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1. Introduction 

Soil is the thinnest and outmost layer of the Earth’s surface, of which all living ecosystems 

and terrestrial organisms are solely dependent on (Breemen & Buurman 2002; Brearley & 

Thomas 2015). Soil is a complex, dynamic and living ecosystem, formed under influence of 

microscopic and larger organism performing vital functions with combination of water, gases 

and parent material such as sediments and solid rock (Bot & Benites 2005; Breemen & 

Buurman 2002; Singh et al. 2011). Fertility of soils is crucial for all living organisms through, 

for example, food, fibre, animal feed and timber production (Brearley & Thomas 2015). 

Healthy soil is critical for plant productivity, promoting plant, animal and human well-being 

(Singh et al. 2011). Water and air quality, diversity of soil organisms and animals are also 

highly dependent on soil health and quality (Singh et al. 2011).  

In global scale, soils are depleting with accelerated speed as improper and abusive 

management, land clearing, erosion, salinization, acidification, desertification, pollution and 

appropriation of land for other use are destroying soils all around the world (Breemen & 

Buurman 2002). Over the next decades, climate change and soil erosion can lead to severe 

challenges in global food security (Lal 2010; Amundson et al. 2015). According to Rozanov 

et al. (1993) during the past 10000 years more productive soils have been lost than there is 

currently being farmed, while UNEP (1986) calculated that up to 2 billion ha of fertile land 

has been irreversibly degraded since 1000 AD.  

Climate change is a long term change in temperature, precipitation, wind and in weather 

conditions. Climate change is caused by increase of greenhouse gasses, such as carbon 

dioxide (CO2), methane and nitrous oxides. Atmospheric concentration of CO2 has increased 

by over 30% since 1750 (Lal 2004b; Carbon dioxide concentration 2016). Soils are an 

important part of climate change mitigation, as they contain remarkable amount of carbon (C) 

(Jobbágy & Jackson 2010). Up to the depth of one meter of soil, ~1500 petagram (Pg) of 

organic C has been estimated to be found globally (Post et al. 1982; Scharlemann et al. 2014). 

However, there is large variation on global estimates (Scharlemann et al. 2014). According to 

Scharlemann et al. (2014) considerable uncertainty and debate remains about carbon 

emissions and storage in terrestrial ecosystems. Lal (2003) estimated the soil erosion-induced 

CO2 emission of 0.8-1.2 Pg C per year globally and Pan et al (2011) estimated soil C 

declination of 7.7 % between 1990 and 2007 in tropical regions. However, soils have high 
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potential for sequestrating C. According to the recent estimates, the potential of soils to 

sequestrate C is around 30-60 Pg C in 25-50 years (Lal 2004b).  

In the global scale, most of the soil organic carbon (SOC) is stored in northern regions 

(Scharlemann et al. 2014). SOC levels are mostly related to climatic factors; in the cold and 

wet climates, rates of photosynthesis exceed decomposition resulting in high levels of SOC 

(Ontl & Schulte 2012). Low primary production in the arid regions leads to low levels of 

SOC, while intermediate levels are usually found in the tropics (Ontl & Schulte 2012). In the 

regional to local scales, other factors such as topography and vegetation have a large effect on 

the SOC levels (Ontl & Schulte 2012). Except in Europe, USA and China, most of the current 

SOC maps are based on coarse resolution FAO soil maps from the 1970s, leading to 

uncertainty and inconsistency in the maps (Scharlemann et al. 2014). According to Lal (2003) 

most of the currently available statistics on the extent and severity of soil erosion are 

subjective, obsolete, crude and unreliable.  

The scientific and political initiatives for reducing C emissions and enhancing C sequestration 

promotes the development of accurate, cost-effective and repeatable methods for soil 

monitoring and modelling. Mechanisms such as Reducing emissions from deforestation and 

forest degradations (REDD and REDD+) are aiming at creating value for C storage (UN-

REDD 2011). These mechanisms are promoting sustainable forest and soil practices in local 

and landscape level, while leading to enhancements even in larger scales. Mapping the soil 

properties is currently mostly based on in situ measurements, which are costly and have 

limited spatial coverage (Mulder et al. 2011; Vågen & Winowiecki 2013).  

Remote sensing (RS) and geographical information system (GIS) based methods have been 

used for modelling and monitoring environmental phenomena and variables at various scales. 

Open data and development of RS sensors has multiplied the possibilities for all types of 

modelling works. In the past years, growing number of research has been made on vegetation 

and C modelling using optical sensors, such as multispectral and hyperspectral images or 

active sensors, such as airborne laser scanning (ALS) and radars (Brewer et al. 2011). 

Utilizing GIS and RS for soil modelling has been done for couple of the past decades 

(Florinsky 2012a; Mulder et al. 2011). Adewopo et al. (2014) ranked soil information systems 

(SIS) as one of the top priority research questions for soil science in the 21st century. SIS is 

broadly defined as the combination of soil science with GIS (Adewopo et al. 2014).  
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Accurate and high quality soil maps are needed to identify the most suitable locations for soil 

development and protection, and to allocate sparse resources and funds optimally. Landscape 

level maps of SOC content and other soil properties, such as nitrogen (N) content, provide 

scientific basis for structuring agricultural development plans and prioritizing assets for 

protecting or restoring the soils (Mayes et al. 2014). Soil properties modelling and mapping in 

heterogeneous tropical regions, in landscape or local scale are relatively little studied field. 

Modelling heterogeneous and complex landscapes is difficult and complexity of the 

landscapes will increase in future due to fragmentation of forests and land covers (Vågen & 

Winowiecki 2013). High accuracy and resolution of ALS data could provide valuable proxy 

information for the soil properties modelling, thus leading to more accurate and higher 

resolution soil properties maps. However, modelling soil properties using ALS data is 

relatively little studied field (Kristensen 2015). 

The main objective of this thesis was to the study feasibility of ALS data for predicting SOC 

and N content across a tropical forest-agricultural landscape mosaic. The study area was 

located in the Taita Hills, South-Eastern Kenya. Random Forest (RF) algorithm was used for 

modelling and predicting SOC and N content using ALS data and Landsat time-series and 

coarse scale soil grids as ancillary datasets. Most of the modelling and analysis work was 

performed using open source-tools by creating automated Python and R scripts. More 

specifically, this study aimed to: 

1) Test the performance of RF regression to model SOC and N content using ALS data 

2) Analyse the importance of ancillary datasets to soil SOC and N content modelling 

3) Find predictor variables that best explain variation in landscape-level SOC and N 

content 

4) Analyse the effect of spatial resolution of variables and feature extraction on 

modelling performance 

5) Produce SOC and N maps for the Taita Hills study area 
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2. Background 

2.1 Soil organic carbon and nitrogen 

2.1.1 Chemical background 

Carbon (C) is a chemical element, located sixth in the atomic table, with atomic weight of 12. 

It is the fourth most common element in the universe, compared by mass. The extra-ordinary 

ability of C, polymer-forming with the diversity of organic compounds, makes the C chemical 

basis for all known life (Hartemink & McSweeney 2014). Soil C is crucial for sustaining life 

on Earth; it is basis of life, energy, fibre, food and shelter (Brearley & Thomas 2015; 

Hartemink & McSweeney 2014). 

N is a chemical element located seventh in the atomic table, with atomic weight of 14. N is 

highly versatile, and it can transform forms easily, usually being available to plants as 

ammonium or nitrate (Hall 2008; Lamb et al. 2014).  N is one of the most important nutrients 

of soils affecting vegetation growth and crop production (Miransari et al 2012). Too high 

levels of N should not be supplied to soils, as over fertilization can lead to environmental 

issues and unnecessary costs (Ju et al. 2009).  

 

Figure 1. Photosynthesis, decomposition and respiration control the soil carbon balance 

(modified from Ontl & Schulte 2012) 
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Atmospheric CO2 is converted to carbohydrates by the process of photosynthesis in 

vegetation (Figure 1). When the plants create litter or die, animals and other soil biota use the 

C compounds of the biomass (Hall 2008). Finally these C compounds are made available in 

the soil as humus, compost and different chemicals (Hall 2008: 22-23). When microbes 

decompose the biomass in soils, most of the CO2 is released back to atmosphere (Ontl & 

Schulte 2012). 

2.1.2 Global soil carbon pool 

Global soil C pool is approximately 2500 Gt, making it larger than atmospheric (760 Gt) and 

biotic pool (560 Gt) together (Lal 2004a). Global soil C pool consists of 1550 Gt of SOC and 

950 Gt of soil inorganic C (Post et al. 1982; Lal 2004a; Scharlemann et al. 2014). In the 

global scale, SOC has high spatial variability (Figure 2). In regional, landscape and local 

scales, other factors such as topography and vegetation can have large effect on the SOC 

levels (Florinsky 2012b; Ontl & Schulte 2012). On regional level, SOC concentrations have 

also high spatial variability, as for example seen in SOC map of Africa (Figure 3). The global 

SOC pool can be seen as dynamic equilibrium, consisting of inputs and losses to the SOC 

pools (Figure 4) (Lal 2004a). 

 

Figure 2. Global topsoil soil organic carbon (SOC) stocks have high spatial variability. 

Largest stocks are found in northern regions (data from Hiederer & Köchy 2011). 
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Figure 3. Topsoil soil organic carbon (SOC) content (‰) in Africa (data from Hengl et al. 

2015) 

 

Figure 4. Global soil organic carbon dynamics are affected by several processes (modified 

from Lal 2004a). 
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2.1.3 Soil carbon sequestration 

Soil carbon sequestration is a process where atmospheric CO2 is removed from atmospheric 

circulation and stored in the soil C storages (Figure 4) (Lal 2004a). This process is mainly 

handled by vegetation through photosynthesis and decomposition (Hall 2008). Low levels of 

C sequestration can also happen in arid and semi-arid climates with minimal vegetation, 

through inorganic C formation, when CO2 from air forms into secondary carbonates (Ontl & 

Schulte 2012).  

Since the industrial revolutions, natural ecosystems have been converted to agricultural areas, 

resulting in vast depletion of SOC levels (Ontl & Schulte 2012). Lal (2004a) estimated losses 

of 60-90 Pg of C from soils to atmosphere. Soil C depletion has been caused mainly by 

reductions in the amount of plant root and residues returned to soil, increased decomposition 

from soil tillage and increased soil erosion (Lemus & Lal 2005).  

Adoption of restorative land management practices (Table 1) can reduce the release of carbon 

dioxide to atmosphere and increase the soil C stocks (Lal 2004b).  Potential soil C storage is 

affected by multiple factors, such as climatic controls, historic land use patterns, current land 

management strategies and topographic heterogeneity (Ontl & Schulte 2012). According to 

Lal (2004b) most of the depleted SOC stocks can be restored by converting only the marginal 

lands.  

Table 1. Possible management practices for increasing soil organic carbon levels (modified 

from Ontl & Schulte 2012) 

 

Continued increase in atmospheric CO2 levels and rising of global temperatures has variety of 

consequences on soil C levels, which are still partly unknown, and uncertain (Ontl & Schulte 

2012). Drake et al. (1997) found rising CO2 levels to increase resource use efficiency in 

vegetation, leading to increased C consumption trough vegetation, thus producing more 

biomass. However, some studies also implicate that C loss might increase due to increased 

Management practice Effect

Reduced tillage or no tillage Reduced C loss

Erosion control Reduced C loss

Addition of organic components 

(compost, crop residues)
Increased C input

Use of cover crops Reduced C loss, increased C input
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plant respiration from greater root biomass (Hungate et a. 1997). Increasing temperature could 

also lead to accelerated decomposition of soil organic matter (Pataki et al. 2003). 

The resolution of soil maps from larger areas has been typically very coarse, making the 

analysis of local scale soil resources difficult (Scharlemann 2014). Especially in the tropics, 

the information about small scale changes in soil C stocks is needed to allocate the sparse 

funds to protect and develop the most important areas (Vågen & Winowiecki 2013). Current 

SOC models and databases are not able to predict and monitor the SOC levels and possible 

fate of SOC due to land-use change in scales relevant to management in developing countries 

(Vågen & Winowiecki 2013). The land cover change and land degradation are challenging 

problems especially in the developing countries. High resolution maps of soil C would 

provide possibilities to protect the most important soil C stocks. 

Exact information about soil properties is necessary for environmental policy-making, 

resource management, targeting the management practices and monitoring the changes in 

environment (Mulder et al. 2011). Finding the areas with high SOC stocks combined with 

areas with high risk for soil erosion would be important when trying to find the best places to 

allocate funds to protect SOC stocks. As Vågen & Winowiecki (2013) explained, managing 

the soil erosion is one of the key strategies for reducing SOC losses.  A better understanding 

of SOC stocks and flows is crucial for climate change mitigation and C management 

(Scharlemann 2014). Potential of the C sequestration can be determined when both historic 

SOC stocks under natural vegetation and current state are well understood and mapped 

(Vågen & Winowiecki 2013; Scharlemann 2014). 

2.1.4 Environmental variables affecting soil properties 

On global scale SOC levels are mostly related to climatic factors, such as temperature and 

rainfall (Ontl & Schulte 2013; Scharlemann 2014). However, on a local scale, environmental 

variables are somewhat different than the variables explaining global SOC levels. There is 

high variation in the important environmental variables, between different studies, scales, 

study areas and soil types (Powers & Schlesinger 2002). Thompson & Kolka (2005) 

concluded that relationships between soil properties and environmental variables are unique to 

soil property and environment. 

Land use and land cover are one of the most important properties explaining the soil 

properties such as C and N (Islam & Weil 2000; Guo & Gifford 2002; Scharlemann 2014). 
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Emissions from land use and land cover change (LULCC) are the second largest 

anthropogenic source of C into the atmosphere (Scharlemann 2014). Studies are indicating 

SOC losses of 25-50 %, when conversion of vegetation to cropland (Scharlemann 2014). The 

losses are smaller from conversions of vegetation to pasture (Scharlemann 2014). Lal (2004b) 

estimated losses of 75 % or more in tropical soils, when converting from natural vegetation to 

cultivation. Similar results have been found for N (Islam & Weil 2000). However, Guo & 

Gifford (2002) found high variability on the loss and gain estimates regarding land cover 

changes on different studies. SOC and N levels and changes in both are also highly dependent 

on the soil types, as for example Mayes et al. (2014) found soil type being good explainer for 

SOC and N stock variability in landscape-scale. Type of soil can also have effect on the SOC 

losses on different land types. Scharlemann (2014) reported 20-40% losses on mineral soils 

when converting from forest to cropland, and even bigger losses on organic soils. 

