age of LQ Hya is approximately
51.9±17.5 Myr (Tetzlaff et al., 2011), as compared to the solar age of 4.57 Gyr, plac-
ing it among the zero age main sequence stars. The mass of LQ Hya is estimated
to be 0.8 ± 0.1M� It has an estimated rotation period of 1.601136 ± 0.000013 days
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Table 2.1: Chosen stellar parameters for V352 Canis Majoris. References are as
follows: (1) Cutispoto et al. (1999), (2) Gaidos et al. (2000), and (3) Santos et al.
(2004).

Parameter Value Reference
Age 70− 800 Myrs 2

Temperature Teff = 5480K 2
Gravity log g = 4.48 3

Rotation velocity v sin i = 5.7 km/s 2
Rotation period P = 7.d2 1

Metallicity log[Fe/H] = −0.01 3

Table 2.2: Chosen stellar parameters for LQ Hya. References are as follows: (1)
Jetsu (1993), (2) Rice and Strassmeier (1998), (3) Donati (1999), and (4) Kovári
et al. (2004).

Parameter Value Reference
Temperature Teff = 5000K 3

Gravity log g = 4.0 2
Inclination i = 65◦ 2

Rotation velocity v sin i = 26.5 km/s 3
Rotation period P = 1.d6001136 1

Metallicity log[M/H] = 0 4
Macroturbulence ζt = 1.5 km/s 2
Microturbulence ξt = 0.5 km/s 2

(Jetsu, 1993). The estimates of the metallicity of LQ Hya range from [Fe/H]= −0.74
(Zakhozhaj and Shaparenko, 1996) to [Fe/H]= +0.60 (Haywood, 2001). Based on
the range of parameters, the radius estimates of LQ Hya range from 0.79 − 1.0R�
(Alekseev, 2003; Strassmeier, 2002).

LQ Hya is a rapid rotator with low differential rotation. Lehtinen et al. (2016)
estimates a value based on the deviation of measured periods from the mean period
of Z = 0.017 (Eq. 2.6). Even lower estimates were obtained from Zeeman Doppler
Imaging by Donati et al. (2003a) of k = 0.002 (Eq. 2.4). Activity cycles have been
estimated to be between 3.4 years (Messina and Guinan, 2003) and 12.4 years (Oláh
et al., 2009). This star is studied in Papers V and VI of this thesis.
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3 Dynamo Theory

If the prestellar cloud that eventually formed into the Sun had a fossil field of 1 nT,
and collapsed without any loss of the magnetic field, as a result the Sun would have
had a field of 106 T. This magnetic field would then decay through diffusion, but the
timescale of this process is of the order of 1010 years, or more than double the age
of the Sun.

But astrophysical objects are not such simple systems and instead are often tur-
bulent, which significantly influences the magnetic field. A plasma flow is considered
turbulent when the inertial forces are sufficiently stronger than the viscous forces.
This is characterized by the Reynolds number,

Re =
UrmsL

ν
, (3.1)

where ν is the kinematic viscosity. Re 
 1 indicates turbulent flow while Re < 1
indicates laminar flow. In the case of the Sun, the convection zone has typical veloc-
ities (top to bottom) Urms=10

5 . . . 103 cm s−1, kinematic viscosity ν = 10 . . . 1 cm s−1,
and a characteristic length scale based on mixing length theory L = 108 . . . 1010 cm.
The corresponding range of Reynolds numbers would be Re ∼ 1012 . . . 1013. Flows
are considered turbulent when Re exceeds 103 or so, a condition certainly met in
the solar convection zone. In stars, convection can be observed through the phe-
nomenon of microturbulence, where convective velocities broaden spectral lines (see
e.g., Hundt, 1973). An estimate of turbulent diffusion in the Sun is of the order
of 1013 cm2 s−1, based on the characteristic length scales and velocities, and there-
fore this mechanism would more rapidly diffuse away any fossil field than molecular
diffusion alone. Hence, a mechanism for generating the magnetic field is required.

Additionally, the complexity of the solar magnetic field, the latitudinal drift of
sunspots, and the amplified magnetic fields in sunspots cannot be adequately ex-
plained by processes limited to dissipation, reconnection, or the cascade of energy
from larger to smaller scales due to turbulence. Some other mechanism that regener-
ates the magnetic field is needed. Dynamo theory postulates a mechanism whereby
the kinetic energy of a conducting fluid or plasma is converted into magnetic energy
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via electromagnetic induction. Therefore the Sun or any other star with sufficient
turbulence and a seed magnetic field may generate a self-maintaining general mag-
netic field under the premise of dynamo theory.

3.1 Magnetohydrodynamics

Magnetohydrodynamics (MHD) examines the electrical and magnetic properties of
moving conducting fluids, derived from Maxwell’s equations and the conservation
equations of mass, momentum, and energy. A plasma can be treated as a fluid when
the particles are sufficiently coupled by collisions and the relevant length scales are
greater than the Debye length. The MHD description is then valid for a plasma
(Boyd and Sanderson, 2003, e.g.,).

The basic quantities are the electric field E, the magnetic field B, the magnetic
permeability μ, the electrical permittivity ε, the current density J , the electrical
conductivity σ, the fluid velocity U , the charge density ρq, and the time t. The
Maxwell equations that relate these quantities are Gauss’s Law for electric fields,

∇ ·E =
ρq
ε
, (3.2)

the Mawell-Faraday equation,

∇×E = −∂B

∂t
, (3.3)

Ampere’s Law,
∇×B = μJ , (3.4)

Gauss’s Law for magnetism,
∇ ·B = 0, (3.5)

and Ohm’s Law modified with the Lorentz force,

J = σ(E +U ×B). (3.6)

These are combined to derive the induction equation,

∂B

∂t
= ∇× (U ×B)−∇× η(∇×B). (3.7)

The magnetic diffusivity η is related to the magnetic permeability and electric diffu-
sivity by η = 1/σμ0. If η is constant and Gauss’s law is used, then sometimes last
term on the right hand side is written as ∇× η(∇×B) = η∇2B.
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Table 3.1: Notation for field symmetry based on parity P and measure of axisym-
metry M

M = 0 M = 1

P = +1 S0 S1
P = −1 A0 A1

Equations 3.7 and 3.5 describe the evolution of the magnetic field B over time
and the forces that act back upon that field. The ratio of the terms on the right
hand side of Equation 3.7 determines how conductive versus diffusive the fluid is:

∇× (U ×B)

∇× (η∇×B)
≈ UrmsL

η
≡ Rm. (3.8)

Rm is the magnetic Reynolds number, Urms is the characteristic velocity, and L is the
length scale of the eddies. If η is very small due to a high electrical conductivity, the
denominator vanishes and the plasma or fluid is considered ideal. The magnetic field
lines are then considered “frozen in” to the flow, where any distortions to magnetic
field lines are a result of the flow and not other dissipative effects. If η is large
enough, then the magnetic field dissipates faster than it is regenerated. Some local
diffusion is required for effects such as magnetic reconnection to occur.

Symmetry

The final configuration of the magnetic field in a spherical dynamo may be symmetric
or asymmetric or some combination thereof, quantified by the parity,

P =
E(S) − E(A)

E(S) + E(A)
, (3.9)

where E(S) and E(A) are respectively the energies of the symmetric and antisymmet-
ric parts of the magnetic field with respect to the equator (e.g., Moss et al., 1995).
A parity of +1 indicates a purely equatorially symmetric field, and −1 denotes a
purely equatorially antisymmetric field.

If Laplace’s spherical harmonics Y m
l are used to describe a magnetic field, then

the m = 0 mode corresponds to axisymmetry, and l − m corresponds to a sym-
metric (antisymmetric) field about the equator if even (odd). A diagnostic for the
axisymmetry of a field configuration is

M = 1− E(0)

E
. (3.10)
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Here, E(0) is the energy of the m = 0 mode and E = E(S) +E(A) is the total energy
of the field. A completely axisymmetric field will have M = 0 and a completely
non-axisymmetric field will have M = 1. The field symmetry is often referred to in
terms of symmetry and dominant mode m, so that a symmetric field is denoted by
Sm and an antisymmetric field by Am. Table 3.1 shows the conversion from M,P
to Am and Sm notation. S1 and A1 actually denote a combination of S1,S3,S5, . . .
modes and A1,A3,A5, . . . modes, respectively.

The Sun is an example of a star that is mostly axisymmetric. The strong dif-
ferential rotation winds up the field to a toroidal configuration. Axisymmetry is
broken by starspots, flares, and other chaotic phenomena, but the dominant mode
is M ∼ 0. The toroidal magnetic field is antisymmetric about the equator, but
the poloidal field is more interesting. For most of a regular solar cycle, the poloidal
field is antisymmetric about the equator, so that P ∼ −1. However, this dipolar
field switches with the solar cycle, and at solar maximum takes on a quadrupolar
structure that is symmetric about the equator, giving P ∼ +1. So the Sun favours
a cycle of A0 and S0 with its activity cycle (e.g., Dikpati and Gilman, 2001a,b).
However, there are historically long periods when the Sun remained at low activity
level, for example, the Maunder Minimum dating 1645–1715, and the modes appear
to have been more mixed, as estimated from records of sunspot cycles (e.g., Weiss
and Tobias, 2016).

Stellar phenomena such as active longitudes and flip-flops found on stars with
deeper convection zones and faster rotation seem to be indicative of non-axisymmetric
fields, implying M ∼ 1. Symmetry can be estimated from stellar observations but
limitations exist in how much of the star is visible based on inclination angle and
method of observation. Photometry can only provide information of longitudes and
lifetimes of large spots, while Doppler Imaging can provide latitudinal information
about spots (e.g., Piskunov et al., 1990; Jennings et al., 1990). Additionally, the
temperature maps and magnetic fields are not necessarily correlated (e.g., Kochukhov
et al., 2013). The degree of axisymmetry of the magnetic field can be observed
via Zeeman Doppler imaging, and stars such as II Peg are observed to have non-
axisymmetric fields that are stronger when the star is more active, and the observed
possible minimum had more of a dipolar, and hence axisymmetric structure (e.g.,
Skelly et al., 2010; Donati, 2011; Hackman et al., 2016). This behavior is typically
found in stars above the Vaughan-Preston gap. More complex dynamo systems are
needed to explain this observed difference (Tuominen et al., 2002).
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3.1.1 Mean-field Theory

Mean-field theory approaches the problem of handling both large and small scales by
decomposing any given field into the overall average behavior and the fluctuations.
For the purpose of this thesis, only the mean-field decomposition of the magnetic
field is relevant so that only the induction equation (Eq. 3.7) is considered. Al-
though not officially formulated as such at the time, this idea of breaking down a
general field into smaller components was initially presented by Parker (1955), where
rotation acting upon convection eddies in a stratified convection zone was shown to
be able to regenerate the poloidal field, which in turn can regenerate the toroidal
field through differential rotation. Cowling’s antidynamo theorem postulated that an
axially symmetric magnetic field does not induce the currents necessary to regener-
ate itself (Cowling, 1933). Parker’s theorem provides the missing link by introducing
complexity in the form of non-axisymmetric helical turbulence. However, it was
Steenbeck et al. (1966) who quantified this into mathematical form with the help of
the mean-field approximation (Moffatt, 1978; Krause and Rädler, 1980).

Reynolds Decomposition

According to mean-field theory, any field can be broken down into an average, in
other words, the expected value of an ensemble, and a fluctuating part. The method
of representing this is the Reynolds decomposition. The following notation is used:
the total is denoted in capital letters, for example, a generic field F , the mean
component of F is indicated by an overbar, F , and the fluctuating portion is denoted
by a lowercase letter, f . This fluctuating part is the difference between the total field
and the mean field, so that

F = F + f (3.11)

If G is another fluctuating field, then the Reynolds rules can be used to relate the
mean and fluctuations of these two fields as follows:

F = F , (3.12)

f = 0, (3.13)

F +G = F +G, (3.14)

F G = F G, (3.15)

Fg = 0. (3.16)
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Additionally, with respect to derivatives in time or space, the following are also
approximately true for horizontal or spatial averages:

∂F

∂x
=

∂

∂x
F , (3.17)

∂F

∂t
=

∂

∂t
F , (3.18)

where x denotes any spatial coordinate.
The Reynolds decomposition (Eq. 3.11) can be applied then to the induction

equation. The magnetic field B and velocity U from Eq. 3.7 are decomposed into
their mean and fluctuating parts, so that B = B + b and U = U + u. Taking first
the mean component and applying the averaging rules from Equations 3.11–3.16,
Equations 3.7 and 3.5 respectively become

∂B

∂t
= ∇× (U ×B + E)−∇× η(∇×B), (3.19)

∇ ·B = 0, (3.20)

where E = u× b is the mean electromotive force (EMF). The fluctuating part then
becomes

∂b

∂t
= ∇× (U × b+ u×B +G)−∇× (η∇× b), (3.21)

where G = u× b− u× b.

The Mean EMF

The mean-field decomposition for the mean field (Eq. 3.19) and the fluctions (Eq.
3.21) introduced two new terms, E and G. The EMF is related to the velocity and
magnetic field fluctuations, but it is useful to define it in terms of the mean field B.
The term G can be removed provided the length scales of b and u are much smaller
than the length scales of B and U , respectively, as the terms u × b − u× b will
vanish relative to the u ×B and U × b terms in Equation 3.21. In essence, either
the Rm should be small or the correlation time of the turbulence τc should be less
than the eddy turnover time, defined as the Strouhal number,

St =
ucτc
λc

. (3.22)

Here, λc is the correlation length of the turbulence. This is usually referred to as
the first order smoothing approximation (FOSA) or the second order correlation
approximation (SOCA) (Krause and Rädler, 1980).
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Equation 3.21 is then left with three terms on the right-hand side. A further
simplification is made with U = 0 and the equation for the fluctuation becomes
∂b/∂t = ∇×(u×B−η∇×b). It becomes apparent from this form that without B, b
would decay away. Isolating just the induction term and approximating ∂/∂t ≈ τ−1,
the fluctuations can be written as

b ≈ τ∇× (u×B) = τ(B ·∇)u− τ(u ·∇)B. (3.23)

Thus, a linear relationship between b and B can be seen and the EMF can then be
expressed as a series expansion:

E i = (u× b)i = aijBj + bijk∇kBj + . . . . (3.24)

Here, aij and bijk are tensors determined solely by the flow, often referred to as
turbulent transport coefficients.

The term ∇kBj can then be split then into symmetric and antisymmetric parts
(Rädler et al., 2003), so that ∇ ·B = 1/2[(∇jBi+∇iBj)]−1/2[εijk(∇×B)k], where
εijk is the Levi-Civita symbol. An expansion of the EMF can then be written as

E = −α ·B − γ ×B − β · (∇×B)− δ × (∇×B)− κ(∇B). (3.25)

Here, α is a second rank tensor that denotes the α effect. It is the symmetric portion
of the aij term, so that αij = −1/2(aij + aji). The asymmetric portion of aij is the
γ term, a vector quantity connected to the transport of the mean field through
turbulent pumping, written as γi = 1/2εijkajk. β is a second rank tensor that is the
symmetric part of bijk, tied into the mean field conductivity or diffusivity, written as
βij = 1/4(εiklbjkl + εjklbikl). The δ term is the corresponding asymmetric portion of
bijk. δ is also referred to as the Ω×J effect, or the Rädler effect (Rädler, 1969) and
δi = 1/4(bjji− bjij). κ is a third rank tensor that encapsulates other effects that are
not well-known, and κijk = −1/2(bijk + bikj).

If u corresponds to isotropic homogeneous turbulence, then by symmetry argu-
ments aij = αδij , and bijk = βεijk where α and β are now scalars, and δij is the
Kronecker delta. The EMF is then written as

E = αB − β(∇×B). (3.26)

The β term is the mean turbulent magnetic diffusivity, sometimes denoted by ηt.
Inserting this EMF back into Equation 3.19 gives

∂B

∂t
= ∇× (U ×B) + (∇× αB)−∇× ((η + β)(∇×B)). (3.27)
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The first term on the right hand side of the equation is the information about the
large-scale velocity field including differential rotation, the second term is the α effect,
and the third term is the diffusion of the magnetic field.

