
Department of Computer Science
Series of Publications A

Report A-2016-6

Combinatorial Algorithms with Applications in
Learning Graphical Models

Juho-Kustaa Kangas

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
CK112, Exactum, Gustaf Hällströmin katu 2b, on December 9th,
2016, at 2 p.m.

University of Helsinki
Finland

Supervisors
Mikko Koivisto, University of Helsinki, Finland
Matti Järvisalo, University of Helsinki, Finland

Pre-examiners
Seiya Imoto, University of Tokyo, Japan
Cassio de Campos, Queen’s University Belfast, United Kingdom

Opponent
James Cussens, University of York, United Kingdom

Custos
Petri Myllymäki, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://cs.helsinki.fi/
Telephone: +358 2941 911, telefax: +358 9 876 4314

Copyright c© 2016 Juho-Kustaa Kangas
ISSN 1238-8645
ISBN 978-951-51-2724-2 (paperback)
ISBN 978-951-51-2725-9 (PDF)
Computing Reviews (1998) Classification: F.2.1, F.2.2, G.2.1, G.3, I.2.6,
I.2.8
Helsinki 2016
Unigrafia

Combinatorial Algorithms with Applications in Learning
Graphical Models

Juho-Kustaa Kangas

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
juho-kustaa.kangas@helsinki.fi
http://www.cs.helsinki.fi/u/jwkangas/

PhD Thesis, Series of Publications A, Report A-2016-6
Helsinki, November 2016, 66+90 pages
ISSN 1238-8645
ISBN 978-951-51-2724-2 (paperback)
ISBN 978-951-51-2725-9 (PDF)

Abstract

Graphical models are a framework for representing joint distributions over
random variables. By capturing the structure of conditional independencies
between the variables, a graphical model can express the distribution in a
concise factored form that is often efficient to store and reason about.

As constructing graphical models by hand is often infeasible, a lot of work
has been devoted to learning them automatically from observational data.
Of particular interest is the so-called structure learning problem, of finding
a graph that encodes the structure of probabilistic dependencies. Once the
learner has decided what constitutes a good fit to the data, the task of
finding optimal structures typically involves solving an NP-hard problem
of combinatorial optimization. While first algorithms for structure learning
thus resorted to local search, there has been a growing interest in solving
the problem to a global optimum. Indeed, during the past decade multiple
exact algorithms have been proposed that are guaranteed to find optimal
structures for the family of Bayesian networks, while first steps have been
taken for the family of decomposable graphical models.

This thesis presents combinatorial algorithms and analytical results with
applications in the structure learning problem. For decomposable models,
we present exact algorithms for the so-called full Bayesian approach, which
involves not only finding individual structures of good fit but also comput-

iii

iv

ing posterior expectations of graph features, either by exact computation
or via Monte Carlo methods.

For Bayesian networks, we study the empirical hardness of the structure
learning problem, with the aim of being able to predict the running time
of various structure learning algorithms on a given problem instance. As a
result, we obtain a hybrid algorithm that effectively combines the best-case
performance of multiple existing techniques.

Lastly, we study two combinatorial problems of wider interest with rel-
evance in structure learning. First, we present algorithms for counting
linear extensions of partially ordered sets, which is required to correct bias
in MCMC methods for sampling Bayesian network structures. Second, we
give results in the extremal combinatorics of connected vertex sets, whose
number bounds the running time of certain algorithms for structure learn-
ing and various other problems.

Computing Reviews (1998) Categories and Subject
Descriptors:
F.2.1 [Analysis of Algorithms and Problem Complexity] Numerical

Algorithms and Problems
F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical

Algorithms and Problems
G.2.1 [Discrete Mathematics] Combinatorics – combinatorial algorithms,

counting problems, recurrences and difference equations
G.3 [Probability and Statistics] multivariate statistics, probabilistic

algorithms (including Monte Carlo)
I.2.6 [Learning] knowledge acquisition
I.2.8 [Problem Solving, Control Methods, and Search] dynamic

programming, heuristic methods

General Terms:
algorithms, design, experimentation, theory

Additional Key Words and Phrases:
Bayesian networks, connected subgraphs, decomposable models, empirical
hardness, exact algorithms, linear extensions, structure learning

Acknowledgements

First of all, I would like to express my deepest gratitude to my advisors
Mikko Koivisto and Matti Järvisalo for their patient guidance throughout
my PhD research as well as to Petri Myllymäki, who has played various roles
in making this work possible. Many thanks go also to my other colleagues
and co-authors Teemu Hankala, Petteri Kaski, Janne Korhonen, Brandon
Malone, Teppo Niinimäki, and Pekka Parviainen. It has been an utmost
pleasure to work with and learn from all these brilliant people.

I thank also my pre-examiners Seiya Imoto and Cassio de Campos as
well as the anonymous reviewers of the papers that make up this thesis for
their helpful comments and suggestions.

I am immensely grateful for the financial support and guidance that
I have received from the doctoral programmes Hecse and DoCS through-
out my studies. I thank the DoCS steering committee and Pirjo Moen in
particular for her role as research coordinator and for her valuable advice
in finalizing this thesis. I extend my thanks further to the Department of
Computer Science and Helsinki Institute for Information Technology for
providing an excellent environment for research. I thank all of the staff and
the many friends and acquaintances I have met here.

I am grateful also for my brief research visit at TU Vienna. I thank
Stefan Szeider and all members of the Algorithms and Complexity Group
for hosting me. In particular, I thank Eduard Eiben, Robert Ganian, and
Sebastian Ordyniak for our time and work together.

Finally, I thank my parents and siblings and all other people who have
supported me in life during these years.

