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Quantum Neural Networks (QNN) were used to predict both future steering wheel signals and
upcoming lane departures for N=34 drivers undergoing 37 h of sleep deprivation. The drivers drove in
a moving-base truck simulator for 55 min once every third hour, resulting in 31 200 km of highway
driving, out of which 8432 km were on straights. Predicting the steering wheel signal one time step
ahead, 0.1 s, was achieved with a 15-40-20-1 time-delayed feed-forward QNN with a
root-mean-square error of RMSEtot=0.007 a.u. corresponding to a 0.4 % relative error. The best
prediction of the number of lane departures during the subsequent 10 s was achieved using the
maximum peak-to-peak amplitude of the steering wheel signal from the previous ten 1 s segments as
inputs to a 10-15-5-1 time-delayed feed-forward QNN. A correct prediction was achieved in 55 % of
cases and the overall sensitivity and specificity were 31 % and 80 %, respectively.

Kvantneuronätverk (QNN) användes för att förutsäga både framtida rattsignaler och filavkörningar för
N=34 bilförare som genomgick 37 timmars vaka. Bilförarna körde 55 min var tredje timme i en
lastbilssimulator på en rörlig plattform, vilket resulterade i 31 200 km landsvägskörning, varav 8432 km
inföll på raksträckor. Ett 15-40-20-1-strukturerat tidsförskjutet, framåtkopplat QNN användes för att
förutsäga rattsignalen ett tidssteg framåt, 0,1 s, vilket lyckades med ett kvadratiskt medelvärdesfel på
RMSEtot=0.007 a.u., som motsvarar ett relativt fel på 0,4 %. Den bästa föutsägelsen av antalet
filavkörningar under de följande 10 s uppnåddes genom att som in-signal till ett 10-15-5-1
tidsförskjutet, framåtkopplat QNN använda skillnaden mellan maximi- och minimivärdet i rattsignalen i
de tio föregående 1 s segmenten. En korrekt förutsägelse uppnåddes i 55 % av fallen och den totala
sensitiviteten var 31 % medan specificiteten var 80 %.

Kvanttineuroverkkoja (QNN) käyttettiin ennustamaan tulevaa rattisignaalia ja tulevia kaistalta
poikkeamisia 37 tuntia valvoneille N=34 kuljettajalle. Kuljettajat ajoivat liikuvapohjaisesssa
rekkasimulaattorissa 55 min ajan joka kolmas tunti, eli kokonaisuudessaan 31 200 km maantieajoa,
joista 8432 km olivat suorilla. Rattisignaalin ennustaminen yhden aika-askeleen eteenpäin, 0,1 s,
suoritettin aikaviivästetyllä eteenpäinkytkeyllä QNN:llä, jolla oli 15-40-20-1 rakenne. Neliöllinen
keskiarvollinen virhe oli RMSEtot=0.007 a.u., mikä vastaa 0,4 % suhteellista virhettä. Paras ennustus
kaistalta poikkeamisten määrälle tulevan 10 s aikana saavutettiin käyttämällä sisäänmenona
rattisignaalin suurinta huipusta huippuun amplitudia kymmenen edellisten 1 s pätkien ajalta ja
aikaviivästettyä eteenpäinkytkettyä 10-15-5-1 QNN:ää. Oikeaa ennustusta saavutettiin 55 %
tapauksista ja sensitiviteetti oli 31 % ja spesifisiteetti oli 80 %.

Quantum Neural Networks, Qubit neuron, time series prediction, drowsy driving
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Predicting Hazardous Driving Behaviour with 

Quantum Neural Networks  

 

 

 

Abstract 

 

 

 

Quantum Neural Networks (QNN) were used to predict both future steering wheel signals 

and upcoming lane departures for N=34 drivers undergoing 37 h of sleep deprivation. The 

drivers drove in a moving-base truck simulator for 55 min once every third hour, resulting 

in 31 200 km of highway driving, out of which 8432 km were on straights. Predicting the 

steering wheel signal one time step ahead, 0.1 s, was achieved with a 15-40-20-1 time-

delayed feed-forward QNN with a root-mean-square error of RMSEtot=0.007 a.u. 

corresponding to a 0.4 % relative error. The best prediction of the number of lane 

departures during the subsequent 10 s was achieved using the maximum peak-to-peak 

amplitude of the steering wheel signal from the previous ten 1 s segments as inputs to a 

10-15-5-1 time-delayed feed-forward QNN. A correct prediction was achieved in 55 % of 

cases and the overall sensitivity and specificity were 31 % and 80 %, respectively. 
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1 Introduction 

 

 

 

It is a natural instinct of people to want to prepare for the future, and at its finest, to be 

able to avoid hazardous situations completely by becoming aware of them beforehand. 

Throughout history people have been trying to predict the future, at times by the most 

extraordinary means with little chance for success, but the desire to search for a 

successful prediction method has survived to this day. Weather forecasting is an 

everyday, and modern, example of scientific prediction, which has been achieved through 

the increase in computational power. In this thesis the term prediction will be used to 

describe exactly this type of prediction of future events. The term is also used in scientific 

literature to describe estimation, e.g. extrapolation of some variable's value when data is 

not available for the entire range of interest. Prediction and estimation are very much 

alike, the only difference is that prediction is temporal while estimation is not, i.e. 

prediction aims to determine something at a future time while estimation aims to 

determine something in e.g. a different place, temperature range, electric field etc. This 

distinction is only made here to clarify that this thesis concerns prediction of events at 

future points in time. 

 

The enormous increase in computational power that has occurred during the last few 

decades has enabled modelling of increasingly complex systems and even developing 

artificial intelligence and machine learning to harness computers' superior ability to 

perform mathematical calculations. Machine learning is the field of study of computers' 

ability to learn to perform tasks without being specifically programmed, in practice, 
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machine learning are algorithms that perform user-independent optimisation of their own 

structure according to some learning rules. The field of machine learning is already very 

large and it is increasing all the time. It contains several different subfields, e.g. Decision 

Trees [1, 2], Support Vector Machines [2, 3], Bayesian Networks [2, 4], Genetic 

Algorithms [5, 6], and Neural Networks [7, 8] (the references are examples of 

comprehensive book chapters on the listed subfields or recent review papers). As the title 

of this thesis suggests, Quantum Neural Networks (QNNs), a subcategory of neural 

networks, were used in this study. The reason for choosing neural networks is that they 

have performed well with time series prediction [9], i.e. predicting future time steps of a 

signal. The other listed subfields of machine learning are more suitable for classification 

tasks, i.e. they are developed to divide data into separate classes. As time series prediction 

is a modification of pattern recognition, which is a type of classification, many machine 

learning algorithms optimised for classification have been used successfully to predict 

time series, but several techniques (especially when applied to time series) require a 

priori knowledge of e.g. the underlying model or possible states, which is a limitation the 

neural networks do not have. Other prediction methods not utilising machine learning do 

exist, examples include autoregressive models (AR) [10, 11], moving average models 

(MA) [11, 12], combinations and evolutions of the aforementioned (e.g. ARMA [11, 13], 

ARIMA [11, 13], ARMAX [12, 13], GARCH [14-16]), Kalman filtering [17, 18], non-

parametric regression [19-22], Markov chains [23, 24] etc., but these are also model-

based and require even more care from the user than the ones based on machine learning, 

therefore these were not selected for this work. 

 

Having briefly discussed the general background of machine learning, let us now turn our 

attention to neural networks and further to Quantum Neural Networks (QNNs). Biological 

neural networks in e.g. the brain have certain fascinating and useful characteristics: They 

are linked together in entities performing specific, even very complex, functions, even 

though a single neuron is a fairly simple biomechanical device with a simple function, 

and, perhaps most interestingly of all, they learn to optimise their function from previous 

experiences and subsequent outcomes. These are the traits that any computational Neural 

Network aims to simulate — they are constructed from simple components, they are 

shown data and a learning algorithm trains them to perform some task, which they can 
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learn without a person determining the parameters and without anyone knowing exactly 

how the trained network performs its function. This autonomous learning is a major 

advantage because it enables the network to perform tasks that are too complex to define 

as a function or model, and it does this without requiring a user to be able to define how it 

should be done. 

 

Artificial Neural Networks (ANNs) have a long history starting in 1943 when McCulloch 

and Pitts [25] described a logic network based on neuronal activities. Following Hebb's 

postulation that the connection between biological neurons that fire together is 

strengthened [26], Rosenblatt [27] developed the perceptron in 1958, an artificial neuron 

which is still the basic building block in many ANNs. Since then, several tens, if not 

hundreds, of network structures have been developed, each suitable for a slightly different 

task. For instance, some are suitable for time series prediction (e.g. time-delayed feed-

forward NNs [28], radial basis function networks [29], recurrent NNs [30]), other for 

pattern recognition (e.g. recurrent NNs [31], Hierarchal Graph NNs [32]), regression (e.g. 

General Regression NNs [33]), and image processing (review article [34], mentions e.g. 

feed-forward, Kohonen, and Hopfield networks), etc., just to name a few. As the theories 

about quantum computers were emerging separately, the benefits of quantum computation 

algorithms, e.g. parallelism from superposition, were introduced to neural networks (see 

[35] for a comprehensive book chapter on the subject). The approach used in this thesis is 

the implementation of the qubit neuron [36], which exists in a superposition of states, 

thereby enabling parallelism and interference of states, and then organising them into a 

suitable network structure (2.1 Theory of Quantum Neural Networks). The benefits of 

QNNs compared to classical ANNs are their higher learning efficiency [36], i.e. learning 

requires fewer iterations than in similar classical ANNs to achieve the same precision, 

their ability to handle nonlinear signals and tasks [37], and their higher memory capacity 

[38].  

 

Knowing that QNNs have been able to predict nonlinear signals, it was thought that they 

could be used to predict lane departures from the steering wheel signals of tired drivers. 

Rather unfortunately, almost every driver has some experience with feeling tired and 

unfocused when sitting behind the wheel. To provide an estimate of the prevalence and 
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seriousness of the problem, a survey conducted on Finnish professional truck drivers 

reported that over 20 % of the participants (N=184) had nodded off at the wheel at least 

twice during the surveying period of only three months [39]. The real danger with driving 

while suffering from impaired alertness arises if the car leaves the lane. Therefore a 

warning system predicting lane departures would increase safety both for the sleepy 

driver and other drivers nearby. Research has been made into predicting the sleepiness of 

drivers ([40] represents the state-of-the art), but such attempts involve biometric signals 

recorded from the driver, which are cumbersome to collect and process. Car 

manufacturers have also developed camera-based systems that detect when the car is 

about to leave the lane, but they work poorly in difficult light and weather conditions 

when lane markers are not clearly visible [41]. Successfully predicting lane departures 

directly from the steering wheel signal would eliminate the need for biometric or camera-

based systems. 