3.1.2 The Poloidal and Toroidal Decomposition

The magnetic field can be decomposed into its poloidal and toroidal components.
Using the notation from Chandrasekhar (1961), Appendix III, and following the
method outlined in Moss et al. (1991), the magnetic field is decomposed so that
B = BT +BP , where T and P denote the toroidal and poloidal parts, respectively.
The poloidal field can be written as a function of the magnetic vector potential A:

BP = ∇× (0, 0, A(r, θ, t)) = ∇×Aφ, (3.28)

and the toroidal field as

BT = (0, 0, B(r, θ, t)) = Bφ. (3.29)

The mean velocity for a rotating sphere is written as

U = (0, 0, Uφ(r, θ, t)) = Ω r sin θφ̂, (3.30)

where Ω is the angular velocity.
To get the poloidal portion of Equation 3.27, the vector potential is uncurled so

that
∂Aφ

∂t
= αBφ − (η + β)

(
∇2 − 1

r2 sin2 θ

)
Aφ. (3.31)

Because the φ-component of U × (∇×A) is 0, it can be seen that the Ω effect does
not contribute to the regeneration of the poloidal field. The inductive contribution
due to the α effect must be larger than the diffusion term for the poloidal field to
grow with time. The equation for the toroidal field is

∂Bφ

∂t
=

∂Ω

∂r

∂

∂θ
(Aφ sin θ)− 1

r

∂Ω

∂θ
(rAφ sin θ)− 1

r

∂

∂r

(
α
∂

∂r
(rAφ)

)

− 1

r2
∂

∂θ

(
α

sin θ

∂

∂θ
(Aφ sin θ)

)
+ (η + β)

(
∇2 − 1

r2 sin2 θ

)
Bφ. (3.32)

Having a gradient to the velocity introduces shear, and the effects can be seen
from the above equation where the terms ∂Ω/∂r and ∂Ω/∂θ are the radial and
latitudinal shear, respectively. For example, a rotation law similar to that of the
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Sun could be written as Ω = Ω0(1− S cos2 θ), where S is the normalized shear. The
largest source of shear in the Sun is the radial differential rotation present at the
base of the convection zone at the tachocline. If a magnetic field has a sufficiently
high Rm and there is shear, then a poloidal field will eventually be wound into a
toroidal field. The Sun’s system is also more complex in that there is a poloidal flow,
so the velocity can be decomposed in a similar way as the for the magnetic field so
that U = UP +UT . Then

UP = ∇× (0, 0,Ψ(r, θ, t)) = ∇×Ψφ, (3.33)

and
UT = (0, 0, U(r, θ, t)) = Uφ = Ω r sin θφ̂. (3.34)

Here, Ψφ is the vector potential of the velocity, representing the poloidal flow. An
example of a poloidal flow would be the meridional circulation in the Sun, believed to
be a contributing factor to the equatorward migration of sunspot belts (e.g., Rädler,
1986; Moss et al., 1995)

The α Effect

Helicity is a factor that quantifies the twisting a flow undergoes, quantifying the
amount of twisting and knottedness of flow lines. Kinetic helicity is

Hkin = u · ω, (3.35)

where ω = ∇×u is the vorticity. If Rm 
 1, then the diffusive effects are considered
small and the ∇ × (η∇ × b) term is neglected from Equation 3.21 along with G.
This leaves ∂b/∂t = ∇× (u×B). Then the EMF (Eq 3.26) can be written in terms
of the integral of ∂b/∂t so that

E = u×
∫ t

0
∇× (u×B)dt′ (3.36)

This integral of the α term becomes (e.g., Moffatt, 1978)

α = −τc
3
u · ω, (3.37)

where τc is the correlation time from approximating the integral. Thus α is directly
proportional to the kinetic helicity in the simplified isotropic case. The β term is

β =
τc
3
u2, (3.38)
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and is only due to turbulent velocities. A dynamo number Cα is obtained by taking
the ratio of the induction term to the diffusivity term in Equation 3.27:

Cα =
∇× αB

∇× (η + β)∇×B
≈ αR

η + β
. (3.39)

There exists a threshold Cα above which the dynamo field will grow.

The Ω Effect

Stars are rotating objects and as such, the Coriolis force has some impact upon
the system. The importance of rotation relative to convection is quantified by the
Coriolis number,

Co =
2Ω0L

U
, (3.40)

where Ω0 is the mean rotation rate. Co is the inverse of the Rossby number dis-
cussed in Section 2.2, and both correlate with the observed activity of rotating stars.
However, a fast rotation alone does not create the Ω effect, in fact, the opposite
effect seems to be observed where differential rotation ΔΩ/Ω decreases as absolute
rotation Ω increases in stars (e.g., Henry et al., 1995; Donati et al., 2003a; Barnes
et al., 2005; Lehtinen et al., 2016). The rotational effect can be quantified similarly
to the α effect as the ratio of the advection term to the diffusion term in Equation
3.27:

CΩ =
∇× (U ×B)

∇× (η + β)∇×B
≈ ΔΩR3

η + β
. (3.41)

Here, ΔΩ is the shear from differential rotation.

Dynamo Type

From Equations 3.31 and 3.32, it can be seen that the α effect is sufficient to maintain
a dynamo on its own. If U = 0 and β 
 η, then Equation 3.27 reduces to

∂B

∂t
= α(∇×B) + β∇2B. (3.42)

Using the Beltrami property, so that ∇×B = NB and ∇2B = −N2B, the induction
equation becomes

1

B

∂B

∂t
= (αN − βN2). (3.43)
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Integrating both sides in time gives B(r, t) = B(r, 0) exp[(αN − βN2)t]. If N is
considered to be an approximation of R−1, then the condition for a growing α2

dynamo is α > β/R, or Cα > 1. Dynamo growth is only possible if the length scale
is large and the diffusion small relative to the α effect. The poloidal and toroidal
fields are generally the same order of magnitude in α2 dynamos (Rädler, 1986).

There are conditions whereby a spherical α2 dynamo may oscillate in the lin-
ear case, but only under certain conditions where α changes sign (e.g., Rädler and
Braeuer, 1987; Baryshnikova and Shukurov, 1987). An α2 dynamo may oscillate
when the α effect is highly anisotropic, concentrated towards equatorial regions,
and/or restricted to thin shells (Rüdiger et al., 2003). The non-linear case is even
more complicated, and the non-linear α2 dynamo is believed to be the predominant
dynamo mechanism in rapidly rotating stars with deep convection zones or those
that are fully convective, where differential rotation is small and the bottom shear
layer is also small or non-existent (Küker and Rüdiger, 1999).

Under certain conditions with the presence of shear, where CΩ 
 Cα and CΩ > 1,
the Ω effect and hence rotational shear regenerates the toroidal field at a rate stronger
than the α effect can regenerate the poloidal field. This dynamo type is an αΩ
dynamo (Rädler, 1980), the dynamo type thought to operate in the Sun. In such a
dynamo, the most easily excitable mode is the A0 configuration. Any values m > 0
are found to be the result of a thin shell subsection of the rotating sphere where the
α effect dominates over shear locally (Rädler, 1986). Such dynamos typically can
oscillate within certain regimes, but non-oscillatory αΩ dynamos also are possible
(e.g., Käpylä et al., 2013a). A dynamo is considered purely αΩ if the generation of
the toroidal field is exclusively due to the Ω effect. The stronger this Ω effect, the
more likely an axisymmetric field is preferred. There are also α2Ω dynamos, where
Cα ∼ CΩ so that both the shear and the α effect generate a magnetic field.

Here, only the α2, α2Ω, and αΩ dynamos are dealt with. The additional terms
of Equation 3.25 may also maintain dynamos under certain conditions. δ and β can
maintain a dynamo in conjunction with the Ω effect so that δΩ and βΩ dynamos
are also possible (e.g., Rädler, 1980, 1986). These additional terms have many very
interesting results for magnetic field symmetry and oscillation, but are outside the
scope of this thesis.

30



Chapter 3. Dynamo Theory

3.2 Dynamo Waves

Latitudinal dynamo waves are predicted to propagate along isorotation surfaces of
differentially rotating objects such as the Sun or other αΩ and α2Ω dynamos. The
direction of propagation is determined by the sign of the shear and α effect (Parker,
1955; Yoshimura, 1975). This is referred to as the Parker-Yoshimura sign rule,

s = αΔΩ× êφ, (3.44)

where α is the alpha effect, ΔΩ is the gradient of Ω, and êφ is the unit vector in the
azimuthal direction. This rule can be used to determine whether a dynamo prop-
agates equator-ward (negative value) or pole-ward (positive value). This has been
seen in simulations of convection driven αΩ dynamos (e.g., Warnecke et al., 2014).
However, if this rule is applied to the solar rotation law and the observed equator-
ward motion of the sunspot belt, a problem develops (Parker, 1987, and references
therein). Conventional thought prior to helioseismic observations of the solar rota-
tion profile was that angular momentum conservation and meridional circulation led
to a rotation profile that increased downward (∂Ω/∂r < 0). Additionally, the α ef-
fect was believed to be positive in the northern hemisphere because a convective cell
would experience retrograde rotation as it rose and prograde rotation as it sunk, rel-
ative to the ambient plasma in the solar convection zone. However, helioseismology
finds that the rotation rate actually decreases downward (∂Ω/∂r > 0), which means
that the Parker-Yoshimura law would require poleward migration of sunspots. The-
oretical solutions include using the horizontal gradient of ∂Ω/∂θ, limiting dynamo
generation to layers where the α effect changes sign, or re-examining the assumptions
made when determining the the value of α itself (Leighton, 1969; Parker, 1987).

An azimuthal dynamo wave is also possible (Krause and Rädler, 1980; Rädler,
1986). If the field is decomposed into modes of complex field B̂, then these modes
can take the form

B̂ = Ce(imφ+(λ−iΩB)τ), (3.45)

where C is a complex axisymmetric steady field that is either symmetric or an-
tisymmetric about the equatorial plane, λ and ΩB are dimensionless real constants
representing the growth rate and angular velocity respectively, and m is the spherical
harmonic mode corresponding to the m-term of the real Laplace spherical harmonics
Y m
l . The non-axisymmetric mode rotates like a rigid body with an angular velocity

of Ω/m, independent of depth and latitude. Solutions are denoted as critical when
λ = 0, in other words, the dynamo is neither growing nor decaying. ΩB then is
either positive or negative, indicating the direction of the traveling wave as eastward
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or westward, respectively. In the case of an α2 dynamo, the m = 1 and m = 0
modes were found to have similar marginal values for the critical α to excite the
dynamo, and so are almost equally likely to appear (Rädler, 1986), with a preference
for S1 and A1 modes within certain regimes. Oscillatory solutions with a tendency
towards non-axisymmetry have been found in numerical simulations (e.g., Rüdiger
et al., 2003).

3.3 Nonlinearity

The treatment of dynamos outlined here has so far been confined to the linear and
kinematic case in the sense that the magnetic field is linearly related to the velocity
field only, and the magnetic field changing under its own induction effects is not
considered. Non-linearities occure when the the magnetic field reacts back upon the
flow and in doing so, affects the rotation gradient and the α effect (Brandenburg
and Subramanian, 2005). These can limit the growth so that it saturates. One
mechanism is called Ω quenching, where nonlinear effects due to magnetic tension
can oppose differential rotation. The current helicity can cause a backreaction on
the α effect of a dynamo, and is defined as

Hcurr =
1

μ0ρ
j · b, (3.46)

where μ0 is the magnetic permeability and j = ∇ × b. The current helicity when
combined with the kinetic helicity is

α = −τc
3
(Hkin −Hcurr) , (3.47)

(Pouquet et al., 1976). This nonlinear dynamical α quenching is difficult to quantify,
and so a simplified way of quantifying α quenching is often presented in mean-field
dynamo models as the algebraic formula

α =
α0

1 +B/Beq

. (3.48)

Here α0 is the kinematic value, and Beq =

√
μ0ρu2 is the equipartition magnetic

field. Magnetic buoyancy acts back upon the field so that magnetic flux rises up and
out of magnetically active regions, and is therefore removed from the system. Such
a mechanism would compete with the γ effect or turbulent pumping, and the ratio
with which these two effects work against each other is very difficult to evaluate
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in the nonlinear regime (e.g., Rogachevskii and Kleeorin, 2006). These nonlinear
mechanisms are difficult, if not impossible to calculate analytically, and so other
methods for studying these dynamos are needed.
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Numerical simulations are a valuable tool for solving turbulence, particularly in as-
trophysical objects. The conditions of the solar convection zone, for example, are
impossible at the present to reproduce in a laboratory setting with the extreme Re,
temperatures, densities, and pressures found in the Solar convection zone. Turbu-
lence itself is also very complex, with eddies and cyclones forming and interacting
on all scales in non-linear ways that make it impossible to treat analytically with-
out major simplifications. Numerical simulations allow the study of turbulence and
certain resulting phenomena, within computational limits.

4.1 Simulating Convective Turbulence

Modeling convection with simulations involves solving the Navier-Stokes equations
numerically. One approach is called direct numerical simulation, or DNS. Because
DNS resolves the turbulence directly instead of using a turbulence model, there exists
a computational limit to the spatial and temporal scales. The spatial scale is the
Kolmogorov scale (Kolmogorov, 1941a,b),

LK =

(
ν3

ε

)1/4

, (4.1)

where ν is the kinematic viscosity and ε is the energy dissipation rate. The kinematic
viscosity can be defined in terms of the Reynolds number, so that ν = UrmsL/Re.
The energy dissipation can be approximated as the ratio of kinetic energy over the
timescales, so that ε ≈ U2

rms/(L/Urms) = U3
rms/L. From Equation 4.1, it can be seen

that the minimum length scale L relative to the Kolmogorov scale is related to the
Reynolds number by a power law,

L

LK
∝ Re3/4. (4.2)

Thus the larger Re, the larger the number of gridpoints needed in a 3D simulation,
which would scale as N3 = (Re3/4)3.
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The temporal scale is limited by the discrete time increment Δt, determined by
the Courant number,

C <
UrmsΔt

Δx
. (4.3)

Here, Δx is the discrete distance between the mesh points for the grid. The Courant
number determines the stability of the numerical scheme and must be smaller than
a certain number that depends on the system that is studied. Typically C < 1 but
it can also be larger in some cases. The Courant criterion ensures that information
has enough time to propagate a distance equal to the grid spacing within the length
of the time step. Given that the simulation must encompass L, the total simulation
size in one direction should be NΔx > L, where N is the number of mesh points in
the selected direction.

A method that circumvents the higher computation requirements of DNS by
averaging while retaining detailed information about the eddies on the scales of
interest is called large eddy simulations, hereafter LES. This method utilizes low
pass filtering of the continuity equation, the Navier-Stokes equation, and any other
required equations to capture the phenomena of interest. This is a method initially
proposed by Smagorinsky (1963). LES is useful when the information at the smallest
scales is not relevant to the results and computational requirements are reduced by
averaging over small portions of time and/or space. The large-scale eddies are directly
solved only down to a selected scale, below which a turbulence model is used.

The choice in numerical modeling methods depends on the temporal and spatial
scales of phenomena that are present in the simulated turbulent flow (e.g., Pope,
2004; Piomelli, 2014). When the range of scales is large with well-defined separation,
the most computationally inexpensive method is to use the mean-field method. This
approach solves only the for the evolution of large-scale quantities as the small-scale
quantities are parameterized similarly to LES. The mean-field method is presented
in Section 3.1.1, and it has been used in studies of solar dynamos, ranging from
solving only the induction equation (e.g., Moss et al., 1991) to models involving
the full thermodynamics (Brandenburg et al., 1992). This method is limited as
unknown turbulent quantities may operate on a smaller-scale. Different parameter
combinations create very different physical settings that may still show properties
similar to the solar cycle (e.g., Kuzanyan et al., 2006; Guerrero and de Gouveia Dal
Pino, 2009). Determining the transport coefficients requires the use of DNS or the
test-field method where additional linear equations are used to describe the response
of the system to prescribed test fields (e.g., Schrinner et al., 2005; Rheinhardt and
Brandenburg, 2010). Relevant parameter combinations can then be used in the
mean-field method. In some cases, such as the numerical models of this work, the
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Figure 4.1: Left: Geometry of the 1D model used for mean-field models. Right:
Geometry of the 3D spherical wedge used for DNS models.

numerical stability and/or physical feasibility of the model requires sub-grid scale
effects to be included as a hybrid of LES and DNS.

4.2 The Models

One of the goals of this thesis is to understand turbulence in the context of convection
zones of stars. Simulations are used to study the mechanisms that contribute to the
growth of the dynamo in the solar or stellar convection zone. Numerical simulations
allow the isolation of mechanisms of interest such as differential rotation, stratifica-
tion, diffusivity, and helicity. Of particular interest is the details of the symmetry
and oscillations of a resulting dynamo to make comparisons with observations of the
Sun and stars.

4.2.1 1D Mean-field Dynamo Model

The model used in Paper III (Cole et al., 2016) is 1D, solving the equations in the
latitudinal direction in spherical coordinates (r, θ, φ), with radius r, colatitude θ, and
azimuth φ. The colatitude is used because the angle of interest is the angle from
pole, so that θ̃ = 90◦ − θ where θ̃ is the latitude. Hence, the colatitude is 0◦ at
the North pole and 180◦ at the South pole. The model is linear and the latitudinal
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extent includes both hemispheres so that the resulting parity P of the dynamo can
also be studied (Fig. 4.1, left). The model is axisymmetric, so higher m modes are
not possible and M = 0. Equations 3.19 and 3.20 are used, so that

∂B

∂t
= ∇× (U ×B × E − ημ0J), (4.4)

∇ ·B = 0, (4.5)

where η is the non-turbulent diffusivity. A simple isotropic α effect and a scalar β
are assumed, neglecting the δ, γ, and κ terms from Equation 3.25. The EMF is
then expressed as E = αB − ηtμ0J , where ηt is the turbulent magnetic diffusivity,
previously denoted as β. The resulting mean magnetic field is only a function of t
and θ, B = B(θ, t). The selected angular velocity profile is U = r sin θΩφ̂, where Ω
is the angular velocity, so that Ω(r, θ) = rS(θ), where S is the shear.