Helsinki, November 2016
Juho-Kustaa Kangas

v

vi

Contents

1 Introduction 1
1.1 Research questions and organization 6
1.2 Author contributions . 7

2 Preliminaries 9
2.1 Graphical models . 9

2.1.1 Bayesian networks 10
2.1.2 Markov networks . 11
2.1.3 Decomposable models 11

2.2 Structure learning . 13
2.2.1 Score-based learning 13
2.2.2 Computational problems 15
2.2.3 Exact algorithms for structure learning 17

3 Bayesian learning in decomposable models 19
3.1 Decomposable functions . 19
3.2 Maximization over decomposable graphs 20
3.3 Summation over decomposable graphs 24
3.4 Sampling schemes . 24

3.4.1 Parameterized sampling 25
3.4.2 Adaptive sampling 26

3.5 Monte Carlo estimation . 26

4 Algorithm selection for learning Bayesian networks 29
4.1 Overview . 30
4.2 Features . 30
4.3 Experiment setup . 32
4.4 Model training and evaluation 34

4.4.1 Portfolio performance 34
4.4.2 Prediction accuracy 36
4.4.3 Impact of features 37

vii

viii Contents

5 Counting linear extensions 39
5.1 Partial orders . 40
5.2 Counting by recursive decomposition 41
5.3 Counting by variable elimination 44

6 Connected sets 47
6.1 Upper bounds . 48
6.2 Lower bounds . 51

7 Discussion 53

References 55

Reprints of the original publications 67

Original publications

This thesis is based on the following original publications, referred to as
Papers I–VI in the text. The papers are reprinted at the end of the thesis.

I. Kustaa Kangas, Mikko Koivisto, and Teppo Niinimäki. Learning
chordal Markov networks by dynamic programming. In Advances in
Neural Information Processing Systems 27 (NIPS), pages 2357–2365.
Curran Associates, Inc., 2014.

II. Kustaa Kangas, Teppo Niinimäki, and Mikko Koivisto. Averaging
of decomposable graphs by dynamic programming and sampling. In
Proceedings of the 31st Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 415–424. AUAI Press, 2015.

III. Brandon Malone, Kustaa Kangas, Matti Järvisalo, Mikko Koivisto,
and Petri Myllymäki. Predicting the hardness of learning Bayesian
networks. In Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI), pages 2460–2466. AAAI Press, 2014.

IV. Brandon Malone, Kustaa Kangas, Matti Järvisalo, Mikko Koivisto,
and Petri Myllymäki. Empirical hardness of Bayesian network struc-
ture learning. Under revision.

V. Kustaa Kangas, Teemu Hankala, Teppo Niinimäki, and Mikko
Koivisto. Counting linear extensions of sparse posets. In Proceedings
of the 25th International Joint Conference on Artificial Intelligence
(IJCAI), pages 603–609. IJCAI/AAAI Press, 2016.

VI. Kustaa Kangas, Petteri Kaski, Mikko Koivisto, and Janne H. Korho-
nen. On the number of connected sets in bounded degree graphs. In
Proceedings of the 40th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), volume 8747 of Lecture Notes
in Computer Science, pages 336–347. Springer, 2014.

ix

x

Chapter 1

Introduction

Reasoning in the presence of uncertainty is a challenging task that arises in
various areas, requiring one to model interactions between attributes whose
values are often unknown. A prime example is in medicine, where a doctor
observes a set of symptoms in a patient and needs to determine the most
likely diagnosis, often amongst many possible diseases. For measuring and
reasoning about such uncertainty, by far the most common tool is the notion
of probability. In this general framework the attributes of the domain, such
as the presence of a particular symptom or disease, are expressed as random
variables and the uncertainty about possible values is quantified as a joint
probability distribution over the variables. This allows principled reasoning
about the uncertainty, such as determining the probability that a patient
with certain symptoms has a particular disease.

In order to reason about a distribution one first needs to represent it
in some convenient form. A naive way would be to specify explicitly the
probability of each possible outcome of the variables. An obvious drawback
with this representation is that the number of possible outcomes scales ex-
ponentially in the number of variables, even in the simplest case where each
variable may only take on two possible values. This quickly becomes infea-
sible in many real-life domains, which may contain hundreds or thousands
of variables. On the other hand, such domains typically also contain many
independencies between variables, which often allows one to represent the
distribution in a more concise, factored form. The focus of this thesis is on
probabilistic graphical models [60, 68, 90], which are a popular and flexible
framework for representing such distributions efficiently.

A graphical model expresses the independencies of a distribution with
a graph consisting of a set of vertices and a set of edges between pairs of
vertices. Each vertex corresponds to a single random variable, and an edge
between two variables represents a direct probabilistic dependency between

1

2 1 Introduction

A ⊥ S,L,B
S ⊥ T
T ⊥ S,L,B | A
L ⊥ A, T,B | S
B ⊥ A, T,E,X | S
E ⊥ A,S,B | T, L
X ⊥ A,S, T, L,B,D | E
D ⊥ A,S, T, L,X | E,B

Figure 1.1: An artificial example [69] of a Bayesian network on eight binary-
valued variables. Each variable indicates either the presence or absence of a
disease (Tuberculosis, Lung cancer, Bronchitis), a possible risk factor (Visit
to Asia, Smoking) or a symptom (X-ray result, Dyspnea). The edges are
directed by assumed causality, with risk factors causing their respective
diseases, and the diseases causing their respective symptoms. The network
asserts that each variable is independent of its non-descendants given its
parents. These independencies are listed next to the network.

them. The edges may be either directed or undirected, which gives rise to
two commonly used families of graphical models, the directed models, more
commonly known as Bayesian networks [90], and the undirected models,
also known as Markov networks or Markov random fields [60, Ch. 4].