 

To achieve steering-based lane departure prediction is, however, not an easy task. 

Steering wheel signals are erratic, nonlinear, and include transients (i.e. sudden large 

changes in the signal compared to the average signal behaviour), which makes them hard 

to model properly. In addition, the more tired a driver is, the more erratic the steering 

behaviour becomes. But since QNNs are known to be able to handle such signals and 

have been used to successfully predict very nonlinear and transient signals (e.g. sunspot 

activity [37], commodity prices [42], and short-term loads of power systems [43]) it was 

thought that they could provide a tool to achieve the lane departure prediction. 

 

Many benefits of QNNs, and neural networks in general, have been presented in this 

introduction, with their main advantage being their ability to train themselves to perform 

a task. This enables prediction without having to construct complicated underlying 

models or having a priori knowledge, but all this user-independence has a price that 

strongly influences this entire thesis: A neural network is essentially a "black box", which 

does impose the restriction that a user can never determine exactly how any one 

parameter of the network influences its performance. In practice this means that any 

speculations into the inner workings of a neural network are just that, speculations — it is 

impossible to determine with absolute certainty why a QNN succeeds or fails. There are, 



1 Introduction    7 

 

 

 

however, certain general conclusions that have been reached during the years of neural 

network research which do provide the user with tools to make reasonable assumptions 

about the operation of the network. Along with the methods used and achieved results for 

Quantum Neural Network prediction, these reasonable assumptions, along with a 

motivation for them, are presented and discussed in this thesis. 
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2 Methods 

 

 

 

The methods of this project encompass several separate parts, which motivates the 

division of this section. To alleviate the possible search for something specific in this 

section, a short description of the different subsections is now given. First, the theory of 

Quantum Neural Networks (QNNs) is presented (2.1 Theory of Quantum Neural 

Networks), with emphasis on the theory of the qubit neuron, of which different network 

structures can be assembled. The time-delayed feed-forward neural network, which was 

used in this work, is presented, but other network structures are not discussed in this 

section. Learning of the QNN is also presented. The data set is part of an extensive sleep 

deprivation study [44], but an adequate general description of the study and a detailed 

description of the collected driving data will be given in Data Set (2.2). In this section the 

relevant terms and theories related to sleep deprivation is also presented to the extent that 

is necessary for the reader to fully grasp the effects of the sleep deprivation on the QNN 

predictions. The last section, Prediction and Analyses (2.3), is further divided into 

Predicting Steering (2.3.1) and Predicting Lane Departures (2.3.2), because while both 

types of predictions have the same general steps (presented in 2.1 Theory of Quantum 

Neural Networks), the execution of steering wheel signal prediction and lane departure 

prediction are surprisingly different. Furthermore, due to the iterative nature of the work, 

where each attempt led to some assumed improvements in the next attempt, the main 

conclusions from each attempt will be discussed briefly in order to facilitate an easier 
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read while the full results are presented in Results. All computer algorithms for the QNNs 

were written and implemented by the author in Matlab 2013b. 

 

2.1 Theory of Quantum Neural Networks 

 

Artificial Neural Networks (ANN), which is the name for neural networks performing 

classical computations, differ from their quantum counterpart, Quantum Neural Networks 

(QNN), only in the way a single neuron operates. These qubit neurons [36] can be 

assembled into any network structure in the same way as perceptrons [27], the neurons in 

ANNs, are assembled into ANNs. The advantage of the qubit neuron compared to the 

perceptron is that it is programmed to exhibit quantum effects, like superposition and 

interference of states. This parallelism should give it similar advantages over classical 

perceptrons that quantum computers will have over classical computers. There are several 

publications about QNNs and qubit neurons (see e.g. [35]), but the theory presented here 

is based on [36], which presents the theory and equations in a very detailed and 

understandable manner. 

 

A qubit neuron resembles biological neurons in the sense that they have multiple inputs, 

each of which is weighted, similarly to biological neurons reacting more strongly to 

inputs from certain neighbouring neurons [26], and they have one output. All of this can 

also be said for perceptrons, but there is one important difference regarding the output — 

a biological neuron, as a perceptron, either fires or does not (the perceptron outputs a 0 or 

a 1) depending on the combined input, but a qubit neuron exists in a state that is a 

superposition of the weighted inputs and therefore gives out a number that can be 

between 0 and 1, which actually is the probability of the qubit neuron's output to be a 1. 

To add some mathematical rigour to this statement, the difference between a 

computational bit and a qubit should be explained. A bit is a real value that is either a 0 or 

a 1, not anything in between. A qubit, on the other hand can also take on any value in 

between, because the state of a qubit is described as a superposition of the states       and 

     , according to: 

                     (1) 
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where a and b are complex values called probability amplitudes describing the probability 

of the qubit to be in the corresponding state. So a qubit can exist in a state that is any 

combination of the states       and      , as long as the probability of it being in some state 

(any state) is 1. Mathematically, this is requirement is equal to: 

 

             (2) 

 

Due to the qubit neuron being modelled like a qubit, it is not a binary classifier, unlike the 

perceptron and essentially also the biological neuron, which gives it its name: qubit 

neuron. 

 

 In the same way that biological neurons can be assembled into networks that perform 

very complex functions, so too can perceptrons be assembled into ANNs and qubit 

neurons into QNNs. Both ANNs and QNNs are constructed to have in input layer to 

which information is fed, one or several hidden layers, and an output layer that delivers 

the output from the network. The parameters that govern the interaction between the 

neurons and the layers are determined by learning, so the network essentially trains itself 

to perform a function, much in the same way as our neurological networks learn to 

perform functions from experience. But let us first focus on the operation of a single qubit 

neuron, and after that return to the operation of the entire network and the learning. At 

this point it is sufficient to understand that the network is constructed with one input 

layer, one or more hidden layers and an output layer, and all parameters for each neuron 

in every layer are determined through learning.  

 

To implement the superposition of states in a qubit neuron, all real inputs and parameters 

of the qubit neuron is mapped onto the complex plane as phase angles using the following 

mapping function: 

           (3) 

where x is the real value (input or parameter) that is transformed into a phase angle 

describing a possible state of the neuron. The interference and superposition of states is 

then performed as phase rotations in the complex plane. The following relation also holds 

for this representation of complex numbers: 
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                      (4) 

 

which is useful to bear in mind, as any multiplication of two such mappings is the same as 

adding the arguments (angles) together, i.e. performing a rotation in the complex plane. 

The qubit neurons in the input layer of any QNN only performs this mapping of the real 

inputs, which are restricted to the interval [0, 1], to phase angles between [0, π/2]: 

 

         
 

 
          (5) 

 

where zinput is the output of the input layer neuron that is then fed to the neurons in the 

hidden layer. The neurons in the hidden layers and the output layer perform a more 

complicated function. A schematic description of a qubit neuron is shown in Fig. 1. As 

these neurons are preceded by other qubit neurons (either in the input layer or the hidden 

layers), the inputs are now complex numbers zinput,k, where the index k simply denotes the 

designation of the neuron in the previous layer from which the input is received. Each 

input has a weight, θk, that is a real valued phase angle determining how much relevance 

the neuron assigns to the input from that particular connection (to neuron k in the previous 

layer). The biological analogy is that a neuron can learn to be more sensitive to inputs 

from one specific connection, or in the case of perceptrons, the weight from one input is 

higher, giving that input a larger influence in determining the final state of the perceptron.  

 

Fig. 1. Schematic of the operation of a qubit neuron in a hidden or an output layer. The complex 

inputs from the previous layer are rotated by the weights θk, the state of the neuron is 

determined as a superposition of states from the inputs, a controlled phase reversal is 

performed, and the complex output is fed to the next layer. 
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The weights in the qubit neuron, θk, assign the inputs into states through a phase rotation, 

i.e. the complex inputs zinput,k are each multiplied by their corresponding complex 

numbers f(θk). The state of the neuron, u, is determined as the weighted sum of the input 

states minus a threshold: 

 

                      
 

 
  (6) 

 

The sum over k is the sum of all weighted inputs (K is the number of inputs to the neuron) 

and λ is the threshold (also mapped onto the complex plane). The threshold serves to set 

the operating level of the neuron, which means that it functions as an offset or bias, 

around which the state of the neuron then fluctuates according to the inputs and weights. 

The value of the threshold is determined during learning. Having determined the state u of 

the neuron, it undergoes a controlled phase reversal, which is a generalised version of the 

controlled NOT gate used in quantum computing: 

 

  
 

 
      arg       (7) 

     
 

    
    (8) 

 

where arg() takes the argument of u, i.e. determines the real-valued phase angle of u, g() 

is the sigmoid function (8) producing a value in the range [0, 1], and δ is the reversal 

parameter, which is determined during learning. The function of the controlled phase 

reversal is such that if g(δ) is close to 0, then sign of the phase angle of u is flipped but the 

magnitude remains unchanged, and because the observation probability is the square of 

the probability amplitude a change in sign won't affect the output. If g(δ) is close to 1, the 

reversal essentially swaps the probability amplitudes between the states       and      .  

 

The controlled phase reversal produces a real-valued phase angle, y, and the last operation 

in the neuron is to map the state back to the complex plane, producing the output zhidden: 

 

               (9) 
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The subscript "hidden" refers to the output from a neuron in a hidden layer, so zhidden is 

then fed forward to the next hidden layer or to the output layer. The neurons in the output 

layer perform the same operations as those in the hidden layers (eq. 6-9), but the output 

from the output layer is transformed to a real value between 0 and 1 describing the 

probability of observing a 1 through: 

 

         m          
 
   (10) 

 

where Im() is the imaginary part of zoutput. In conclusion, the adjustable parameters of one 

qubit neuron are the weights θk, the threshold λ, and the reversal parameter δ. During the 

learning of the network all these parameters need to be determined for all neurons in the 

entire network. 