The induction equation (Eq. 4.4) is written in terms of the magnetic vector
potential A, related to the magnetic field via B = ∇×A. To uncurl Equation 4.4,
the advective gauge is used (e.g., Candelaresi et al., 2011), so that

∂A

∂t
= −r sin θAφ∇Ω+ E − ημ0J , (4.6)

where ∇Ω = (S, ∂θS, 0). The mean current J is then

J =
1

μ0R2
(DθAθ −Dθ∂θAr, ∂θAr,−∂θDθAφ), (4.7)

where Dθ is a modified derivative, cot θ + ∂θ. Without the shear term, the dynamo
type is α2. If there is a shear term, and shear is comparable to the α effect or
dominates as the dynamo mechanism over the α effect, then the dynamo type is α2Ω
or αΩ. The study of the dynamo type α2Ω requires an additional term to Equation
4.6 so that the radial derivatives are accounted for to include shear, introducing the
Ω effect. If the radial derivatives are removed, an artifact occurs where the excited
αΩ dynamo is no longer oscillatory (Jennings et al., 1990). This artifact can be
removed with the addition of a damping term −μ2A, obtained from averaging the
equations of magnetic mean-field generation in a thin convective shell with respect
to r (Moss et al., 2004). Thus the two dynamo numbers relevant for quantifying the
α effect and shear are, respectively,

Cα = α0R/ηt0, (4.8)
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Table 4.1: Boundary conditions for the 1D dynamo model.
Type Boundary Condition Abbreviation

(θ = ±θ0)

Regularity at the pole ∂θAr = Aθ = Aφ = 0 SAA
Perfect conductor Ar = ∂θAθ = Aφ = 0 ASA

Normal field ∂θAr = Aθ = ∂θAφ = 0 SAS

and
CΩ = S0R

2/ηt0. (4.9)

Here, ηt0 is the amplitude of magnetic diffusivity and S0 = S(θ) is a constant. Cα

and CΩ are control parameters with α0, ηt0, and S0 as inputs. The critical Cα, such
that the dynamo is marginally excited and neither decays nor grows, is denoted as
C�
α. The parameters Cα and CΩ dictate regimes where certain dynamo types are

excited, of type Am or Sm (see Table 3.1). The model explores both the A0 and
S0 regimes both with θ0 = 0◦ and the SAA boundary condition, and θ0 = 1◦ with
the ASA boundary condition to determine if the additional shear term results in
artifacts.

The dynamo is seeded by a low-amplitude Gaussian noise magnetic field. The
model is selected to test the α2 and α2Ω dynamo types with respect to chosen
boundary conditions to determine if the transition as θ0 → 0◦ results in any signif-
icant changes in the resulting dynamo. The motivation for such an examination is
based on previous results of convective wedges in spherical coordinates (e.g., Käpylä
et al., 2011a, 2012, and Papers I and II of this thesis) where the boundary condition
choice was thought to possibly have an impact on the final solutions. Thus it would
be useful to determine the effect the boundary conditions have on the final symmetry
and oscillations of solutions.

The different boundary condition possibilities are listed in Table 4.1. The abbre-
viations represent each component of A as symmetric (S) or antisymmetric (A) with
respect to the equator. If the component of A is symmetric, the derivative ∂θ of the
component vanishes, and if the component is antisymmetric, then the component
of A vanishes. Two of these are of particular interest, the SAA and ASA bound-
ary conditions. The ASA boundary condition is similar to the latitudinal boundary
condition imposed on the models used in Papers I and II. Ideally, the simulation
could be extended to the poles and the SAA boundary condition used instead, but
Δx from Equation 4.3 would become prohibitively small in the azimuthal direction,
preventing this simple approach.
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The model allows the imposition of different α and ηt profiles to find possible pa-
rameter regimes where not extending to the poles has minimal effects on the resulting
dynamo. In other words, an oscillatory field with equatorward migration should not
be unique to the ASA boundary condition when θ > 0◦. Astrophysical bodies such
as stars undergo rotation while having a global magnetic field, and so the ηt profile is
motivated by the theoretical results of Kitchatinov et al. (1994), where the diffusivity
is thought to be weaker in polar regions. A weak increase of ηt towards the equator
was also observed in numerical simulations by Käpylä et al. (2009). Motivation for
the α profile is both from direct observation of the concentration of the magnetic field
at lower latitudes in the Sun, as well as results from numerical simulations where the
α effect was found to decrease near the poles (Ossendrijver et al., 2002; Käpylä et al.,
2006, 2009). The profiles are modified so that they are proportional to sinusoidal
functions to the nth power that impose regularity at the poles, in agreement with
the SAA boundary condition. The expansion is as follows for α and ηt respectively,

α = α0 cos θ(a0 + a2 sin
2 θ + · · ·+ an sin

n θ), (4.10)

and
ηt = ηt0(e0 + e2 sin

2 θ + · · ·+ en sin
n θ), (4.11)

where ai and ei are 1 when i = n and 0 otherwise. α and ηt are both scalar control
parameters selected for the models varying only in the latitudinal direction, so that
the regime is limited to linear dynamos, and thus the resulting parity can only be
P = ±1 (Brandenburg et al., 1989).

4.2.2 3D Semi-Global Wedge Models

The model used in Papers I (Käpylä et al., 2013b) and II (Cole et al., 2014) is a wedge
in a 3D spherical coordinate system (r, θ, φ). This wedge (Fig. 4.1, right) is thought
to represent the solar convection zone, and extends radially from r0 = 0.7R < r < R
where R is the radius of the star. Due to limitations in 3D that prevent the full
sphere from being modeled with the code, the simulation has a limited latitudinal
extent in the θ-direction, so that π/12 ≤ θ ≤ 11π/12, where θ is the colatitude.
While this prevents the time step from becoming prohibitively small, any cross-polar
effects are lost. The azimuthal extent φ can be varied as the boundary condition in
this direction is periodic.

The Conservation Equations

In order to further describe the system, some additional conservation laws are re-
quired. The continuity equation is applied so that mass, momentum, and energy are
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all conserved by the system. The advective derivate is used, so that

D

Dt
≡ ∂

∂t
+U ·∇. (4.12)

The conservation of mass equation is

D ln ρ

Dt
= −∇ ·U , (4.13)

where ρ is the density and U is the flow velocity. Conservation of momentum is
expressed as the Navier-Stokes equation, giving

ρ

(
DU

Dt

)
= −∇p+ J ×B + F visc + f , (4.14)

where p is the pressure, J ×B is the Lorentz force, F visc is the viscous force, and f
encapsulates all other forces. The conservation of energy can be written as

ρT
Ds

Dt
= −∇ · (FHF) + μ0ηJ + 2ρνS2, (4.15)

where T is the temperature, s is the specific entropy, FHF is the heat flux, ν is
kinematic viscosity, μ0ηJ is the Ohmic heating, and S is the rate of strain tensor.

The model is a spherical rotating shell of thickness 0.3R, therefore the f term in
Equation 4.14 specifically encompasses the Coriolis force and gravitational force, so
that f = −gr̂− 2ρΩ0 ×U , where g = GM/r2 is the gravitational acceleration. G is
the gravitational constant, M is the mass of the star below the convection zone, r̂ is
the unit vector in the radial direction, r is the radius, and Ω0 = (cos θ,− sin θ, 0)Ω0

is the rotation vector with respect to the time-independent rotation rate of the frame
Ω0. The viscous force is determined by the rate of strain, F visc = ∇ ·2νρS. The rate
of strain tensor S is the symmetric component of the gradient matrix of the flow. In a
spherical coordinate system and following the transformation and notation of Mitra
et al. (2009) (Appendix B), where a semi-colon denotes covarient differentiation, this
tensor is written as

Sij =
1

2
(Ui;j + Uj;i)− 1

3
δij∇ ·U . (4.16)

Equation 4.15 contains a generic term for the heat flux, FHF, which encompasses
the sub-grid scale heat flux F SGS and the radiative heat flux F rad. Thus the model
employs a hybrid of LES and DNS. The radiative heat flux portion can be written
as F rad = −K∇T , where K is the radiative heat conductivity. The SGS portion of
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Figure 4.2: Contributions of the various fluxes in terms of luminosities as a function
of radius. Ltot is the total luminosity, indicated by by a thick, solid line. Lconv is
from the convective flux, Lrad is from the radiative flux, Lturb is from the unresolved
turbulent heat flux, and Lkin is from the kinetic flux (Paper I).

the heat flux is written as F SGS = −χSGSρT∇s, where χSGS is the turbulent heat
conductivity. Through this term, an unresolved portion of the turbulent heat flux is
added, which is strongest near the surface. This quantity is shown in Figure 4.2 in
the form of luminosity, Lturb, where luminosity is related to the fluxes by L ∝ r2F .
It is evident from the figure that this flux has a negligible contribution in the bulk
of the convection zone, and becomes active only near the surface. Without this
additional flux to compensate for the drop in convective flux, total luminosity out of
the system would be much less than the total luminosity put into the system.

Boundary and Initial Conditions

Boundary conditions are imposed in r and θ so that the boundaries are impenetrable
and stress-free, giving

Ur = 0,
∂Uθ

∂r
=

Uθ

r
,

∂Uφ

∂r
=

Uφ

r
, (r = r0, R) (4.17)
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and

∂Ur

∂θ
= 0, Uθ = 0,

∂Uφ

∂θ
= Uφ cos θ, (θ = θ0, π − θ0). (4.18)

The lower radial boundary and the latitudinal boundaries are perfect conductors
with respect to the magnetic field so that

∂Ar

∂r
= Aθ = Aφ = 0, (r = r0), (4.19)

and
Ar =

∂Aθ

∂θ
= Aφ = 0, (θ = θ0, π − θ0), (4.20)

where θ0 = π/12. The validity of the perfect conductor boundary condition and the
effect on the resulting dynamo is discussed in Paper III. At the outer radial boundary,

Ar = 0,
∂Aθ

∂r
= −Aθ

r
,

∂Aφ

∂r
= −Aφ

r
, (r = R). (4.21)

The initial state of the system is isentropic. The hydrostatic temperature gradient
is fixed at the lower boundary, and written as

∂T

∂r
= − g

cV (γ − 1)(nad + 1)
. (4.22)

An ideal gas is assumed, so that ratio of specific heats is γ = 5/3 = cP /cV . The
specific internal energy is e = cV T so that p = (γ − 1)ρe. The polytropic index
nad = 1.5 is that of adiabatic stratification. The hydrostatic gradient is fixed at
r = r0, so that the system has an imposed flux of F b = −K(∂T/∂r)|r=r0 . Thus the
process that provides the heat flux at the bottom of the convection zone is radiative
diffusion (Fig. 4.2). On the outer boundary, the blackbody condition is used, so that

σT 4 = −K
∂T

∂r
− ρTχSGS

∂s

∂r
. (4.23)

Here, σ is the Stefen-Boltzmann constant, selected to be such that in the initial state
the flux σT 4 carries the total luminosity through the surface.

The radiative heat conductivity has an imposed profile based on depth, so
that K = K0(n + 1), where the polytropic index n varies radially so that n =
2.5(r/r0)

−15 − 1 where n = nad at r = r0, and K is a small fraction of K0 at the
upper boundary. K0 is

K0 =
L
4π

cV (γ − 1)(nad + 1)ρ0
√
GMR, (4.24)
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where L is the luminosity parameter defined in the following subsection. The tur-
bulent heat conductivity is an imposed piecewise profile, where χSGS is the value
of χSGS in the middle of the convection zone at rm = 0.85R. This profile is made
so that χSGS → 0 where r ≤ 0.75R, χSGS = χSGS where 0.75R < r < 0.98R, and
is 12.5χSGS where r ≥ 0.98R (Fig. 4.2). To keep the effects small from χSGS on
the total entropy of the system, the smallest possible value is chosen that maintains
numerical stability.

Non-dimensional Parameters

Much of the work in this thesis employs dimensionless parameters, a necessity due
to the capacity of computers to store numbers but not units. Thus, a basis for for
this non-dimensional unit system must be established. Papers I, II, and III employ
a unit system as follows:

R = GM = ρ0 = cP = μ0 = 1, (4.25)

where R is the total radius, G is the gravitational constant, M is the total mass of
the system, ρ0 is initial density, cP is the specific heat at constant pressure, and μ0

is the magnetic permeability of free space.
Quantities of interest can be transformed back into physical units using Equation

4.25. It is then possible to choose a normalization that works best. For this thesis,
solar values are used because the setup is modeled after the Sun. This is, of course,
not the only possible normalization choice for these non-dimensional parameters.
Transforming back into units of length, time, velocity, density, entropy, and the
magnetic field uses the following conversions:

[x] = R, [t] =
√
R3/GM, [U ] =

√
GM/R,

[ρ] = ρ0, [s] = cP , [B] =
√
ρ0μ0GM/R. (4.26)

This system of units allows a more meaningful expression of results with time units
in terms of convective turnover times (the time for one large eddy to completely
circulate), and can convert easily into either SI or cgs units.

Certain dimensionless quantities are valuable for describing the properties of dy-
namos by conveying meaningful information with the ratios of certain parameters of
interest. Control parameters include the initial angular velocity Ω0, the viscous diffu-
sivity ν, the thermal diffusivity χ, the magnetic diffusivity η, the constant luminosity
L0, and the initial density ρ0. These are related to each other via non-dimensional
parameters.
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If discussing the strength of the rotating inertial forces relative to the viscous
force, then the Taylor number is used:

Ta =

(
2Ω0R

2

ν

)2

. (4.27)

The relation between viscous diffusivity and the thermal diffusivity is the Prandtl
number,

Pr =
ν

χm
, (4.28)

where χm = K/cPρm and the subscript ‘m’ denotes the value at r = rm. The Prandtl
number can be used to quantify how much convection and conduction transfer energy
relative to each other. The magnetic Prandtl number is

PrM =
ν

η
. (4.29)

PrM is high when diffusion is largely through viscous forces and low when diffusion is
through magnetic forces. Other important quantities relevant to astrophysics include
the luminosity parameter mentioned in Equation 4.24,

L = L0
1

ρ0(GM)3/2R1/2
, (4.30)

where L0 is the constant luminosity. Nondimensional viscosity is

ν̃ =
ν√

GMR
(4.31)

and the nondimensional Boltzman constant is

σ̃ =
σR2T 4

0

L0
, (4.32)

where T0 is the temperature at the base of the convection zone.
Output parameters are measured when the dynamo saturates. One of the out-

putted quantities is the typical velocity, defined as

Urms =

√
3

2

〈
U2
r + U2

θ

〉
rθφt

. (4.33)

The factor 3/2 accounts for neglecting the Uφ term, which is left out as the total
velocity would otherwise be dominated by differential rotation. Specific to the model,
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Re, Rm, and Co (Eqns. 3.1, 3.8, and 3.40) are defined in terms of Urms and the
estimated wavenumber of the largest eddies kf = 2π/Δr ≈ 21R−1, where Δr =
0.3R is the thickness of the convection zone. The Reynolds number with respect to
these quantities becomes Re = Urms/νkf , the magnetic Reynolds number is Rm =
Urms/ηkf , and the Coriolis number is Co = 2Ω0/Urmskf . The wave number with
respect to rotation is kω = ωrms/Urms, where ωrms is volume averaged root-mean-
squared value of ω = ∇×U .

The normalized pressure scale height is

ξ =
(γ − 1)cV T1

GM/R
. (4.34)

Hydrostatic equilibrium then defines the density stratification via

Γρ ≡ ρr0
ρR

, (4.35)

where ρr0 and ρR are the density at the bottom and top of the convection zone,
respectively. The initial density stratification is a control parameter denoted as Γ(0)

ρ ,
but as the dynamo saturates, the density stratification can change slightly from this
initial value and so Γ

(0)
ρ is an input parameter and Γρ is an output diagnostic.

The number that quantifies whether a buoyancy-driven flow transfers heat
through conduction or convection is the Rayleigh number,

Ra =
GM(Δr)4

νχSGSR
2

(
− 1

cP

ds

dr

)
rm

. (4.36)

If Ra is above some critical number, heat is primarily transferred through convection.
Results for the magnetic field are usually normalized to the equipartition field,

Beq =

√
〈μ0ρU

2〉
θφt

. (4.37)

This quantity is used to normalize quantities of interest of the magnetic field over
time. For example, the changes in the azimuthal field Bφ over time versus latitude
normalized with this value create a kind of butterfly diagrams analogous to those
created for the Sun.