The graph is known as the structure of the graphical model, and it
encodes a set of conditional independencies between the random variables.
Figure 1.1 shows an example of a medical diagnostics network, which de-
picts the dependencies between diseases and their possible symptoms and
risk factors. We can see, for instance, that whether a person has visited
Asia or has bronchitis are implied to be (marginally) independent of each
other, while the edge between B and D indicates a possible relation be-
tween having bronchitis and having dyspnea (shortness of breath). This
aside, the edge reveals no further qualitative or quantitative information
on the dependency. From the structure alone we cannot tell, say, whether
having bronchitis makes one more or less likely to suffer from dyspnea.

In order to fully quantify all dependencies, we make use of the fact that
the independencies guaranteed by the structure are equivalent to a certain
factorization of the joint distribution. In a Bayesian network, for instance,

3

Pr(A = 1)
0.01

Pr(S = 1)
0.5

T Pr(T = 1 | A)
1 0.05
0 0.01

L Pr(L = 1 | S)
1 0.1
0 0.01

B Pr(B = 1 | S)
1 0.6
0 0.3

T L Pr(E = 1 | T, L)
1 1 1
1 0 1
0 1 1
0 0 0X Pr(X = 1 | E)

1 0.98
0 0.05

E B Pr(D = 1 | E,B)
1 1 0.9
1 0 0.7
0 1 0.8
0 0 0.1

Pr(A,S, T, L,B,E,X,D) = Pr(A) Pr(S) Pr(T | A) Pr(L | S) Pr(B | S)
×Pr(E | T, L) Pr(X | E) Pr(D | E,B)

Figure 1.2: The factorization of the joint distribution over the Bayesian net-
work structure of Figure 1.1 and the resulting local conditional probability
distributions for each random variable.

the joint probability over all variables decomposes into a product of local
distributions that specify the probability of every variable conditioned on
the values of its parents. The numbers that specify these factors are called
the parameters of the graphical model. Figure 1.2 shows the factorization
for the example network as well as possible values of its parameters.

The graphical representation of the joint distribution has numerous ad-
vantages compared to an explicit description. First, it is typically much
more concise and thus more feasible to store and manipulate. For instance,
in the medical diagnostics example there are 28 = 256 possible joint assign-
ments of the variables, while specifying the local conditional probabilities
only requires 18 parameters. Second, a graphical model is interpretable, as
it allows one to directly observe dependencies between variables. Finally,
suitably sparse graph structures admit efficient algorithms for answering
probabilistic inference queries, such as: given that a patient has a positive
X-ray result but no dyspnea, what is the probability that the patient has
lung cancer?

The emergence of graphical models can be dated roughly back to the
beginning of the 1900s, when graphical representations were first used in
physics to model interactions between elementary particles. Throughout
the century similar ideas arose independently in fields such as genetics,
economics, statistics, and artificial intelligence. Following the influential
theoretical work [90, 69] on graphical models and their use for probabilistic
inference in the 1980s, they have since spread to numerous other areas.

4 1 Introduction

Especially in early stages of their adoption, graphical models were often
constructed by a domain expert with an understanding of how the variables
are related. While construction by hand may be doable in simple domains,
it is time consuming and becomes infeasible if the number of variables
is very high, or if the domain is poorly understood or changes over time.
Indeed, the lack of understanding of a phenomenon is often the main reason
why one would want to describe it with a graphical model in the first place.

Even if a domain is not well understood, one typically has access to
some amount of data consisting of multiple joint observations of the vari-
ables. For instance, in the medical diagnostics example an extract from a
patient record might contain one data point or sample for each patient, de-
tailing the status of all diseases, causes, and symptoms. Through statistical
methods, it is possible to infer or learn the relationships between variables
from the data and model them as a joint distribution on the variables. By
treating a family of graphical models as a hypothesis space for the distribu-
tion, these methods allow one to automatically learn a graphical model that
best explains or fits the data. The learning task is typically split into two
separate phases, learning the structure and learning the parameters. If the
structure has already been learned or is known beforehand, fitting its pa-
rameters to the data is considered a relatively easy problem, usually solved
by maximum likelihood estimation or Bayesian methods (see e.g. [45, 60]).
A significantly harder problem is the task of inferring the structure of con-
ditional independencies, called structure learning. In this thesis we study
the structure learning problem and its computational aspects for Bayesian
networks and so-called decomposable models, which are the intersection of
Bayesian networks and Markov networks.

There are two major and highly distinct approaches to learning the
structure: the constraint-based approach and the score-based approach. In
constraint-based learning [91, 113, 80, 102, 18] we aim to first infer the
set of conditional independencies between the variables by carrying out
a series of statistical independence tests. Once the independencies have
been learned, a graph structure that corresponds to those independencies
is constructed. This approach has the advantage of allowing principled
treatment of unobserved variables but provides no means to assess the
uncertainty about the learned structure.

This thesis focuses on score-based learning [17, 23, 46], where the learner
assigns to each potential structure a real-valued score that measures how
well the structure fits the data. The score can be defined in multiple ways
but is typically based on the likelihood of the model combined with either
a Bayesian prior belief or an information-theoretic penalization term. For

5

Bayesian networks such scores can usually be evaluated exactly, while for
Markov networks this task appears computationally infeasible (see e.g. [60,
Ch. 20]). Hence, the scope is usually restricted to learning chordal Markov
networks, which are equivalent to the class of decomposable models.