The soil properties levels are also influenced by local controls of the ecosystem processes 

(Ontl & Schulte 2012). Topographic based processes such as water infiltration, soil erosion 

and deposition of sediment and soil temperature can vary vastly in spatially heterogeneous 

landscapes, affecting the C and N input and loss rates in the soils (Seibert et al. 2007; 

Florinsky 2012b; Ontl & Schulte 2012). Florinsky et al. (2002) also noted the importance of 

temporal variability in soil-topogaphy relations, which can essentially influence the soil 

properties. 

In general, most of the literature points that topography is one of the most important variables 

explaining spatial distributions of soil properties (Florinsky 2012b). Soil moisture, N and C 

are examples of soil properties that vary highly due to topographical conditions (Tsui et al. 

2004; Wang et al. 2010; Florinsky 2012b; Ontl & Schulte 2012; Seid et al. 2013; Adhikari et 

al. 2014).  According to Florinsky (2012b) topography influences the soil properties by 

spatially differentiating the temperature regimes of slopes and by the accumulation and 

movement of water or soil materials. Position and gradient of the soils in the landscape effect 

on levels of soil properties, such as SOC (Ontl & Schulte 2012). According to Tsui et al. 

(2013) movement of water and soil materials, leaching and degree of soil development are 

controlled by aspect and slope. Topography also affects the acquired solar radiation, thus 

affecting the soil properties (Wilson & Gallant 2000). 

Accumulation of soil properties is usually found on bottom of the hills or areas with small 

slopes (Bot & Benite 2005). Topography influences the water balance, by controlling runoff 



 

13 
 

and generating areas with more favourable water moisture levels, leading to differences in soil 

properties levels (Schwanghart & Jarmer 2011; Florinsky 2012b; Tsui et al. 2004). When 

evaporation and runoff area increases, the soil moisture reduces (Florinsky 2012b) and soil 

materials detached from rills erosion are transported by surface runoff (Schwanghart & 

Jarmer 2011). Good relationships between soil properties and topographic variables such as 

elevation, slope, curvature and several more complex indexes such as topographic wetness 

index (TWI) are reported by several studies (Florinsky 2012b; Schanghart & Jarmer 2011; 

Mulder et al 2011; Tsui et al. 2004;  Adhikari et al. 2014). However, the importance of each 

topographic variable varies heavily between the studies. 

Vegetation types have also important effect on soil properties. In general, highest SOC and N 

levels are found in natural or indigenous vegetation and lowest levels in areas with agriculture 

or areas without vegetation (e.g. Post et al. 1982; Guo & Gifford 2002; Lal 2004a; Wasige et 

al. 2014). Seid et al. (2013) studied how vegetation type affects the soil properties, and 

concluded that variability between vegetation classes can be high, but in general vegetation 

composition is useful when modelling soil properties. Maraseni & Pandey (2014) analysed 

SOC levels in five different forest types in Nepal and concluded that denser the canopy cover 

on forests, the higher amounts of SOC can be found. They also found levels of SOC to be 

related to presence of mixed species, N fixing trees and with the age of trees. Jobbágy & 

Jackson (2002) found a clear connection between biomes and SOC. Tsui et al. (2004) found 

that SOC concentrations in different slope levels are mainly explained by different litter 

decomposition conditions, which are explained by vegetation structure. Vegetation types are 

also important part of the land-cover change. 

Soil type and depth has also effect on the explaining variables. Wang et al. (2010) found that 

effect of land use in SOC only significant in surface soils, and deeper soils were not that much 

affected by the land use and land cover changes. Topographic controls of soil properties also 

vary with depth, and the best results and correlations are usually achieved with the upper soil 

layers (Florinsky et al. 2002).  

2.2 Remote sensing and airborne laser scanning 

2.2.1 Principles 

RS refers to collecting information without being in direct contact with the target. RS can be 

done in different scales and levels, thus sensors can be used for example on satellites, 
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mounted on aircraft or unmanned aerial vehicles, cars, or in situ devices (NOAA 2015). There 

are two types of RS sensors: 1) passive and 2) active sensors (Figure 5). Passive sensor 

records the signal emitted or reflected by the surface, common source of energy being the sun. 

In active RS, the sensor sends the pulse/signal and records the signal it receives (Jensen 2000; 

NOAA 2015).  

 

Figure 5. Passive and active remote sensing sensors.  

Passive RS sensors are dependent on sun light, limiting the possible data collection 

conditions. Data collection can take place only during the time when the sun is illuminating 

the Earth, with exception for passive sensors measuring thermal- and microwave radiation 

(Jensen 2000; Natural Resources Canada 2015).  

Active RS sensors are not dependent of sun light, thus data collection can be done during 

night. Active sensors can also be used for measuring wavelengths that are not sufficiently 

provided by the sun. Also better control about the illumination conditions of the target can be 

achieved (Jensen 2000; Natural Resources Canada 2015). ALS and synthetic aperture radar 

(SAR) are examples of active RS techniques.  

2.2.2 Airborne laser scanning 

2.2.3.1 History and terminology 

During the last two decades, ALS has been stabilized as one of the most important methods 

for acquiring spatial information from the ground and vegetation (Petrie & Toth 2008). 

Increasing number of companies are designing and manufacturing laser scanning instruments, 

while private companies and public institutions use ALS for commercial and non-profit 

dedications. Instruments are complemented by a large selection of open source, free of cost 
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and commercial software, intended for management, processing and visualization of the ALS 

data. 

Well-developed instruments and software provide substantial means to use the data. High-

quality 3D-points clouds can be used for example in forestry, urban planning, environmental 

modelling and many other purposes (Petrie & Toth 2008). ALS data can be also used for 

example erosion monitoring, vegetation modelling, topographic modelling, corridor mapping 

(e.g. roads, railway tracks), flood mapping, building extraction for 3D models, microclimate 

models and snow and ice-cover measurements (Wehr & Lohr 1999; Petrie & Toth 2008).  

Full potential of ALS has not been fully taken advantage of yet, as more understanding and 

information is needed. Finland has been one of the most successful countries using ALS in 

operational use, especially in forestry (Holopainen et al. 2013). 

Most commonly used terms are the ALS and light detection and ranging (LiDAR), which 

both are based on the same basic principles. ALS includes always the positioning of the 

emitted pulse and determination of direction of the emitted pulse, as the LiDAR can also work 

without these. LiDAR can include methods such as profiling measurements (2D) and laser 

scanning (Petrie & Toth 2008). Profiling laser scanners detect only straight line below the 

flight line, as the laser scanning can detect wider angles (Holopainen et al. 2013). ALS data 

collection happens always from an airborne platform. 

2.2.3.2 Principle of laser scanning 

Laser scanning devices designed for measuring 3D surface, can be divided to two main 

categories by the method used: 1) light transit time estimation and 2) triangulation (Petrie & 

Toth 2008; Beraldin et al. 2010). In a certain medium, light waves always travels with a 

known velocity (Beraldin et al. 2010). Measurement of the distance is always based on the 

exact measurement of time. Some kind of laser-based ranging instrument, which can measure 

distance with high accuracy, is used as a basis for all laser ranging, profiling and scanning 

instruments (Petrie & Toth 2008; Beraldin et al. 2010).  

Light transit time estimation based sensors calculate the distance by measuring the time delay 

for light to travel, from a source to a target and back to sensor (Figure 6). In continuous wave 

lasers, distance measurement can be indirectly calculated via phase measurement (Beraldin et 

al. 2010).  
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Figure 6. Basic principle of laser range finder. Laser range finder records the time between 

emitted and reflected signal and calculates the distance (modified from Petrie & Toth 2008).  

To calculate the range or distance, following simplified formula can be applied: 

𝑝 =  
𝑐

𝑛

𝑡

2
 

where c is speed of light in vacuum (299 792 485 m/s), t is round trip time from source to 

target and back, n is correction factor equal to refractive index, depending on air temperature, 

pressure and humidity (~1.00025) and p is the range between sensor and target (Beraldin et al. 

2010). 

Most of the ALS systems are able to capture multiple return echoes per one sent pulse, in case 

of certain site characteristics, such as vegetation canopies (Beraldin et al. 2010). The higher 

the sensor flies, the larger the area of one pulse is on the ground (footprint). Typically 

footprint of a laser beam is 0.3-3.8 meters, leading to sensor receiving couple of echoes back 

from the target from different heights (Figure 7) (Pyysalo 2000). Multiple echoes per pulse 

can be only detected if the distance between two echoes is larger than the half of the pulse 

width (Beraldin et al. 2010). For example, with pulse width of 5 ns, separate objects can be 

detected if their distance is larger than 0.75 m. 
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Figure 7. Most of the airborne laser scanning sensors can record multiple return echoes per 

one pulse. 

 

2.2.3.3 Airborne laser scanning systems 

To acquire densely sampled 3D measurement clouds, with a single laser source, a moving 

mechanism is needed to move the laser beam over the target surface. Moving the laser beam 

enables wider data collection and construction of the 3D surface (Beraldin et al. 2010). 

Typically these mechanisms are for example moving mirrors or prisms (Holopainen et al. 

2013). Couple of different techniques are used in ALS sensors, such as Z-scanning, line based 

scanning and conical scanning. Different techniques have their pros and cons, though 

difference is usually seen as different ground patterns (Figure 8). Leica and Optech sensors 

are vibrating mirror based Z-scanning devices (Holopainen et al. 2013).  

 

Figure 8. Different ground patterns of airborne laser scanning sensors (modified from 

Holopainen et al. 2013) 
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ALS system is usually made from two main components: the laser scanning system and 

Global Navigation Satellite System (GNSS) with Inertial Measurement Unit (IMU) unit. 

Laser scanning system calculates the distance to the ground while GNSS and IMU measure 

the exact position and orientation of the airplane (Beraldin et al. 2010; Holopainen et al. 

2013). A control and data recording unit is also used for time synchronising, storing scanner, 

IMU and GNSS data and controlling the whole system (Beraldin et al. 2010). Typical 

construction of ALS system in airplane can be seen in Figure 9. 

 

Figure 9. Optech ALTM 3100 ALS Sensor, AISA Eagle hyperspectral sensor and IMU 

system (photo by Tuure Takala) 

 

2.2.3.4 Processing airborne laser scanning data to coordinate reference system 

Raw data produced by the sensors on board, is usually not usable straight away. Depending 

on the purpose, several pre-processing steps are necessary. Calculating the complex and exact 

3D point cloud is a combination of raw processing power and exact information produced by 

the sensors. Positional information collected by the GNSS is differentially corrected by using 

usually a minimum of one ground control devices (Lichti & Skaloud 2010). 

During the data capture, laser scanner collects measurements in its own coordinate reference 

system while GNSS and IMU sensors collect the exact location and orientation data. By 

utilizing this information, the exact location of the laser scanning device in real coordinate 

reference system can be calculated up to accuracy of centimetres (Wehr 2008). Accurate 
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measurements are combined using the exact timestamp produced by different sensors (Hovi 

2013). 

Direction vector of each laser pulse can be exported to world geodetic system 84 (WGS84) 

system by using coordinate system transformation matrices (Hovi 2013). This process is 

called registration (Lichti & Skaloud 2010) Example of a simplified transformation (Laser 

scanner, GNSS and IMU on same location and scanning angle directly below) can be 

calculated with the following equation: 

𝐺 = 𝑟 + 𝑠 

where 𝐺 is vector from centre of earth to the laser echo, 𝑟 is vector from centre of earth to 

beginning of the laser beam and 𝑠 is vector from begging of laser beam to the laser echo 

(Hovi 2013).  

To be more accurate, 

𝐺𝑤𝑔𝑠84 = 𝑟𝑤𝑔𝑠84 + [ ]𝑊𝐺𝑆84𝐻 ∗ [ ]𝐼𝑀𝑈𝐻 ∗ [ ]𝐼𝑀𝑈𝐿 ∗ 𝑠𝑙,  

  

where [] are conversion matrices between coordinate systems and 𝑠𝑙 is directional vector in 

laser scanner coordinate system (Hovi 2013). In reality, one should also take in account the 

scanning angle and distance between different sensors (Hovi 2013).  

After the registration, different levels of calibrations are done to increase the accuracy of 

measurements (Lichti & Skaloud 2010). After the calibrations, strip adjustment is done to find 

and fix geometrical errors between flight lines (Lichti & Skaloud 2010). These errors are 

usually systematic, and known shapes such as buildings can be used to locate them (Hovi 

2013). 

2.2.3.5 Properties of airborne laser scanning data 

Data collected by the laser scanner is usually called point cloud (Figure 10), as it is three 

dimensional and it contains vast amount of collected points. As the X and Y coordinate of 

each point cannot be stored as a regular grid, the exact location of X and Y is stored with the 

Z –value (Graham 2008). Performing basic operations, such as interpolation or searching for 

specific points in point clouds are more challenging and slower than for example in grid based 

datasets (Vosseman & Klein 2010). Though, there are benefits for storing the data as point 
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cloud, as more complex shapes are retained, which can beneficial for different types of 

analyses and calculations (Vosselman & Klein 2010). Accuracy and level of detail usually 

depends on the used sensor and the flight height. 

In addition to X, Y and Z measurements, several other parameters can measured and stored. 

Most of the modern sensors can record intensity, usually referred as intensity of the 

backscattered light or return strength of the pulse (Wehr & Lohr 1999). Intensity data has 

been mainly used on visualization and target classification purposes (Wehr & Lohr 1999; 

Kaasalainen et al. 2009). ALS intensity is however problematic, as each sensor provider has 

their own implementation of calculating it and calibrating intensity requires usually reference 

data (Kaasalainen et al. 2009; Korpela et al. 2010). 