Comparison to the Sun

Because the simulation has a solar-sized convection zone, it is helpful to put the
values in the context of solar values and compare where the simulation differs from
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Table 4.2: Solar values for selected parameters.
Parameter Value CGS Units
R� 7.0 · 1010 cm
L� 3.9 · 1033 g cm2 s−3

GM� 1.34 · 1026 cm2 s−2

Ω0� 3 · 10−6 s−1

Mc� 6 · 1031 g
νt� 5 · 1012 cm2 s−1

ηt� 5 · 1012 cm2 s−1

χt� 1.5 · 1013 cm2 s−1

reality. Solar values for various parameters estimated by Brandenburg et al. (1992)
are shown in Table 4.2, where Mc� denotes the estimated mass of the solar convection
zone.

The Ra possible for the numerical simulation is limited by the diffusivity, and
thus the numbers possible in simulations are much smaller than in the Sun. There
is a difference of typical values used in simulations of 106 to the real solar values of
1024. Accordingly, the Mach numbers and and fluxes of the numerical simulations
are higher than those found in the Sun. In order to have realistic Coriolis numbers
in the simulations, the angular velocity Ω0 must be increased by 1/3 of the power
that the flux is increased. The centrifugal acceleration is omitted because it would
be unrealistically large (Käpylä et al., 2011b). A realistic Co should not disrupt the
hydrostatic balance from gravity and centrifugal forces.

Solar luminosity is not possible, as it requires a prohibitive time step constraint.
The luminosity of the model can be written as L = 4πr20F0, where F0 is the total
flux at r = r0. The acoustic timescale is the only timescale that matches that of the
Sun. The convective, thermal, resistive, and viscous timescales all depend on the
pressure scale height HP0 at r = r0. These timescales together are

τac =
√

R2/GM, (4.38)
τconv = HP0/U

(ref)
rms , (4.39)

τth = H2
P0/χ0, (4.40)

τres = H2
P0/η, (4.41)

τvisc = H2
P0/ν, (4.42)

where U
(ref)
rms is related to the luminosity by U

(ref)
rms = (F0/ρ0)

1/3. Thus, while τac can
be identical to that of the Sun, the convective timescale should be made smaller by
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a factor of 70–100, while the thermal and resistive timescales reduced by a factor
of 107, and the viscous timescale even more so by a factor of 1014. The higher L
required corresponds to the aforementioned Ra ∼ 106. The limits on τres and τvisc
result in correspondingly smaller Rm and Re than that found in the Sun. Pr and
PrM are by similar arguments larger than in the Sun.

4.3 The Pencil Code

The Pencil Code is used for numerical simulations in Papers I, II, and III. De-
velopment for the Pencil Code 1 started at the Turbulence Summer School of the
Helmholtz Institute in Potsdam in 2001. The code solves the compressible mag-
netohydrodynamic equations and is a sixth order in space and third order in time
finite-difference code. The MHD equations were described previously in more detail
in Section 3.1. The code allows for a high level of variation as to what physical
processes are included in modeling a turbulent flow by the selection of modules to
include, such as gravity, magnetic effects, mean-field approximations. The spher-
ical coordinate system implemented in the code is that described by Mitra et al.
(2009). Additionally, the code is open-source to allow user-end modifications and
can be used both with single processor and multi-processor systems with message
passing interface. The code is also independent of the unit system, as described in
Section 4.2.2, so that results can be converted into any relevant unit system. The
code is non-conservative which means that the conservation equations (Eqns. 4.13–
4.15) are discretized on the numerical grid in a way that the conservation of them
is not guaranteed up to the machine precision, but to the discretization error of
the finite-difference scheme. This is why the time evolution of all quantities that
should be conserved need to be monitored. The name of the code is derived from the
cache-efficient solving of equations in the x-direction, called a “pencil”. The Pencil
Code employs the use of the magnetic vector potential A to keep the magnetic field
intrinsically divergence-free.

1https://github.com/pencil-code/
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5.1 Observation Methods of Solar-Type Stars with Spot
Activity

The following methods are specifically the ones used in Papers IV, V, and VI, but
certainly do not encompass all methods of observing stellar spot activity.

5.1.1 The Three Stage Period Analysis Method

Long term variable activity of a star can be studied through time-series analysis of
photometry. Information regarding short-term cycles, active longitudes, and longer
cycles can be ascertained through statistical methods analyzing the light curve of the
star over several decades. Long-term activity cycles, analogous to the 11-year cycle
in the Sun, would be evident in changes over several years of the mean brightness
and/or light curve amplitude. Spots may also exhibit a tendency to form at specific
longitudes. The aim of using time-series analysis is to calculate the rotation period
P , the mean of the light curve M , the amplitude A, and minimum epochs tmin.

The Three Stage Period Analysis (hereafter TSPA) is a statistical method that
seeks the best possible parameters in three steps. The pilot search gives an estimate
of the non-linear parameters and searches discrete values of the frequency f = 1/P
where P is the rotation period. The grid search uses the frequency candidates from
the pilot search and refines the parameters further by using a denser grid around
these values for fpilot. The final step is a refined search that computes parameters
using a standard Marquardt iteration to high precision with f as a free parameter,
using the grid search results as starting points. TSPA also includes the use of weights
so that errors in the data set are accounted for in the final solution. This method is
described in detail in Jetsu and Pelt (1999). Included here is the relevant information
for understanding the Continuous Period Search method (hereafter CPS) used in
Paper IV, described in Subsection 5.1.2.

Each observation y occurs at time ti for a total of n observations. For each y(ti),
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there is the corresponding error ±σi. The model is some function g(t, β̄), where β̄
is the set of parameters. The solution seeks to minimize the residual sum squared
(RSS):

RSS =
n∑

i=1

(y(ti)− g(t, β̄))2. (5.1)

The frequency f is a free non-linear parameter, so a model as a function of frequency
could be

g(f) = β̂0(f) +
R∑

r=1

(B̂r(f) cos(r2πfti) + Ĉr(f) sin(r2πfti)). (5.2)

In terms of a Fourier series of K orders with 2K + 2 free parameters β̄ =
(M, f,B1, . . . , Bk, C1, . . . , Ck), Eq. 5.2 becomes

g(t, β̄) = M +
K∑
k=1

(Bk cos(2kπft) + Ck sin(2kπft)), (5.3)

where the mean M and amplitudes Bk and Ck are free parameters. This model
can be used used for the pilot search and grid search methods to obtain increasingly
refined estimates for f .

The pilot search is the initial search to obtain candidate frequencies by com-
puting a dispersion around an unknown curve. This usually takes the form of a
non-parametric test statistic. This step is mostly skipped in the CPS method, de-
scribed in the following section. The pilot search is described in more detail by Jetsu
and Pelt (1999)

The grid search is the next step in TSPA and the first step in the CPS method.
It uses a suitable number of crude frequencies f ′ found via the pilot search to be
refined further. In the case of CPS, usually f corresponds to a selected literature
value. The order K of the model, and hence τ , is fixed in the grid search so that
the free parameters have unique solutions. The discrete tested frequency steps for
the grid search, Δfgrid are smaller than Δfpilot, and an overfilling factor G ≥ 10
is selected so that Δfgrid = (GΔT )−1, where ΔT = tn − ti. The weight for each
observation is wi = σ−2

i . Because f is fixed in each test, a least squares spectrum can
be used, so that the grid search becomes a periodogram that minimizes the residuals,

Θgrid(f) = 2

∑n
i=1wiεi∑n
i=1wi

, (5.4)
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5.1. Observation Methods of Solar-Type Stars with Spot Activity

where εi = y(ti)− g(ti, β̄f ) are the residuals, and the factor 2 adjusts Θgrid to same
quantitative level as the pilot search.

The final step is the refined search. The grid search resulted in trial parameter
solutions β̄0, and the refined uses these parameter values as starting points for a non-
linear minimization. The Levenberg-Marquardt iteration can be used to compute β̄,

χ2(β̄min) =
n∑

i=1

wi(y(ti)− g(ti, β̄min)
2, (5.5)

where β̄min is the solution parameters that minimize χ2. For significance estimates,
χ2 can be used as described by Jetsu and Pelt (1999). It should be noted that not all
parameters that minimize χ2 are significant, as the process might introduce spurious
periods. Some spurious periods can be identified as unphysical, while others can
be checked via numerical methods. The significance of the χ2 results is checked by
comparing a random sample of the residuals to a Gaussian distribution using the
bootstrap method.

5.1.2 The Continuous Period Search Method

The CPS method is a statistical method described in Lehtinen et al. (2011) which
improves upon the TSPA method by using overlapping datasets for higher resolution,
calculating different models of order K from 0 to some limit Klim, and determining
a timescale of change for the variable light curve Tc.

Observations at each point in time are yi = y(ti), with the error σi. Each dataset
contains points from t1 through tn, so that the length of each SET is ΔTmax = tn−t1.
Selecting a ΔTmax that is too short will result in too few data points to perform
the analysis, and selecting a ΔTmax that is too long will smooth over changes that
occur on a timescale shorter than ΔTmax. Usually this value is of the order of a
month, but will vary from star to star. Observation points for each SET are then
contained within t1 ≤ ti ≤ t1 + ΔTmax, and each SETk cannot contain all points
in overlapping SETk+1 and vice versa. The number of points n within each SET
must be considerably greater than the number of free parameters. The datasets are
combined into observing seasons, or segments, where there exists no gaps greater
than ΔTmax.

The CPS uses the TSPA model,

ŷ(ti) = ŷ(ti, β̄) = M +
K∑
k=1

[Bk cos(k2πfti) + Ck sin(k2πfti)], (5.6)
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where the model is of order K with 2K + 2 free parameters β̄ =
[M,B1, . . . , BK , C1, . . . , CK , f ]. The period of the light curve P = 1/f and mean
magnitude come directly from the free parameters β̄, while the amplitude A is the
easiest to determine numerically. For all models where K ≥ 2, the primary and sec-
ondary minima epochs tmin,1 and tmin,2 can also be determined numerically. These
minima epoch are of particular interest with variable stars, as they can be used to
estimate persistent active longitudes.

The frequency f = 1/P can be searched within a period range of (1 − q)P0 ≤
P ≤ (1+q)P0. A standard selection for q is 0.15, and this takes into account possible
variations (due to, for example, differential rotation) of 15% around P0. β̄ is found
by using the grid and refined searches of the TSPA method. The highest order model
is denoted by K ′, and is selected so that a good fit is achieved without overfitting.
This can be done using a Bayesian information criterion,

RBIC = 2n lnλ(ȳ, β̄) + (5K + 1) lnn (5.7)

This criterion is selected based on the limits imposed by the penalty term, (5K +
1) lnn, so that there exists an minimum value for RBIC over all K that avoids over-
fitting.

Errors are estimated in a similar way to the TSPA method, where a certain
number of bootstrap estimates (e.g., 200) are made. Additionally, resulting distribu-
tions are tested using the Kolmogorov-Smirnov test against the Gaussian hypothesis,
where a random sampling of the residuals or free parameters is drawn from a Gaus-
sian distribution. A significance threshold of γ = 0.01 is used for rejection.

Variable stars change over time, and this timescale of change, Tc, is of interest.
Tc is the time within a segment that a model provides a reasonable fit. The mean
of ti within a dataset is τ . The residuals of the next dataset are computed using
the model of the first dataset, and compared using a two-sided Kolmogorov-Smirnov
test. If the test is passed, then the next dataset is compared, the residuals computed,
and the process repeated until the test fails or the end of the segment is reached. In
the former case, Tc is now the time difference between the τ of the first dataset and
the τ of the last dataset that provided a reasonable fit to the model. Otherwise we
conclude that the model was valid for the rest of the segment.

5.1.3 The Carrier Fit Method

The Carrier Fit method (hereafter CF) utilizes concepts from communication, where
a single harmonic tone, or carrier frequency, is modulated by the signal. When ap-
plied to astronomy, the rotation period of a star is considered the carrier frequency
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and any variations in the light curve parameters can be modeled by complex wave-
forms. An overview of the method is described here, and a more detailed explanation
can be found in Pelt et al. (2011).

The waveform to describe the rotation frequency of a star can be described by

f(t) = a(t) cos(2πtν0) + b(t) sin(2πtν0), (5.8)

where a(t) and b(t) are smooth, low frequency components, and ν0 is the carrier
frequency. For the stellar case, this frequency is 1/P0 where P0 is the rotation period
of the star, most commonly expressed in units of days for astronomical objects. The
analytic complex form can be expressed as

fa(t) = A(t)e2πjϕ(t), (5.9)

which allows for explicit tracking of the amplitude A(t) and instantaneous frequency
ν(t) = dϕ(t)/dt. Equation 5.8 uses the lowest harmonic k = 1. However, more
harmonics are needed to describe the carrier waveform as multiple spots with slightly
different rotation periods will modulate the signal. This variability in the signals of
astronomical objects, particularly light curves, is best described by the truncated,
slowly modulated harmonic decomposition waveform

f(t) = a0(t) +

K∑
k=1

((ak(t) cos(2πtkν0) + bk(t) sin(2πtkν0)), (5.10)

where a0(t) is the time-dependent mean value of the signal, and K is an adequately
large integer for a good fit but not so large as to cause over-fitting.

The CF method is carried out in three steps. First, the carrier frequency ν0 must
be determined and improved. Next, models must be selected for a(t) and b(t). The
final step would be selecting the model which best describes the observations, and
retrieving and interpreting the relevant parameters of the model. The CF method
allows for some visualization methods that lend themselves to easier inspection of
final results.

The carrier frequency ν0 is the inverse of the rotation period, P0. The initial es-
timate of P0 does not need to be precise, as it can be improved if there is an upward
or downward trend in resulting phase plots. Estimates for P0 can be obtained from
literature, observations, or other methods. One possible method for determining the
optimal frequency is outlined in Pelt et al. (2011), but this method may converge
slowly. Instead the D2 statistic from Pelt (1983) is used in Paper V to find a consis-
tent average cycle period, P0. This method has been used by, for example, Käpylä

52



Chapter 5. Time Series Analysis

et al. (2016a) to examine solar variations and by Lindborg et al. (2013) with the
photometry of II Pegasi. The D2 statistic as a function of the trial period P and
coherence time Δt is written as

D2(P,Δt) =

N∑
i=1

N∑
j=i+1

g(ti, tj , P,Δt)[f(ti)− f(tj)]
2

2σ2
N∑
i=1

N∑
j=i+1

(g(ti, tj , P,Δt))

. (5.11)

Here, f(ti), i = 1, . . . , N is the input time series, σ2 is the variance, and g(ti, tj , P,Δt)
is a selection function that is only larger than zero when ti − tj ≈ kP with k =
±1,±2, . . ., or |tj − ti| � Δt. Smaller values for Δt obtain a P0 that may not be
coherent for the entire time span. The D2 spectrum approaches the result of a Fourier
transform at large values for Δt close to the full time span. The value then for P0

is selected based on the optimal Δt, where Δt is the longest coherence time possible
for which the dispersion function is still a symmetric single peak.

Once a satisfactory value for P0 is obtained, models can be selected for a(t) and
b(t). A variety of approximations can be selected, but here only the trigometric
approximation is described. When there are no sharp transients and a need to
explicitly control the frequency domain, then the trigometric approach is ideal. To
do this, a range of observation times is selected, [tmin, tmax]. There is then a period
D = C · (tmax − tmin), where C is some coverage factor, usually a value between 1.1
and 1.5. D must be much greater than P0 in order for the change to be considered a
slow process. The data frequency is then νd = 1/D. The low frequency components
are thus defined as

a(t) = ca0 +

L∑
l=1

(cal cos(2πtlνD) + sal sin(2πtνD)), (5.12)

and

b(t) = cb0 +

L∑
l=1

(cbl cos(2πtlνD) + sbl sin(2πtνD)). (5.13)

This model now has the form
{

sin
cos

}
(2πt(ν0 ± lνD)), where l = 0, . . . , L. A stan-

dard linear estimate procedure can be used to compute expansion coefficients for
each term in the series for ν0 and νD.

The simple form of the model, described by Eq. 5.8, uses the lowest harmonic
k = 1, and should be expanded to the full case to include overtones of higher orders
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of k, i.e., k = 1, . . . ,K. The trigonometric polynomial models the time dependence of
a0(t). ak(t) and bk(t) are constructed representations for each overtone of the carrier
frequency kν0. If each of these polynomials has the same L and is independent of
the harmonic index k, then the total number of parameters to solve for is N =
(2L + 1)(2K + 1). K is the number of tones and depends on the complexity of the
phase curves, while L is constrained by the largest gaps in the time series. The
Bayesian information criterion (Eq. 5.7) can similarly be applied here to impose
limits on L and K.

The final step of the CF method is to select a model which best fits the observa-
tions and retrieve the informative parameters. A standard least-squares approxima-
tion procedure is used to calculate the parameters. The model is usually limited to
the linear regime, although some fits might require a non-linear approach.