Once the scoring criterion has been decided, the computational task of
finding a structure with the highest score becomes a discrete search problem
in the space of possible structures. Since the number of structures grows
super-exponentially in the number of variables, exhaustive search in this
space is infeasible outside of very small domains. Fortunately, commonly
used scoring criteria admit a natural factorization of the score, which ren-
ders the search task a combinatorial optimization problem. Although the
factorization avoids the enumeration of all structures, the search problem
remains NP-hard for both general Bayesian networks [19] and decompos-
able models [104]. As a consequence, most early work on structure learn-
ing focused on developing local search algorithms [103, 20, 46, 67] that
might often perform well but fail to provide guarantees about the quality
of their output. Since last decade, however, there are has been a growing
interest in developing exact algorithms that are able to find provably op-
timal structures. For Bayesian networks the first global search algorithms
of this kind adopted a dynamic programming approach [85, 58, 101, 99]
that is guaranteed to solve the problem in exponential rather than super-
exponential time. More recently, this approach has been restated as a
shortest-path problem, which can often be solved faster by employing var-
ious best-first heuristics [120]. Other approaches have included a branch-
and-bound search in the space of cyclic graphs [29] as well as translating
the problem into integer linear programming [27] or constraint program-
ming [112]. For decomposable models, the first exact algorithms [25, 105]
are likewise based on constraint optimization.

Besides finding a single “best” structure, score-based learning also ad-
mits the so-called full Bayesian approach, where the scoring function spec-
ifies a full posterior distribution over all structures, thus taking into ac-
count the uncertainty about the structure. Since representing the posterior
distribution explicitly is not feasible or particularly useful, it is typically
summarized by computing some interesting statistic, such as the posterior
probability of all edges. For certain graph features this computation can
be carried out exactly, while others can be estimated by sampling struc-
tures from the posterior. In particular, a variety of sampling schemes based
on Markov chain Monte Carlo (MCMC) methods [1] have been proposed
for both Bayesian networks [76, 38, 42, 37, 84] and decomposable mod-
els [39, 108, 24, 41].

6 1 Introduction

1.1 Research questions and organization

This thesis presents advances in the structure learning problem, mainly in
form of combinatorial algorithms for structure learning, as well as methods
for expediting and analyzing existing algorithms. The thesis is based on
six papers, which study four distinct questions.

Question I concerns structure learning in decomposable models. The
current exact algorithms for this problem leverage the machinery of con-
straint optimization by encoding the problem as an instance of, say, maxi-
mum satisfiability [25] or integer linear programming [105], and then employ
state-of-the-art algorithms for solving the resulting constraint optimization
problem. While these algorithms can sometimes solve even large instances
fast, they have no reasonable worst-case guarantees and scale reliably only
for very small instances (around 10 variables). Further, they are only able
to provide one or more highest-scoring structures and are not suited for the
full Bayesian approach. Paper I addresses the first issue by presenting a
dynamic programming algorithm that is guaranteed to solve the problem
within exponential time and scales up to around 20 variables. Paper II ad-
dresses the second issue by adapting the algorithm for summation over all
structures, thus enabling the computation of posterior probabilities, either
exactly or by unbiased estimation via sampling.

Question II concerns structure learning in Bayesian networks, for which
a variety of exact algorithms have already been proposed. As many of these
algorithms are based on adaptive search strategies, their running times
depend heavily on intricate structural properties of the problem instances,
rather than simple parameters such as the number of variables. While all
of the algorithms are guaranteed to find an optimal solution eventually, it
is a priori not clear which one of them will finish first and how long it
will take to run. Papers III and IV tackle this question by using machine
learning methods to predict the running times on a given problem instance,
based on an empirical evaluation of the algorithms and a variety of instance
features. As a result, a hybrid algorithm is obtained that combines the best-
case performance of multiple algorithms by always running the algorithm
that is predicted to be the fastest on a given instance.

Question III concerns the fundamental combinatorial problem of count-
ing linear extensions of a partially ordered set. This problem arises in a
variety of applications, including bias correction in certain MCMC schemes
for sampling Bayesian network structures [37, 84]. Although the problem is
#P-complete [15], it can be solved efficiently for partial orders with a suit-
able structure. In particular, known counting methods can be fast on orders
with a dense graph representation. Paper V complements such methods by

1.2 Author contributions 7

presenting algorithms that are fast when the graph representation is sparse
and thus particularly suitable for orders derived from Bayesian networks.

Question IV concerns the extremal combinatorics [51] of connected ver-
tex sets in undirected graphs. The number of such sets bounds the time
complexity of various graph algorithms, including a particular approach to
structure learning in Bayesian networks [93] as well as certain algorithms
presented in Paper V. Paper VI presents analytic results on the number of
connected sets in graphs of bounded vertex degree.

The remainder of this thesis is organized as follows. Chapter 2 presents
concepts that will be required throughout the thesis, including formal def-
initions of graphical models and the computational problems that will be
considered in later chapters. The contributions of the thesis are presented
in Chapters 3–6, which address Questions I–IV, in respective order. We
conclude the presentation with a summary and discussion in Chapter 7.
The original publications that the chapters are based on are printed at the
end of this thesis.

1.2 Author contributions

The original publications were jointly written by their respective authors.
Other contributions by the present author are as follows:

Papers I & II: The present author produced a formal proof of the main
recurrence, devised and proved correctness of the sampling schemes
jointly with Teppo Niinimäki, implemented all algorithms, and car-
ried out the experiments.

Papers III & IV: The present author carried out the running time ex-
periments and participated in discovery of new features and analysis
of the results.

Paper V: The present author developed the recursive algorithm jointly
with Teemu Hankala, implemented both algorithms, and carried out
the experiments.