 

From these qubit neurons the actual QNN can be assembled. The selected structure for 

this thesis was a time-delayed feed-forward neural network (Fig. 2) (see e.g. [28]) 

because this particular structure is well suited for e.g. time series prediction [28]. A feed-

forward network is a network in which all connections are in the direction from the input 

layer towards the output layer, so it is the opposite of a feedback network. A feed-forward 

network is a simple network structure, and as such is not as computationally heavy as 

many other networks, resulting in shorter learning times. With the added complexity from 

the qubit neurons, a feed-forward network was thought to suffice and to keep learning 

times reasonable. The "time delay" in the name only means that the predicted output is 

based on inputs from the current and previous time steps, and it is implemented such that 

each input neuron feeds one time step (the signal at t, t-1, t-2, etc.) to the network. 

Therefore the number of previous time steps to feed to the network is only limited by the 

number of input neurons. This structure requires that the input signal has an even 

sampling frequency, because the only concept of time in the system is that the network 

will assign relevance to the different time steps, and quite possibly the change in the 

signal between time steps (quite possibly, because the inner workings of each trained 

network is different and so it is impossible to make such a statement with absolute 

certainty). As time progresses, the inputs move from one input neuron to the next and if 
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the time steps have changed, the signal will appear to have a different shape than it really 

has due to the uneven sampling frequency. 

 

 

Fig. 2. Structure of a time-delayed feed-forward neural network with four layers. The fifteen 

neurons in the input layer are each assigned to one time step of an input signal starting from the 

current time step t and continuing through all previous time step to t -14. The output is the 

predicted signal at t +1. 

 

The final phase before using a QNN for prediction (or classification or any other type of 

task) is the learning. There are three major learning schemes for neural networks, all of 

which have some kind of cost or error function to be minimised: supervised learning, 

unsupervised learning, and reinforcement learning. Even though supervised learning was 

used, a short description of each scheme is given in order to justify the choice of 

supervised learning over the other types. Supervised learning means that, during learning, 

input data is given to the network and the output is compared to the desired or known 

output. The cost function to be minimised is some function describing the distance 

between the output and the desired output, which is why supervised learning is very 

useful for e.g. prediction or classification. In unsupervised learning there is no desired 

output, only a cost function that is designed to produce a desired outcome. The cost 

function in unsupervised learning is therefore dependent on the task, or model, and 

requires good a priori assumptions of what the network should achieve, to learn 

optimally. Therefore it is best suited for estimation problems such as filtering, clustering 

etc. Reinforcement learning is really a Markov chain where some starting input is given to 

the network, which then generates an action, i.e. output, which causes a reaction from an 

environment, and a cost. The reaction is then fed back to the network as an input and the 

same procedure is repeated. To perform reinforcement learning one must have a given set 
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of actions, reactions, and costs. Therefore reinforcement learning is suitable for decision 

making and control problems, but do require extensive assumptions about the dynamics 

of the entire system. 

 

The choice of data on which the network is trained does, naturally, influence the 

performance of the network. In any machine learning, a training set is chosen for learning 

and a test set, which should be different from the training set, is then used for testing and 

evaluation of the learning. Validation sets are can also be used in machine learning to e.g. 

select one of several trained algorithms for the test set or tuning parameters. A validation 

set is not often used for neural networks because it is impossible to know the effect of 

changing any particular parameter of the network after training. If overfitting has 

occurred during learning, the results from the testing will be poor. If, however, the 

training set has been chosen well as a versatile representation of the data, then the 

learning should not cause overfitting and any failures should be caused by other factors, 

such as unsuitable network structure, detection of traits other than desired or learning to 

perform a different function than expected. 

 

As previously mentioned, supervised learning was chosen for this work, and while there 

are several learning algorithms that perform supervised learning, the backpropagation 

with gradient descent was used. It is a very common and fairly simple learning algorithm, 

but it was chosen because the equations are more easily transferrable to qubit neurons 

than most other algorithms. In backpropagation with gradient descent the adjustable 

parameters are updated according to the gradient of the error function, with respect to 

each parameter, in an attempt to find the minimum of the error function. The term 

backpropagation reflects the fact that the gradients for the neurons in the input layer are 

calculated from the gradients in the next layer, and so forth, until the output layer is 

reached. In practice this mean that first the gradients are calculated for the neurons in the 

output layer, and the gradients in the previous hidden layer depend on those gradients, 

and these will, in turn, influence the gradients in the layer before, and so on until the input 

layer is reached. 
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In the first iteration of backpropagation, random values are assigned to all adjustable 

parameters (weights θk, thresholds λ, and reversal parameters δ for all neurons in the 

network), input data is fed to the QNN and an output signal is produced. The error 

function E is: 

 

  
 

 
                          

   (11) 

 

The squared distance between the produced output and desired output for each time step t 

is summed together over all time steps. The output is the produced predicted signal (T 

time steps long) and the desired output is the signal in the training set that should have 

been predicted. The adjustable parameters are updated according to: 

 

  
      

     
  

   
     

           
  

  
     

           
  

  
   (12) 

 

where E is the error function, the adjustable parameters are the weights θk, thresholds λ, 

and reversal parameters δ with the superscript "old" referring to the current values and 

"new" referring to the updated values (for a derivation of the gradients, see [45]). η is the 

learning rate, a value that determines the influence of the gradient, with typical values 

ranging from 0.1 to 0.8. A low learning rate will allow the parameters to steadily 

approach the nearest minimum of the error function, but it also prevents large exploration 

of the parameter space. This results in a faster convergence to the minimum, but because 

the variations are so limited, there is a risk that the minimum is only a local minimum and 

not a global one. A high learning rate will cause the network to fluctuate more before 

reaching a minimum, and there is no guarantee that it ever will, but if a minimum is found 

it is less likely to be a local one because more of the parameter space has been explored. 

After updating the parameters, a new iteration is begun, the parameters are updated, and 

this is repeated until a predetermined target error is or a maximum number of iterations is 

reached. The trained QNN can then be used for prediction 
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2.2 Data Set 

 

The data set used in this work was collected as part of a large sleep deprivation study [44] 

conducted at Työtehoseura in Vantaa, Finland. During the sleep deprivation the 

participants stayed awake for 37 hours, starting from 6:00 in the morning, and they drove 

in two moving-base high-fidelity driving simulators for 55 min every three hours, 

resulting in twelve driving bouts at different time awake (as the term describes, the time 

that a person has been awake). Thirty-four driver students in the age range 18-55 years 

old participated in the study (N=34), and only four participants did not complete the entire 

37 h sleep deprivation, with the shortest time awake being 21 h. While sleepiness research 

is an entire field of study, the most relevant knowledge about sleepiness for the purpose 

of this thesis is the following: The sleepiness of a person is governed by the homeostatic 

and circadian sleep regulating processes [46]. The homeostatic process attempts to 

maintain the performance level in the long run, so when a person wakes up in the 

morning, the sleep pressure (desire to sleep) increases exponentially throughout the day 

with increasing time awake. This pressure is relieved when the person sleeps. The 

circadian process, however, is a function of time of day and likely stems from an 

evolutionary desire to be awake and active during light hours of the day and to sleep 

during the dark night. The circadian rhythm is the reason for starting to feel more alert in 

the morning even if one has stayed up all night. The relevance of this, for the work in this 

thesis, is that during the 37 h of sustained wakefulness the participants grew increasingly 

tired, peaking at approximately 25 h time awake (at 7:00 the next morning), after which 

they felt more alert and also drove somewhat better than during the night. Due to research 

aims other than predicting lane departures using QNNs being included in the study, the 

first sixteen drivers (IDs 1-16) drove in day-time light conditions while the other 18 drove 

in night-time light conditions, causing the night-condition drivers to be much less alert 

during the entire study (as measured by the Psychomotor Vigilance Task [47]). 

 

The two moving-based driving simulators at Työtehoseura were highly realistic; one of 

the simulators was the driver's compartment of a truck and the other was a half of a bus. 

Even though the chasses were different, the driving scenario and the programmed truck 

was the same in both simulators. The driving scenario was projected on the windscreens 
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really emerging the driver into the scenario. The 110 km long driving track was designed 

to resemble normal, uneventful,  Finnish rural roads with some slight turns and hills and 

no oncoming traffic. A map of the track along with the height differences are shown in 

Fig. 3. Along the track were 21 straight road segments longer than 400 m, which were 

defined as straights. Twelve different starting positions were selected along the track and 

every driving scenario started at a different randomly selected starting position, with a 

randomly selected direction around the track, to ensure that the drivers did not learn the 

road by heart. The drivers were instructed to keep both hands on the wheel, stay within 

their own lane, and maintain a speed of 80 km/h during their entire drive. Staying within 

the lane was obviously important to not cause additional lane departures and maintaining 

the hand position was an attempt to eliminate unnecessary differences between the 

steering wheel signals from different individuals. Both of the instructions were given to 

increase the chance of success for the QNN to predict lane departures. 

 

 

Fig. 3. Map of the simulated 110 km driving track. The numbered circled parts were defined as 

straights. 

 

The simulators logged steering wheel angle and lateral lane position with a sampling 

frequency above 80 Hz, varying slightly depending on the required computation and 

communication time to render the scenery correctly. The steering wheel angle was a value 

ranging from [-1, 1] with -1 corresponding to 2.5 turns of the wheel to the right 

(clockwise) and 1 corresponding to 2.5 turns of the wheel to the left (counter clockwise). 
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The steering wheel angle was never converted to degrees or radians because the QNN 

requires the inputs to be between 0 and 1, so for each trained QNN, the steering wheel 

signal was scaled to a suitable level (details in sections 2.3.1 Predicting Steering and 2.3.2 

Predicting Lane Departures). The lateral lane position signal measured the truck's position 

in the lane as the distance between the centre of the lane and the centre of the front of the 

truck (Fig. 4). When the centre of the truck was situated on the right half of the lane 

(towards the edge of the road) the lane position signal was negative. The lane width was 

3.5 m and the width of the truck was 2.5 m, leaving 0.5 m of space for movement to either 

side without departing the lane. 

 

Fig 4. Definition of lane position as the distance between the centre of the lane and the centre of 

the front of the truck. When the centre of the truck moves to the right of the dashed line the lane 

position becomes increasingly negative and vice versa. The lane width was 3.5 m and the width 

of the truck was 2.5 m. 

 

The entire data encompasses a total of 374 h of driving, resulting in 31 200 km of driving 

data. The data from the straights (Fig. 3) contained 8432 km of the data. Only data from 

the straights were used in this thesis to avoid additional steering traits and possible 

deviations from the lane caused by driving through curves. 