The advantage of the CF method is that with the parameters solved, the function
f(t) can be reconstructed for visualization purposes for a desired t-range, filling in
gaps in observations. The visualization technique divides f(t) into segments of length
P0 = 1/ν0, and normalizes each of these segments which are then stacked along the
time axis. The resulting phase plots can be used to visually inspect trends as well
as discern various activity events of interest, such as flip-flops or dynamo waves.
Additionally, a power spectrum of f(t) can reveal trends in the frequency structure.
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6 Doppler Imaging

Doppler Imaging (hereafter DI) is an inverse method for analyzing spectral lines for
“bumps” and reconstructing a temperature map of the stellar surface based on the
position and depth of these bumps and changes over time. Starspots are cooler areas
at the surface of the star that locally distort the photospheric absorption lines. As
the star rotates these distortions move across the disk-integrated absorption lines.
If the star rotates fast enough the spot latitude and longitude determine how much
the bump is blue- or red-shifted from the center of a spectral line. With multiple
observations, the latitude of the spot can then be calculated based on the radial
velocity range of the bump traveling across the spectral line. Bumps that correspond
to spots at high latitudes will remain near the central wavelength and bumps that
correspond to equatorial spots will move all the way across the spectral line.

6.1 Doppler Imaging methods

The Doppler imaging problem can be formulated as a discrepancy function minimized
over several iterations to recreate a surface map that matches observations. First, a
parameter X(M) is selected, where M is the location on a grid of the stellar surface.
This parameter is temperature in the case of stars with cool spots the surface. The
rotational velocity v sin i and the inclination angle i of the stellar object must be
known. The number of phases observed is Nφ and the number of spectral lines used
is Nλ. The discrepancy function is then

D(X) =
∑
φ,λ

wφ,λ

[
robsφ (λ)− rcalcφ (λ)

]2
NφNλ

, (6.1)

where wφ,λ = 1/σ2 is the weights of the observations in relation to the error derived
from the S/N, robsφ (λ) is the observed spectral line profiles at phase φ and wavelength
λ, and rcalcφ (λ) is the calculated residual spectral line profile.
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The most important part of the inversion is obtaining accurate values for rcalcφ .
Spot latitude, phase, and temperature are all determined based on deviations from
the line profile of an unspotted surface, and so artifacts are potentially introduced if
poorly calculated line profiles are used. While methods such as using a template star
are possible, the method used here involves directly solving the radiation transfer
equation using numerical stellar models and spectral parameters from a database,
such as the Vienna Atomic Line Database (Piskunov et al., 1995). In addition, cer-
tain stellar parameters are needed: the microturbulence vmicro, the macroturbulence
vmacro, the gravity log g, the rotation velocity v sin i, the inclination angle i, the ro-
tation period Prot, the element abundance, and the differential rotation coefficient
k. The differential rotation can usually be neglected with most rapidly-rotating
late-type stars as the differential rotation tends to be small.

The calculated line profiles are a combination of the line flux and the continuum,
so that

rcalc(λ) = 1− Fline(λ)

Fcont(λ)
(6.2)

where Fline is the disk integrated spectral line flux and Fcont is the disk integrated
continuum flux. A precalculated table is created for local line profiles to interpolate
the intensities I(X,λ, μ) where μ is the limb angle. The integrated flux is

Fλ =

∫∫
I(X(M), λ+Δλ, μ)μdS, (6.3)

where Δλ is the Doppler shift at point M , and dS denotes an integral over the visible
stellar surface. The flux from Fλ can then be convoluted with the instrumental profile
of observations and vmacro to obtain F (λ).

A solution is sought which minimizes Eq. 6.1, in other words, the optimal X(M)
is that for which D converges to the level of the noise in the observations. Since
the problem is ill-posed, further constraints are required to achieve a unique solu-
tion. The solution is to use a regularization function and constrain the solution to
reasonable values by using a penalty function, so that

Φ(X) = D(X) + ΛR(X) + Fp(X). (6.4)

Here, Λ is a Lagrange multiplier, R(X) is a regularization function, and Fp is the
additional penalty function.

The two most common selections for a regularization function is the maximum
entropy method, and the Tikhonov method (Piskunov et al., 1990). The maximum
entropy method is a solution which seeks the configuration with the greatest entropy
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(Skilling and Bryan, 1984). It is most useful in cases where there is little to no
correlation between neighboring points, and can be formulated as a double integral
over the stellar surface,

RME(X) =

∫∫
X(M) logX(M)dS(M). (6.5)

However, in cases where neighboring points correlate strongly, the Tikhonov reg-
ularization is useful. The Tikhonov regularization has the form

RT(X) =

∫∫
||∇X(M)||2dS(M). (6.6)

This regularization function is better suited to mapping temperatures of late-type
stars as it converges to a smooth solution that is more easily adjustable to the S/N,
spectral resolution, and phase coverage.

The penalty function Fp(X) is useful to limit the temperature range to reasonable
values, as the local line profile tables used for rcalc have limited temperature ranges.
A temperature range is selected, [Tmin, Tmax], and

Fp(X) =
∑
i

fp(xi) (6.7)

where xi is the temperature of a surface element, and fp = 0 when x ∈ [Tmin, Tmax]
and fp increases linearly when x /∈ [Tmin, Tmax].

6.1.1 Candidates for Doppler Imaging

In order for the Doppler imaging method to work, there are certain restrictions in
stellar parameters, spectral parameters, and the spatial and temporal resolution of
the observations.

With regards to the observations, the spectrometer should preferably have a
resolution of 40000 or greater, so that spectral lines are well-enough resolved to
detect bumps within the the rotationally broadened spectral line. Ideally, there
should be about 10 observations at evenly spaced phases within a few weeks so
that the entire surface can be mapped without being affected by drastic changes of
the spot structure. The signal to noise S/N of individual observations should be
high enough so that the often small changes in the spectral lines within the target
wavelength region are not buried in the noise. An S/N of 200 or greater is usually
the limit, but exceptions can be made for lower S/N ∼ 100 if enough spectral lines
are used in the inversion. Doppler imaging is possible for even lower S/N by using
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a least squares deconvolution or other similar methods to combine the signal from a
large amount of lines. However tests show that this technique is not unproblematic,
as additional artifacts and loss of information will occur (Rosén et al., 2016).

With regards to the stellar object, the method is limited by the Doppler effect
itself. If a star is rotating too slowly, the spectral line’s full width at half maximum
is too small to resolve any Doppler shifts of the spots, and if the rotational velocity is
too fast, the lines become too blended. This imposes a lower limit for v sin i of about
20-30 km/s and an upper limit of about 200 km/s. The inclination angle i should
preferably also lie within certain limits. If the angle is too high, mirroring effects
occur when the inversion process cannot distinguish between the two hemispheres,
and if the angle is too low, the projected rotational velocity will be too low. This
translates to roughly 20◦ � i � 70◦, but these limits are not clear and it is possible
to perform the DI method on stars with an i outside these limits. Other stellar
properties must be fairly well-known, such as metallicity and gravity as these are
used to choose the right stellar models for calculating the spectral line tables.

6.1.2 Errors and Artifacts

Incorrect input parameters, errors in the observations, and incorrect calculated local
line profiles can lead to artifacts in the final image. Systemic errors thus have a
larger impact than observational noise, and largely depends on minimizing the former
errors.

The spectral resolution in combination with the rotation velocity effectively cre-
ates a lower limit to the size of spot that can be resolved, as the inverse method
cannot reconstruct spots below the resolution limit. If again the inclination angle
is small, spots at the same longitude but different latitudes become difficult to dis-
tinguish and some smearing in the latitudinal direction may occur. Some contrast
and resolution is lost when the S/N is low, however, a S/N as low as 100 does not
introduce spurious spots (Vogt et al., 1987). Longitudinal stripes may appear as an
artifact on the recovered surface map as a result of low S/N. If the iterations are
carried below the S/N level and not enough spectral lines are used, the final result
may have many smaller, high-contrast features as a result of the inversion inter-
preting the noise as spots. Phase gaps are often a reality due to the limitations in
obtaining enough observations at enough phases within a short period of time. Some
information regarding spot shape, size, and location is lost, however, some useful
conclusions can still be drawn from the resulting maps. Insufficient phase coverage
has the biggest impact on the latitude of spots, and so some caution must be used
when interpreting results.

58



Chapter 6. Doppler Imaging

The stellar parameters chosen may also introduce some artifacts. Inclination an-
gles are somewhat difficult to determine for non-binary stars, however, an inaccurate
inclination angle that is more than ±10◦ off from the actual value will change the
spot latitudes and the contrast between high and low temperature regions of the re-
covered surface, but otherwise the results are somewhat insensitive to i. The results
are more sensitive to the chosen rotation velocity. If the selected v sin i is too low
or too high, a low latitude dark or light band respectively appears in the recovered
surface map. However, the v sin i can be fine-tuned by minimizing the wavelength
dependence of the discrepancy. If the assumption of a low differential rotation is
incorrect, the final results may also show a spurious equatorial band or polar spot,
based on whether the real differential rotation is of solar or anti-solar type (Bruning,
1981; Hackman et al., 2001). If there is a difference between the actual rotational
broadening profile and calculated rotational broadening of the spectral lines, more
axisymmetric artifacts such as a latitudinal band of spots or polar spot will appear in
the recovered temperature map. If some errors are present in some observed phases
but not others, then spurious arches or ovals may appear in the retrieved image.

As stated before, the local lines profiles calculations for rcalc are important be-
cause inaccurate line profiles will introduce systemic errors into the inversion. The
calculations are an approximation, and certain assumptions such as local thermody-
namic equilibrium are made that may not be true for the upper photosphere of the
star. Additionally, the local line profiles do not take into account the presence of
strong magnetic fields. The evolutionary stage of the stellar object may also have
some impact on the actual local line profiles.
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7 Results

7.1 Numerical Simulations

7.1.1 Turbulent Convection in Spherical Wedges

In Paper I, the effect of stratification on dynamo solutions in turbulent convection
simulations is explored. These models are largely based on those by Käpylä et al.
(2012), where equatorward migration was found in models with solar-like differential
rotation. Furthermore, when physical units are used, a careful study by Warnecke
et al. (2014) finds that the dynamo cycle is close to 5 years. In Paper I, we seek to
understand further the regime of dynamos with equatorward migration in terms of
density stratification as well as examine the impact of the azimuthal wedge size on
the dynamo.

Table 7.1 contains the input parameters of the runs. Groups A–D explore the
density stratification. Group E uses the density stratification where equatorward
propagation is found, and explores the impact of the azimuthal wedge size, increasing
the domain size in the φ-direction only. The sub-grid scale Prandtl number, PrSGS =
ν/χSGS is related to the SGS flux; for the discussion of χSGS see Section 4.2.2. Runs
B1, C1, and D1 are the magnetic analogs of hydrodynamic Runs A4, B4, and C4
by Käpylä et al. (2011a). Angular velocity values were selected such that they were
high enough for large-scale magnetic fields to grow (e.g., Brown et al., 2010; Käpylä
et al., 2012). In order to compare the models to the Sun, the models are assumed
to have the solar luminosity and the Ω values are calculated accordingly (see Käpylä
et al., 2014). The fastest rotator, C2, has a rotation period between 3–4 days, and
the slowest, A1, has a rotation period of 12–13 days.

The growth of the magnetic field is exponential during the kinematic stage, and
can be expressed as

λ = 〈d lnBrms/dt〉t. (7.1)

Our results show that smaller stratification results in larger growth rates. Dur-
ing this kinematic stage, a dynamo at low latitudes with poleward migration and
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Table 7.1: Input parameters of runs in Paper I.

Run Pr PrSGS Pm Ta ξ Γ
(0)
ρ ν̃ L σ̃ Ω̃

[1010] [10−5] [10−5] [103] Ω̃�
A1 71 1.5 1.0 1.0 0.29 2.0 1.7 3.8 .001 2
A2 71 1.5 1.0 1.8 0.29 2.0 1.7 3.8 .001 3
B1 82 2.5 1.0 0.64 0.09 5.0 2.9 3.8 0.011 3
B2 82 2.5 1.0 1.4 0.09 5.0 2.9 3.8 0.011 4.4
C1 56 2.5 1.0 1.4 0.02 30 2.9 3.8 1.4 4.4
C2 56 2.5 1.0 4.0 0.02 30 2.9 3.8 1.4 7
D1 503 7.5 3.0 0.16 0.01 100 4.7 0.63 39 4.3
D2 269 4.0 2.0 1.0 0.01 100 2.5 0.63 39 6
E1 56 2.5 1.0 1.4 0.02 30 2.9 3.8 1.4 4.4
E2 56 2.5 1.0 1.4 0.02 30 2.9 3.8 1.4 4.4
E3 56 2.5 1.0 1.4 0.02 30 2.9 3.8 1.4 4.4
E4 67 3.0 1.0 1.0 0.02 30 3.5 3.8 1.4 4.4

Notes. Modified from Paper I, Table 1.

a short period is excited. As the dynamo saturates in the more rapidly rotating
runs, quasi-stationary or slower oscillatory dynamo modes take over. The thresh-
old for equatorward migration of the magnetic field occurs when the initial density
stratification is increased to Γ

(0)
ρ = 30 and the angular velocity is increased so that

Co = 7.8 (Run C1). Poleward migration, previously a common feature of similar
simulations (e.g., Gilman, 1983; Glatzmaier, 1985; Käpylä et al., 2010; Brown et al.,
2011), becomes subdominant to the equatorward dynamo wave.

Figure 7.1 shows the normalized azimuthal magnetic field of Runs C1 (left) and
E4 (right). For Run E4, the kinematic stage can be seen from the small, short-period
cycles at turmskf < 1000, where turmskf is the convective turnover time. After Run
E4 saturates, equatorward propagation of longer period operates until ∼ 2000turmskf ,
with antisymmetry about the equator. This equatorward propagation starts around
the latitudes ±40◦, and higher latitudes have a weaker, poleward oscillatory dynamo
wave. In Run E4, after turmskf ∼ 2000, a quasi-stationary axisymmetric mode
appears and a non-axisymmetric m = 1 dynamo mode takes over. In Run C1,
the oscillatory dynamo continues to dominate for the duration of the simulation.
Whenever the dynamo oscillates with equatorward migration, the magnetic field
also appears strongly near the latitudinal boundary, and thus it might be possible
that these oscillations are an artifact. Jennings et al. (1990) found that using wedges
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Figure 7.1: Azimuthal magnetic field at r = 0.98R over time. Runs C1 (left) and E4
(right) from Paper I.

that do not extend to the poles gives a good approximation of a fully spherical model,
but this assumption was for αΩ dynamos. The impact of the boundary condition is
explored in Paper III.

Table 7.2 lists some of the output diagnostics from the runs. The radial differen-
tial rotation is defined as

Δ
(r)
Ω =

Ωeq − Ωbot

Ωeq

, (7.2)

and the latitudinal differential rotation is

Δ
(θ)
Ω =

Ωeq − Ωpole

Ωeq

. (7.3)

Here, Ωeq = Ω(R, π/2) is the rotation rate averaged over φ at the equator and the top
of the convection zone, Ωbot = Ω(r0, π/2) is the rotation rate averaged at the equator
and the bottom of the convection zone, and Ωpole = [Ω(R, θ0) + Ω(R, π − θ0)]/2 is
the average rotation at the north and south latitudinal boundaries at the top of
the convection zone. The radial gradients for all runs are positive. The latitudinal
gradients of rotation are also positive for all runs except D2, but in some runs, for
example, C1 and C2, it is not monotonic. Instead, around mid-latitudes, a local
minima appears which is approximately the same location at which the equatorward
propagation of the magnetic field originates. In all cases, differential rotation is
smaller than that of the Sun, which is in accordance with observations that more
rapid rotation results in decreased differential rotation in stars (e.g., Henry et al.,
1995; Donahue et al., 1996; Messina and Guinan, 2003; Barnes et al., 2005) and in
numerical simulations (e.g., Kitchatinov and Rüdiger, 1995; Käpylä et al., 2011a).
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Table 7.2: Summary of runs in Paper I, selected output parameters.

Run λ̃ Γρ Rat Re Rm Co Urms Emag/Ekin Δ
(r)
Ω Δ

(θ)
Ω

[106]

A1 0.084 2.1 0.83 26 26 8.6 0.010 0.418 0.013 0.089
A2 0.095 2.1 0.11 24 24 12.8 0.009 0.553 0.009 0.050
B1 0.028 5.3 1.1 22 22 8.1 0.013 0.345 0.034 0.142
B2 0.098 5.2 1.1 20 20 13.7 0.012 0.222 0.023 0.072
C1 0.006 22 2.1 35 35 7.8 0.021 0.346 0.047 0.068
C2 0.105 21 2.7 31 31 14.8 0.019 0.706 0.016 0.030
D1 0.003 85 1.2 11 34 8.0 0.011 0.472 0.011 -0.00
D2 0.003 74 2.4 25 50 9.1 0.013 0.222 0.045 0.058
E1 0.007 22 2.1 34 34 7.9 0.021 0.393 0.048 0.069
E2 0.006 22 2.1 35 34 7.8 0.012 0.346 0.047 0.068
E3 0.005 22 2.4 35 35 7.9 0.021 0.380 0.037 0.055
E4 0.024 23 2.2 28 28 8.1 0.020 0.477 0.028 0.054

Notes. Emag = 1
2〈B2〉 is volume-averaged magnetic energy and Ekin = 1

2〈ρU2〉 is
volume-averaged kinetic energy. The normalized growth rate is λ̃ = λ/(Urmskf ).
Rat is Ra for the thermally relaxed state. Modified from Paper I, Tables 1 and 2.
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Figure 7.2: Cycle frequency and Coriolis number relation for runs in Paper I.