Paper VI: The present author considered the projection theorem in ex-
tended neighborhoods (suggested by previous research) and proved
the novel upper and lower bounds.

8 1 Introduction

Chapter 2

Preliminaries

In this chapter we give formal definitions of graphical models and the struc-
ture learning problem, which will be required in the following chapters. We
also review existing approaches to structure learning.

2.1 Graphical models

Our interest is in modelling a joint distribution over n random variables,
X1, X2, . . . , Xn. The variables may be either discrete or continuous, though
we will mainly focus on discrete settings. We denote the index set of the
variables by V = {1, . . . , n}, often identifying a variable Xv simply with
the respective index v ∈ V . For each subset S ⊆ V of the indices we denote
by XS the joint variable (Xv1 , Xv2 , . . . , Xvs), where v1, v2, . . . , vs are the
elements of S in increasing order.

Our objective is to express the joint distribution Pr(X1, . . . , Xn) more
succinctly by exploiting conditional independencies between the variables.
Graphical models are a flexible framework for capturing such independen-
cies. We represent a graphical model as a pair (G, θ), where G is called
the structure and θ is a vector of parameters. The structure is either a
directed or undirected graph that encodes the conditional independencies
of the distribution. Each vertex in the graph represents a random variable,
and an edge between two variables corresponds to a (direct) probabilistic
dependency between the variables. The independencies asserted by the
structure imply a certain factorization of the distribution, and the param-
eters θ specify the exact values taken by the factors.

We proceed to give formal definitions of three widely used families of
graphical models, the Bayesian networks and the Markov networks, based
on directed and undirected graphs, respectively, as well as the so-called

9

10 2 Preliminaries

decomposable models, which are exactly the intersection of the first two.
In later chapters we will focus mainly on the Bayesian networks and de-
composable models.

2.1.1 Bayesian networks

A Bayesian network [90, 60] is based on a directed acyclic graph (DAG): a
directed graph that contains no directed cycles. Let G be a DAG having the
index set V as its vertex set. For each vertex (variable) v ∈ V , we denote
by Gv the set of parents of v in G. Since every DAG has a topological sort,
we may assume without loss of generality that the variables are numbered
so that Gv ⊆ {1, 2, . . . , v − 1} for each v ∈ V . For two variables u, v ∈ V
we call v a descendant of u if there is a directed path from u to v.

We say that G has the local Markov property if for all distinct u, v ∈ V
such that u is not a descendant of v it holds that

Xv ⊥ Xu | XGv ,

that is, all variables are conditionally independent of their non-descendants
given their parents. From these independencies we can derive a factoriza-
tion of the distribution. By the chain rule of probability we have that

Pr(X1, . . . , Xn) =
∏
v∈V

Pr(Xv | X1, X2, . . . , Xv−1) .

The assumed variable numbering implies that for each v ∈ V the variables
X1, X2, . . . , Xv−1 contain the parents of Xv and none of its descendants.
Thus the conditional probability Pr(Xv | X1, X2, . . . , Xv−1) simplifies to
Pr(Xv | XGv), which we call the local conditional distribution (LCD) of v.
We may now express the distribution as

Pr(X1, . . . , Xn) =
∏
v∈V

θv(Xv;XGv) , (2.1)

where each θv(Xv;XGv) is a function encoding the LCD of v. We identify
θv with the vector of numbers that specify the distribution, called the pa-
rameters. For discrete variables we typically specify the probability of each
outcome explicitly, and thus have one parameter for each joint assignment
of (Xv; XGv).

We now define a Bayesian network as a pair (G, θ), where G is a DAG
structure satisfying the local Markov property and θ = (θ1, . . . , θn) are the
parameters of the LCDs.

2.1 Graphical models 11

2.1.2 Markov networks

A Markov network [60, Ch. 4] is based on an undirected graph. Though we
will not work with general Markov networks, a brief formal definition will be
useful for defining the class of decomposable models. To that end, let G be
an undirected graph on the vertex set V . For disjoint sets A,B, S ⊆ V we
say that S separates A and B if every path between A and B in G contains
a vertex in S. We now say that G has the (global) Markov property if for
all disjoint vertex sets A, B, S such that S separates A and B it holds that

XA ⊥ XB | XS .

As in Bayesian networks, the independencies guaranteed by the graph
are equivalent to a certain factorization. We say that a nonempty set of
vertices C ⊆ V is a clique if it induces a complete subgraph of G. A
clique is maximal if it is not a proper subset of another clique. If the joint
distribution is strictly positive, then G has the global Markov property if
and only if the probability factorizes as

Pr(X1, . . . , Xn) =
1

Z

∏
C

θC(XC) , (2.2)

where Z is a constant, C runs over the maximal cliques C1, . . . , Cm of G,
and each θC is a positive function [60]. The functions θC are commonly
called factors or clique potentials. Although they are analogous to LCDs in
Bayesian networks, the factors may take any positive real values and need
not be normalized, hence necessitating Z to normalize the product.

We define a Markov network as a pair (G, θ), where G is an undirected
graph satisfying the Markov property and θ = (θC1 , . . . , θCm ;Z) are the
parameters.

2.1.3 Decomposable models

As a final model class we introduce the family of decomposable graphical
models [68], which are exactly those models that can be represented as both
a Bayesian network and a Markov network. Specifically, they are equivalent
to Markov networks that are chordal and Bayesian networks where every
two parents of every variable are joined by an edge. We will give a more
formal definition via the commonly used junction tree representation, which
will prove useful for learning these models from data.