 

Figure 10. ALS data visualized as a point cloud. 

There are several data formats than can be used to store the ALS data. During the past couple 

of years, extensive standardization work has been done and LAS-standard seems to be widely 

accepted through the community (Graham 2008). However, still many of the commercial 

software are implementing their own formats, to increase speed or reduce disk space usage, 

such as Fast Binary of TerraSolid and LasZip of LasTools. Most of the commercial and open 

source GIS and RS software can read the LAS format (Graham 2008). 
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2.2.3.6 Classification of airborne laser scanning data 

After the pre-processing and calibration steps, ALS data can be classified. ALS point 

classification refers to assigning classification code for every point. For LAS formats, 

classification codes are standardized by the American Society for Photogrammetry and 

Remote Sensing (ASPRS). 

Classification of the points usually starts with classifying the ground points, which is the bare 

minimum needed for separating other points from ground. Several automatic algorithms have 

been invented for ground point filtering (Briese 2010). After ground points have been filtered, 

other classes can be identified. Manmade objects such as buildings and wires can be identified 

by using algorithms based on geometric shapes or intensity values (Brenner 2010). Vegetation 

can be classified based on the return echo type (e.g. first of many echoes) or by for example 

classifying all points above the ground as vegetation (Maas 2010). Classification of different 

objects can be sometimes improved by using ancillary datasets, such as multispectral RS data 

(Brenner 2010). Level of classification needed is usually dependent on the purpose of the 

output dataset. Different use cases provide different needs for the level of classification. 

2.2.3.7 Digital terrain model, digital surface model and canopy height model 

Digital Terrain Model (DTM), Digital Surface Model (DSM) and Canopy Height Model 

(CHM) are concepts for digital representations of earth surface. Digital Elevation Model 

(DEM) is usually seen as umbrella term to include all representation of ground, however these 

terms can be context and country specific (Oksanen 2006). DTM usually refers to a digital 

grid based model having elevation above sea level as the value for bare ground (Figure 11). 

DSM (Figure 12) is similar to DTM in other aspects, but it includes the vegetation and 

possibly manmade objects, such as buildings (Briese 2010). CHM refers to a model, which 

values are elevation above the ground, instead of elevation above sea level, as DTM and DSM 

have. CHM is also sometimes referred as normalized digital surface model (nDSM) (Briese 

2010). These models can be derived from different data sources, such as ALS, terrestrial laser 

scanning, radars and tachymetric measurements. This study concentrates only on models 

generated from ALS data. 
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Figure 11. 3D view of hill shaded DTM showing only bare ground in the Taita Hills. 

For generating accurate and high quality DTM from ALS data, non-ground points must be 

carefully filtered out. Typical approach is to use only last echo points or only echoes, but 

more sophisticated approaches have been developed, such as segment based filtering, surface 

based filtering, progressive densification and morphological filtering (Briese 2010). In 

general, most automated filters work well on areas with low complexity, but areas with more 

complex terrain and vegetation tend to be challenging for automated tools (Briese 2010).  

After the ground point classification, classified points are used to generate the DTM, which 

can be a full 3D presentation, or more typical 2.5D raster representation (Briese 2010). Raster 

models are usually generated using different interpolation methods or using triangulation 

(Axelsson 2000; Briese 2010) 

 
Figure 12. 3D view of hill shaded DSM showing bare ground with vegetation in the Taita 

Hills. 
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DSM models are usually generated similarly, but only based on all first echoes (Briese 2010). 

CHM (Figure 13) can be calculated directly from height-normalized ALS points or by 

subtracting DTM from DSM (Isenburg 2014). 

 
Figure 13. 3D view of CHM showing normalized height (height from ground) for non-ground 

objects, such as vegetation. 

2.2.3.8 Airborne laser scanning based variables for environmental modelling  

ALS data can be used to generate vast amount of variables for environmental modelling, 

including prediction vegetation and soil attributes. Variables calculated from ALS can be 

roughly divided to two groups, topographic variables generated from ALS based DTM 

models and vegetation variables generated from the point cloud.  

Topographic variables are usually generated from the ALS based DTM. Calculation of 

topographic variables from DTMs is usually very well integrated into all GIS tools. Basic 

variables such as slope, aspect and curvatures can be calculated with almost any tool, and 

more rare variables such as topographic wetness index, topographic position index can be 

calculated with several open-source and commercial tools. The accuracy and quality of ALS 

based topographic variables are usually superior compared to variables calculated from other 

DTM sources (Briese 2010). 

Derived vegetation parameters can be used for example measuring canopy cover, tree height, 

crown diameter, tree density, biomass estimations and determination of forest borders (Wehr 

& Lohr 1999; Maas 2010). DSM and CHM are also representations of vegetation, as they 

contain the height of the object from ground. Several tools and software are available for 

vegetation variable extraction for ALS data. Tools such as FUSION (McGaughey 2016), 
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LasTools (Isenburg 2016), GRASS (GRASS Development Team 2016) and ArcGIS (ESRI 

2014) can be used for extraction of vegetation variables. Most of the tools are also capable for 

deriving ALS intensity variables. 

2.3 Remote sensing of soil properties and digital soil mapping 

As explained in previous sections, soil properties are in global scale, highly related to climate 

and rainfall in global scale. In more regional scale, factors like topography and vegetation 

cause the variation in the soil properties levels. RS and GIS provides methods and data 

sources for modelling most these variables as proxies of soil properties (McBratney et al. 

2003).  

The most important aspect of RS and spatial modelling is the capability to reduce the need of 

soil sampling in the field and improve the accuracies of current databases and maps. RS and 

GIS has already been recognized as potentially cost-efficient technology in digital soil 

mapping; however it is not yet routinely used (Mulder et al. 2011). According to several 

scientists, the knowledge on how to use RS in soil mapping is still incomplete and lots of 

uncertainties remain (Mulder et al. 2011).  

Traditionally RS imagery have been classified to land cover or soil cover maps and used as 

background information when planning the sampling of different soil landscape-units (Mulder 

et al. 2011). The rapid development of RS sensors has enhanced possibilities for soil 

properties mapping and creating more reliable global and regional soil databases (Mulder et 

al. 2011). Digital soil mapping is strongly based on the availability of covariates explaining 

the spatial patterns of soil properties (Callant & Austin 2015). Topographic variables can be 

derived from DTM models, while high-resolution RS data provides spectral information about 

soil and vegetation (Seid et al. 2013). 

One of the most interesting approaches in soil properties mapping is the usage of ALS. ALS 

provides accurate information about the vegetation and terrain structure (Li e al. 2016). ALS 

has the ability to produce accurate measurements of vegetation structure such as volumetric 

forest properties and species composition, which all are linked to soil C stocks (Kristensen et 

al. 2015). DTMs calculated from ALS data, which are used to calculated topographic 

variables, are in general thought to be very accurate (Briese 2010). Laser scanning sensors 

have developed rapidly in the past years, increasing the pulse density and accuracy and 

reducing the total costs. However, the use of ALS is relatively understudied field in soil 
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properties mapping (Kristensen et al. 2015). ALS could provide information and proxies that 

the passive RS sensors cannot, however combining ALS data with optical RS data could be 

beneficial approach. 

The problem with direct RS of soil properties is that the passive sensors cannot directly access 

the bare ground or soil. However, in areas where with little or no vegetation (e.g. agricultural 

lands) good results have been achieved using multispectral and hyperspectral RS data 

(McBratney et al. 2003; Mulder at al. 2011). In densely vegetated areas, soil analysis has been 

typically relied on indirect proxies of soil properties, such as topographic variables and 

vegetation, which can be derived indirectly or directly from RS data (Daughtry et al. 2012; 

Mulder at al. 2011). However, mixed results have been achieved using indirect proxies for 

soil properties derivation (Mulder et al. 2011). Recent development of active and passive RS 

sensors and opening of data has created possibilities to map many of the important 

biophysical variables of vegetation and soil with reasonable costs and high enough accuracy. 

Especially the development of spaceborne sensors should improve the retrievals of soil based 

information at larger scales, with good price quality efficiency (Mulder et al. 2011). 

Multispectral and hyperspectral data has been widely used in soil properties modelling in 

several studies. Gomez et al. (2008) used hyperspectral Hyperion-1 data with very good 

results in Australian agricultural areas, promoting the potential of RS for soil mapping. Vågen 

& Winowiecki (2013) explored approaches using moderate to high resolution satellite 

imagery in soil C assessing in three East African countries. They achieved 0.67 and 0.65 

coefficient of determination (R2) values using Landsat ETM+ ground reflectance images. 

Mirzaee et al. (2016) estimated soil organic matter (SOM) using geostatistical methods, such 

as kriging, using Landsat 7 ETM+ data. Based on the results, authors concluded that ancillary 

datasets such as Landsat 7 ETM+ are very important for improving the SOM estimates.  

In addition to pure RS data, DTMs based on radars or ALS are very important for soil 

properties modelling. DTMs can be used to calculate the topographic variables such as slope, 

aspect and curvatures and more complex indices such as topographic wetness index or 

topographic position index (Florinsky et al. 2002; McBratney et al. 2003; Mulder et al. 2011). 

As an example, Seid et al. 2013 analysed soil properties using RS and soil-landscape 

modelling techniques in Ethiopian watershed.  According to the authors, the use of accurate 

DTM and RS data with minimum field data provides alternative source to capture the 

spatially continuous soil attributes.  
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There are several methodological approaches to model the soil properties. Different modelling 

techniques such as kriging, regression or decisions trees have been used with successful 

results (Mulder et al. 2011). Bui et al. (2006) used data mining technologies for predicting 

pH, organic C, total N and total phosphorus with good results. Piecewise linear tree models 

were built to choose variables from the large amount of input data, including climate 

variables, DEM based variables, Landsat bands, land use and lithology maps. Yang et al. 

(2016) used RF with environmental covariates to model the soil depth functions and SOC 

stocks with relatively good results. 

In general, there seems to be no clear consensus on best available method for soil properties 

mapping using RS and GIS-tools. Modelling methods varied between studies, and most of 

them seemed to perform relatively well. Important variables for SOC and N modelling 

differed between study areas and used models, indicating high dependency on the local 

environment for soil modelling. However, combining several datasets has been done 

successfully on several studies.  

3. Study area 

The Taita Hills (03 o 25’ S, 38 o 20’ E) are located in South-Eastern Kenya, near Tanzanian 

border (Figure 14). The Taita Hills are part of coastal province and the Taita Taveta district. 

The district consists of two topographically diverse areas, lowlands of the Tsavo plains and 

the mountainous Taita Hills. The hills are in the middle of Tsavo national park and Tsavo 

plains (Geography of Taita 2006). The Taita Hills cover approximately an area of 1000 km2 

(Pellikka et al. 2013). The study area of this thesis was 10 km × 10 km in size and located in 

the higher parts of the hills (Figure 14).  

Capital of the district is Wundanyi, a small agricultural and trading centre in the region. 

Population of the Taita Hills has doubled within 30 years, increasing the pressure on land and 

environment (Geography of Taita 2006). Main livelihood of the local people (78 %) is 

intensive agriculture. Unemployment remains a critical issue as about 44 % of the total labour 

force remains unemployed (Geography of Taita 2006). 
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Figure 14. Study area of this thesis is located in the Taita Hills, Kenya.  

Closeness to the equator can be seen on climate, as rainy seasons take place from March to 

June and October to December. The variability in the amount of rain can be high depending 

on the year. The mean annual rainfall varies from 500 mm in the lowlands to 1500 mm in 

higher elevations (Geography of Taita 2006). Closeness of Indian Ocean brings orographic 

rains to the Hills and cloud and moist precipitation occurs throughout the whole year (Pellikka 

et al. 2013). 

The Taita Hills are part of the Eastern Arc Mountains, which are considered one of the most 

important biodiversity hotspots in the World (Myers et al. 2000). Only few indigenous 

mountain rain forest fragments are left in the hills. With the latest estimates, only 1% of the 

original forested areas remain preserved (Pellikka et al. 2009). Most of the forest loss can be 

explained with human population growth and conversion of land for agriculture (Pellikka et 

al. 2009). These rain forest fragments have variety of threatened and endemic fauna and flora, 

which cannot be found elsewhere in the World (Geography of Taita 2006. Current threats to 

the forests and biodiversity are harvesting of fuel wood, grazing of cattle in the forests and 

invasive exotic tree species (Thijs et al. 2014).  

The Taita Hills are characterized by highly fluctuating topography, ranging between 500 m – 

2200 m above sea level (Pellikka et al. 2013). The highest peak (2208 m) in the Taita Hills is 
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Vuria (Figure 15). The hills are part of Precambrian mountains of Eastern Arc chain 

(Geography of Taita 2006).  

 

Figure 15. View from Vuria mountain (photo by Jesse Hietanen). 

Geology of the Taita Hills consists of mainly undifferentiated basement rocks and the main 

soil types in the Taita Hills are humic cambisols, acrisols, ferrasols and rankers (Jaetzold et al. 

2010). However, soil types reported in Soil atlas of Africa (Jones et al. 2013) are slightly 

different. Figure 16 shows the soil types of the study area and the Taita Hills based on the Soil 

atlas of Africa data (Jones et al. 2013). Fertility of the soil in the Taita Hills varies between 

the soil type (Jaetzold et al. 2010). 

 

Figure 16. Soil types of the Taita Hills (data from Jones et al. 2013) 
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Soils of the the Taita Hills are also vulnerable for environmental change. The risk of soil 

erosion is high due to poor agricultural management, erodible soils, rough topography and 

land cover change (Erdogan et al. 2011; Pellikka et al. 2013). Erdogan et al. (2011) estimated 

that soil-loss potential increased from 7 % to 12 % between 1987 and 2003. 