 

2.3 Prediction and Analyses 

 

Initially, the aim was to be able to predict the lane position signal directly from the 

steering wheel signal, using a QNN, and consequently allowing prediction of lane 

departures. Before delving into the details of the prediction methods, some terminology 
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should be defined. First of all, what is a lane departure? A lane departure is an instance in 

which some part of the vehicle is outside the lane. As such, a lane departure does not 

necessarily mean that the vehicle has left the lane entirely, but it is sufficient for one 

wheel to cross the lane markings on either side. To be more precise, in this thesis a lane 

departure was defined as an event in which two criteria were met: 1. The lane position 

signal was ≤ -0.5 m or ≥ 0.5 m, corresponding to either side of the truck being on top of 

or outside either lane marking (the truck could move 0.5 m to the right (-) or to the left (+) 

from the centre position in the lane without crossing a lane marking, 2.2 Data Set, Fig. 4) 

and 2. the previous data point was not defined as a lane departure. The second criterion 

ensures that when the truck departs the lane, all movement outside the lane before 

returning back inside the lane, is counted as only one lane departure. Secondly, a few 

terms related to prediction should be defined. In the case of predicting the lane position 

signal from the steering wheel signal, the steering wheel signal is the predictor variable, 

i.e. the input that the prediction is based upon. The QNN that performs the prediction is a 

predictor. When predictions have been made, the prediction horizon determines how far 

into the future the predictions are reliable. Especially when predicted points are used to 

predict even further, it is easily understood that while the first predicted point may have a 

small uncertainty arising from the prediction method, the next predicted point will have 

an uncertainty that is the combination of both the predictor's and the previous predicted 

point's uncertainties, and so forth. So even with a very accurate and precise predictor, the 

uncertainties will increase drastically with each time step, and at some point the 

uncertainties make the predictions unreliable. If predictions are made just one time step 

forward at a time, then the prediction horizon is the length of that time step. These terms, 

lane departure, predictor, predictor variable, and prediction horizon will be used to 

describe the QNN predictions. 

 

While the initial aim was to predict the lane position signal from the steering wheel signal 

and then estimate the upcoming lane departures from that, it was soon discovered that it 

was not feasible. The variations in the steering wheel are so much smaller in amplitude, 

and of much higher frequency, than the variations in lane position so the QNN simply 

perceived the lane position signal to be some kind of constant offset (an example is shown 

in Fig. 5 a). Scaling the signals was attempted, but no successful scaling was found that 
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could produce any meaningful result for all times awake. When the drivers were most 

tired, both steering movements and subsequent drifts on the road were so large that all 

remotely useful scaling caused the signals to exceed the range [0, 1], to which the QNNs 

are restricted. One conclusion could still be drawn from all the failed attempts at lane 

position prediction, the high frequency behaviour of the steering wheel signal was always 

present in the predictions, and if the average of the predicted lane position signal was 

subtracted, the remaining predicted signal resembled the steering wheel signal to a 

surprisingly high degree (Fig. 5 b). These findings were the rationales for first attempting 

to predict only the steering wheel signal from its previous values and to then find some 

alternate way to predict lane departures.  

a) 

 

b) 

 

Fig. 5. Example of lane position predicted from steering. a) The predicted lane position signal 

(red) does not resemble the target lane position signal (blue dashed). b) The average of the 

predicted lane position signal was subtracted, leaving a predicted lane position signal that 

resembles the steering wheel signal. 

 

All computer algorithms for the QNNs were written and implemented by the author in 

Matlab 2013b. 

 

2.3.1 Predicting Steering 

 

A time-delayed feed-forward QNN (2.1 Theory of Quantum Neural Networks) was used 

to predict the future steering wheel signal from previous values of the signal. The 
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structure of the network was the following: an input layer with 15 qubit neurons, two 

hidden layers, the first with 40 qubit neurons and the second with 20, and an output layer 

with a single qubit neuron. A common notation to describe the number of neurons in each 

layer, which will henceforth be used, is 15-40-20-1, where one number is the number of 

neurons in one layer, and the layers start from the input layer on the left and end in the 

output layer on the right. The fifteen neurons in the input layer were each assigned one 

previous time step of the signal, starting from the current time t and going back to t-14, so 

fifteen previous time steps were used to predict the signal at the next time step t +1. The 

number of hidden layers, and neurons in them, determine the complexity of the network 

and therefore also the possible complexity of the predicted signal. Because steering wheel 

signals are quite erratic with both high frequency jitter and larger transients, the number 

of neurons in the first hidden layer should be at least twice the number of neurons in the 

input layer. Increased complexity also means increased computation load, especially 

during learning. To keep the learning time reasonable, the first hidden layer was chosen to 

have 40 neurons. The second hidden layer, with 20 neurons, served to detect more general 

traits before feeding the information forward to the single neuron in the output layer. 

 

The steering wheel signals were downsampled to an even 10 Hz sampling frequency, 

resulting in a time step of 0.1 s. This also meant that the prediction horizon was 0.1 s. A 

few tests were made with lower sampling frequencies to produce a longer prediction 

horizon, but too many traits were lost from the signals. The QNN trained for the 

prediction one time step ahead (i.e. 0.1 s) was also fed predicted points as inputs in an 

effort to achieve a longer prediction horizon, but unfortunately the predictions diverged 

almost immediately and the start of the divergence was heavily dependent on the signal 

shape near the starting point, so this line of research was abandoned. 

 

2.3.1.1 Training Set, Test set, and Learning 

 

Out of the 8432 km of data from the straights (2.2 Data Set), 15 % of the data was 

selected for the training set. Data from the daylight condition (IDs 1-16, 2.2 Data Set) was 

used to see if  there would be a difference in prediction performance due to both 

individual differences (since not all individuals were included in the training set) and 
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average difference in vigilance between the groups. A lack of difference in performance 

could indicate that a QNN trained on a population would be able to perform well also for 

other individuals and that moderate differences in sleepiness would not jeopardise the 

prediction performance. Driving bouts (corresponding to different times awake) and 

straights were randomly selected from each of the daylight-condition drivers to ensure 

that the training set was diverse and representative. The remaining 85 % of the data was 

used as a test set. 

 

Using only a 15 % training set for such a complex network (15-40-20-1) might seem like 

there would be a risk of overfitting, but that was not the case, because neural networks are 

generally overfitted due to three main reasons, none of which was applicable: 1. The 

training set is too monotonous, which was avoided by selecting multiple straights from 

multiple bouts from multiple drivers 2. the training set covers too much of the data (too 

much is not clearly defined, but the risk increases if more than half of the data is used for 

training), and 3. the number of adjustable parameters in the network is approximately 

equal to the number of data points in the training set. A 15-40-20-1 feed-forward structure 

has 1542 adjustable parameters and there was more than 50 000 data points in the training 

set, so the third cause for overfitting was also easily avoided. 

 

The learning was performed with the supervised learning and backpropagation with 

gradient descent that was described in (2.1 Theory of Quantum Neural Networks). A 

learning rate of η = 0.6 was used to ensure sufficient exploration of the parameter space. 

Online learning was used, i.e. the first 15 points of a signal was used to predict the next 

point, the error between the desires and predicted signal was calculated (11) and the 

adjustable parameters were updated (12), the 15-point window was then moved one time 

step forward, a new prediction was made, the parameters were updated etc. until the end 

of the signal was reached. Another alternative would be to use batch learning, where 

several predictions are made at a time and then the parameters are updated. The advantage 

is that the gradient can be averaged from many predictions reducing oscillations over the 

parameter space, but the algorithms are more complicated to implement, especially for 

QNNs, and the improved learning due to the parallelism of the QNNs (compared to 
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classical neural networks) was thought to make online learning sufficient. The QNN was 

trained twice on each signal in the training set. 

 

All steering wheel signals (in both training and test sets) had to be scaled to the interval 

[0, 1], which is the value range of the QNN, while the signal's own range was [-1, 1]. 

Most parts of the signals remained approximately in the interval [-0.01, 0.01] and all 

signals had to be comparable to one another for the QNN to learn properly. 

Straightforward normalisation was not an option because the amplitude had to be 

increased while maintaining the same relative differences between all steering wheel 

signals. In the end, the scaling was performed by first multiplying the signals by 20 (to 

increase the amplitude) and then adding 0.5 to force the zero level of the signal to the 

middle of the QNN interval, thereby enabling the largest possible dynamic range. All 

outputs of the QNN was rescaled back to the original range by performing the reverse 

operations of the scaling. 

 

The trained QNN was then used on the test set to predict the steering wheel signal one 

time step ahead (0.1 s). 

 

2.3.1.2 Performance Evaluation 

 

The predictions from the test set were evaluated using the root-mean-square error 

(RMSE), a common measure of the average discrepancy between a signal and a reference 

signal, in this case between the predicted steering wheel signal and the measured signal. It 

is the standard deviation of the prediction errors, i.e. the difference between predicted, ŷ, 

and measured, y, values: 

      
          

 
   

 
 

  (13) 

 

where the sum is taken over all data points. The RMSE has the same unit as the predicted 

and measured variables and will also have a numerical value in the same range. In this 

case, as the steering wheel signal had an arbitrary unit and was restricted to the interval [-
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1, 1], the RMSE had the same arbitrary unit and the values equated to the same value in 

the steering wheel signal. 

 

The results showed the presence of an almost constant offset in each signal and an effort 

was made to try to remove it, thereby improving the predictions. The most suitable 

method to correct the offset would probably have been to calculate the average offset in 

the entire signal and then subtract it, but such an extreme post hoc approach would not be 

a possibility in any real prediction system. Instead, because the offset was so constant, the 

difference between the first predicted and measured point was calculated and that 

difference was then subtracted from all other predictions of the signal. This approach 

requires simultaneous knowledge of the value of only one measured and predicted point 

of the signal. The RMSE was then calculated for the offset-corrected signals. 