We start by introducing the more general concept of tree decomposition,
which will reoccur later in Chapter 5 in the context of variable elimination.
To that end, let G be an undirected graph on the vertex set V and let T

12 2 Preliminaries

1

3

4

2

5

6

7

8

9 3

5

6

8

9

1

2

7

1

3

4

2

2

8

Figure 2.1: A decomposable graph (left) and one of its junction trees. The
largest clique has 4 vertices and the treewidth of the graph is 3.

be a tree whose vertices V1, V2, . . . , Vm are subsets of V . We say that T is
a tree decomposition of G if

1. every vertex v ∈ V is contained in at least one Vi,

2. every edge {u, v} of G is a subset of at least one Vi, and

3. T has the running intersection property : for every Vi, Vj we have that
Vi ∩ Vj ⊆ Vk for every Vk on the unique path between Vi and Vj in T.

We define the width of the decomposition as the size of the largest Vi, and
the treewidth of G as the minimum width over all of its tree decompositions,
minus 1.1 Intuitively, the treewidth is a measure of how much G resembles
a tree. For instance, every tree has a treewidth 1 while the complete graph
on n vertices has treewidth n− 1.

We say that G is a decomposable graph if it has a tree decomposition T

whose vertices are exactly the maximal cliques C1, C2, . . . , Cm of G. Such a
T is called a junction tree and its every edge is associated with a separator,
the intersection between the two cliques joined by the edge. A separator
may be empty, and the same set may occur as a separator between multiple
pairs of adjacent cliques. Although G may have several junction trees, each
of them has the same separators, labeled S2, S3, . . . , Sm. We denote the set
of maximal cliques of G by C(G) and the multiset of separators by S(G).
An example of a decomposable graph is depicted in Figure 2.1.

Now, if G is a decomposable graph on the variables V and has the
global Markov property, we obtain the factorization (2.2). However, from
the decomposable structure it follows that the factors may also be written
as θi = Pr(XCi)/Pr(XSi) for all i = 1, . . . ,m, where Pr(S1) = 1, and thus

1It is more common to include “minus 1” in the definition of the width rather than
the treewidth. We deviate from this practice to avoid confusion between the width of
the decomposition and the width of the graph, which is the size of the largest clique.

2.2 Structure learning 13

the joint probability factorizes as

Pr(X1, . . . , Xn) =

∏
C∈C(G) Pr(XC)∏
S∈S(G) Pr(XS)

. (2.3)

We thus define a decomposable model as a Markov network (G, θ) whose
structure G is decomposable.

2.2 Structure learning

Our main interest is in learning graphical models automatically from data.
We model a single data point as a vector (x1, x2, . . . , xn) representing a
joint assignment of the n random variables. Let D denote the available
data consisting of multiple data points, assumed to be independently drawn
from a distribution of interest, called the generating distribution. Learning
a graphical model from the data is typically separated into two phases,
learning the structure and learning the parameters. If the structure is
given, its parameters can be estimated independently for every induced
factor, which is considered relatively straightforward [60]. From hereon we
only consider the problem of learning the structure, which has turned out
to be much more challenging both theoretically and computationally.

It is not obvious which structure within our model class of choice should
be considered a best fit to the data. Although we would prefer a structure
that asserts exactly the independencies of the generating distribution, such
a structure might not exist in the model class. More importantly, it is not
possible to infer the independencies with complete certainty from a finite
amount of samples. To avoid overfitting to the limited data, we need some
way to address the uncertainty about the distribution.

In Chapter 1 we outlined briefly two approaches to structure learning,
called constraint-based learning and score-based learning. Most structure
learning algorithms are based on one of these two approaches or a combi-
nation of them. We proceed to describe in greater detail the score-based
approach, which will be our focus throughout the thesis.

2.2.1 Score-based learning

Suppose we have decided on a class of graphical models (either Bayesian
networks or decomposable models) and wish to find a structure within
that class to fit the data D. In score-based learning we assign to each
potential structure G a non-negative real-valued score that measures how
well G fits the data. We will denote the score by sD(G) or simply s(G)

14 2 Preliminaries

assuming no ambiguity about D. While there are multiple ways to define
what constitutes a good fit, a general approach is to prefer models that
are more likely to have generated the data. To that end, scoring functions
are typically based on the likelihood Pr(D | G, θ), the probability of the
data under the model (G, θ). Since we are only interested in evaluating
the structure G, we need a way to define the likelihood without explicitly
specifying the parameters θ. Commonly used scoring functions can be split
into different families based on how they accomplish this.

We place focus on a category of functions known as the Bayesian score.
The philosophy here is that, even before seeing the data, we should always
have some prior beliefs regarding the structure and the parameters, ideally
preferring simple models over complex ones. We model these beliefs as
the structure prior Pr(G) and the parameter prior Pr(θ | G), respectively.
Given the data, we then measure the fit as the posterior probability of the
structure, which according to Bayes’ rule is

Pr(G | D) =
Pr(D | G) Pr(G)

Pr(D)
.

Since the normalizing constant Pr(D) does not depend on G, we typically
ignore it and define the Bayesian score simply as s(G) = Pr(D | G) Pr(G).
The term Pr(D | G) is called the marginal likelihood and is obtained by
integrating out the parameters,

Pr(D | G) =

∫
θ
Pr(D | G, θ) Pr(θ | G)dθ .

Under common assumptions about the parameter prior [46, 28] the integral
can be computed exactly and the marginal likelihood factorizes along the
structure G in a similar fashion as the probability in (2.1) and (2.3). This
factorization is known as modularity of the likelihood.