Very little information about soil properties of the study area is available. Several continental 

datasets have been calculated, which include SOC, however, the spatial resolution and level 

of detail tends to be coarse. Figure 17 shows the topsoil SOC stock map of Kenya and Taita 

Hills, based on the Soil atlas of Africa (Jones et al. 2013) dataset, with spatial resolution of 1 

km. Figure 18 shows the topsoil SOC content map of the Taita Hills, based on African soil 

grids (Hengl et al. 2015), with spatial resolution of 250 m. Spatial resolution of the African 

soil grids is clearly superior compared to the Soil atlas of Africa, however still being 

relatively coarse. 

 

Figure 17. Topsoil soil organic carbon (SOC) stock map of Kenya and the Taita Hills (data 

from Jones et al. 2013). 



 

30 
 

 

Figure 18. Topsoil soil organic carbon (SOC) content map of the Taita Hills (data from Hengl 

et al. 2015) 

Omoro et al. (2013) studied the SOC densities in differerent forest types of the Taita Hills and 

found out that SOC densities were generally lower in the plantations than in the indigenous 

forests. Authors concluded that this could be due to different litter conditions, or due to 

insufficient time for SOC levels to recover in plantations.  

4. Material 

4.1 Data sources   

Datasets used in this study are listed in Table 2. Field measurements were used to derive 

response variables for in the modelling. All other datasets were used as a source of the 

predictor variables. ALS data was the primary source for independent variables. Landsat time 

series and African soil grids were used as ancillary datasets due to possible complementary 

information on ALS data. Ancillary datasets are available free of cost for the whole of Africa. 

DTM, DSM, CHM and ALS datasets were also used for visualization purposes.  
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Table 2. Datasets used in this study. 

 

4.2 Field measurements 

Field data was collected between January and February 2013 (locations in Figure 19).  

Hierarchical field survey and sampling strategy was based on land degradation surveillance 

framework (LDSF) guidelines (Vågen et al. 2015). Study area (10 km × 10 km), was divided 

to 16 tiles (2.5 km × 2.5 km). For each of these tiles, a random centroid was generated for the 

clusters of study plots. Each cluster consists of 10 plots. Centre location for each plot was 

randomized, falling within a 564 m radius from the cluster centroid. Each plot was 0.1 ha in 

size, and consisted of 4 subplots (0.01 ha in size) (Figure 20). 

 

Figure 19. Location of the field plots in the study area. 

Navigation to the study plot and centre position measurement in the field was done by using a 

consumer-grade GPS receiver (Trimble Juno 3B). Positional accuracy reported by the GPS 

Dataset Date of Collection Coverage Source

Field measurement 2013 Study area This study

Airborne Laser Scanning 2013 Study area This study

Landsat time series 2012 - 2013 South Eastern Kenya * Adhikari et al. 2016

African Soil Grids 2008 - 2014 Africa Hengl et al. 2015

* L7 Path 167, Row 62
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device was in average 2.3 m, ranging between 1.6 m and 8.7 m. However, positional accuracy 

was not recorded for all study plots.  

 

Figure 20. Study plot and subplots (modified from Vågen et al. 2015). 

Soil samples were collected at the centre of each subplot, topsoil samples from 0-20 cm depth 

and subsoil samples from 20-50 cm depth using an auger. Soil samples from each subplot 

were pooled thoroughly into one sample, representing the soil characteristics of one plot 

(Vågen et al. 2015). Soil samples were delivered to World Agroforestry Organization 

headquarters (Nairobi, Kenya) for the soil properties analysis. Before the analysis, soil 

samples were dried and sieved through 2 mm sieve. SOC and N concentrations were 

calculated for each plot, by utilizing thermal oxidation method. In this study, only topsoil 

samples were used. Due to issues in field data collection or in analysis, topsoil samples were 

collected only from 150 unique study plots (Table 3). Samples with errors in positioning or in 

data collection were discarded from the analysis. 

Table 3. Summary statistics for topsoil samples.  

  

Statistics SOC (%) N (%)

Mean 2.093 0.170

Min 0.749 0.043

Max 6.759 0.479

Standard Deviation 1.111 0.076
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4.3 Airborne laser scanning   

ALS data was acquired by German operator TopScan GmBH in January 2013 using Optech 

ALTM 3100 sensor. Mean point density for the LiDAR data was 9.6 points/m2. First, last and 

maximum of two intermediate pulses were recorded, including intensity. The dataset was pre-

processed by the operator and delivered in LAS1.2 format. Detailed parameters and summary 

of the ALS data are given in Table 4. 

Table 4. ALS survey and sensor specifications. 

 

4.4 Ancillary data 

4.4.1 Landsat time series 

Landsat time series dataset used in this study was generated by Adhikari et al. (2016). 

Adhikari et al. (2016) used 17 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images, 

from between June 2012 and October 2013. Time period was defined to start eight months 

before and to stop eight months after ALS data collection (January 2013). 

Adhikari et al. (2016) calculated topographic correction to all images using Shuttle Radar 

Topography Mission (SRTM) DEM. Five different vegetation indices were calculated: 1) 

normalized difference vegetation index (NDVI), 2) reduced simple ratio (RSR), 3) brightness, 

4) greenness and 5) wetness. Seasonal features were computed for all layers based on the 

statistical distribution of annual vegetation index values (Adhikari et al. 2016). 

In this study, all seasonal features of vegetation indices and separate Landsat bands were used 

in the modelling process. However, only 50 % percentile of the seasonal features was 

Parameter Value

Date of acquisition 4–5 February, 2013

Sensor Optech ALTM 3100

Flying height (m AGL) 213–1168 (760)

Range (m) 216–1170 (764)

Flying speed (knots) 116–126

Pulse rate (kHz) 100

Scan rate (Hz) 36

Scan angle (degrees) ±16

Pulse density (pulses m−2) 9.6

Return density (returns m−2) 11.4

Maximum number of returns per pulse 4

Beam divergence at 1/e2 (mrad) 0.3

Footprint diameter (cm) 6–35 (23)
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included in this study. Due to issues in SRTM data, there were gaps in the produced Landsat 

images. 

4.4.2 African soil grids 

African soil grid dataset used in this study was provided by the Hengl et al. (2015). Hengl et 

al. (2015) generated soil properties maps (e.g. organic carbon, pH, sand and silt content) in 

spatial resolution of 250 m for whole of Africa. Datasets used for creating these maps were 

from two different databases: 1) the Africa Soil Profiles (legacy) and 2) Africa Soil 

Information Service (AfSIS). Authors used RF for predicting the values based on the input 

soil databases, MODIS, SRTM DEM based topographic variables, GlobeLand30 land covers 

and 1 km soil grids. In total over 28000 sampling locations were used (Hengl et al. 2015).  

African soil grid data for this study was downloaded from ICRIS web mapping server 

(www.soilgrids.com), using web coverage service standard. After the data was downloaded, 

top- and subsoil layers were combined to match the top- and subsoil definitions used in this 

study.  

5. Methods 

5.1 Overview 

The main steps of the methodology are summarized in Figure 21.  First, ALS data was pre-

processed, which included manual quality inspection, improvements to ground classification, 

vegetation, wire and building classification and removal of faulty points. Pre-processed ALS 

data was used to calculate DTM, DSM and CHM with spatial resolution of 1 m. These models 

were resampled to 5 m, 10 m, 25 m, 50 m and 100 m spatial resolutions. Resampled models 

were used to calculate several topographic variables. Pre-processing of the field data included 

conversion to shapefiles and buffering of the point locations with radii of 17.84 m (0.1 ha), 

25.23 m (0.2 ha), 35.68 m (0.4 ha), 50.46 m (0.8 ha) and 71.37 m (1.6 ha). 

Feature extraction (Zonal Statistics) was performed for the calculated topographic variables, 

Landsat time series and African soil grids, using the five different shapefiles with different 

study plot sizes. ALS based vegetation and intensity variables were calculated for the same 

locations using the same study plot sizes. Vegetation and intensity variables were joined to 

the shapefiles by study plot ids and sizes. Vegetation and intensity variables calculated with 
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0.1 ha study plot size were joined to the shapefiles, which had the study plot size of 0.1 ha. 

This was repeated to all five study plot sizes. 

All calculated variables were inserted to VSURF variable selection tool, and most important 

variables were selected. RF modelling was performed using all datasets with five different 

study plot sizes. After the best model was identified, SOC and N maps were predicted for the 

whole study area. Different combinations of datasets (ALS, ALS + Landsat, ALS + African 

soil grids, Landsat + African soil grids) were also tested in order to analyse how different 

datasets contribute to modelling. Only the best performing study plot size found in the first 

modelling was used for this analysis. 

 

Figure 21. Overview of the methodology and materials used in this study.  
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5.2 Pre-processing airborne laser scanning data 

5.2.1 Quality checking  

To make the data pre-processing and manual quality inspection more systematic and 

repeatable, the study area was divided to 50 m × 50 m tiles. Each tile had unique identifier, 

and all verification and improvements were done to each tile, one at a time. Results were 

written down to Excel for each tile, and necessary steps to fix issues or improve quality were 

completed. Figure 22 shows the ALS pre-processing flow, including the four main steps: 1) 

ground classification improvement, 2) low and high vegetation classification, 3) building 

classification and 4) wire classification. Temporary versions of the DTM, DSM and CHM 

were calculated after each step to help identify issues in the ALS pre-processing steps. If any 

issues were found, it was fixed and inspected again. 

 

Figure 22. Pre-processing steps for ALS data. 

Classification schema used in this study did not follow the LAS 1.2 standard exactly as 

several classes had different class code. Classification used in this study, and the LAS 1.2 

standard are given in Table 5.  
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Table 5. ALS data classification schema (LAS 1.2 standard based on ASPRS Board 2008). 

 

5.2.1.1 Improved ground classification 

Improvements to the classification were needed to ensure data quality for different analyses 

and DTM, DSM and CHM creation. As topography of the Taita Hills is highly variable, 

automatic algorithms had difficulties filtering the ground points. 

 

Figure 23. Ground point classification errors shown in CHM. Areas with steep cliffs are 

classified as vegetation, thus seen as long shaped geometries following the cliffs. 

Class LAS Standard Classification in this study

0 Created, never classified -

1 Unclassified Unclassified

2 Ground Ground

3 Low Vegetation Low Vegetation

4 Medium Vegetation -

5 High Vegetation High Vegetation

6 Building Buildings

7 Low Point (noise) -

8 Model Key-Point -

9 Water Error

10 Reserved for ASPRS Definition Power Lines & Towers

11 Reserved for ASPRS Definition -
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Initial automatic ground point classification had vast amount of classification errors. 

Classification errors were found especially in steep cliffs or ridges, where vegetation was 

classified to ground points (Figure 23). Areas with faulty classifications were identified from 

the DTM, DSM, CHM or ALS point cloud, and manually reclassified to ground point, error 

or as unclassified. Identifying and re-classifying faulty points was an iterative process, where 

temporary DTM, DSM and CHM models were calculated for this purpose only (Figure 24). 

Reclassification of the ALS points was made in TerraScan software. Example of cleaned 

ground can be seen in Figure 25. 

 

Figure 24. ALS ground point improvement process 

 

Figure 25. Triangulated 3D view of the cleaned ground points. 
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5.2.1.2 Vegetation classification 

Vegetation points were classified from the point cloud by using algorithm based on height 

from ground using TerraScan. Points from 0 m to 1.5 m were classified as low vegetation, 

while everything above 1.5 m was classified as high vegetation. Separation between low and 

high vegetation was needed for the building and wire classification. To remove faulty points, 

all points above 50 m from the ground were removed.  

5.2.1.3 Building and wire classification 

Classifying buildings were done by using automatic algorithm in TerraScan. Results from the 

algorithm were not good and manual verification and editing was necessary. Due to 

irregularity of building shapes and sizes, a lot of classification errors were found from results 

of the automatic classification. All tiles were inspected and missing buildings were identified 

from DSM, CHM (Figure 29) and visualized point cloud. 

Due to difficult topography and small power lines, no automatic algorithm could detect power 

wires or towers in the study area. Therefore, power lines were manually edited in TerraScan 

by using CHM as background for identification (Figure 26). Results of classification can be 

seen in Figure 27 as triangulated visualization.  

 

Figure 26. Buildings, wires and vegetation visible in CHM. Different objects can be 

identified based on their geometrical shapes and heights. 
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Figure 27. Triangulated 3D view of classified ALS point cloud (red = buildings, white = 

power wires, orange = ground, green = vegetation). 

5.2.2 Digital terrain model, digital surface model and canopy height model 

DTM and DSM were calculated from the cleaned and pre-processed ALS data. DTM was 

calculated by using adaptive TIN-surfaces (Axelsson 2000; Soininen 2016) algorithm 

implemented in TerraScan. Spatial resolution for DTM was 1 m. Only points classified as 

ground were used for DTM calculation. DSM was calculated from the ALS data by using first 

only or first of many echoes. Highest Hit Z algorithm in TerraScan (Soininen 2016) was used 

to generate the grid. CHM was calculated by subtracting DTM from DSM in QGIS. All 

models were clipped to the study area extent by using a shapefile in QGIS. 

5.3 Variable computation and extraction 

The main steps of the variable computation and extraction are summarized in Figure 28. In 

total, over 500 potential predictors were calculated for the modelling. This included 11 

variables from Landsat time series, four variables from African soil grids, 14 topographic 

variables and 77 vegetation and intensity variables. In addition, Landsat time series variables 

were extracted (Zonal Statistics) using mean and range statistics, African soil grids and 

topographic variables were extracted using max, mean, min, range and standard deviation. 

Topographic variables also were computed using six different spatial resolutions: 1 m, 5 m, 

10 m, 25 m, 50 m and 100 m. Feature extraction and vegetation and intensity variable 
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computation was performed using the five different study plot sizes. All computed predictor 

variables are listed in Appendix 1, without the different feature extraction methods or spatial 

resolutions.  

All variables were created or calculated using R or Python by utilizing several open source 

libraries and tools. QGIS Processing framework was used to calculate the topographic 

variables, utilizing System for Automated Geoscientific Analyses (SAGA) (Conrad et al. 