 

2.3.2 Predicting Lane Departures 

 

Prediction of the steering wheel signal, even successfully, does not immediately translate 

into lane departure prediction, which was the goal of this project. If the transfer function 

from steering wheel angle to lane position was known, the future lane position could be 

calculated, but each car would have a different transfer function that would also be 

strongly influenced by the environment, such as road conditions, which are everything but 

constant. This was the motivation for making four attempts at lane departure prediction 

using QNNs. It was realised that the steering wheel signal as such would not be a suitable 

predictor variable, at least not for any long prediction horizon, so a new strategy was 

used: The signals were separated into 10 s bins and a steering metric from one bin was 

used to predict the number of lane departures in the next bin. This approach was still a 

prediction one time step ahead, but now the time step (and simultaneously prediction 

horizon) was 10 s instead of 0.1 s. The steering metric, scaling of the signals, and QNN 

varied with each attempt and the details of all four attempts are presented below in the 

sections 2.3.2.1 Steering metrics, 2.3.2.2 QNN, 2.3.2.3 Training set, Test set, and 

Learning, and 2.3.2.4 Performance Evaluation. 
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2.3.2.1 Steering metrics 

 

In the failed attempts to predict lane position from the steering wheel signal (2.3 

Prediction and Analyses) it was noticed that the high frequency traits from the input 

signal was transferred to the output even though the desired output signal used for 

learning had no such traits. Calculating some steering metric describing the variations in 

the 10 s bin was thought to produce an input without high frequency jitter but that would 

still include the necessary amount of information about the steering wheel signal required 

for lane departure prediction. Finding a suitable steering metric is crucial for the success 

of this approach, because it would need to encompass the necessary features of the 

steering while still being represented with only a few points that could be fed to the QNN 

as inputs. The standard deviation, for instance, is not a suitable steering metric because as 

it is calculated for e.g. a 10 s bin it is almost constant from one bin to the next. Any 

transients, if short enough, would not influence it significantly. 

 

For Attempt 1, the maximum peak-to-peak amplitude of the steering in a 10 s bin was 

used as the steering metric. The maximum peak-to-peak amplitude was defined simply as 

the difference between the maximum and minimum value of the steering signal in that 10 

s bin, producing one value to describe the steering in that bin. This steering metric does 

represent the range of the steering movements, but it does not include the variations 

between the extremes. 

 

Attempt 1 barely produced any lane departure predictions, but the explanation was 

thought to lie in the temporal scarceness of data points. Therefore the maximum peak-to-

peak amplitude was also used as the steering metric in Attempt 2, but this time the 10 s 

bins were divided into ten 1 s segments and the steering metric was calculated for each 

segment. This produced ten steering metric values that were fed to the QNN to predict the 

number of lane departures in the next 10 s bin. This produced a better result, but reliable 

lane departure prediction was still not achieved. 

 

A new steering metric was tested in Attempt 3: the integral of the steering wheel signal 

for each 1 s segment in the 10 s bin. The integral is clearly not a good measure of 
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volatility or transients in a signal, but the rationale was that as the truck acts as a very 

powerful low-pass filter between the steering and the lane position, there should be some 

correlation between the integral of the steering and where in the lane most time is spent. It 

seems intuitive that if you spend a long time moving towards either edge, then the chance 

of crossing the lane marker would increase, and that if you drift back and forth evenly 

around the centre of the lane, then the integral would be close to zero and you would not 

be as likely to cross the lane markings. It was assumed that the QNN could learn some 

traits or correlations between these hypothetical probabilities of lane departures and the 

actual number of measured lane departures. Unfortunately, this did not improve the 

results, only change them by increasing the number of predicted lane departures but doing 

so incorrectly, and there still seemed to be a problem caused by having too many bins 

with no lane departures in the training set. Because this steering metric still had produced 

the most predicted lane departures it was kept the same for Attempt 4 but the training set 

was chosen more selectively to have more lane departures. 

 

2.3.2.2 QNN 

 

A feed-forward QNN was used for all four attempts to predict the number of lane 

departures in the next 10 s bin, but the network structure was changed slightly based on 

changes in input, i.e. change of steering metric. 

 

The steering metric in Attempt 1 was the maximum peak-to-peak amplitude of the 

steering calculated for the entire 10 s bin producing only one input value from the bin. A 

1-10-5-1 structure was used with only one neuron in the input layer for the one input 

value, ten neurons in the first hidden layer to allow complexity of the network, five 

neurons in the second hidden layer to reduce the complexity of the first layer and detect 

general features, and one output neuron in the output layer. The steering metric was 

scaled for the QNN by multiplying it by 30, which was small enough to keep the scaled 

steering metric within the [0, 1] interval, but the values of normal uneventful driving were 

very low, in the order of 0.05. The number of lane departures in the 10 s bins were 

divided by ten to ensure all but the most extreme cases would stay within the interval [0, 

1]. The assumption was made that a lane departure would last approximately 1 s, allowing 
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time for ten lane departures in one 10 s bin. The scaling of the lane departures was kept 

the same in all attempts. 

 

Attempt 2 used the same steering metric as in Attempt 1 (maximum peak-to-peak 

amplitude of the steering), but it was calculated separately for each 1 s segment of the 10 

s bin, producing an input with ten values. A QNN with a 10-15-5-1 structure was chosen. 

The steering metric was scaled to a slightly higher dynamic range by multiplying it by 60 

(instead of 30 as in Attempt 1) causing the largest peak-to-peak amplitude to exceed the 

range [0, 1]. 

 

The steering metric was changed for Attempt 3 to the integral of the steering of each 1 s 

segment of the 10 s bin, which kept the number of input neurons at ten, but due to 

unsatisfactory prediction performance of Attempt 2, the number of neurons in each 

hidden layer was increased by five to allow more complexity leading, to a 10-20-10-1 

QNN. Because the new integral of the steering could have negative values, the steering 

metric was scaled by multiplying it by 60 and by adding and offset which pushed the 

lowest value to zero. 

 

The steering metric and QNN structure was kept the same in Attempt 4 as they were in 

Attempt 3, only a more selective training set was used that contained more lane 

departures. The scaling was performed in the same way as in Attempt 3.  

 

2.3.2.3 Training set, Test set, and Learning 

 

Each QNN, for all four attempts, was trained on different training sets, those for Attempts 

1-3 constituting 42 % of the data from the straights, 3538 km of driving, and the training 

set for Attempt 4 constituting 51 % of the data. The test sets were always all remaining 

data not included in the training set. The training data was selected from all drivers, not 

just the ones from the daylight condition as in the steering signal prediction. In Attempts 

1-3, 6.3 % (=√40%) of the bouts were randomly selected for each driver, and out of those 

6.3 % of the straights from each bout, which should provide 40 % of the data, but due to 
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the differences in lengths of the straights, the actual percentage of training data was 

calculated, and in each case the real percentage was approximately 42 %. 

 

It seemed, from the experiences from Attempts 1-3, like the training set contained too 

many 10 s bins with no lane departures, causing the network to predict little else. To get a 

feeling for how the training set should be chosen to contain more lane departures, the 

number of lane departures for each driver and time awake was plotted (Fig. 6). The 

largest numbers of lane departures occur around 25 h time awake, so the training set for 

Attempt 4 was chosen as all data from bouts 4-9, corresponding to 12-27 h time awake. 

This choice of training set was 51 % of the data, which is quite a large percentage, but 

bouts 4 and 5 were included to ensure that there would be straights with no lane 

departures. 

 

Fig. 6. The number of lane departures (colour bar) as a function of both driver ID (x-axis) and 

time awake (y-axis) from the straights. 

 

The learning of the QNNs was performed using the supervised learning and 

backpropagation with gradient descent that was described in (2.1 Theory of Quantum 

Neural Networks) eqs. (11) and (12). The learning rate was 0.6 in all cases. As in (2.3.1.1 

Training Set, Test set, and Learning), online learning was used, i.e. the steering metric 

from one 10 s bin was used to predict the number of lane departures in the next 10 s bin, 

parameters were updated, then the next bin was used as input, prediction was performed, 

parameters were updated etc. The learning was repeated for four iterations in Attempt 1 

and for three iterations in Attempts 2-4. 
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2.3.2.4 Performance Evaluation 

 

The root-mean-square error (13) was used to determine the average discrepancy between 

the predicted and measured number of lane departures for all four attempts. In this case, 

the RMSE had no unit (the number of lane departures is a unitless quantity) and the value 

equated the number of lane departures. The percentage of bins with correctly predicted 

lane departures was also calculated. A prediction of no lane departures, if there were 

none, was also a correct prediction. 

 

The predicted number of lane departures during one 10 s bin is a discrete event and the 

correct (i.e. measured) number is known, so the sensitivities and specificities of the QNN 

predictions could be calculated when the QNN was thought of as a binary classifier, i.e. it 

predicted either at least on lane departure in a bin or none. Sensitivity and specificity are 

commonly used to evaluate the performance of classifiers, e.g. medical tests. Let us call 

one outcome positive and the other negative, in this case "at least one lane departure" is a 

positive and "no lane departures" a negative. The sensitivity is the proportion of positives 

that are correctly identified as such while the specificity is the proportion of negatives that 

are correctly identified as such [48]. In the case of lane departure prediction, the 

sensitivity is the proportion of bins with at least one lane departure that are correctly 

predicted as such and the specificity is the proportion of bins with no lane departures that 

are correctly predicted as such. The equations for sensitivity and specificity are: 

 

            
   

       
  (14) 

            
   

       
  (15) 

 

where the capital sigmas are the sums over all of the letter combinations. The letter 

combinations mean the following: TP, True Positive, is a bin with at least one lane 

departure and for which the QNN has predicted at least one lane departure. FP, False 

Positive, is a bin with no lane departures but for which the QNN has predicted at least one 

lane departure. TN, true negative, is a bin with no lane departures and for which the QNN 
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has predicted no lane departures. FN, False Negative, is a bin with at least one lane 

departure but for which the QNN predicted no lane departures. With these definitions the 

sensitivity and specificity can perhaps be better understood. Looking at (14) one can 

understand that the sum of true positives and false negatives is the total amount of bins 

with at least one lane departure in them, but the false negatives are not predicted to have 

that. Therefore, sensitivity is the proportion of bins with at least one lane departure that 

are correctly predicted as such. Then again, looking at (15) one can understand that the 

sum of true negatives and false positives is the total amount of bins that have no lane 

departures in them, but the false positives are still predicted to have lane departures. 

Therefore, specificity is the proportion of bins with no lane departures that are correctly 

predicted as such. 

 

If both sensitivity and specificity are high, then it is indicative of a good classifier, or in 

this case, predictor, because then most upcoming lane departures will be predicted 

(sensitivity) and the predictor will not predict any lane departures when there are none 

(specificity). However, one must be a bit careful with these quantities, because either the 

sensitivity or the specificity can always be forced to 100 %. If a predictor is made, which 

predicts lane departures all the time, then the sensitivity will be close to 100 % because no 

actual lane departure will be missed. In this case the specificity drops drastically, of 

course, because there will be a big number of false positives. On the other hand, if a 

predictor is made, which never predicts any lane departures, then the specificity will be 

100 % but the sensitivity will be minute, because  no lane departures will be predicted. If 

a predictor is good, then both sensitivity and specificity can be high, but there is usually a 

trade-off between the two. 