However, the the strength of differential rotation of the models in both Papers I and
II is higher than differential rotation rates deduced from stars (Henry et al., 1995;
Marsden et al., 2005; Siwak et al., 2010; Lehtinen et al., 2016).

In order to make a comparison to active stars, runs with oscillatory modes A2, B2,
C1, C2, D1, and D2 are compared in terms of their respective Co and cycle frequency,
shown in Figure 7.2. Dynamo cycle length is calculated from the oscillations of
the magnetic field, to see if the models lie along activity branches analogous to
the branches found from observations by Brandenburg et al. (1998) and Saar and
Brandenburg (1999). It is possible that Run C2 is suggestive of a superactive branch
(S), Runs C1, D1, and D2 possibly correspond to the active branch (A), and Runs
A2 and B2 are possibly on the inactive branch (I). However, there are too few
models to truly make an accurate comparison, and it is possible that the time series
of our models is too short. And while ωcyc/Ω appears to be an important parameter
for the models in Paper I, Run A2 was classified as inactive even though its magnetic
energy is higher than C1, D1, B2, and D2, (see Figure 8, Paper I).

While the initial goal of Paper I was to explore the stratification regime where
equatorward dynamo modes appeared, later work by Käpylä et al. (2016b) studied
the impact of viscous, thermal, and magnetic diffusivity and found that PrSGS is
responsible for the equatorward migration. In Paper I, the cases where PrSGS � 2.5
have equatorward migratory belts, except at high Rm, at which point the dynamos
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become irregular. As this parameter increases beyond unity, the sign of the radial
shear changes near mid-latitudes, and the dynamo mode switches from poleward to
equatorward. When thermal diffusivity is high, and correspondingly PrSGS < 1, the
rotation profile changes almost monotonically as a function of latitude. Käpylä et al.
(2016b) also found that as the magnetic diffusivity is decreased, and Rm increased,
the dynamo switches from oscillatory to irregular or quasi-stationary, something also
observed in the runs of Paper I. Other numerical simulations with similarly higher
Prandtl numbers have also resulted in equatorward dynamo waves (e.g., Käpylä
et al., 2012; Warnecke et al., 2013; Augustson et al., 2015). The Parker-Yoshimura
sign rule (Eq. 3.44) only allows for equatorward migration when the sign of α is
opposite that of ∂Ω/∂r. Thus, a positive α in the northern hemisphere requires a
negative radial gradient in order for a dynamo wave to propagate equatorward. The
models of Paper I produce a region with negative radial shear at mid-latitudes when
the Prandtl number connected to the unresolved turbulent flux is sufficiently high.
This is also what is found in the models by Käpylä et al. (2012) and Augustson et al.
(2015). The only other possible way to have an equatorward dynamo wave is to
invert the sign of α in the bulk of the convection zone (Duarte et al., 2016).

The dynamo type can be estimated using dynamo numbers Cα = αΔr/ηt0 and
CΩ = ∂Ω∂r(Δr)3/ηt0. Because the simulation is nonlinear, the estimate of the α
effect includes both kinetic and current helicity, in other words, α = −1/3τ(ω · u−
j · b/ρ), where τ = αMLTHP/Urms(r, θ) and αMLT = 5/3. For the oscillatory Runs
C1, C2, D1, and D2, CΩ is comparable to Cα, but the Ω effect is strongest around
mid-latitudes. So an α2Ω dynamo seems possible, at least from the local dynamo
numbers. However, the phase relation between Br and Bφ can be used to determine
the sign of radial differential rotation for α2Ω dynamos (e.g., Yoshimura, 1976). If the
shear is negative, Bφ should precede Br by about 3π/4, and if the shear is positive,
Bφ should lag behind Br by about π/4. Run C1 actually shows Bφ lagging behind
Br by approximately π/2, which is a relation found for α2 dynamos in Cartesian
coordinates by Brandenburg et al. (2009). Thus it would seem that the dynamos here
are the α2 type, and not α2Ω. However, Warnecke et al. (2014) found a standard
αΩ operating in deeper layers that may be instead responsible for generating the
observed behavior, and the values for Bφ and Br taken near the surface may instead
be indicative of a thin shell of an α2 dynamo operating near the surface.

The effect of increasing the longitudinal extent of the simulations is also addressed
in Paper I. Of particular interest is the effect when the longitudinal extent is increased
to 2π. Smaller wedges are less computationally demanding, but it is important to
examine what effects are lost when running simulations that have a reduced azimuthal
extent. Runs E1–E4 examine the impact of φ0 on the resulting dynamo. A so-called
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Figure 7.3: Amplitudes of the low order Fourier modes of the magnetic field with
time for Run E4. Black corresponds to m = 0, red to m = 1, and blue to m = 2.
From Paper I, Figure 18.

“azimuthal dynamo wave” is observed, where the m = 1 mode is found at certain
latitudes and propagates in the azimuthal direction with a slower rotation than the
mean rotation. This is further explored in Paper II. This mode is as easily excited
in α2 dynamos as the m = 0 mode, and the growth of the m = 1 mode can be
seen in Figure 7.3, for run E4 in Paper I. The m = 1 mode (red line) persists at
mid-latitudes and dominates over shorter time periods at other latitudes. The m = 2
mode indicated in blue has a smaller growth rate in α2 dynamos, which is consistent
with the results of the simulation (Rädler, 1986).

7.1.2 The Azimuthal Dynamo Wave

Paper II is a continuation of the themes of Run E4 from Paper I. It is evident from
visual inspection of the azimuthal field near the surface (Fig. 7.4) that there is a
large-scale structure corresponding to the m = 1 mode that rotates with a different
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Figure 7.4: The azimuthal magnetic field at r = 0.98R normalized by the equiparti-
tion magnetic field, in the co-rotating frame, at four different times. From Paper II,
Figure 1.

speed than would be expected if pure advection carried the structure. The structure
rotates slower than the mean rotation rate of the model. Both slower and faster
rotation of the azimuthal dynamo wave relative to the mean rotation is theorized
to be possible in the nonlinear regime (Rädler et al., 1990), and spot structures
rotating either faster or slow than the mean rotation have been observed in stars
(Berdyugina and Tuominen, 1998, e.g.,). Such a wave could be used to explain the
observed faster rotation of spot structures relative to the mean rotation of stars such
as II Peg (Hackman et al., 2012) as compared to mechanisms such as differential
rotation that is sometimes used to explain spot drift in other stars such as FK Com
(Korhonen et al., 2007). Furthermore, disruptions and switches between faster and
slower rotation rates have been observed in some stars as well (Hackman et al., 2013).
The observed m = 1 mode in latitudinal bands of strong magnetic fields in Run E4
are similar to the more axisymmetric (m = 0) wreaths in simulations by, for example,
Brown et al. (2010) and Nelson et al. (2013). More rapid rotation should also lead
to parities approaching +1 about the equator (e.g., Rädler et al., 1990; Moss et al.,
1995).

Some diagnostic and input parameters of Paper II are shown in Table 7.3. Run
B is the same as Run E4, and other corresponding input parameters not shown
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Table 7.3: Summary of runs from Paper II, selected input parameters and diagnostics.
Run PrSGS ν̃[10−5] Rat[106] Re Rm Co Ω̃/Ω̃�
A 3.5 4.1 1.7 26 26 5.0 2.7
B 3.0 3.5 2.2 28 28 8.1 4.0
C 3.0 3.5 2.6 24 24 15.5 6.7

Notes. Run B is Run E4 from Paper I. All other input parameters are identical to
those of Run E4. Ω̃/Ω̃� is the average rotation rate of the Run relative to the
average solar rotation rate. Modified from Table 1, Paper II.

Table 7.4: Summary of runs from Paper II, selected output diagnostics.
Run Ẽmag Ẽ(0) Ẽ(1) M P
A 0.312 0.166 0.047 0.834 -0.333
B 0.618 0.109 0.071 0.891 0.318
C 0.937 0.056 0.091 0.944 0.347

Notes. Here, the normalized magnetic energy is Ẽmag = Emag/Ekin, and
Ẽ(0) = E(0)/Emag and Ẽ(1) = E(1)/Emag are the energies in the m = 0 and m = 1
magnetic field modes, respectively.
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Figure 7.5: Phase of the m = 1 mode of radial magnetic field at the surface over
time (open and filled circles) at various latitudes. The maxima of the m = 2 mode
for temperature is plotted with crosses. Solid lines indicate the speed if the structure
was carried by pure advection. From Paper II.

in this table are identical to the ones in Table 7.1. Runs A and C explore the
azimuthal dynamo wave found in Run B with slightly lower and higher rotation
rates, respectively. The large-scale magnetic field is initially axisymmetric, but as it
grows, a stable non-axisymmetric mode takes over and propagates in the φ-direction.
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Figure 7.6: Differential rotation averaged over time at various latitudes (a) and
depths (b). The inset is the zoom up of the almost-flat dashed line near 0. From
Paper II, Figure 4.

Table 7.4 has some of the select output diagnostics from the Runs. M is nearly 1 as
the high m modes dominate the total energy. The parity P increases as the rotation
rate increases.

The structure’s phase speed was calculated by determining the azimuth φ of the
magnetic extrema of the m = 1 mode at each snapshot in time. The initial angular
velocity is uniform, but the simulation develops differential rotation and the final
rotation profile is averaged from the azimuthal component of the velocity and the
uniform rotation of the frame, Ω0. By comparing the phase speed and advection due
to differential rotation (Fig. 7.5), it can be seen that the pattern speed is slower than
the local flow at various latitudes, although the local flow itself varies in latitude due
to differential rotation.

Areas with strong magnetic flux are expected to inhibite convection and lower the
temperature. Therefore one would expect to find an m = 2 mode for the temperature
with the same phase as the the dynamo wave. This is shown in Figure 7.5, where
the temperature maxima is plotted with the radial magnetic flux extrema. This
relationship is particularly clear at the mid-latitudes. Although one would expect
the minima to correspond if the magnetic field inhibited convection, for whatever
reason, the maxima of the temperature structure were closer in phase to the extrema
of the m = 1 mode of the magnetic field.

The phase speed of the m = 1 mode is largely independent of both latitude and
depth, unlike the azimuthal velocity component of the flow. Figure 7.6 shows the
azimuthal velocity component, with the black dashed line showing the relative phase
speed of the pattern. The inset enlarges this, as the pattern speed is very small

70



Chapter 7. Results

Figure 7.7: The phase speed of the azimuthal dynamo wave for Runs A (left) and
C (right) from Paper II. The points denote the maxima of the magnetic field and
stolid lines are the speed of the local fluid.

relative to the speed of the advection. This slower rotation of the pattern relative
to the mean rotation provides a potential explanation for observed tendency for
active longitudes to rotate with a different period than the star itself. The azimuthal
dynamo wave rotates as a rigid body, independent of depth or latitude.

It was also found that the parity changed with an increasing Co from solutions
that tended towards being consistently antisymmetric to more symmetric about the
equator, although all runs at all times had mixed equatorial symmetry. For models
with a higher Co, the pattern also changed speed over time, albeit very slowly, and
so it is possible that solutions exist where the azimuthal dynamo wave rotates faster

71



7.1. Numerical Simulations

Figure 7.8: Dependence on C�
α for marginally excited dynamos on the latitudinal

extent and boundary condition. From Paper III, Figure 1.

than the surrounding fluid. Figure 7.7 shows the result of slower rotation on the left,
corresponding to Run A, and faster rotation on the right, corresponding to Run C.

In stars such as II Peg (Lindborg et al., 2013), for example, a persistent active
longitude is observed for a period over ten years, rotating slightly faster than the
mean rotation period. A systematic study of photometry of rapidly rotating active
solar analogs over long periods by Lehtinen et al. (2016) finds similar cases where
rotation periods of spot structures are shorter than the rotation period of the star,
suggesting the presence of azimuthal dynamo waves. From Figure 7.7, it can also be
seen at least in the early stages that some faster rotation is also possible for short
times in the rotation regime covered in Paper II.

7.1.3 α2 Dynamos in 1D Mean-field Models

In Papers I and II, one significant problem with the simulations is the imposed
latitudinal boundary condition. Because the phase relation of Br and Bφ near the
surface matched that of α2 dynamos and not αΩ, it cannot be assumed that the
findings of Jennings et al. (1990) hold true. The boundary is at co-latitudes of
θ0 = ±15◦ to avoid the singularity at the axis where the time step would approach
zero, but cross-polar effects are lost. Additionally, it can be seen in Figure 7.1 that
the magnetic field is strong near the latitudinal boundary and in Figure 7.5 (d) that
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Table 7.5: C�
α for α2 dynamos with varied ηt and α profiles.

a
(1,0,0) (0,1,0) (0,0,1)

ei e0 C�
α C�

α C�
α

e2 0.01 0.236* 4.063 9.532
e2 0.05 0.558* 5.308 11.39
e4 0.01 0.096 1.045 4.144
e4 0.05 0.326* 2.587 7.039
e6 0.01 0.070 0.541 2.175
e6 0.05 0.265* 1.733 4.857
e8 0.01 0.059 0.403 1.463
e8 0.05 0.238* 1.384 3.727

Notes. An asterisk (*) indicates stationary dynamos. All other runs are
oscillatory. θ0 = 0◦ and the latitudinal boundary condition is SAA for all runs.
Modified from Paper III, Table 1.

the structure is also fairly distinct at the boundary. This leads to the possibility that
the structures at higher latitudes and oscillations there are merely artifacts created
by the latitudinal boundary condition.

Paper III concentrates mainly on the two possible boundary conditions, the per-
fect conductor ASA and the normal field SAA (Section 4.2.1, Table 4.1). Figure 7.8
demonstrates the discontinuity when a simple 1D α2 dynamo is extended to the poles
with the ASA boundary condition. C�

α is the critical dynamo number such that the
solution is neither decaying nor growing, from Equation 4.8. Even changing the lat-
itudinal boundary from θ0 = 2◦ to θ0 = 1◦ for the ASA boundary condition creates
inconsistent results where both an oscillatory and stationary dynamo are possible.
No boundary condition creates oscillations at θ0 = 0◦. Thus the limit is a singu-
larity, in the sense that as θ0 → 0◦, the resulting dynamo changes from oscillatory
to stationary. It is possible that the isotropic α effect with the perfect conductor
boundary condition cannot represent a full sphere as the solution is dependent on
θ0. The SAA and SAS boundary conditions had a similar value for C�

α for all θ0 in
Figure 7.8, but all dynamo solutions were found to be stationary.

One possible method to obtain oscillatory solutions for α2 dynamos is to alter
the α effect and magnetic diffusivity ηt. The α and ηt profiles can be varied as a
function of latitude, motivated by previous convection simulations (Käpylä et al.,
2009, Figure 8), as well as earlier results by Ossendrijver et al. (2002) and Käpylä
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Figure 7.9: Azimuthal magnetic field with varied α and turbulent diffusivity profiles.
From Paper III, Figures 4b and c.

et al. (2006). Table 7.5 shows the values selected in terms of Equations 4.10 and 4.11.
Vector notation is used for the coefficients of the equation of the α profile, where
a = (a0, a2, a4, . . . , an). The perfect conductor boundary condition is then mimicked
by a normal field condition imposed at the pole and profiles that concentrate ηt and
α at lower latitudes. Figure 7.9 shows the resulting azimuthal magnetic flux when
ηt = e4 and a = (0, 1, 0) (left) and (0, 0, 1) (right). The solutions both oscillate and
exhibit equatorward migration of the magnetic flux. The magnetic field is largely
confined to middle or lower latitudes. Thus it seems possible to obtain oscillatory
solutions with equatorward migration instead of the stationary solutions shown in
Figure 7.8 with models where α and ηt are concentrated at lower latitudes. These
results agree with the DNS simulations by Käpylä et al. (2012) as well as Papers I
and II, and the LES simulations by Augustson et al. (2015) and Duarte et al. (2016).