2015), Geospatial Data Abstraction Library (GDAL) (GDAL Development Team 2016) and 

Geographic Resources Analysis Support System (GRASS) (GRASS Development Team 

2016) libraries through the Python application programming interface (API). Vegetation and 

intensity variables were calculated using FUSION software (McGaughey 2016). Feature 

extraction was performed using Zonal Statistics method in QGIS. All the variables were 

combined to a CSV file which was then used in the variable selection. This procedure was 

repeated five times using the different study plot sizes for feature extraction, vegetation and 

intensity variable computation. 
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Figure 28. Overview of the variable computation and feature extraction process. Digital 

terrain model (DTM) was resampled to six different spatial resolutions and topographic 

variables were computed from the outputs. Statistics (max, mean, min, range and standard 

deviation) for topographic variables, Landsat time series and African soil grids were extracted 

for different study plot extents. Vegetation and intensity variables were computed from the 

airborne laser scanning (ALS) data with the same study plot sizes and joined with the 

extracted features resulting in shapefiles with all calculated variables for each plot size. 
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5.3.1 Vegetation and intensity variables 

ALS based vegetation and intensity variables were calculated using the ALS data processing 

software called FUSION (MgGaughey 2016). FUSION has a command line interface (CLI), 

which was utilized to calculate the variables. To make the processing more repeatable and less 

error prone, an automatic python script was developed to construct all necessary calls to 

FUSION CLI. Script generates the commands to call dynamically, based on the user defined 

input parameters. These generated calls were then transferred to CLI using Python 

subprocess-module. 

As FUSION do not support traditional raster formats, a DTM was calculated in FUSION 

using PLANS DTM format. Next, study plots were clipped using ClipData tool (McGaughey 

2016). Study plot locations are based on user configurable text file, which contains study plot 

identifier and coordinates in user defined CRS. Clipped files were normalized using the Plans 

DTM file created in the first step. This procedure was repeated five times for each study plot 

size.  

After study plot files were clipped, the vegetation and intensity variables were calculated 

using CloudMetrics tool in FUSION (McGaughey 2016). Variables were calculated three 

times for each study plot, using different minimum height break values (0 m, 2 m and 4 m). 

As the minimum height break only affected certain cover estimates, output CSVs for each 

study plot were combined and all identical variables were deleted.  

5.3.2 Topographic variables 

DTM calculated in 1 m resolution was resampled to 5 m, 10 m, 25 m, 50 m and 100 m spatial 

resolutions using automatic script implemented in R. RGDAL (Bivand et al. 2016) library 

was used for resampling. Bilinear interpolation was used as the resampling method. 

Topographic variables (Table 6) were calculated from the DTMs, using QGIS Processing-

framework with GDAL, GRASS and SAGA libraries. Topographic variables were calculated 

for each input DTM resolution. Whole process was automated with a Python script. The effect 

of spatial resolution is demonstrated in Figure 29. 
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Table 6. Computed topographic variables. 

  

 

   

Figure 29. Topographic wetness index (TWI) with different spatial resolutions (1 m, 10 m 

and 100 m).  

5.4 Variable selection 

Due to the high number of predictors in this study, an automatic variable selection method 

was needed. RF based R package called variable selection using Random Forests (VSURF) 

(Genuer et al. 2016) was used to select the most important predictors. VSURF utilizes a three 

step variable selection procedure, which is designed for high dimensional data, where count of 

predictors exceeds the count of observations (Genuer et al. 2016). VSURF was run separately 

for SOC and N, and for each study plot size. An output CSV was generated containing the 

selected variables for each run.  

 

Variable Tool

Slope GRASS

Aspect GRASS

Profile Curvature GRASS

Tangential Curvature GRASS

First Order Derivative (E-W slope) GRASS

First Order Derivative NS (N-S slope) GRASS

Second Order Partial Derivative (DXX) GRASS

Second Order Partial Derivative (DYY) GRASS

Second Order Partial Derivative (DXY) GRASS

Catchment Area SAGA

Topographic Position Index SAGA

Topographic Wetness Index SAGA

Elevation TerraScan/GDAL*

Elevation from ground QGIS

*Resampled with GDAL
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5.5 Random Forest modelling and accuracy assessment 

RF (Breiman 2001) is a popular ensemble machine learning algorithm used in several 

scientific applications. RF is based on multiple decision trees. When a new subsequent tree is 

built, a technique called bagging is used. In bagging, the RF algorithm does not look at the 

previous trees, which reduces the risk for overfitting the model. In inclusion with bagging, a 

random sample of predictors is taken before splitting the node to new trees, yielding to 

improved error rates (Breiman 2001). The final predictions are derived by taking the average 

of each individual tree (Breiman 2001). Benefits of RF are that it has no requirements for 

probability distribution of the target variable, leading to improved fitting for non-linear 

relationships (Hengl et al. 2015). RF has been also proven to perform well on complex 

patterns. 

Selected variables by the VSURF were used for RF regression and final modelling results 

were computed. The number of RF trees was set to 1000. Due to the slight variation between 

each run, RF was run 50 times for each variable and resolution. Accuracy statistics were 

calculated as average of these 50 runs. Accuracy statistics were computed by using leave-one-

out cross validation (Packalén et al. 2012).  

The accuracy statistics computed were root mean square error (RMSE), relative root mean 

square error (RRMSE, %, RMSE divided by the mean), bias (mean residual error), relative 

bias (%) and pseudo coefficient of determination (R2), which was computed based on Pearson 

correlation coefficient between the predicted and observed values. Variable importance was 

analysed by comparing increase in mean square error (%IncMSE). 

5.6 Soil organic carbon and nitrogen content maps 

SOC and N content maps were generated only for the best model found in the previous step. 

Variables selected by VSURF were computed for the whole study area. In the case of 

topographic variables, they were already computed for the whole area. ALS vegetation and 

intensity metrics were calculated for the whole study area using GridMetrics tool in FUSION 

(McGaughey 2016). 

Vegetation and intensity metrics created in GridMetrics were converted to shapefile. Feature 

extraction was performed for the selected topographic, Landsat time-series and/or African soil 

grids. Shapefiles with selected variables were imported to R and RF model created in previous 
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step was used to predict SOC and N values for each pixel in the study area. Predicted values 

were imported back to QGIS and converted to raster for visualization. 

6. Results 

6.1 Modelling results based on airborne laser scanning and ancillary data 

6.1.1 Model performance 

The modelling results varied considerably among the response variables and resolutions 

(Table 7). R2 varied between 0.47 and 0.66 for SOC and between 0.36 and 0.44 for N (Figure 

31). RRMSE varied between 31 and 40 % for SOC and between 32 and 34 % for N (Figure 

30). 

Table 7. Accuracy statistics for RF models of soil organic carbon (SOC) and nitrogen (N) for 

various plot sizes. 

 

For SOC, plot size of 0.8 ha performed relatively well, RRMSE being 31 % and pseudo R2 

0.66. For N, all the models performed similarly and none of the models was clearly the best. 

In general, SOC results were slightly better than N results. 

Response Plot size (ha) RMSE RRMSE Bias RBias Pseudo R
2

SOC (%)

0.1 0.76 36.94 0.031 1.49 0.47

0.2 0.74 36.05 0.014 0.67 0.50

0.4 0.76 37.31 0.002 0.10 0.46

0.8 0.63 30.98 -0.027 -1.31 0.66

1.6 0.73 35.92 -0.008 -0.40 0.50

N (%)

0.1 0.054 32.39 0.0006 0.39 0.41

0.2 0.053 31.80 -0.0005 -0.33 0.44

0.4 0.054 32.43 -0.0023 -1.37 0.41

0.8 0.053 32.14 -0.0005 -0.29 0.43

1.6 0.056 33.88 -0.0003 -0.18 0.36
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Figure 30. Relative root mean square error (%) values of soil organic carbon (SOC) and 

nitrogen (N) models for various plot sizes. 

 

 

Figure 31. Pseudo coefficient of determination (R2) values of soil organic carbon (SOC) and 

nitrogen (N) models for various plot sizes. 

Figure 32 shows the relationships between observed and predicted SOC values. Most models 

were rather similar but model with plot size of 0.8 ha provided clearly the best model fit as 

indicated by the accuracy statistics (Table 7). Most of the observed and predicted SOC values 

are on the lower end of the scale. In general, all the models seem to under-predict SOC as the 

highest predicted value in the 0.8 ha model was 4.6 and the highest observed value was 6.5. 



 

48 
 

  

  

 

 

Figure 32. Relationships between observed and predicted soil organic carbon (SOC) values. 

Figure 33 shows the relationships between observed and predicted N values. All the models 

are relatively scattered, and no clear differences can be distinguished between the models. 

Most of the observed and predicted N values are relatively small. In general, all the models 

seem to under-predict N as the highest predicted value in the 0.8 ha model was 0.32 and the 

highest observed N was 0.49. 
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Figure 33. Relationships between observed and predicted nitrogen (N) values. 
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6.1.2 Variable selection 

Results of the variable selection are shown in Table 8. The variables are coded using the 

coding schema defined in Appendix 1. Number of variables selected varied highly between 

the plot size and response variable. On average, SOC had lower number of predictors (9.6) 

than N (14.4). The lowest number of predictors was 3 for SOC and 10 for N. The highest 

number of predictors was 16 for SOC and 17 for N. SOC modelled with 0.8 ha plot size had 

only three predictors: Landsat band 2 (Mean as feature extraction statistics), tangential 

curvature (5 m spatial resolution, using range as feature extraction statistics) and maximum 

intensity.  

Selected predictors varied highly between models, though couple of them appeared regularly 

in the models: tangential curvature, intensity based variables, DTM (elevation) and Landsat 

band 2 or 3. Models had also same variables with different spatial resolution. Due to the high 

number of selected predictors, only the best SOC model is described more closely. The results 

of N modelling were worse and the number of predictors very high, and hence closer analysis 

was not done. 

As described above, SOC model with 0.8 ha plot size performed best. Figure 34 shows the 

relationships between the observed SOC and three selected predictors: maximum intensity, 

tangential curvature (5 m spatial resolution, range as feature extraction method) and Landsat 

band 2 (mean as feature extraction method). Reflectance values of the Landsat band 2 have 

been multiplied with 10000 (Adhikari et al. 2016). 
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Table 8. Results of the VSURF variable selection. Variables are coded using the coding 

schema defined in Appendix 1. Statistical method used in the feature extraction (for 

topography, African soil grid and Landsat variables) with the original spatial resolution (for 

topography variables) are defined inside the parenthesis. For certain canopy cover estimates 

minimum height break (in meters) is defined inside the parenthesis, with word above. 

 

 

Response Plot size (ha) No X X1 X2 X3 X4

SOC (%)

0.1 16 I.stddev I.L2 I.AAD TAC (Max, 5m)

0.2 14 I.L2 I.variance E.P50 PARA (Above 2)

0.4 7 ARATFR (Above 2) I.AAD I.L2 E.MAD.med

0.8 3 TAC (Range, 5m) RB2 (Mean) I.maximum

1.6 8 RB2 (Mean) I.maximum I.P99 SYY(Min, 10m)

N (%)

0.1 17 I.L2 I.variance I.AAD I.IQ

0.2 10 I.variance I.L2 I.AAD E.P50

0.4 15 I.AAD I.L2 ARATFR (Above 2) E.P50

0.8 17 E.P50 E.MAD.med PARA (Above 2) E.MAD.mo

1.6 13 RB2 (Mean) I.maximum RB1 (Mean) Elev.MAD.mode

Response Plot size (ha) X5 X6 X7 X8 X9

SOC (%)

0.1 PFRA (Above 2) RB3 (Mean) I.IQ SXY (Range, 5m) I.P99

0.2 I.maximum SXY (Range, 5m) ARATFR (Above 2) TAC (Max, 5m) RB1 (Mean)

0.4 I.maximum DTM (Max, 50m) FNS (Range, 5m)

0.8

1.6 RB3 (Mean) SXX (Min, 1m) E.MAD.mo SXX (Range, 1m)

N (%)

0.1 PFRA (Above 2) RB3 (Mean) SXX (Mean, 1m) ASP (Mean, 1m) TAC (Mean, 1m)

0.2 ASP (Mean, 1m) ASP (Range, 25m) TAC (Range, 5m) DTM (Max, 1m) TAC (Max, 5m)

0.4 E.MAD.med DTM (Max, 50m) PFRA (Above 2) ASP (Min, 5m) TWI (Min, 25m)

0.8 I.AAD TAC (Range, 5m) RB2 (Mean) I.maximum I.IQ

1.6 DTM (Mean, 100m) E.P05 DTM (Max, 100m) DTM (Max, 1m) RSR (Stddev)

Response Plot size (ha) X10 X11 X12 X13 X14

SOC (%)

0.1 SLO (Mean, 50m) DTM (Max, 10m) TAC (Mean, 1m) DTM (Mean, 25m) DTM (Min, 10m)

0.2 ASP (Mean, 1m) ASP (stdev, 25m) RSR (Mean) TAC (Min, 1m) DTM (Max, 25m)

0.4

0.8

1.6

N (%)

0.1 TAC (Max, 5m) DTM (Max, 10m) SXY (Range, 5m) DTM (Max, 25m) I.maximum

0.2 DTM (Min, 5m)

0.4 I.maximum SLO (Min, 25m) TAC (Max, 5m) E.maximum I.P99

0.8 I.P99 RB1 (Mean) RB3 (Mean) DTM (Max, 5m) DTM (Max, 25m)

1.6 RSR (Mean) ARATFR (Above 2) SXX (Min, 1m) SLO (Min, 100m)

Response Plot size (ha) X15 X16 X17

SOC (%)

0.1 DTM (Mean, 10m) SXY (Min, 50m)

0.2

0.4

0.8

1.6

N (%)

0.1 TAC (Mean, 5m) RWT (Stddev) DTM (Min, 5m)

0.2

0.4 TPI (Min, 5m)

0.8 DTM (Mean, 50m) SLO (Min, 100m) SLO (Min, 5m)

1.6



 

52 
 

  

 

 

Figure 34. Relationships between selected predictors and observed soil organic carbon 

(SOC). 