 

The results from Attempt 3 also showed an offset in the predictions which was also 

translated to the RMSE as a function of driver, very much like the offsets that were 

present in the prediction of steering (2.3.1.2 Performance Evaluation). A post hoc offset 

correction was performed for both Attempts 3 and 4 to explore whether or not the offset 

correction could be beneficial. The correction was made by subtracting the mean of the 

driver-specific RMSEs from the predicted number of lane departures. 

  



3 Results    33 

 

 

 

 

 

 

 

3 Results 

 

 

 

The results are divided into two sections, 3.1 Predicting Steering and 3.2 Predicting Lane 

Departures, as in Methods, because predicting a semi-continuous signal from a similar 

signal (in this case the previous parts of the same signal), as is the case for the steering, 

and predicting a more discrete signal from summary statistics of another signal are two 

surprisingly different tasks. 

 

3.1 Predicting Steering  

 

The steering wheel signal was predicted one time step ahead (0.1 s due to the 10 Hz 

sampling frequency) with the time-delayed feed-forward QNN with a 15-40-20-1 

structure (2.3.1 Predicting Steering). The test set covered the remaining 85 % of the data 

from the straights, excluding the training set. Even though the training set only contained 

data from driver IDs 1-16, the root-mean-square error (RMSE) was quite stable across the 

different drivers (Fig. 7). Interestingly enough, the largest RMSE for any single driver 

occurred for a driver that was part of the training set. This shows that the QNN also 

worked for the night-time driving scenario even though it was trained only on the daylight 

scenario. This result shows promise that a QNN-based prediction system implemented in 

a car might not need to be trained separately for driving in dark conditions.  
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Fig. 7. Root-mean-square error (RMSE) of the predictions from the test set calculated separately 

for each driver. The unit of the RMSE is the same arbitrary unit as that of the steering wheel 

signal, constrained to [-1, 1]. The training set contained signals from driver IDs 1-16, who drove 

the daylight scenario. 

 

The RMSE was also examined as a function of time awake to determine the QNN's 

prediction ability as the drivers' drowsiness increased. The results are presented in Fig. 8. 

Aside from a few outliers at 33 h time awake, the RMSE is remarkably stable even across 

time awake. Again there is no difference between the groups driving the day- and night-

time scenarios. It is worth mentioning that while it might look unintuitive that the RMSEs 

as a function of time awake reach higher values than the RMSEs for one driver, the 

explanation is simple: The RMSE is the average of the squared deviation from the 

measured signal, which means that the length of the signal matters. If one driver has a few 

poorly predicted signals during one bout (i.e. one time awake) it will substantially 

influence the RMSE for that one time awake, but as the RMSE is calculated in its entirety 

for all of the drivers' signals, the effect will be much smaller. 
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Fig. 8. Root-mean-square error (RMSE) of the predictions from the test set calculated separately 

for each driver and time awake. One circle is the RMSE for one driver at one particular time 

awake. The unit of the RMSE is the same arbitrary unit as that of the steering wheel signal, 

constrained to [-1, 1]. The training set contained randomly selected signals from each time 

awake. 

 

The RMSE for the entire test set was RMSEtot = 0.007 a.u. (same arbitrary units as in the 

steering wheel signal). Calculated as an average for the different drivers, the error was 

RMSE = 0.007 ± 0.004 a.u. (μ ± σ). As the RMSE is only a measure of the average 

deviation of the prediction from the measured signal, the numerical value is, naturally, 

linked to the numerical value of the signal. Furthermore, the RMSE does not in itself say 

much about how the predicted signal deviates from the measured one. Because the 

steering wheel signal could vary between [-1, 1], the RMSE corresponds to a 0.4 % 

relative error. The desirable error level during learning of QNNs is usually at most 1 %, 

so this network performs within desired parameters. On the other hand, while driving on 

straights the steering wheel signal usually only varied between [-0.01, 0.01], meaning that 

the RMSE could cause even a 36 % relative error. To also gain an understanding of how 

the QNN predicted the signals, and subsequently when it failed to predict the signals, 

examples of the predicted signal with a small RMSE and a large RMSE are presented in 

Fig. 9. From Fig. 9 a) an offset between the predicted and the measured signal is 

discernible. A similar offset is visible in Fig. 9 b). The predicted signals follow the shape 

of the measured signals very well, but in Fig. 9 b) something unusual has clearly occurred 
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in the measured signal that the QNN could not handle. However, as the measured signal 

returns to normal, the QNN quickly recovers and resumes prediction with the same 

performance as before the disruption. 

 

a) 

 

b) 

 

Fig. 9. Examples of predicted steering wheel signals. The steering is in arbitrary units between [-

1, 1] with -1 being 2.5 turns of the wheel to the right and vice versa. a) Predicted signal with a 

small RMSE. b) Predicted signal with a large RMSE with a clear atypical event after t=20 s. When 

the measured signal returns to normal the QNN recovers its prediction ability. An offset is visible 

in both predicted signals. 

 

Due to the almost constant offset present in the signals, an attempt was made to remove it 

by subtracting the difference between the first predicted and measured point from all 

predicted points in the signal. The RMSE for the entire test set and as a function of driver 

and time awake were calculated (Fig. 10 a and b, respectively). Surprisingly, removing 

the offset in this manner caused a slight increase in RMSE, RMSEtot = 0.011, and 

calculated as an average between different drivers the error was RMSE = 0.007 ± 0.009 

a.u. (μ±σ). Compared to the non-corrected approach, the average RMSE for the drivers 

remained the same but the variation had increased.  
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a) 

 

b) 

 

Fig. 10. Root-mean-square error (RMSE) of the offset-corrected predictions from the test set 

calculated separately for a) each driver and b) time awake. One circle is the RMSE for one driver 

at one particular time awake. The unit of the RMSE is the same arbitrary unit as that of the 

steering wheel signal, constrained to [-1, 1]. The training set contained randomly selected signals 

from each time awake from driver IDs 1-16, who drove the day-time scenario. 

 

To understand why the RMSE increased, two example signals are shown in Fig. 11. The 

signal in Fig. 11 a) is the same signal as in Fig. 9 a), now with the offset removed. In this 

case removing the offset, only using the difference between the first predicted and 

measured point, has brought the prediction closer to the measured signal. However, Fig. 

11 b) shows that the overall RMSE has increased compared to the original prediction with 

the offset. The explanation is found looking at Fig. 11 c), which is the beginning of the 

signal in b): The very first predicted data point has a smaller value than the predicted 

signal, which means that subtracting that negative offset from the predicted signal yields 

an offset-corrected signal that has larger values than the original predicted signal. When 

the measured signal begins to rise, the predictions overshoot, and with the offset-

corrected signal containing even larger values than the original prediction, the offset-

corrected signal is actually farther away from the measured signal causing a higher 

RMSE. 
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a) 

 

b) 

 

c)     

 

Fig. 11. Examples of offset-corrected predicted steering wheel signals. The steering is in arbitrary 

units between [-1, 1] with -1 being 2.5 turns of the wheel to the right and vice versa. a) Predicted 

signal with a small RMSE (Fig. 9 a) that was improved by the correction. Now the signals are 

clearly closer together. b) Predicted offset-corrected signal with a larger RMSE than the original 

prediction. The original prediction (black) is closer to the measured signal (blue) than the offset-

corrected signal (red). c) Beginning of the signal in b). At first the predicted signal is smaller 

than the measured, causing the offset-corrected signal to be larger than the original prediction, 

which, after the overshoot at 7 s, leads to an even larger RMSE than in the original prediction. 

 

A 0.1 s prediction horizon is rather short, so an attempt was made to use the QNN trained 

for predicting one time step ahead to predict several time steps ahead. Unfortunately, 

using predicted points to feed back to the QNN ended in failure. An example is shown in 

Fig. 12. As is seen from Fig. 12 a), the prediction diverges very fast. Fig. 12 b) shows the 

first part of the signal, and the predictions start oscillating almost immediately. Exactly 
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where the divergence occurs is also not a constant, but a function of the shape of the 

signal at the first 15 measured points used for the first predicted point; a flatter measured 

signal generally prolongs the prediction horizon because then the QNN does not assume 

any large transients. This causes the starting point of the prediction to have too much of 

an impact for this type of further prediction to succeed. 

a) 

 

b) 

 

Fig. 12. a) Example of divergence when predicted points are used as predictor variables. b) 

Beginning of signal in a). 

 

3.2 Predicting Lane Departures 

 

Four attempts were made to predict lane departures from steering. As each attempt led to 

modifications to improve the next attempt, the main conclusions were already mentioned 

briefly in Methods, but here the results are presented in the same chronological order as in 

which they were conducted. 

 

In the first attempt to predict lane departures from the steering wheel signal the data was 

separated into 10 s bins. The maximum peak-to-peak amplitude in the steering wheel 

signal from one bin was used to predict the number of lane departures in the next 10 s bin. 

A 1-10-5-1 structure was used for the QNN and the test set consisted of the remaining 58 

% of the data not used in the training set. The root-mean-square error (RMSE) as a 

function of driver ID and of time awake are presented in Fig. 13 a) and b), respectively. 

This simple attempt at lane departure prediction was clearly not adequate to produce any 
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useful prediction. Upon closer inspection it was discovered that the QNN only predicted 

four lane departures in the entire test set, suggesting that it only learned to predict no lane 

departures almost regardless of the steering wheel signal. 

 

a) 

 

b) 

 

Fig. 13. Root-mean-square error (RMSE) of the predicted number of lane departures for  a) each 

driver and b) each driver at each time awake, when the maximum peak-to-peak amplitude of the 

steering from one 10 s bin was used to predict the number of lane departures in the next 10 s 

bin. One circle represents the RMSE for one driver, and in b) also for one time awake. The RMSEs 

have no units as the predicted quantity is the number of lane departures during the next 10 s. 