Assuming a structure prior of similar form, modularity extends to s(G)
as well. Specifically, for Bayesian networks a modular score factorizes as

s(G) =
∏
v∈V

sv(Gv) ,

where sv(Gv) is the local score associated with the variable v and its parents
Gv. For decomposable models a modular score factorizes analogously as

s(G) =

∏
C∈C(G) slocal(C)∏
S∈S(G) slocal(S)

, (2.4)

2.2 Structure learning 15

where slocal(U) is the local score defined for every subset U ⊆ V of the
variables. Modularity is an essential property for efficient structure learning
as it allows evaluation of partial structures, where the presence or absence of
particular edges has not yet been decided. This enables various techniques
of combinatorial optimization that construct their solutions incrementally
and avoid exhaustive search in the space of all structures. Modular scoring
functions are sometimes alternatively called decomposable, though we will
reserve this term for decomposable models and related concepts.

To obtain modularity, we had to assume a conforming structure prior.
As it turns out, the parameter prior has a greater role in penalizing for
excess complexity [60, Ch. 18]. Hence, a common and natural choice of
a modular structure prior is the uniform prior, which does not favor any
structure over another. For different choices of the parameter prior, this
leads to scores such as K2 [23] and those in the BDe family [46] such as
BDeu [17].

Other important scoring functions include the family of maximum like-
lihood score, which is based on the probability of the data when the param-
eters are fitted to the structure with maximum likelihood estimation. Since
such a definition always prefers complete graphs with no independencies,
the score is augmented with an information-theoretic penalization term,
leading to scores such as AIC and BIC/MDL [13, 66, 106, 62]. A more
recently proposed fNML score [100] is based on a modular derivative of the
so-called normalized maximum likelihood criterion.

2.2.2 Computational problems

We proceed to describe the computational problems of structure learning.
The input to these problems is assumed to be a modular Bayesian scoring
function s, given as precomputed local scores.2 The score defines a posterior
distribution over all possible structures, which we wish summarize in some
useful manner.

One common way to summarize the posterior distribution is to find a
maximum a posteriori structure, a single graph that maximizes the score.
We define this task formally as computing

max
G

s(G) ,

where G runs over all structures. We call this the optimization variant of
structure learning. Typically, a structure than attains the maximum score

2In practice, the local scores are usually evaluated and given in logarithmic form. This
is done for the sake of numerical stability, as the probabilities are typically very small.

16 2 Preliminaries

is also found in the process; there might be more than one such structure
and any one of them can be chosen. Occasionally, we wish to augment the
optimization problem with additional constraints that limit the complexity
of the structure. For Bayesian networks, a natural constraint is to require
that no variable may have more than k parents, where k is a small constant.
For decomposable models one can similarly restrict the width, that is, the
maximum size of every clique in the graph. In particular, such restrictions
are often required to reduce the number of input scores to a manageable
level. For Bayesian networks the input may also be reduced by pruning
out any parent set that has a subset with a higher score, as any network
containing such a parent set can be improved by substituting the subset
instead [109, 29]. By contrast, for decomposable models such pruning rules
appear not applicable. We note that the optimization problem as well as
the generalizations are well-defined for all scoring functions, not only those
based on Bayesian posterior probability.

While the graphical models we consider cannot express all sets of inde-
pendencies exactly, most commonly used scoring functions guarantee that,
as the amount of data grows, an optimal structure in the limit will be the
simplest one that can represent the generating distribution [60, Ch. 18].
For small amounts of data, however, an optimal structure is likely to be
heavily overfitted and may generalize poorly for new observations. In such
cases, it can be preferable to learn multiple good structures and use them
for model averaging.

Besides finding one or multiple representative graphs, one can learn
about the structure by computing some interesting marginal of the posterior
distribution. In the most general setting, we wish to compute the posterior
expectation

E[f | D] =
∑
G

s(G) f(G) (2.5)

for some arbitrary real-valued function f of the structure. This is known as
Bayesian averaging [60, Ch. 18], and a typical case of it is the computation
of posterior probabilities of graph features. For instance, if f is an indi-
cator function for the presence of a particular edge in the graph, then the
expectation (2.5) is the (unnormalized) posterior probability for the edge
being present. The normalizing constant is also obtained as a special case
of (2.5), by setting f(G) = 1 for all G.

Computing (2.5) within reasonable resources typically requires that the
function f have a similar modular structure as the scoring function. When
f does not have the desired modular form but one has access to samples
G(1), G(2), . . . , G(T) from the posterior distribution, it is possible to compute

2.2 Structure learning 17

a Monte Carlo [94] estimate

1

T

T∑
i=1

f(G(i)) . (2.6)

This estimate is unbiased and by the law of large numbers concentrates
around the true expectation E[f | D] as T grows. Obtaining independent
samples from the posterior is in general a nontrivial problem; however, an
exact algorithm for computing posterior expectations can often be turned
into an algorithm for producing such samples, as we will see later.

In some cases it turns out to be more efficient to compute a somewhat
biased version of either (2.5) or (2.6). For example, particular MCMC
schemes [37, 84] for sampling Bayesian networks attain faster mixing by
first sampling a linear order on the variables and then sampling a network
(DAG) for which the order is a topological sort. While this expedites the
sampling, each DAG G will be sampled with a probability proportional
to s(G)σ(G), where σ(G) denotes the number of topological sorts of G.
Since the number of topological sorts may greatly vary between different
DAGs, this introduces a bias to the Monte Carlo estimate. Such bias is not
necessarily undesired, as it can often be viewed simply as using a different
kind of (non-modular) structure prior. In general, however, we may want
to correct the bias in order to employ a broader class of priors such as
the natural uniform prior. One way to achieve this is to compute the self-
normalized importance sampling estimate

T∑
i=1

wi f(G
(i))

/ T∑
i=1

wi , (2.7)

where the importance weight wi counterweights the bias in each sample [94].
In this case, we would set wi = σ(G(i))−1, in which case the estimate (2.7)
is unbiased and concentrates around E[f | D].