Variable importance was also analysed for the SOC (Figure 35) and N (Figure 36) models 

with 0.8 ha plot size. The higher the increase in mean square error (%IncMSE) value, the 

more important variable. For SOC, the most important predictor was Landsat band 2, with 

small difference to maximum intensity and tangential curvature. For N, the predictor 

importance was more varying among the selected variables. The most important predictors for 

N were the tangential curvature, intensity P99 and maximum intensity. 
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Figure 35. Increase in mean square error (%) for selected soil organic carbon variables. 

 

Figure 36. Increase in mean square error (%) for selected nitrogen variables. 

6.1.3 Maps of soil organic carbon and nitrogen contents 

RF model described in the previous step was used to predict SOC and N content for the whole 

study area. For both response variables, only the model with 0.8 ha plot size was used as it 

was clearly the best performing model for SOC and with N there were no clear differences 

between the models. Circular plot with 50.46 m radius (0.8 ha), equals to 89.45 m × 89.45 m 

in area, as square. However, for the map creation, the spatial resolution was rounded to 90 m 

× 90 m. 
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Due to the poor results and high number of predictors for N, no detailed analysis was done. 

Summary statistics of the predictor variables and predicted SOC values for the whole study 

area are given in Table 9. There were in total 12991 pixels in the study area after removal of 

artefacts from the Landsat images and corner pixels. 

Table 9. Summary statistics of input data and predicted values for the whole study area. 

 

Figure 37 shows the frequencies of the values of each variable. All the predictor variables had 

high values for certain range of data, and similar structure can be seen in the predicted SOC 

values. For tangential curvature, most of the values (88.31 %) are between 0 and 0.2, while 

values between 0.8 and 1.1 have only 0.01 %. Feature extraction method for tangential 

curvature was range, so values are the difference of minimum and maximum in the pixel. 

Similar structures can be seen also in Landsat band 2, where 76.66% of the values are 

between 400 and 800, while only 0.04% of the values were between 1200 and 1600. With 

maximum intensity, percentages were more widely dispersed, though values between 150 and 

200 were dominant (44.39%). 

  

Statistics Maximum intensity Tangential curvature Landsat band 2* Predicted SOC (%)

Minimum 68.00 0.016 348.42 1.23

Maximum 255.00 1.045 1706.01 5.04

Mean 186.38 0.127 708.92 2.11

Standard deviation 45.21 0.066 120.39 0.82

* Reflectance values can be optained by diving by 10000
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Figure 37. Relative frequencies (%) of the predicted SOC (%) values and predictor variables. 

Predicted SOC content map can be seen in Figure 38 and N content map in Figure 39. There 

are gaps in the maps due to the missing data in the Landsat images. From both of the maps, 

areas with large and small SOC and N values can be identified. For both maps, the large 

values seem to be found in the forests and areas of dense vegetation, and small values are 

found near non-vegetated areas. 

 

Figure 38. Predicted soil organic carbon (SOC) content (%) map for the study area. 
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Figure 39. Predicted nitrogen (N) content (%) map for the study area. 

Figure 40 shows the selected predictor variables for SOC model and Figure 41 the selected 

predictor variables for N model. Patterns in the SOC and N map clearly follow the patterns of 

the predictor variables. Low reflectance in Landsat band 2 and high value of maximum 

intensity seem to lead to high levels of SOC and N. Smaller range of tangential curvature 

leads to higher predicted values, as higher range leads to smaller values. 
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Figure 40. Maps of the selected variables for soil organic carbon model (0.8 ha). Statistical 

method used in the feature extraction (for topography and Landsat variables) with the original 

spatial resolution (for topography variables) are defined inside the parenthesis. 
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Figure 41. Maps of the selected variables for nitrogen model (0.8 ha). Statistical method used 

in the feature extraction (for topography and Landsat variables) with the original spatial 

resolution (for topography variables) are defined inside the parenthesis. 
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6.2 Modelling results based on different data combinations 

6.2.1 Model performance 

Soil properties were also modelled separately using different combinations of datasets. 

Results for SOC are shown in Table 10 and results for N in Table 11. Comparison of the 

RRMSE values is shown in Figure 42 and pseudo R2 in Figure 43. All the models were 

calculated with plot size of 0.8 ha, which was found to perform best when using the all 

datasets. 

Table 10. Statistical comparison of soil organic carbon models using different data 

combinations. 

 

Table 11. Statistical comparison of nitrogen models using different data combinations. 

 

RRMSEs (Figure 42) of the SOC models varied between 30.89 % and 40.07 % and pseudo R2 

(Figure 43) values between 0.38 and 0.66. The best results were achieved with ALS + Landsat 

datasets and the worst when using Landsat and African soil grid data. Model with ALS data 

only performed intermediately, with RRMSE of 34.57 % and R2 of 0.55. 

RRMSEs (Figure 42) of the N models varied between 32.14 % and 36.62 % and pseudo R2 

(Figure 43) values between 0.25 and 0.43. The best results were achieved with ALS + Landsat 

datasets and the worst when using Landsat and African soil grid data. Model with only ALS 

data performed intermediately, with RRMSE of 33.07 % and R2 of 0.39. 

 

 

Dataset RMSE RRMSE Bias Rbias Pseudo R
2

All 0.63 30.98 -0.027 -1.31 0.66

ALS 0.71 34.57 -0.018 -0.90 0.55

ALS + Landsat 0.63 30.82 -0.025 -1.24 0.66

ALS + African soil grids 0.72 35.05 -0.020 -0.97 0.53

Landsat + African soil grids 0.82 40.07 -0.019 -0.94 0.38

Dataset RMSE RRMSE Bias Rbias Pseudo R
2

All 0.053 32.14 -0.0005 -0.29 0.43

ALS 0.055 33.07 -0.0008 -0.49 0.39

ALS + Landsat 0.054 32.59 -0.0008 -0.49 0.41

ALS + African soil grids 0.055 32.84 -0.0013 -0.80 0.40

Landsat + African soil grids 0.061 36.62 -0.0013 -0.79 0.25
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Figure 42. RRMSE (%) values of SOC and N models using different data combinations. 

 

Figure 43. Pseudo R2 values of SOC and N models using different data combinations. 

 

Model with all datasets and model with ALS + Landsat performed equally well, with just 

slight difference in accuracy statistics due to random variations in the RF predictions. Thus, 

the African soil grids did not provide any value to the modelling and could be discarded. This 

was also indicated by the fact that those data were not included in the selected predictors in 

the earlier analyses. The model based on only ALS data performed slightly worse than the 

model with all data. Therefore, Landsat time series dataset seem to improve pseudo R2 by 0.1 

in the case of SOC, and by 0.02-0.04 in the case of N. RMSE improved by 0.08 for SOC, but 

remained same for N. 
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6.2.2 Variable selection 

Selected variables for SOC models are shown in Table 12. For all SOC models with ALS 

data, maximum intensity and tangential curvature (with spatial resolution of 5m and range as 

feature extraction method) were selected. Model with ALS data only had also percentage of 

all returns above 2 meters and median of the absolute deviations from the overall median from 

elevation as selected variables. Model with Landsat and African soil grids had different 

Landsat bands (RB1, RB2 and RB3), topsoil soil organic carbon stock in tonnes per ha (TTH) 

and topsoil soil organic carbon content (fine earth fraction) in g per kg (TKG). 

Table 12. Results of the VSURF variable selection for soil organic carbon models. Variables 

are coded using the coding schema defined in Appendix 1. Statistical method used in the 

feature extraction (for topography, African soil grid and Landsat variables) with the original 

spatial resolution (for topography variables) are defined inside the parenthesis. For certain 

canopy cover estimates minimum height break (in meters) is defined inside the parenthesis, 

with word above. 

 

Selected variables for N are shown in Table 13. N models had clearly more selected variables 

than the SOC models. Most of the N models had tangential curvature (TAC), 50% percentile 

of elevation (E.P50), percentage of all returns above a specified height (PARA), maximum 

intensity (I.maximum) and several others. Nitrogen models had also several elevation (DTM) 

variables, which were calculated using different feature extraction methods or had different 

spatial resolution. For model with Landsat and African soil grids, six variables were selected 

from the Landsat data, though reason for this is most likely that the African soil grids did not 

have any N data. As shown in chapter 6.2.1, performances of the N models were poor, which 

can be seen as large amount of predictor variables. 

 

 

Dataset No X X1 X2 X3 X4 X5

All 3 TAC (Range, 5m) RB2 (Mean) I.maximum

ALS 4 TAC (Range, 5m) PARA (Above 2) E.MAD.med I.maximum

ALS + Landsat 3 TAC (Range, 5m) RB2 (Mean) I.maximum

ALS + African soil grids 4 TAC (Range, 5m) E.P50 PARA (Above 2) I.maximum

Landsat + African soil grids 5 RB2 (Mean) RB3 (Mean) RB 1 (Mean) TKG (Max) TTH (Max)
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Table 13. Results of the VSURF variable selection for nitrogen models. Variables are coded 

using the coding schema defined in Appendix 1. Statistical method used in the feature 

extraction (for topography, African soil grid and Landsat variables) with the original spatial 

resolution (for topography variables) are defined inside the parenthesis. For certain canopy 

cover estimates minimum height break (in meters) is defined inside the parenthesis, with word 

above. 

 

7. Discussion 

7.1 Modelling performance 

When comparing SOC modelling results to similar studies, the results seem to be quite nicely 

in line. There are not many studies having similar data, study area and scale, but most of the 

other studies have something in common with this study. Rather similar study was conducted 

by Li et al. (2016) who used ALS based intensity and topography variables for modelling soil 

properties in Korean pine forests. Authors achieved similar results, as R2 ranged between 0.46 

and 0.66 for SOM (related to SOC), N, pH and soil depth. However, study area of Li et al. 

(2016) was pine forest, but study area in this study was very heterogeneous. Were et al. 

Dataset No X X1 X2 X3 X4

All 17 E.P50 E.MAD.med PARA (Above 2) E.MAD.mo

ALS 13 PARA (Above 2) E.P50 E.MAD.med E.MAD.mo

ALS + Landsat 17 E.P50 E.MAD.med PARA (Above 2) E.MAD.mo

ALS + African soil grids 13 PARA (Above 2) E.P50 E.MAD.med E.MAD.mo

Landsat + African soil grids 6 RB2 (Mean) RB1 (Mean) RSR (Std dev) RB3 (Mean)

Dataset X5 X6 X7 X8 X9

All I.AAD TAC (Range, 5m) RB2 (Mean) I.maximum I.IQ

ALS I.variance TAC (Range, 5m) I.maximum I.P99 I.IQ

ALS + Landsat I.AAD TAC (Range, 5m) RB2 (Mean) I.maximum I.IQ

ALS + African soil grids I.stddev TAC (Range, 5m) I.maximum I.IQ I.P99

Landsat + African soil grids RWT (Mean)

Dataset X10 X11 X12 X13 X14

All I.P99 RB1 (Mean) RB3 (Mean) DTM (Max, 5m) DTM (Max, 25m)

ALS DTM (Mean, 100m) DTM (Max, 25m) DTM (Mean, 25m) TWI (Min, 25m)

ALS + Landsat I.P99 RB1 (Mean) RB3 (Mean) DTM (Max, 5m) DTM (Max, 25m)

ALS + African soil grids DTM (Max, 25m) DTM (Max, 10m) DTM (Max, 5m) SLO (Min, 100m) DTM (Max, 5m)

Landsat + African soil grids

Dataset X15 X16 X17

All DTM (Mean, 50m) SLO (Min, 100m) SLO (Min, 5m)

ALS

ALS + Landsat DTM (Mean, 50m) SLO (Min, 100m) SLO (Min, 5m)

ALS + African soil grids

Landsat + African soil grids
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(2015) achieved R2 of 0.64 when modelling SOC content in eastern Kenya using topographic 

variables and Landsat imagery as predictor variables. Furthermore, Vågen & Winowiecki 

(2013) achieved R2 of 0.65 using Landsat images for SOC modelling in four different study 

sites in eastern Africa.  

Even higher results have been achieved in more homogenous landscapes. Thompson & Kolka 

(2005) explained 71 % of the variability of SOC in forested study area in USA. Vågen et al. 

(2013) achieved R2 of 0.79 when using Landsat data for modelling SOC on four study areas in 

Ethiopia. However, Vågen et al. (2013) had training data from 38 sites, all around the Africa, 

including 3378 topsoil SOC samples, and this study had only 150 SOC samples from one site.  

In contrast to SOC, the N modelling results are surprisingly poor when compared to other 

studies. Li et al. (2016) achieved R2 of 0.6 for N and R2 of 0.6 for SOC as explained 

previously. Other studies have usually found similar performance for both SOC and N. Also 

in this study, observed SOC and N contents are strongly correlated (Figure 44), and hence 

more similar performance could have been expected. 

 

Figure 44. Relationship between observed soil organic carbon (SOC) and observed nitrogen 

(N). 

One possible limitation of the model performance is relatively low number of field 

measurements, especially inside forests and other areas with dense vegetation. Vågen & 

Winowiecki (2013) had also relatively low number of forested plots and achieved similar 

results (R2 0.67). They had four study sites, using same LDSF sampling methodology. 

Authors expect the results to improve if more study sites were available. Low number of 
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forested areas is also seen in the concentration of SOC and N values to the lower end of the 

values, as only nine study plots had SOC content higher than 4 % (Figure 32 and Figure 33). 

The SOC and N predictions are also under-predicted, leading to under-estimations on SOC 

and N levels on the study area. 

When analysing the first objective of this study, the results are looking somewhat promising. 

ALS seems viable option for modelling SOC in heterogeneous landscape when combined 

with ancillary datasets, but does it bring enough value and is it cost-efficient enough for 

operational use. Furthermore, is ALS cost-efficient enough for monitoring purposes? Cost of 

the ALS data collection remains relatively high though data collection is getting cheaper all 

the time as sensors are improving. Also unmanned aerial vehicle based ALS sensors have 

been released and even spaceborne laser scanning sensors have been planned.  