 

In the next attempt to predict lane departures from the steering wheel signal, the 10 s bin 

of the steering wheel signal was further split into ten 1 s segments. The maximum peak-

to-peak amplitudes in the steering wheel signal for each 1 s segment was used to predict 

the number of lane departures in the next 10 s bin. The QNN had a 10-15-5-1 structure 

(one input neuron for each 1 s segment) and the QNN was tested on a new test set also 

comprising 58 % of the data from all straights. The RMSE as a function of driver ID and 

of time awake are presented in Fig. 14 a) and b), respectively. 
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a) 

 

b) 

 

Fig. 14. Root-mean-square error (RMSE) of the predicted number of lane departures for  a) each 

driver and b) each driver at each time awake, when the maximum peak-to-peak amplitude of the 

steering from ten 1 s segments was used to predict the number of lane departures in the next 10 

s bin. One circle represents the RMSE for one driver, and in b) also for one time awake. The 

RMSEs have no units as the predicted quantity is the number of lane departures during the next 

10 s. 

 

This method of prediction yielded a correct prediction in 55 % of the cases (including 

predicting no lane departures when there were none) and it predicted an amount of lane 

departures that reached 71 % of the total number of lane departures in the test set, 

meaning that the problem with predicting only no lane departures was, at least partially, 

amended. The sensitivity and specificity (2.3.2.4 Performance Evaluation) calculated as a 

binary classifier, i.e. either predicting at least one (or more) lane departure or predicting 

no lane departures, are presented in Table 1. The high specificity compared to the low 

sensitivity does, however, suggest that there are many predictions of no lane departures, 

but also that there are quite a few 10 s bins in the test set that contain no lane departures. 
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Predictor variable 

(steering) 

Maximum peak-to-peak amplitude 

during ten previous 1 s segments. 

% correct predictions 55 % 

Sensitivity 31 % 

Specificity 80 % 

 

Table 1. Performance of 10-15-5-1 QNN to predict number of lane departures during the next 10 

s from the predictor variable. % correct predictions includes predicting no lane departure 

correctly. Sensitivity and specificity are calculated for a binary classifier, i.e. either at least one or 

no lane departures. 

 

As apparently splitting the 10 s bins into 1 s segments of the steering wheel signal 

produced better predictions, this segmentation was kept the same for the next iteration 

and attempts were made to improve other features. The integrals of the 1 s steering 

segments were used as new predictor variables and the complexity of the QNN was 

increased in the new 10-20-10-1 structure (adding five neurons to both hidden layers). 

The QNN was tested on a yet another test set comprising 58 % of the data from all 

straights. The RMSE as a function of driver ID and of time awake are presented in Fig. 15 

a) and b), respectively. 

a) 

 

b) 

 

Fig. 15. Root-mean-square error of the predicted number of lane departures for  a) each driver 

and b) each driver at each time awake, when the integral of the steering from ten 1 s segments 

was used to predict the number of lane departures in the next 10 s bin. One circle represents the 

RMSE for one driver, and in b) also for one time awake. The RMSEs have no units as the 

predicted quantity is the number of lane departures during the next 10 s. 
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The percentage of correct lane departure predictions, as well as the sensitivity and 

specificity (2.3.2.4 Performance Evaluation) (calculated as a binary classifier, i.e. either 

predicting at least one lane departure or predicting no lane departures), are presented in 

Table 2. The higher sensitivity and lower specificity compared to the previous attempt 

indicate an increase in predicted lane departures, but incorrectly, causing the specificity to 

decrease while the sensitivity increased. 

 

 

Predictor variable 

(steering) 

Integral of steering during ten previous 

1 s segments. 

% correct predictions 39 % 

Sensitivity 55 % 

Specificity 44 % 

 

Table 2. Performance of 10-20-10-1 QNN to predict number of lane departures during the next 

10 s from the predictor variable (i.e. steering metric). % correct predictions includes predicting 

no lane departure correctly. Sensitivity and specificity are calculated for a binary classifier, i.e. 

either at least one or no lane departures. 

 

 

An offset in the predictions seemed to be present, especially looking at Fig. 15 b, as was 

also the case in the prediction of steering. To explore whether or not removal of such an 

offset could be beneficial, a post hoc offset removal was performed by subtracting the 

mean of the driver-specific RMSEs from the predicted number of lane departures. The 

offset-corrected RMSEs are shown in Fig. 16. 
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a) 

 

b) 

 

Fig. 16. Root-mean-square error of the offset-corrected predicted number of lane departures for  

a) each driver and b) each driver at each time awake, when the integral of the steering from ten 

1 s segments was used to predict the number of lane departures in the next 10 s bin. One circle 

represents the RMSE for one driver, and in b) also for one time awake. The RMSEs have no units 

as the predicted quantity is the number of lane departures during the next 10 s. 

 

The percentage of correct lane departure predictions, as well as the sensitivity and 

specificity (2.3.2.4 Performance Evaluation) (calculated as a binary classifier, i.e. either 

predicting at least one lane departure or predicting no lane departures), of the offset-

corrected predictions are presented in Table 3. 

 

Predictor variable 

(steering) 

Offset-corrected integral of steering 

during ten previous 1 s segments. 

% correct predictions 59 % 

Sensitivity 12 % 

Specificity 96 % 

 

Table 3. Performance of 10-20-10-1 QNN to predict offset-corrected number of lane departures 

during the next 10 s from the predictor variable (i.e. steering metric). % correct predictions 

includes predicting no lane departure correctly. Sensitivity and specificity are calculated for a 

binary classifier, i.e. either at least one or no lane departures. 

 

The increase in correct predictions after the offset correction combined with the decrease 

in sensitivity and increase in specificity speak of a clear preference to predict no lane 
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departures. To gain insight into this, the histogram of correct and incorrect predictions, 

both with and without offset correction, is presented in Fig. 17. The most numerous 

correct prediction is quite clearly the prediction of no lane departures, which also explains 

why removing the offset, which pulls the predictions closer to zero, gives a higher 

percentage of correct predictions. 

 

 

Fig. 17. Histogram of lane departure predictions from the integral of the steering during ten 

previous 1 s segments. Blue markers show predictions given by the QNN, red markers show 

offset-corrected predictions. Asterisks show the number of times the prediction was correct 

while circles show the number of times the prediction was incorrect. 

 

A final attempt was made to improve the lane departure predictions by making sure that 

there were enough lane departures in the training set. The same prediction was performed 

as in the previous attempt (predicting number of lane departures during in the next 10 s 

bin from the integral of the steering in the ten previous 1 s segments using a 10-20-10-1 

QNN, both with and without offset correction), but with the 51 % training set chosen to 

include only straights from bouts 4-9 corresponding to 12-27 h time awake (2.3.2.3 

Training set, Test set, and Learning, Fig. 6). This produced a slight improvement in the 

original predictions, but not with the offset correction. The percentage of correct lane 

departure predictions, sensitivity, and specificity (2.3.2.4 Performance Evaluation) are 

presented in Table 4. The histogram of correct and incorrect predictions, both with and 

without offset correction, is presented in Fig. 18. 
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 Original prediction 
Offset-corrected 

prediction 

Predictor variable 

(steering) 

Integral of steering during 

ten previous 1 s segments. 

Integral of steering during 

ten previous 1 s segments. 

% correct predictions 54 % 59 % 

Sensitivity 28 % 7 % 

Specificity 80 % 95 % 

 

Table 4. Performance of 10-20-10-1 QNN to predict number of lane departures during the next 

10 s from the predictor variable (i.e. steering metric). % correct predictions includes predicting 

no lane departure correctly. Sensitivity and specificity are calculated for a binary classifier, i.e. 

either at least one or no lane departures. Training set was limited to 12-27 h time awake. 

 

 

Fig. 18. Histogram of lane departure predictions from the integral of the steering during ten 

previous 1 s segments. Blue markers show predictions given by the QNN, red markers show 

offset-corrected predictions. Asterisks show the number of times the prediction was correct 

while circles show the number of times the prediction was incorrect. Training set was limited to 

12-27 h time awake. 
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4 Discussion 

 

 

 

One of the most attractive features of Quantum Neural Networks (QNNs), or of any 

neural network, is their ability to learn to perform several different and complex tasks on 

their own. This learning enables them to find traits and features in data that a person 

might easily miss, and this, in turn, eases the burden of the user to be able to construct 

complicated models for complex systems, a task which is cumbersome, if not impossible 

in some cases. But all this independence of the network does have significant drawbacks. 

Learning on its own also means that the user cannot know exactly how the network 

functions. The parameters of the neurons can, of course, be checked from the trained 

network, but the reasons for them being exactly what they are can never be determined. 

As an example, the QNN that predicted the future steering wheel signal one time step 

ahead (2.3.1 Predicting Steering), and did so rather successfully, had 1542 adjustable 

parameters. The equations for each qubit neuron are known, so the network's operation 

could be written as a function with 1542 parameters and with the steering wheel signal as 

an independent variable. A function with 1542 parameters is in itself something of  a 

monstrosity to deal with, but more importantly, there are latent dependences between 

many of the parameters and therefore it cannot be determined exactly how one parameter 

influences the performance of the network. All is well as long as the network performs its 

assigned function at a sufficient performance level and the user does not need to consider 

any details; the real difficulty arises when the network does not perform the desired 

function, as was the case for the lane position and lane departure predictions. Because it is 
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impossible to determine exactly how each parameter influences the entire network, it is 

also impossible to know which parameters cause the network to do something other than 

desired. In essence, this inability to understand the inner workings of neural networks 

makes them "black boxes", i.e. when they do work properly there is no way to know why 

and when they do not work properly it is equally difficult to know why. Not knowing why 

a network fails makes it very difficult to improve it, but there are some general causes of 

failures, e.g. unsuitable training sets, convergence to a local minimum during learning, 

unsuitable structures etc., which are discussed below in the more detailed discussion on 

each of the predictions presented in this thesis. 

 

The failure to predict the lane position signal directly from the steering wheel signal 

provided some interesting insight into the behaviour of the time-delayed feed-forward 

QNN. An obvious factor in determining the learned function of the QNN was the scaling 

(2.3, Fig. 5 a). If there is a big difference in scale between the input and output signals, 

the QNN will have trouble connecting features from the two. With very different input 

and output signals, care should always be taken with the scaling to increase the chances of 

successful learning. The enormous difference in frequency content between the steering 

wheel signal and the lane position signal was another distinct problem — the high-

frequency steering movements were not correctly translated to low-frequency lane 

drifting, instead the QNN perceived the lane position signal as a constant offset (2.3, Fig. 