Shear is also introduced so that the resulting dynamo is of the α2Ω type. Figure
7.10 shows two different set-ups with varying CΩ and C�

α and the damping term
μ̃ = μR2/ηt0. A bifurcation exists in the μ̃ = 1 branch, where the dynamo is
marginally exited for two values of C�

α. There is an oscillatory branch at higher
values for C�

α when CΩ � 33.6, and a stationary branch at all CΩ. This bifurcation
exists for both θ0 = 1◦ and ASA boundary condition and θ0 = 0◦ and SAA boundary
condition. The upper branch of oscillatory solutions for μ̃ = 1 has a small increase
in the C�

α around CΩ ≈ 70. This corresponds to an increase in the frequency of the
oscillations as well as a change from antisymmetric solutions about the equator to
symmetric ones (see Figs. 8, 9, and 10 in Paper III). The plots of the azimuthal
magnetic fields are similar for both cases of θ0 = 1◦ and 0◦, with the exception
that the magnetic field is strongest near the latitudinal boundaries with the ASA
boundary condition, whereas the magnetic field is concentrated at lower latitudes
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Figure 7.10: Critical values for α as a function shear. Oscillatory (filled circles) and
stationary (open circles) solutions for both θ0 = 1◦ (blue) and θ0 = 1◦ (red). From
Paper III, Figure 7.

with the SAS boundary condition. The dynamo propagates poleward when shear
is positive, in accordance with the Parker-Yoshimura rule. When negative shear is
added, the latitudinal dynamo wave propagates towards the equator. Thus it would
seem that with the exception of a region of negative shear where −20 < CΩ < 0,
the ASA and SAA boundary conditions produce almost identical results in terms of
oscillatory fields. However, with the change in the boundary condition from ASA
and θ0 = 1◦ to SAA and θ0 = 0◦, the field becomes concentrated at lower latitudes,
but still oscillates. And so the wedge is found to be a good approximation of a full
sphere under certain conditions.

7.2 Observations

7.2.1 Photometry of V352 CMa

In Paper IV the CPS method is used to evaluate the usefulness of the method for
stars with low-amplitude changes in the light curve. The CPS method proves to
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Figure 7.11: The calculated mean (a), amplitude (b), period (c), and phases (d) of the
primary and secondary minima of V352 CMa. Filled triangles and squares indicate
reliable and independent datasets, open triangles and squares are independent and
unreliable datasets, and crosses indicate non-independent datasets. The dotted lines
for the period indicate the 3ΔPW period range. From Paper IV, Figure 3.

be robust, and the calculated mean period is P0 = 7.d24 ± 0.d22, while an active
longitude persisting between 1998 and 2009 with P = 7.d158± 0.d002 is found via the
Kuiper test (Jetsu and Pelt, 1996). The possible active longitude disappears when
the light curve amplitude variation reaches its minimum in 2010. An activity cycle
of 11.7± 0.5 years was calculated from the mean brightness M of the light curve.

Figure 7.11 shows the parameter solutions for data subsets for the mean of the
light curve, M(t), amplitude A(t), period P (t), and primary and secondary minima
tmin,1 and tmin,2, respectively, folded by the period P = 7.d158. The fluctuations of
the weighted period mean, PW ±ΔPW , can be used to estimate differential rotation
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assuming the differences in period are due to spots at different latitudes and the star
has a solar-like differential rotation profile. From the maximum range of change, we
find Z = 6ΔPW /PW = 0.19. If the estimation of spurious fluctuations of the period
is Zspur ≥ 0.15 due to the low amplitude to noise ratio, the physical fluctuation is
estimated as Zphys = 1/(Z2 − Z2

spur)
2 ≈ 0.12. The differential rotation |k| > Zphys

is a lower limit, as it is unknown at which latitudes the spots form. If they are
restricted to narrow latitudinal bands, the real value for |k| would be greater.

This star was revisited in Lehtinen et al. (2016), with the addition of two more
years of photometry. No statistically significant cycle could be found in M using
the CPS method and including additional observations. However, an 8.1 year cycle
was found using the amplitude data, but this result had a false alarm probability
rating of “poor” following the rating scheme of Baliunas et al. (1995). It would
seem that the cycle found in Paper IV was stable only within the time period of
observations. Lehtinen et al. (2016) also found a stable active longitude rotating with
a period of 7.d132. The value for the period fluctuation range was similarly close,
with Z = 0.22. Thus it would seem that the activity cycle itself is chaotic or the
length of observations is too short. However, V352 CMa still shows a spot structure
that consistently rotates faster than the mean photometric rotation period with the
newer data. If the differential rotation is the cause of these period fluctuations, then
it is comparable to that of the Sun (Z ∼ 0.2). Lehtinen et al. (2016) classified this
star as being on the active branch, with a logR′

HK ≈ −4.43.
Based on the observational parameters (Table 2.1), V352 CMa is a young solar

analog, with a rotation rate over three times faster than the Sun. Using Equation 4
in Noyes et al. (1984) with a B−V of 0.71 yields a convective turnover time τc = 15.3
days. Then the calculated Co = 26.6, which is higher than the Co of Run C but still
reasonably close. With respect to the rotation rate, this star most closely matches
the rotation rate of Run B of Paper II. In both Runs B and C, the azimuthal dynamo
wave was fairly constant over time. This makes it an interesting object to compare
with the numerical simulations in Papers I and II, as the rotation rates for some of
those simulations are quite similar, and this star should have a convection zone depth
similar to the setup of the numerical models. It seems possible that the observed light
curve variation for this star might be due to an azimuthal dynamo wave, described
in Paper II, or some competition between a dynamo wave and differential rotation.

7.2.2 Photometry of LQ Hya

The CF method is used in Paper V to determine the carrier period and its modula-
tions from the photometry of the variable star LQ Hya. The accurate determination
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Figure 7.12: Top: Phase dispersion relation plotted against various correlation
lengths. Bottom: Phase diagram with carrier period P0 = 1.d60514. From Paper
V, Figures 6 and 8.

of the most plausible carrier period allows the tracking of flip-flops and possible az-
imuthal dynamo waves. 27 time segments in total are used, ranging from December
1982 to May 2014. The overlap and individual datasets are shown in Figure 1 of
Paper V. The periodicity analysis and optimal carrier period analysis used this full
dataset. Only the data from Lehtinen et al. (2012) and Paper V was used in the CF
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analysis as these subsets of observations all used the same instrument with the same
comparison star, thus making a homogeneous dataset.

Figure 7.12 (left) shows the D2(P ) statistic (Eq. 5.11), and demonstrates the
dispersion of the various detected frequencies. The correlation time in days cor-
responds to how long a frequency persists. For a correlation length less than 200
days, a single minima exists. However, for longer correlation lengths the dispersion
relation splits into two main peaks and the frequency spectrum further distorts at
even longer correlation lengths. Thus active longitudes do not persist for more than
a year. The optimal correlation time Δt is found by fitting a Gaussian to the D2

statistic. The longest correlation length for which the statistic remains singular and
mostly symmetric is 100 days. This results in a PD2

0 = 1.d60514, with a deviation
of ΔPD2

0 ≈ 0.d9984. This is similar to the mean rotation period PW = 1.d6043 of
Lehtinen et al. (2012). The selected PD2

0 is the most statistically significant rotation
period of the dispersion function for the carrier fit over the entire time span. The
other values from, for example, the peaks at longer correlation times, are most likely
due to some locally active period over a shorter time span than the entire dataset,
and therefore are not optimal to use to analyze the entire time span.

Figure 7.12 (right) shows a fit of normalized amplitudes with a calculated period
of P0 = 1.d60514, with the harmonic order limit K = 2 (Eq. 5.10) and L = 30
(Eqns. 5.12 and 5.13). Visually, the slopes of the lines correspond to deviations from
the carrier period. Downward trends indicate a spot structure that rotates faster
than the rotation period of the star, and an upward trend indicates a slower rotation
period of the spots. Unbroken trends may be indicative of azimuthal dynamo waves
(Paper II). The downward trend from 1990–1994 corresponds to a period of 1.d6033,
and the downward trend from 2003–2009 corresponds to a period of 1.d6037. With
the exception of these two epochs, the phase behavior appears to change rapidly, and
even these two trends show fluctuations. This can be compared to, for example, the
binary star II Peg (Lindborg et al., 2013, Figs. 2 and 4), where the rotation period
of the spots could instead be well-constrained for a decade and appeared as a steady
downward trend.

A flip-flop is defined in two ways: either the region of main activity (primary
minimum) switches by about 180◦ and then remains there for some time, or a primary
and secondary minima separated by approximately 180◦ switch and the secondary,
which has now become the primary minimum, remains for some time. Four flip-flop
events were detected in the dataset, and three additional possible events occurred in
data gaps between observations. The CPS method from Lehtinen et al. (2012), the
CF method from Paper V, and DI method from Paper VI are combined in Figure
7.13. Possible flip-flop events are marked by vertical green lines. It is apparent that
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Figure 7.13: Phases of minima and cool spots from Lehtinen et al. (2012) (crosses
and pluses), Paper V (small dots), and Paper VI (larger filled circles). The vertical
green lines indicate possible times of flip-flops. The black bars along the x-axis show
the times of photometric observations. (Paper V, Fig. 10).

even with a time span of 22 years, no regular cycle can be observed. This is too few
events to calculate a flip-flop cycle, and the CF method does not recover the 5.2 year
flip-flop cycle reported by Berdyugina et al. (2002).

The differential rotation coefficient k was found to be quite small, k ≈ 0.032.
Estimates for differential rotation from Doppler imaging are even smaller, of the
order of 0.006 (e.g., Kovári et al., 2004). These seem well in agreement with previous
estimates using photometry (Jetsu, 1993; You, 2007; Lehtinen et al., 2012, 2016). The
period fluctuations could be due to differential rotation, if spots were drifting from
high latitudes to low latitudes. The maximum spot range in one hemisphere versus
the mean latitude is of the order of 45◦, implying that the drift of the spot structures is
roughly half the differential rotation parameter, so that kdr ≈ 0.5k. If one calculates
kdr from the period difference of the coherent structure Pcoh from the mean period,
then kdr = (P0−Pcoh)/P0 ≈ 0.0011. Thus it is somewhat possible that spot drift and
differential rotation are responsible for the observed period fluctuations, although an
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Figure 7.14: Temperature maps of seven seasons for LQ Hya. From Paper VI, Figures
1-7.

azimuthal dynamo wave may certainly also explain this.

7.2.3 Doppler Imaging of LQ Hya

Figure 7.14 shows the temperature maps of the seven observing seasons, spanning
over four years. The summary of the observations is listed in Table 1 in Paper VI.
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Figure 7.15: Left: Temperature map with all 18 observations. Right: Temperature
map with only five selected observations.

October 1998 and March 1999 both show a low activity level. There are few spots,
and some artifacts are present, likely due to the low S/N. Some spot activity becomes
evident during May–June 1999. A higher level of activity is seen during October 1999
and November 2000, however, these maps also had poorer phase coverages of about
50%. Vogt et al. (1987) found that poor phase coverage does not create spurious
spots, but may increase temperature contrast and reduce the spot shape resolution.
Some artifacts are also apparent in the recovered images in the form of arches and
bright spots near dark spots.

One thing that can be immediately seen from the observation summary (Paper
VI, Table 1) is that at least three seasons had very poor phase coverage (March 1999,
October 1999, and November 2000). While S/N was mitigated by using several spec-
tral lines in the analysis to cancel the noise, not much can be done to minimize the
effects of poor phase coverage. Instead, it is more useful to examine the impact that
poor phase coverage has on the inversion. Other seasons have much better coverage.
February–March 2002, with a good coverage and over 18 observations, was used to
examine the effect of removing 13 observations from the inversion, leaving five ap-
proximately evenly spaced observations with which to perform the inversion. From
Figure 7.15, it can be seen that reducing the phase coverage does not introduce spu-
rious spots, in agreement with Vogt et al. (1987) and Rice and Strassmeier (2000). A
similar analysis had been done with observations of the star DI Piscium by Lindborg
et al. (2014). The authors used a season with the good coverage and removed all but
five observations so that the phase coverage was 50%. Similarly to our February–
March 2002 season, their July–August 2004 observations originally found a slightly
cool spot at some phase that appeared much cooler when the phase coverage was
poorer. This is similar to the behavior of the spot at the phase 0.6 in Figure 7.15
(left), which appears as a cooler spot with a hot spot at the same phase (right) with
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Figure 7.16: Mean photometric magnitudes from Lehtinen et al. (2012) (a), mean
temperatures of maps calculated from each observing season (b), temperature differ-
ences (c), and spot coverage (d). Symbol size is proportional to the S/N and phase
coverage (Paper VI, Fig. 8).

poorer phase coverage. The temperature contrast increases while the mean temper-
ature remains approximately the same, and spot coverage correspondingly increases
from 1.9% to 9.3%. It would seem that poor phase coverage mainly affects the spot
temperature, and to a lesser degree affects the shape due to lack of observations at
certain phases. However, some information such as spot latitudes for spots near in
phase to the observations is still useful.

Figure 7.16 shows the general trends over all observing seasons. The first panel
displays photometric magnitudes with error bars, showing a general decrease in mag-
nitude during the time period of the DI observations. According to the theory of
stellar activity, a decrease in magnitude should correspond to an increase in activity
level due to the large spots covering the surface. However, it appears that the process
on LQ Hya is more complex as the photometric brightness shows a slight increase
during the time when the average temperature shows a consistent low point. This
could be partially due to the limited time-span of the observations.

Activity cycle estimates range from 3.2 years (Messina and Guinan, 2003), to
as high as 18 years (Lehtinen et al., 2016), with the most agreement in the 6–7
year range (Jetsu, 1993; Strassmeier et al., 1997; Cutispoto, 1998; Oláh et al., 2000;
Alekseev, 2003). Thus only four years of observations cannot give insight into any
possible activity cycle, and the only thing that can be concluded is that the spots
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Figure 7.17: Latitudinally averaged temperature maps for seven observing seasons
along with primary and secondary minima from Lehtinen et al. (2012) and Paper V
(Paper VI, Fig. 9).

evolve quickly over a short time.
Figure 7.17 is similar to Figure 7.13, but uses a different phase corresponding

to the rotation period found by Jetsu (1993), PCPS = 1.d6001136, compared to the
period found through CF analysis, PCF = 1.d60514. The spot phases from DI coincide
fairly well with the photometric minima, even for seasons with poor phase coverage.
From both Paper V and Paper VI, it is evident that LQ Hya has a rather chaotic spot
evolution, and no evidence for persistent active regions following a single rotation
period could be found during the time span of the observations. This fits with the
result of a correlation time for a rotation period of 100 days or less. The higher
activity season October 1999 coincides with a flip-flop found via the CF method,
but some caution must be used when viewing the temperature map, as October
1999 had the poorest phase coverage, which as demonstrated earlier, leads to an
overestimated temperature contrast. Given though that the spot latitude results are
somewhat reliable, it can be seen that spots have some bimodal nature in which they
appear both at high and low latitudes, but not so much at mid-latitudes. This is in
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Figure 7.18: Numerical simulations of spherical wedges, the same as Figure 7.7, but
with rotation rates 15 (left) and 29 (right) times the solar rotation rate.

agreement with other DI and ZDI results for LQ Hya (e.g., Strassmeier et al., 1993;
Rice and Strassmeier, 1998; Donati, 1999; Donati et al., 2003b; Kovári et al., 2004).

LQ Hya is considered a super-active star, with an R′
HK > −4.20, but was also

noted as being anomalous by Saar and Brandenburg (1999) as it exists in the transi-
tion region between the active and super-active branches. This could partly be due
to its status as a single star, where magnetic cycles potentially do not evolve at the
same rate as they do in binary systems (Saar and Brandenburg, 1999). This makes
it a very interesting object. The star has a rapid rotation period of 1.6 days, low
differential rotation, and estimated convective turnover time of τc ≈ 21 days, cor-
responding to a Co ≈ 160, using the definition for the Coriolis number from Noyes
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et al. (1984). Thus the Coriolis force dominates (Saar and Brandenburg, 1999, Ta-
ble 2). The rapid evolution of spots may be due to differential rotation, but since
this differential rotation is very weak, complex azimuthal dynamo waves affecting
the spot-generating mechanisms provides a possible alternative. The simulations of
Paper II have a slower rotation rate than LQ Hya. While the azimuthal dynamo
wave of the models presented in Paper II are relatively well-behaved for the three
selected rotation rates, simulations with similar parameters but much faster rota-
tion show much more chaotic behavior for the azimuthal dynamo wave, as shown
in Figure 7.18. The rotation rate of Figure 7.18 (left) is approximately the same as
that of LQ Hya. LQ Hya would lie within this very rapidly rotating regime, and it
can be seen that any active longitudes connected to an azimuthal dynamo wave at
this rotation rate would not create steady trends for the CF method nor long-term
persistent drift in the Doppler images.
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8 Summary of the publications

The thesis consists of six peer-reviewed journal publications. These are grouped by
topic instead of chronological order. Papers I–III focus on numerical results and
theory, while Papers IV–VI focus on observational results.