7.2 Importance of the ancillary datasets 

Performances of the different combinations of the datasets were tested to analyse the 

importance of each ancillary dataset on soil properties modelling (Table 10 and Table 11). 

Most important finding was the improvement of the results when using ALS with Landsat 

data compared to model with ALS only. Model with ALS only performed slightly worse than 

the models with ALS and Landsat data. Statistically, using Landsat data improved the RMSE 

to 0.63 from 0.71 for SOC and for N to 0.053 from 0.055. Pseudo R2 improved from 0.55 to 

0.66 for SOC and from 0.39 to 0.43 for N. 

Two most performing models for both SOC and N were the model with all datasets and model 

with ALS and Landsat. These two models were performing almost identically, with very 

small variations in the statistics, due to differences in RF runs. Exactly same variables were 

also selected for the same models. Not a single variable from African soil grids were used in 

these two models.  

Clearly the worst model was the one without ALS data (R2 of 0.38 for SOC and 0.25 for N). 

Even that African soil grids were not tested alone, they do not seem to bring any value to the 

modelling as none of the models with ALS data had variables from the soil grids. Coarse 

resolution (250 m) could explain the low performance of African soil grids for the SOC and N 

modelling in such as heterogeneous study area. Maps of the African soil grids were modelled 

for whole Africa (Hengl et al. 2015), thus inaccuracies are possible in heterogeneous regions. 
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However, the lack of predictive power indicates that the SOC map from African soil grids 

(Hengl et al. (2015) is not accurate estimator for the SOC patterns of the Taita Hills. 

According to the results, ALS is promising data source for soil properties modelling but 

model performance can be improved by adding optical reflectance data to the models. Optical 

RS data has been also important in other studies. Hengl et al. (2015) used MODIS data in 

their African soil grid modelling. Vågen & Winowiecki (2013) achieved good results with 

Landsat data only (R2 0.67) and Vågen et al. (2013) even better results (R2 0.79). 

Heterogeneity of the topography and vegetation could be the reason for low performance for 

models without ALS. ALS brings the high resolution accuracy on topographic variables and 

information about the vegetation and its structure (Kristensen et al. 2015). It is also somewhat 

surprising how good results Vågen & Winowiecki (2013) and Vågen et al. (2013) achieved 

only with Landsat data and without topographical variables. This could be however explained 

by the simpler landscapes or greater variation in SOC content (data was collected from 

several sites). 

7.3 Most important variables 

7.2.1 Selected variables 

Third objective of this study was to find the best predictor variables explaining SOC and N 

content in a heterogeneous landscape. Relatively good results were achieved using the SOC 

model with plot size of 0.8 ha. For N, no clear conclusions could be drawn because of the 

weak performance of the models. In this section, the selected variables for SOC model with 

0.8 ha study plot size are discussed and compared to literature.  

For SOC, three good predictor variables were identified, and those can be easily computed 

from the ALS and Landsat data. The importance of the selected variables was close to each 

other, Landsat band 2 being slightly the most important one. However, it is good to keep in 

mind that SOC content and stocks are dependent on the site-specific conditions as well as on 

the land cover, and current and historical land management practices (Thompson & Kolka 

2005; Bou et al. 2010). 

7.2.2 Range of tangential curvature 

Curvature is an important DTM based surface property used in several applications, such as 

geomorphology and hydrology (Schmidt et al 2003). A surface has different curvatures in 

different directions (Neteler & Mitasova 2008). The curvature in a direction perpendicular to 
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the gradient is called tangential curvature, measured in the normal plane. Tangential curvature 

reflects the change in aspect angle and influences the divergence and convergence of water 

flow (Evans & Cox 1999; Fraisse et al. 2001; Neteler & Mitasova 2008).  

The tangential curvature is expressed as 1/m and value of 0.05 corresponds to radius of 

curvature of 20 m (Shapiro & Waupotitsch 2015). Convex form areas have positive and 

concave form areas have negative values (Shapiro & Waupotitsch 2015). Convex (ridges) 

forms of tangential curvature exhibits converging flow, while concave (valleys) forms exhibit 

diverging flows (Mitasova & Hofierka 1993). 

In this study, most models selected range of tangential curvature as one of the predicting 

variables. The highest SOC and N seem to concentrate in areas with low or intermediate 

values of range of tangential curvature, and the lowest values are near values with high values 

of range of tangential curvature. In this case, the range of tangential curvature explains the 

complexity of topography. As the feature extraction was performed with 0.8 ha plot size and 

spatial resolution of tangential curvature was 5 m, dozens of pixels fitted inside the polygon. 

The higher the range of tangential curvature, the more complex study plot it was (Figure 45).  

 

Figure 45. Tangential curvature (5m) and study plots (0.8 ha) of cluster 2. Extracted values of 

the tangential curvature are shown for the study plots (using range as statistical method).  
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Tangential curvature has been used in several soil properties modelling studies, and it has 

proved to be good predictor variable for soil properties in some of the studies. Timlin et al. 

(2003) used DTM based terrain indices to model soil water holding capacity (WHC), and 

tangential curvature and slope proved to be important variables. Bou et al. (2010) found 

tangential curvature to be good predictor of SOC and the most important terrain based 

variable. On the other hand, Thompson & Kolka (2005) did not find significant correlation 

(R2 0.109) between SOC and tangential curvature in a study area in Kentucky, USA.  

When comparing to literature, tangential curvature is potentially important variable when 

studying SOC and in general soil properties. Range of the tangential curvature is also very 

interesting as no other study seem to have used it. However, the range could make more sense 

than the actual values of the tangential curvature as range depicts the complexity of the 

landscape. 

7.2.3 Maximum intensity 

ALS intensity has not been studied much for soil mapping. Intensity has been used for 

modelling vegetation and soil moisture with intermediate results (Garroway et al. 2011). 

Another study was done in China using intensity as predictor for SOC and other topsoil 

properties (Li et al. 2016). Results of Li et al. (2016) indicate that ALS intensity could be 

effective for estimating topsoil properties in forests with complicated topography and dense 

canopy cover. The ALS sensors operate in the near-infrared region, and the relationships 

between near-infrared wavelengths and soil properties has been identified previously (e.g. Ge 

et al. 2011). According to Li et al. (2016), ALS intensity could provide information about the 

relative proportions of organic compounds in soils, which could explain its power on 

explaining some of the soil properties.  

In this study, the intensity variables contained both ground and vegetation points, thus not 

having only values from the ground or soil. Laser scanning sensors operate on near infrared 

spectral region, in which vegetation reflects strongly. The importance of the maximum 

intensity could be also related to the high reflectance of vegetation. When comparing 

maximum intensity and Landsat band 2 (Figure 40), similar spatial patterns related to 

structure of the vegetation can be found. However, also areas with high intensity that are not 

visible in the Landsat image can be identified. 
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Using intensity is not always straightforward. Due to changes in flying height and scanning 

angle, intensity data should be calibrated and normalized before using it for analyses (Korpela 

et al. 2010; Li et al. 2016). Even simple range-based intensity normalization has been shown 

to improve classification results and compensate for losses in target-to-sensor path (Korpela et 

al. 2010). Issues with the intensity data were also noticed in this study, as clear artefacts can 

be seen in the intensity images (Figure 46) and predicted SOC and N content maps. Stripes 

are going across the data on two locations. This could be explained by issues in the sensor, 

flight lines or in some of the pre-processing steps. More close investigations should be done. 

Even with the issues in intensity data, it proved to be important variable in this study. Results 

might improve if the proper calibration steps were done for the data. The higher the intensity 

values, more SOC and N was predicted in the maps. 

 

Figure 46. Striped artefact in the maximum intensity data. 
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7.2.4 Landsat band 2 (reflectance in green spectral region) 

Landsat ETM+ band 2 was the third variable selected for the SOC model. Landsat band 2 

corresponds to green spectral region (0.52-0.62 μm). In the green wavelength, bare ground 

reflects more than vegetation, thus forests and dense vegetation are seen darker in the images 

(Jensen 2000). Landsat data has been widely used for soil properties modelling with good 

results (Vågen & Winowiecki 2013; Vågen et al. 2013; Mulder et al. 2011). Mirzaee et al. 

(2016) found that Landsat ETM+ imagery accounted from 22.3 % to 47.9 % of the SOM 

variation, concluding that RS data can improve the soil predictions. According to Minasny et 

al. (2008), Landsat is the most often used remotely sensed imagery in soil properties 

modelling. Vågen & Winowiecki (2013) used all bands of Landsat 7 ETM+ data with good 

results. However, authors did not explain the relative importance of the separate bands. 

It is little surprising that the band 2 was selected for most of the models. The modelling also 

included every other Landsat bands and several vegetation indices. Most likely the function of 

green band in the SOC model is to measure the type and amount of vegetation. However, 

some of the importance of the green band could be also explained by relationships between 

soil properties. Schwanghart & Jarmer (2011) found that the highest correlation between the 

organic C and multispectral imagery were found between 0.5 and 0.7 μm. They also found 

that correlations decreased with increase in wavelength. 

 

7.4 Effect of plot size and spatial resolution of topographic variables 

Usually, soil modelling has been done using only one plot size or one spatial resolution for 

the variables, typically being limited by the data used for modelling. This study had different 

approach as several study plot sizes were tested and variables were calculated with several 

spatial resolutions. The best model for estimating SOC was the model with 0.8 ha plot size. 

The results of the modelling were weaker with larger and smaller study plot sizes. Reasons for 

this could be several; data quality, properties of the data and properties of the soil dynamics in 

the Taita Hills. 

The positioning data of the field plots used in the modelling raised also some concerns. The 

study plot coordinates were written on paper sheets and there is possibility of human errors. 

When analysing the data, several writing mistakes were identified and those plots were 

excluded from the analysis. However, a possibility for some inaccuracies remains. The Taita 

Hills is a difficult area for GPS devices due to the variable topography and dense vegetation, 



 

70 
 

which could cause extra inaccuracy to the location measurements. Thus larger study plot size 

could take these inaccuracies into account in comparison to smaller plots. The relatively large 

study plot size also relate to the scale of soil and vegetation spatial variations in the Taita 

Hills.  

Florinsky (2012c) noted the choice of spatial resolution as one of the main problems for soil 

studies using topographical data. Wrong choice of spatial resolution can lead to incorrect 

results or artefacts (Florinsky 2012c). Topographic variables of this study were calculated 

using six different spatial resolutions. Most often selected spatial resolution for topographic 

variables was 5 m. The effect of spatial resolution and neighbourhood size on terrain 

attributes regarding soil mapping has been studied and the general conclusion is that terrain 

variables calculated from too high resolution DTM are full of noise and errors, as too coarse 

resolution DTMs lose the exact information (Timlin et al. 2003; Budiman & Bishop 2005; 

Roecker & Thompson 2010). No clear conclusions can be drawn on the best spatial resolution 

or neighbourhood size as it is usually related to the study area. A good guide for selecting 

proper resolution and neighbourhood size would be to understand the landforms within the 

study area (Roecker & Thompson 2010). Bou et al. (2010) concluded that several studies have 

demonstrated that relationships between soil properties and terrain attributes could be unique 

to each environment and soil property. Florinsky (2012c) proposed calculating topographic 

variables with several spatial resolutions and identified the most suitable for the specific study 

area. Similar approach was used in this study, with relatively good results. Spatial resolution 

of 5 m for topographic variables sounds reasonable for the Taita Hills, while not being full of 

noise, but still being accurate enough. 

7.5 Feasibility of the mapping results 

SOC and N content maps were produced using 90 m × 90 m spatial resolution (0.8 ha). The 

spatial resolution of 90 m should be accurate enough for almost all applications, and 

compared to most of the global or continental datasets with 250 m - 1 km resolutions, the 

maps are very detailed. Areas with high and low SOC and N content can be easily identified 

from the maps, though as the accuracy statistics suggest, the accuracy may not be very high. 

Especially the high values are missing from the predicted data, due to under-prediction in the 

modelling, which might limit the usability of the maps. 

The highest SOC levels were found in the indigenous forests of the Taita Hills, which is in 

line with the results of Vågen et al. (2016). Vågen et al. (2016) found the highest levels of 
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SOC in tropical forest systems, including montane forests in East Africa. Lower levels of 

SOC were found in the areas without vegetation or complex topography. Spatial patterns for 

both SOC and N were similar. 

When comparing the SOC maps of this study (Figure 38) and African soil grids (Figure 18), 

similar spatial patterns can be found, however the map produced in this study seems to reveal 

more details. Though, the SOC and N maps of this study are somewhat noisy, and some level 

of smoothing could improve the visual appearance. Even with the listed faults, the SOC and N 

maps could be valuable for certain applications. Eswaran et al. (1995) noted that the spatial 

distribution of SOC and other soil properties is complicated and accepting errors in the 

geographical variation of SOC could be necessary when creating soil maps. 

7.6 Methodological considerations  

7.6.1 Suitability of Random Forest for soil properties modelling 

RF is a popular machine learning tool used in several scientific applications (Wiesmeier 

2011). However, RF has not been yet widely used on soil properties modelling (Wiesmeier 

2011; Vågen et al. 2016) but it has high potential to be powerful tool for digital soil mapping 

(Vågen et al. 2016).  

RF was used in this study for modelling the SOC and N, producing reasonable results. When 

comparing to other studies, results of this study seem to be well in line with them.  Wiesmeier 

et al. (2011) used RF to predict soil properties with good results, R2 being 0.74 for SOC and 

0.78 for N in a semi-arid steppe ecosystem, concluding that RF is promising framework for 

the spatial prediction of soil properties. Stum et al. (2010) used RF with Landsat and DTM 

based data to predict individual soil classes. Their conclusion was that RF provided an 

effective and objective method for their purposes.  RF has been also used successfully by 

Vågen & Winowiecki (2013), Vågen et al. (2013), Vågen et al. (2016) and Hengl et al. (2015) 

for soil properties modelling. Bou et al. (2010) concluded that if the goal of an analysis is to 

predict something, then decision-tree based modelling is recommended approach.  