5 a). In hindsight this is understandable, the input took the 15 previous time points to 

predict the next and then moved the time window by one time step, which in seconds 

translates to using 1.5 s of steering wheel signal to predict the next 0.1 s lane position 

signal and then moving the entire window by 0.1 s. The fluctuations in the steering wheel 

signal are visible in this time scale while the lane position signal remains constant over 

several 0.1 s time steps. The surprise is that removing the offset from the predicted lane 

position signal produced a signal that resembled the input, the steering wheel signal, 

instead of being completely constant  (2.3, Fig. 5 b). Apparently, traits of the input signal 

are easily transferred through the network to the output, which does explain why much 

neural network-based time series prediction is done using previous parts of the same 

signal. This last attribute was the inspiration for predicting future steering from previous 

steering. 
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The QNN succeeded rather well in predicting the steering wheel signal one time step 

ahead, i.e. 0.1 s, from previous parts of the signal (3.1). Apparently the 15 % training set 

was both large, diverse, and representative enough as such a good result was achieved. It 

was encouraging to see that the QNN performed well also for drivers that weren't part of 

the training set (3.1, Fig. 7) and for moderate differences in alertness (3.1, Fig. 8) (the 

daylight group used for training was, on average, more alert at all times [44]). This result 

showed that if QNNs are developed to be part of some sleepiness prediction system based 

on steering wheel signals, then it could be possible to use a selected population 

undergoing sleep deprivation for learning instead of forcing each customer to undergo 

sleep deprivation in order to train the QNN specifically for them. There was, however, a 

clear constant offset between the predicted and measured signal which would need to be 

addressed (3.1, Fig. 9). It most probably arises as an average effect from the entire 

training set, and considering the training set contained a combination of 16 drivers, each 

with their own driving style, twelve times awake, each driver having a different 

susceptibility to drops in vigilance, and 21 different straights driven in both directions, it 

is perhaps not surprising that there will be differences between signals, which on average 

could cause this type of offset. Using online learning instead of batch learning could also 

be a contributing factor, because all parameters were updated based on each prediction 

(online) instead of as an average from several predictions (batch). The attempt to remove 

the offset using the difference between the first predicted and measured point was not 

successful, i.e. it did not lead to an improvement from the original predictions. Using only 

one predicted point was not enough, but using a few short (e.g. 5 s) signals to calculate 

the average offset for one driver could perhaps lead to improvements (3.1, Fig. 11 c). 

Despite the ability of the QNN to predict the shape of the signal, the error was too large to 

produce any useful predictions further ahead using predicted points as inputs, even when 

the offset was corrected (as in the example in Results, Fig. 12). Fifteen previous time 

steps, i.e. 1.5 s, is, after all, quite a short part of the signal, which makes the QNN very 

sensitive to the starting point. If the starting point is very flat, then the QNN makes 

predictions that are close to the previous points, but if the starting point happens to have a 

steep slope, then the predictions will diverge almost immediately as the QNN will assume 

that this trend will continue and no measured point is used to show that the transient will 
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change direction and even out (2.3.1 and 3.1, Fig. 12). How to increase the prediction 

horizon to e.g. a few seconds is not self-evident. Using several output neurons, each one 

assigned to a different future time step, could perhaps be a solution. Then again, adding 

neurons to the output layer might require an increase in neurons in the hidden layers, or 

more hidden layers, which will make learning very computationally heavy. Using a 

similar QNN structure but with the output neuron assigned to a different time step, e.g. t 

+10, could also be a solution, but determining which time step it should be is not trivial 

and simply training several alternative QNNs is possible but takes time, especially using 

online learning which can't be parallelised (because the parameters are updated after each 

time step). 

 

Even though predicting lane departures was the primary goal of this research, it proved to 

be an elusive task. None of the four attempts (2.3.2 Predicting Lane Departures) were 

successful enough to show promise. The first attempt (Attempt 1) was clearly suffering 

from lacking information, which is to say that a single value describing 10 s of steering 

was simply not sensitive or descriptive enough to portray the steering wheel movements. 

Predicting only four lane departures in the entire test set also showed that the QNN had 

detected the most common event, staying inside the lane. But for the rest of the attempts 

the possible explanations become numerous and vague due to both the QNNs' inherent 

indescribable operation and the results' lack of trends or other drawable conclusions. 

Increasing the input from one to ten points (for a 10 s bin) in Attempt 2 had an expected 

positive effect on the predictions (with correct predictions in 55 % of cases), because the 

input could now contain more information about the variations in the steering. The 

predicted number of lane departures also reached 71 % of the amount of measured lane 

departures, which showed that increasing the number of inputs also forced the QNN to 

make predictions other than no lane departures. The specificity of Attempt 2 was at a 

reasonable level (80 %), but the sensitivity was very low, only 31 %, signifying that a 

prediction of upcoming lane departures was made only in 31 % of cases where there was 

an actual lane departure. That was clearly not satisfactory. Considerations were made 

about several factors that could be changed to achieve better performance: It is possible 

that the training set contained too many signals with no lane departures which would 

cause the QNN to produce excessive amounts of predictions of no lane departures (2.1 
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and 3.2, Fig. 17.), the scaling of both input and output might have been unsuitable 

(2.3.2.2), the backpropagation learning might have caused the QNN to converge to a local 

minimum (2.1), the online learning might have been too easily influenced by each 

prediction causing the error gradient to fluctuate too much to converge at all, the structure 

of the QNN might have been unsuitable (section 1), and finally, the chosen steering 

metric might have been suboptimal (2.3.2). None of the raised questions had certain 

answers, but speculations were made. The training set did contain hundreds of bins 

containing lane departures, and because the average driver does not drive outside the lane 

once every 10 s, the training set should contain comparably more 10 s bins without lane 

departures than bins with lane departures. Choosing the training set randomly should also 

ensure that it was representative (2.3.2.3). A learning rate of 0.6 should be high enough to 

cause sufficient exploration of the parameter space to avoid converging to a local 

minimum, or at least not to the least optimal local minimum (2.1). The scaling of the 

output should utilise most of the dynamic range of the QNN, but the rescaling of the 

steering metric might have been insufficient to cover most of the dynamic range (2.3.2.2). 

However, even during the steering prediction, which rescaled the steering to less than half 

of the rescaling of the steering metric, there were still several occurrences in which the 

rescaled signal exceeded the range of the QNN. The superposition of states and 

parallelism of the qubit neurons should, at least theoretically, be able to compensate for 

the limitations of the online learning. For the remaining considerations, that is, the 

structure of the network and having a suboptimal steering metric, no conclusion could be 

reached. Therefore the steering metric was changed for Attempt 3 and the QNN was 

expanded by five neurons in each hidden layer to allow more complexity. The new 

steering metric, the integral of the steering, should have a higher correlation with the 

position in the lane because the truck acts as a powerful low-pass filter (2.3.2.1). The 

amplitude of the steering movements does not contain any temporal information, and 

anyone who has sat in a car knows that the longer the steering wheel is kept at an angle, 

the farther away the car moves. The integral of the steering captures this temporal 

information and should therefore be a suitable steering metric. Unfortunately, as Table 2 

shows, the percentage of correct predictions decreased. The rise in sensitivity and drop in 

specificity from Attempt 2 does indicate that more lane departures were predicted, but 

incorrectly (2.3.2.4 and 3.2). Removing the average offset in root-mean-square error 
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(RMSE) for all drivers did raise the percentage of correct predictions above that of the 

previous attempt, but the sensitivity of 12 % after the offset correction did indicate that 

far too few lane departures were predicted. The histogram (Fig. 17) confirmed the 

problem with having too many predictions of no lane departures, prompting the selection 

of a training set containing more lane departures for Attempt 4. Even having more lane 

departures in the training set did not improve the QNNs ability to predict lane departures. 

 

A final comment should be made about the lane departure prediction — the RMSE as a 

function of time awake does show something of a wave-like behaviour. It is a small 

effect, but it does resemble the measured lack of vigilance [44] (as measured with the 

Psychomotor Vigilance Task [47]). It is natural to assume that it would be more difficult 

for the QNN to predict successfully as the driving becomes more erratic with increased 

sleepiness, but for some reason there is no such effect in the prediction of steering. This 

discrepancy also speaks to the fact that it is easier for a QNN to predict a signal from 

previous parts of the same signal than it is to predict something entirely different. 

 

Future efforts into Quantum Neural Network prediction of hazardous driving behaviour 

should aim to find a suitable method to predict lane departures and to achieve a longer 

prediction horizon. Based on the results obtained in this thesis, the first steps towards that 

goal would be to attempt to find a suitable steering metric for lane departure prediction 

and to attempt training on a smaller training set with many lane departures. Predicting 

steering several time steps ahead could also be attempted by selecting the predicted time 

step to be t + n, with n > 1. The time-delayed feed-forward network structure is also 

simple compared to other network structures, so selecting a different network structure 

could improve both steering and lane departure prediction. It is possible that a network 

structure suited for pattern recognition could be beneficial for the lane departure 

prediction. Unfortunately, the selection possibilities for network structures, parameters, 

steering metrics, and training sets are endless, but because the current QNN worked so 

well for steering prediction it could be possible that selecting a different time step or 

adding neurons to the output layer (for different time steps) would suffice, and because 

lane departure prediction in its current form resemble a regression or classification task 
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more than time series prediction, perhaps choosing a network structure suitable for 

regression, e.g. a General Regression NN [33], could lead to improvements. 
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Predicting the steering wheel signal one time step ahead, 0.1 s, was achieved with a 

relative error of 0.4 % using a time-delayed feed-forward Quantum Neural Network 

(QNN) with a 15-40-20-1 structure. The training set was only 15 % of the data, and it 

contained signals from only the drivers driving in daylight conditions. Despite this 

restriction on the training set, the prediction performance was still stable across drivers 

and time awake. Predicting lane departures from the steering wheel signal, on the other 

hand, was not successful to a useful degree (best result was correct predictions in 55% of 

cases, sensitivity 31 % and specificity 80 %) and the main reasons for failure seemed to 

be the lack of a sensitive enough steering metric to truly capture the variations in the 

steering wheel signal and a tendency of the QNN to predict no lane departures, probably 

due to the training set. The prediction performance remained the same even when the 

training set was selected to contain more lane departures, suggesting that the selected 

steering metrics, maximum peak-to-peak amplitude and integral of the steering wheel of 

the previous ten 1 s segments, were not descriptive enough to allow the QNN to detect 

traits during learning. 
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