• Paper I: Käpylä, P. J., Käpylä, M. J., Cole, E., Warnecke, J., and Branden-
burg, A., 2013, “Effects of Enhanced Stratifcation on Equatorward Dynamo
Wave Propagation.” The Astrophysical Journal, 778, 41

• Paper II: Cole, E., Käpylä, P. J., Käpylä, M. J., and Brandenburg, A., 2014,
“An Azimuthal Dynamo Wave in Spherical Shell Convection.” The Astrophys-
ical Journal Letters, 780, L22

• Paper III: Cole, E., Brandenburg, A., Käpylä, P. J., and Käpylä, M. J.,
2016, “Robustness of oscillatory α2 dynamos in spherical wedges.” Astronomy
& Astrophysics, 593, A134

• Paper IV: Kajatkari, P., Jetsu, L., Cole, E., Hackman, T., Henry, G. W.,
Joutsiniemi, S.L., Lehtinen, J., Mäkelä, V., Porceddu, S., Ryynänen, K., and
Şolea, V., 2015, “Periodicity in some light curves of the solar analogue V352
Canis Majoris.” Astronomy & Astrophysics, 577, A84

• Paper V: Olspert, N., Käpylä, M. J., Pelt, J., Cole, E. M., Hackman, T.,
Lehtinen, J., and Henry, G. W., 2015, “Multiperiodicity, modulations, and
flip-flops in variable star light curves. III. Carrier fit analysis of LQ Hydrae
photometry for 1982-2014.” Astronomy & Astrophysics, 577, A120

• Paper VI: Cole, E. M., Hackman, T., Käpylä, M. J., Ilyin, I., Kochukhov,
O., and Piskunov, N., 2015, “Doppler imaging of LQ Hydrae for 1998-2002.”
Astronomy & Astrophysics, 581, A69

The papers are summarized in the following sections. The author’s contribution to
the papers is described at the end of each section.
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8.1. Paper I

8.1 Paper I

This paper explores the dependence of 3D dynamo simulations on density stratifi-
cation and rotation rates in spherical wedges. This paper also explores the use of a
sub-grid scale turbulent heat conductivity to numerically stabilize the model and a
modified blackbody boundary condition so that the flux near the upper boundary is
comparable to that needed to carry the total luminosity through the surface of the
model. This also allows the temperature at the surface to vary and therefore serve as
a possible measure for irradience with time. The Taylor number, and by extension
Coriolis and Reynolds numbers are varied to explore the different activity regimes of
the resultant dynamos.

Almost all simulations initially develop a higher-frequency oscillatory magnetic
field with poleward migration that is eventually dominated by other lower-frequency
or quasi-stationary dynamo modes. When the initial density stratification is low,
the resulting dynamo at the saturated state is irregular and the dynamo propagates
poleward. However, as density stratification and the Prandtl number increase to ap-
proximately 30 and 2.5 respectively, an equatorward oscillatory dynamo dominates.
The cyclic activity of all oscillatory solutions is roughly categorized as inactive, active,
and super-active to compare to parameters such as rotation rates, cycle frequencies,
and the ratio of magnetic to kinetic energies. However, the models provide too few
data points to plot an analog to the activity branches observed for active stars.
Temperature fluctuations for Run C1 were found to be around 15–20%. The rota-
tion rates of the runs are around 2-7 times the solar rotation rate, and the resulting
dynamo type appears to be α2 based on the phase relation between the radial and
azimuthal magnetic field near the surface.

Run C1, which had oscillatory equatorward dynamo migration is extended to
the full 2π in the longitudinal direction, resulting in a transition from axi- to
non-axisymmetric solutions as predicted by mean-field theory. The resulting az-
imuthal magnetic field near the surface at low and high latitudes has a strong non-
axisymmetric component of the mode m = 1 in terms of spherical harmonics. This
non-axisymmetry is similar to the observations of field configurations of rapidly ro-
tating late-type stars.

The author was responsible for the analysis of the runs extending over full az-
imuthal direction, and the writing of the results concerning them. During the data
analysis of Paper I, for the first time, the behavior consistent with an azimuthal
dynamo wave was observed, which the author further explored in Paper II. The
parameters and setup for Paper II were developed based on the knowledge gained
during writing Paper I.
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8.2 Paper II

Paper II takes the model for Run E4 from Paper I and studies the resulting az-
imuthal dynamo wave for similar cases where the model rotates slightly slower or
faster, covering a range of about 2–5 times the solar rotation rate. Run B in this
Paper corresponds to Run E4 in Paper I. Initially, a large-scale axisymmetric oscil-
latory magnetic field grows, followed by the non-axisymmetric dynamo mode which
dominates as the axisymmetric portion ceases to oscillate. Parity is found to increase
as rotation is increased, corresponding to increased symmetry at the equator, as pre-
dicted by theory. A dynamo wave for the m = 1 mode is found for all 3 models.
The azimuthal dynamo wave was found to rotate slower than the mean rotation in
all cases, with a nearly constant rotation rate independent of latitude or depth. The
rotation speed of this pattern decreased monotonically as a function of fluid rotation
rate. The extrema for the m = 1 mode of the magnetic field could also be mapped
to an m = 2 mode for temperature. Temperature fluctuations were around 2–5%.
Results are used to explain a possible cause of the observed discrepancy between
active longitudes and mean stellar rotation rates on rapidly rotating late-type stars
such as II Pegasi.

The author had the main responsibility of producing the simulation runs, per-
forming the data analysis, and the writing of the manuscript.

8.3 Paper III

Paper III examines the impact of the latitudinal boundary condition on spherical
and wedge geometry. The model used in Paper III is 1D with only latitudinal extent
and solves the mean-field dynamo equations. Because the models of Paper I and
II have artificial boundary conditions in latitude due to computational limitations,
the latitudinal boundary condition may have some effect on the final results of such
simulations by producing artifacts. Both α2 and α2Ω dynamos are considered.

To examine the difference between using a wedge versus the full sphere, the an-
gle between the pole and latitudinal boundary θ0 was varied with various boundary
conditions for an α2 dynamo. The boundary conditions tested are the perfect con-
ductor, regular field, and normal field at the boundary. θ0 is varied between 0◦–15◦

and a discontinuity is found with the perfect conductor boundary condition where
oscillatory solutions changes to a stationary solutions as θ0 approaches 0◦. Both
the normal field and regular field boundary conditions can only produce stationary
solutions. Oscillatory solutions are possible when the magnetic diffusivity ηt and α
profiles are modified to be concentrated towards the equator. These profiles remove
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8.4. Paper IV

the artificial θ0 dependence, and resemble the dependence of ηt and α on latitude
found in numerical simulations.

Radial shear and a damping term is then added to the mean-field equation. Os-
cillatory solutions are only possible when the damping term is not zero. Models with
θ0 = 1◦ and the perfect conductor boundary condition, and θ0 and the normal field
boundary condition are examined with both positive and negative shear. Oscilla-
tory solutions were found within certain shear regimes for both cases. For certain
values of the damping term, both oscillatory and stationary solutions were possible,
depending on the critical α number. The Parker-Yoshimura rule was obeyed in all
instances of oscillatory dynamo waves. Thus it would seem that wedges are a good
approximation for the full spherical domain under certain conditions for α2 and α2Ω
dynamos.

The author was responsible for running the numerical models, determining critical
dynamo numbers, analyzing the results, and creating the figures. The work in this
paper is the result of a visit to Nordita in Stockholm, Sweden. While revising the
manuscript for Paper II during this visit, a question regarding the impact of the
latitudinal boundary on oscillatory solutions was raised, inspiring this paper. The
author was also responsible for writing the manuscript.

8.4 Paper IV

Paper IV is an introduction into observing methods for solar analogues. The target
star V352 Canis Majoris is selected due to its lack of prior modeling attributed to the
low amplitude of the light curve. The CPS method is used to search for evidence of
a longer cycle and results are compared to results obtained via the power spectrum
method. The mean rotation period of the star is found to be 7.24 ± 0.22 days. A
lower limit for the differential rotation coefficient |k| > 0.12 is found assuming a solar
rotation law. A cycle of 11.7 ± 0.5 years is found in the mean brightness. Possible
stable active longtitudes were found during years 1998–2009, rotating with a period
of 7.157± 0.002 days. The CPS method proved robust for this star. The light curve
data was published online.

The author contributed to some of the collection of parameters in the literature
for the target star. The author also performed most of the CPS and power spectrum
method calculations to refine the rotation period and estimate a possible activity
cycle. This paper was part of the course “Variable Stars” at Helsinki University. The
author also contributed to writing the manuscript.
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8.5 Paper V

Paper V uses the CF method on photometry data spanning over 22 years to find
the phases of photometric minima, possible activity cycles, and active longitudes of
the rapidly rotating late-type star LQ Hydrae. Candidate carrier periods are found
using the least-squares fit of harmonics and phase dispersion statistics. The selected
carrier period is then used to calculate the phases of local minima.

The most statistically significant period was found to be 1.60514 days. The
coherence time only gives a clear symmetric minimum for values around 100 days or
less. The period distribution was found to be bimodal, interpreted as spots appearing
at either high or low latitudes, but not between. From 2003–2009, coherent structure
rotating with a period of 1.6037 days was found to be a possible active longitude.
During all other times of observations, the spot phases appeared to be more randomly
distributed. Possible epochs for flip-flop events are calculated using the primary and
secondary minima. Four flip-flop events are detected within the data, and three
more possible events appear during the data gaps. A local fit was used to detect a
seventh possible event. The phases of the calculated primary and secondary minima
are compared to previous results and newer results from the DI analysis from Paper
VI.

This paper was written in conjunction with Paper VI below. The author pro-
vided phases and temperatures of spots obtained via DI for comparison purposes
with observed primary and secondary minima in the photometry. The author was
also responsible for providing insight into the DI technique including earlier results
and providing temperature maps to help interpret the CF results. The author par-
ticipated in writing the manuscript.

8.6 Paper VI

Paper VI uses the Doppler Imaging method to retrieve surface temperature maps
of the rapidly rotating late-type star LQ Hya for the years 1998–2002. Some of the
observing seasons have poor phase coverage, and so one of the seasons with better
phase coverage is selected to test the impact of insufficient phase coverage. From the
temperature maps, the spot filling factors, the mean temperatures, and the maximum
temperature deviations are calculated for each observing season.

A value of v sin i = 26.5 km s−1 for the star is determined by selecting the best fit
to an unspotted model. The season with the best phase coverage was recalculated
using fewer observations, and it was found that no spurious spots were introduced,
however, the difference between the temperature of the cool spots and the mean
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temperature was found to increase, as well as the spot filling factor. No active
longitudes were found with these seven observing seasons. A slight decrease and
then increase in mean temperature may be indicative of a possible cycle, but at
least two of the seasons with the highest spot coverage had poor phase coverage and
the time span of the observations was too short. Averaging over latitudes for each
map allowed a comparison to the primary and secondary minima obtained using the
continuous period search method and the carrier fit method from Paper V. Cool
spots were found to correspond with these minima obtained from photometry.

Reduced spectra were provided to the author, who was then responsible for per-
forming the inversion, including selecting spectral lines, calculating the continuum,
adjusting individual spectral line parameters to achieve the best fit, interpreting the
resulting temperature maps, and finally comparing results with the photometry from
Paper V. The author had the main responsibility of writing the paper.
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9 Concluding Remarks

This thesis addresses both the theory of stellar dynamos as realized in numerical
simulations and the interpretation of observations with respect to theory. Obser-
vations of stellar magnetic fields, spot structures, activity cycles, active longitudes,
and flip-flop events motivate numerical simulations to explain the various mechanisms
that may operate in a stellar dynamo. In turn, results from numerical simulations
can motivate longer-term monitoring of solar analogs as well as providing tools for
interpreting observations.

The numerical simulations of this thesis were of the α2 or α2Ω type. This is
believed to be the dynamo type operating in stellar convection zones. The models
of Paper I were able to produce equatorward dynamo waves with cycles roughly
the same order as the solar cycle. This occurred when the Prandtl number (the
ratio of the kinematic viscosity to the thermal diffusivity) reaches some threshold
value. The models were estimated to be α2 near the surface due to the phase relation
between the radial magnetic field and the azimuthal field near the surface, but further
inspection reveals an αΩ dynamo operating in the deeper layers. By extending to the
full azimuthal extent, non-axisymmetric fields form, and structure of the spherical
harmonic mode m = 1 was observed.

This m = 1 structure required a deeper look, motivating Paper II. This mode was
predicted by dynamo theory to rotate as a rigid body at a different rate than the fluid,
and could provide an alternative explanation to differential rotation for observations
of stars. For example, II Pegasi was observed to have an active longitude rotating
at a different rate than the mean rotation. Because this star is a rapid rotator with
a well-defined period, there is only weak differential rotation which is inadequate to
account for the drift of the active longitude. The azimuthal dynamo wave provides
a possible alternative. This wave as observed in simulations rotates as a rigid body,
independent of depth or latitude. The m = 2 mode of the temperature maxima were
found to coincide fairly well with the extrema of the m = 1 mode of the magnetic
field, which is to be expected if the magnetic field directly influences the temperature.

The models of Papers I and II are both spherical wedges, and do not extend to
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the polar regions for computational reasons. Instead, a perfect conductor boundary
condition is imposed at the latitudinal boundaries and it becomes important to know
if observed oscillations of dynamos solutions are real or an artifact of the imposed
boundary condition. Previously such a study had been done for αΩ dynamos, but
stellar models tend to be either α2 or α2Ω dynamos. Paper III examines this problem,
and finds that solutions in wedge geometry are comparable to spherical geometry
under certain conditions; oscillations are possible when the α effect and magnetic
diffusivity are concentrated at lower latitudes or when the shear is sufficiently strong.
The mean-field models provide a computationally efficient method of verifying the
validity of results in larger, more complex numerical simulations.

Suitable targets to test the simulated results were chosen. Both of these young
solar analogs, V352 CMa and LQ Hya, are classified as active and super-active stars
respectively, based on their rotation period, estimated convective turnover times,
and dynamo cycle periods. The CPS method is applied to V352 Canis Majoris, a
star estimated to have a Coriolis number of about 27. LQ Hya is analyzed using the
CF and DI methods, and estimated to have a Co ≈ 160. In agreement with both
the numerical simulations and surveys of stars, the estimated differential rotation
coefficient decreases with more rapid rotation, where V352 CMa with a rotation
period of 7.2 days has a |k| ≈ 0.12, while LQ Hya with a rotation period of 1.6 days
has a |k| ≈ 0.033.

Based on classification of the R′
HK (an indicator of activity level of a star),

V352 CMa lies right near the cut-off between axisymmetric and non-axisymmetric
spot structure, but the observed stable active longitude would favor the latter. No
Doppler images of this object exist, as its v sin i make it a less than ideal candidate
at this time, and so the spot structure can only be inferred from the photometry.
The active longitude found has a faster rotation period than the mean rotation of the
star, which is the opposite of the numerical simulations of Paper II, but the Coriolis
number of those simulations is also smaller. Preliminary results of numerical simu-
lations with faster rotation periods than those presented in Paper II do not have an
azimuthal dynamo wave consistently slower than the rotation period of the model,
and this faster regime is worth exploring further. The differential coefficient is high
enough for this star that it may be in competition with the azimuthal dynamo wave.

LQ Hya’s R′
HK places it securely within the non-axisymmetric regime. How-

ever, while classified as super-active, it was found to be in the transition region
between the super-active and active branches, making it an anomalous star. The
non-axisymmetric spot structure can be verified using the DI method, and this is
confirmed by observations, both within this thesis and with previous results. No
stable active longitude is found for this star using the CF method, but there are pe-
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riods with active longitudes with fluctuating periods for times spanning a few years.
These active longitudes do not have a rotation period that varies greatly from the
star itself. Flip-flops are found using the CF method but do not occur with any reg-
ularity, which is in disagreement with some previous results. The chaotic nature of
this star is in agreement with the fastest numerical simulations of Paper II where the
azimuthal dynamo wave switches between faster and slower rotation periods without
any clear cycle. Differential rotation is small enough that it likely has no effect on
the spot structure of the star. The observed chaotic nature of this star make it a
very interesting object for future observations.

The numerical simulations motivate further work on the parameter regimes where
equatorward dynamo waves are found. The nonlinear nature of the models makes it
difficult to predict results. The azimuthal dynamo wave should be further explored,
as the results here show magnetic structure that rotates slower than the mean rota-
tion, whereas observations of stars also show spot structure with faster rotation than
the mean rotation of the star, as well as phase jumps and reversals. Such behavior
may be observed in numerical simulations with, for example, different convection
zone depths or higher rotation rates. Furthermore, Paper III shows the necessity of
revisiting assumptions to verify whether results in numerical simulations are artifacts
or real.

The success of the CPS method applied to a star with a low-amplitude light
curve motivates the need for further observation and analysis of stars even if they
are less than ideal for observing. The CPS method itself is one tool that can be
combined with other methods such as the CF method and DI to provide better
insight into stellar activity. When dealing with magnetic activity cycles, there is a
need for decades of continuous monitoring in order to gain a better understanding of
how spot structures, stellar temperatures, and active longitudes change over a cycle.
These observations must be continued to be linked to numerical simulations so that
the driving mechanisms behind the variable behavior of magnetically active stars can
be better understood.
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