However, Were et al. (2015) compared different machine learning algorithms on soil 

properties modelling, and concluded that RF had highest tendency for overestimation and 

lowest R2. Hengl et al. (2015) also noted the slowness of RF modelling, when working with 

large number of observations and predictors, which was also seen in this study. Also the RF 

model created in this study has not been validated using other data. RF are also slowly getting 
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more integrated into the field of GIS, which will most likely increase their usage on different 

purposes. GRASS for example has implementation of RF, which can be used easily with the 

raster data (Pawley 2016). 

7.6.2 Automated variable selection 

Automated variable selection methods are gaining popularity and they have been successfully 

used in vast amount of studies. Selecting variables in regression and classification studies is 

an important challenge (Hastie et al. 2009). Removing irrelevant variables, selecting all 

important variables or determining sufficient subset is beneficial for statistical analysis and 

prediction (Genuer et al. 2010; Genuer et al. 2016). Selecting sufficient variables aids with 

diagnosis, interpretation and speeds up the data processing (Genuer et al. 2010; Genuer et al. 

2016). As Minasny et al. (2008) discussed, the variable selection is an acute problem for soil 

scientists as the number of possible predictor variables is growing. 

One of the goals of this thesis was to identify the most important predictor variables 

explaining SOC and N content in the study area. The vast number of variables was calculated 

from ALS and ancillary datasets, almost everything that could be related to soils and found in 

open source GIS tools. Calculated variables were inserted to automatic variable selection tool. 

An alternative approach would have been to carefully examine the literature and previous 

studies to find the most suitable variables explaining this phenomena and use only those for 

modelling. The latter approach would have been somewhat limiting and time consuming as 

very little information about important variables or parameters could be found from literature 

for such as study area. Furthermore, the variables found were not always very consistent 

between different studies and study areas. Also the uniqueness of the study area added its own 

challenge on finding information about the phenomena. 

It is also important to understand the dangers of using automated variable selection methods. 

Minasny et al. (2008) discussed the problems of variable selection regarding soil mapping. 

Authors noted that the likelihood of finding important variables for the models increases 

when number of variables grows, however this could lead to only good performance on the 

specific dataset. However, authors also promoted the power of computers in variable selection 

as it can lead to identification of previously unknown relationships. 

The automatic variable selection worked relatively well in this study, and the selected 

variables made mostly sense. The best SOC model had only three predictor variables, as most 
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of the other models had several selected predicting variables. The models with the highest 

number of variables generally also performed poorly when comparing to the models with 

fewer variables. The selected variables in the poorly performing models did not make sense 

every time. For example SOC model with 0.1 ha study plot size had four elevation variables, 

only difference being spatial resolution and feature extraction method. The variables were 

most likely highly inter-correlated. 

7.6.3 Scripted workflow 

Most of the work was done using open source tools and scripts to make the analysis more 

repeatable, faster, easier and accurate. Open source tools used in this study are freely available 

for everyone to use. The used open source tools lacked the easiness and visual niceness of 

commercial tools, but took it back in the flexibleness and modifiability. The scripts written for 

this study can be found in GitHub: https://github.com/jehie/soil-modelling . The scripts could 

be used to understand how the study was implemented, even reworked and extended for other 

research purposes. In addition to the scripts used in this study, also ancillary datasets used in 

this study are freely available or based on open access data.  

Scripting and automation saved dozen hours of work in this study, if compared to doing work 

by hand. Adding, removing and modifying variables or changing parameters was fast and 

easy, though because of the large datasets, some operations took several hours of computing 

time. Computer time is however cheap compared to human time.  

Automated workflows and analyses are also gaining popularity in the soil sciences and in the 

field of GIS. Soil information systems have been ranked as one of the top priority research 

question for soil science in the 21st century (Adewopo et al. 2014). Automation is important 

part of the digital soil mapping and soil information systems.  

An example of automation in soil science and in GIS is a project called SoilGrids, which is a 

system for automated soil mapping. SoilGrids contains collection of soil properties and soil 

class maps of the world at 1 km and 250 m spatial resolution. These maps are automatically 

produced using RF models (Hengl et al. 2014; Hengl et al. 2016). With the automation, 

whenever someone updates the data or modifies some input parameter, a new map can be 

generated with minimal human work. SoilGrids data is available freely to everyone, and can 

be downloaded from a web mapping server using web coverage service (WCS) standard. The 

African soil grid data used in this study was downloaded from this service.  

https://github.com/jehie/soil-modelling
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7.7 Future research suggestions 

Several improvement ideas or future research suggestions regarding this study were identified 

during the work. Selected variables for the best SOC model were somewhat surprising, and 

not among the usually reported variables in the literature. Intensity was identified as 

promising variable explaining the SOC and N content in the soils. Intensity has not been 

widely used in soil properties, and further analysis should be done. More accurate pre-

processing steps should also be done when using intensity data from ALS (Korpela et al. 

2010; Kaasalainen et al. 2009). Range of tangential curvature is not also widely used variable 

in soil properties modelling, however it makes sense. More analysis should be done. 

In several articles, land use and land cover was found to be the most important variable 

explaining the soil properties (Wiesmeier et al. 2011; Scharlemann et al. 2014; Guo et al. 

2002). Using land use and land cover data as part of the modelling could improve the results. 

Land use data created by Heikinheimo (2015) could provide valuable information regarding 

the land use in the study area, which also includes information about historical land use in the 

area. SOC levels are highly related to changes in land cover, and resources can deplete 

rapidly. However, accumulation of the SOC levels can take up to decades to revert back to 

natural state (Lal 2004a). Thus, understanding historical land cover changes could provide 

valuable information for the modelling. For example, even dense vegetation measured by the 

RS sensor could have been agricultural field for the past decades, thus usually having low 

levels of SOC. On the other hand, the ALS based variables about vegetation structure, height 

and density were not very important for the modelling. However, this could be explained 

partly by the continuously changing land cover in the study area. Also splitting the study area 

into several classes, based on the land use could be useful. Thompson & Kolka (2005) 

concluded that creating a single model for all soil types in an area is highly unlikely to be 

successful.  

Imaging Spectroscopy (IS) could provide valuable information on the SOC and N content. 

Using IS for soil properties modelling have been studied by several studies and generally 

good results has been achieved (Wulf et al. 2015). Spectral indices from IS have been also 

powerful (Bartholomeus et al. 2008). Though, a general issue remains vegetative areas, where 

optical sensors have no direct access to bare soil (Mulder et al. 2011; Wulf et al. 2015). 

Though, combining ALS data with IS could be very powerful. Identifying different vegetation 

types from the IS data could be valuable for the SOC and N modelling. For example, Omoro 
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et al. (2013) found that SOC densities in the Taita Hills were generally lower in the 

plantations than in the indigenous forests.  

This study focused on analysing the suitability of ALS for soil properties modelling. Another 

potential aspect of the ALS in soil mapping could be identifying potential locations for soil 

restoration and protection. Locations which have the highest SOC and N content are not 

necessarily the same locations where most of the C sequestration could happen. Studies have 

shown that different land cover and vegetation types have different potential for soil C 

sequestration. As Paustian et al. (2016) stated, there are two alternative mitigation approaches, 

avoiding conversion and degradation of native ecosystems or restoring degraded ecosystems 

to forests or grasslands. ALS could most likely be effective also on the latter. 

The size of plot size should be investigated more close. Same study plot size was used for 

calculating the ALS vegetation and intensity metrics and for the feature extraction from raster 

based variables. In other words, area of the feature extraction was similar to the area where 

the ALS metrics were calculated. This was done to limit the number of predictor variables to 

reasonable limits. It is possible that ALS vegetation and intensity metrics would explain SOC 

and N content better in smaller resolutions than topographic variables. An improved approach 

could be to create models with mixed study plot sizes and spatial resolutions for ALS and 

topographic variables.  

8. Conclusions  

The use of ALS and free of cost ancillary datasets was studied for predicting SOC and N 

content in a heterogeneous landscape in the Taita Hills, Kenya. The field data of this study 

consisted of 150 topsoil measurements. Topographic and vegetation variables were calculated 

from the pre-processed ALS dataset, while Landsat time series and African soil grids were 

used as ancillary datasets, to provide valuable extra information. Several RF models were 

created for predicting the SOC and N content, and performance of the models was compared 

and evaluated trough statistical analysis.  

Relatively good results were achieved for SOC, while N models performed poorly. 

Combining ALS with Landsat data resulted in approximately 10 % better results than 

modeling with only ALS data. The modelling performance of SOC content was in line 

previous studies from similar environment, but the performance of N models was weaker. 
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Important predictor variables explaining SOC and N were selected and analyzed. SOC and N 

maps were produced for the Taita Hills at 90 m spatial resolution. Spatial patterns of SOC and 

N content can be identified from the generated maps but also inaccuracies were identified. 

There are clear limitations and challenges to applying ALS for SOC and N mapping, but the 

automated modelling approach presented in this study could be further developed and 

additional datasets should be tried in order to improve the model.  
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11. Appendices 

 

Appendix 1. All predictor variables used in this study. 

Input Data Abbrevation Description 

DTM     

  DTM Elevation 

  CHM Elevation from ground 

  ASP Aspect 

  PRC Profile curvature 

  TAC Tangential curvature 

  FEW First order derivative (East-West) 

  FNS First order derivative (North-South) 

  SXX Second order derivative (DXX) 

  SXY Second order derivative (DXY) 

  SYY Second order derivative (DYY) 

  CAA Catchment area 

  TWI Topographic wetness index 

  TPI Topographic position index 

African 

soil grids     

  TTH Soil organic carbon stock in tonnes per ha (Topsoil) 

  STH Soil organic carbon stock in tonnes per ha (Subsoil) 

  

TKG Soil organic carbon content (fine earth fraction) in g per 

kg (Topsoil) 

  

SKG Soil organic carbon content (fine earth fraction) in g per 

kg (Subsoil) 

Landsat 

time series     

  RB1 Band 1, 50 % percentile 

  RB2 Band 2, 50 % percentile 

  RB3 Band 3, 50 % percentile 

  RB4 Band 4, 50 % percentile 

  RB5 Band 5, 50 % percentile 

  RB6 Band 6, 50 % percentile 

  RBR Vegetation index: Brightness, 50 % percentile 

  RGR Vegetation index: Greenness, 50 % percentile 

  RND Vegetation index: NDVI, 50 % percentile 

  RSR Vegetation index: RSR, 50 % percentile 

  RWT Vegetation index: Wetness, 50 % percentile 

ALS     

  E.mode Elevation mode 

  E.stddev Elevation standard deviation 
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  E.variance Elevation variance 

  E.CV Elevation coefficient of variation 

  E.IQ Elevation interquartile distance 

  E.skewness Elevation skewness 

  E.kurtosis Elevation kurtosis 

  E.AAD Elevation average absolute deviation 

  

E.MAD.med Elevation median of the absolute deviations from the 

overall median 

  

E.MAD.mo Elevation median of the absolute deviations from the 

overall mode 

  E.L1 Elevation L-moment 1 

  E.L2 Elevation L-moment 2 

  E.L3 Elevation L-moment 3 

  E.L4 Elevation L-moment 4 

  E.L CV Elevation L-moment coefficient of variation 

  E.L skewness Elevation L-moment skewness 

  E.L kurtosis Elevation L-moment kurtosis 

  E.P01 Elevation 1st percentile 

  E.P05 Elevation 5th percentile 

  E.P10 Elevation 10th percentile 

  E.P20 Elevation 20th percentile 

  E.P25 Elevation 25th percentile 

  E.P30 Elevation 30th percentile 

  E.P40 Elevation 40th percentile 

  E.P50 Elevation 50th percentile 

  E.P60 Elevation 60th percentile 

  E.P70 Elevation 70th percentile 

  E.P75 Elevation 75th percentile 

  E.P80 Elevation 80th percentile 

  E.P90 Elevation 90th percentile 

  E.P95 Elevation 95th percentile 

  E.P99 Elevation 99th percentile 

  CRR Canopy relief ratio 

  E.SQRT.MEAN.SQ Generalized means for 2nd power 

  E.CURT.MEAN.CUBE Generalized means for 3rd power 

  I.minimum Intensity minimum 

  I.maximum Intensity maximum 

  I.mean Intensity mean 

  I.mode Intensity mode 

  I.stddev Intensity standard deviation 

  I.variance Intensity variation 

  I.CV Intensity coefficient of variation 

  I.IQ Intensity interquartile distance 

  I.skewness Intensity skewness 

  I.kurtosis Intensity kurtosis 
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  I.AAD Intensity average absolute deviation 

  I.L1 Intensity L-moment 1 

  I.L2 Intensity L-moment 2 

  I.L3 Intensity L-moment 3 

  I.L4 Intensity L-moment 4 

  I.L CV Intensity L-moment covariance 

  I.L skewness Intensity L-moment skewness 

  I.L kurtosis Intensity L-moment kurtosis 

  I.P01 Intensity 1st percentile 

  I.P05 Intensity 5th percentile 

  I.P10 Intensity 10th percentile 

  I.P20 Intensity 20th percentile 

  I.P25 Intensity 25th percentile 

  I.P30 Intensity 30th percentile 

  I.P40 Intensity 40th percentile 

  I.P50 Intensity 50th percentile 

  I.P60 Intensity 60th percentile 

  I.P70 Intensity 70th percentile 

  I.P75 Intensity 75th percentile 

  I.P80 Intensity 80th percentile 

  I.P90 Intensity 90th percentile 

  I.P95 Intensity 95th percentile 

  I.P99 Intensity 99th percentile 

  PARA Percentage of all returns above a specified height 

  

PFRA Percentage of first returns above a specified height 

(canopy cover estimate) 

  

ARATFR Number of returns above a specified height / total first 

returns * 100 

  

PFRAME Percentage of first returns above the mean 

height/elevation 

  

PFRAMO Percentage of first returns above the mode 

height/elevation 

  

PARAME 

Percentage of all returns above the mean height/elevation 

  

PARAMO 

Percentage of all returns above the mode height/elevation 

  

ARAMETFR Number of returns above the mean height / total first 

returns * 100 

  

ARAMOTFR Number of returns above the mode height / total first 

returns * 100 

 