In this particular example computing the importance weights is a hard
problem, which we will revisit in Chapter 5. A similar usage of importance
sampling also appears in Chapter 3, where the bias arises from the junction
tree representation of decomposable models and is easier to counter.

2.2.3 Exact algorithms for structure learning

The optimization variant of structure learning is NP-hard for both general
Bayesian networks [19, 21] and decomposable models [104], even assuming
a modular scoring function. Regardless, several algorithms are guaranteed

18 2 Preliminaries

to find an optimal solution without resorting to exhaustive search. For
Bayesian networks the first exact algorithms of this kind utilized Bellman–
Held–Karp [5, 47] style dynamic programming over variable subsets, solving
the problem in O(2nn2) time and O(2nn) space for n variables [85, 58, 101,
99]. Later work has built upon the dynamic programming approach by
presenting ways to parallelize the computation, reduce space complexity
in exchange for increased running time, or incorporate prior knowledge
on variable precedence [89, 87, 107]. Hybrid algorithms [93, 59] reduce
the search space of the dynamic programming with additional constraints,
which can first be learned with non-score-based methods.

While no algorithm is known to solve the problem faster in the worst
case, various adaptive search techniques can exploit hidden structure in the
input scores and achieve a better performance on many problem instances.
One such approach expedites the dynamic programming by reformulating it
as a shortest-path problem in the lattice of subsets and employing the A∗ al-
gorithm with various best-first heuristics [121, 120, 35]. Another algorithm
employs branch-and-bound search in a space of potentially cyclic graphs,
considering all possible ways to break cycles to reach DAGs that are viable
solutions [29]. On yet another front, structure learning has been formulated
as a constraint optimization problem such as integer linear programming
(ILP) [50, 26, 27, 4, 97] or constraint programming (CP) [112], allowing
one to apply state-of-the-art solvers for these problems. Optimal networks
of bounded treewidth can also be found by dynamic programming [61], by
ILP based methods [86], or by casting into maximum satisfiability [6].

The feature expectation problem for Bayesian networks can likewise
be solved by dynamic programming. Specifically, the posterior probability
of an arbitrary subnetwork can be computed in O(2nn2) time and space,
assuming a so-called order-modular structure prior [58, 57]. Here, too,
space usage can be reduced at the expense of time [88], and for a modular
structure prior the computation can be carried out in O(3n) time [111].

For decomposable models both optimization and expectation appear
somewhat harder, having no non-trivial worst-case bounds prior to the work
presented in this thesis. Earlier work has, however, presented exact algo-
rithms for the optimization variant by casting into a variety of constraint
languages, including maximum satisfiability, satisfiability modulo theories,
and answer set programming [25]. The ILP approach has also been applied
to learning decomposable models, by adapting the algorithm designed for
Bayesian networks [27] and, more recently, by employing different types of
constraints altogether [105].

Chapter 3

Bayesian learning in decomposable
models

We begin the contributions of this thesis by addressing the structure learn-
ing problem in decomposable models. We present a system of recurrence
relations, which, via dynamic programming, enables computation of both
the optimization variant and posterior expectations in exponential time
with respect to the number of variables. We also extend these algorithms
to a sampling scheme, which enables Monte Carlo estimation of expecta-
tions that the algorithms cannot compute exactly.

This chapter is based on Papers I and II.

3.1 Decomposable functions

As elaborated in Chapter 2, efficient structure learning requires that the
scoring criteria and features have a certain modular structure. Specifically,
consider a real-valued function ϕ defined on all decomposable graphs on
the random variables. We say that ϕ is a decomposable function if

ϕ(G) =

∏
C∈C(G) ϕc(C)∏
S∈S(G) ϕs(S)

(3.1)

for some ϕc and ϕs called the local components of ϕ. It is immediate that
a modular score (2.4) is a special case of a decomposable function where
the components ϕc and ϕs coincide.

Certain natural features of decomposable graphs also turn out to be
decomposable. For instance, let w be a number and let ϕw be the decom-
posable function defined by the local components

ϕw
c (X) = [|X| ≤ w] and ϕs(X) = 1 , for all X ⊆ V ,

19

20 3 Bayesian learning in decomposable models

where the Iverson bracket [Q] denotes 1 if Q is true and 0 otherwise. Thus
ϕ is an indicator function for the property of having width at most w, which
is therefore a decomposable feature. As another example, consider an edge
{u, v} ⊆ V and let ϕ be the decomposable function defined by

ϕc(X) = [{u, v} �⊆ X] and ϕs(X) = 1 , for all X ⊆ V .

Then ϕ is an indicator function for the absence of the edge {u, v}. In
particular, any constant function is decomposable, and the product of two
decomposable functions is also decomposable.

In this light, the structure learning tasks defined in Chapter 2 can be
stated in terms of maximizing or summing a decomposable function over
all structures. For instance, to solve the optimization problem for bounded
width w we would compute maxG ϕ(G) for ϕ = sϕw, where s is any mod-
ular score. Likewise, to solve the feature expectation problem, we would
compute

∑
G ϕ(G) for ϕ = sf , where s is a Bayesian score and f is a

decomposable feature. We will next address the maximization and summa-
tion problems separately for an arbitrary decomposable function, giving a
similar dynamic programming approach for both of them.

3.2 Maximization over decomposable graphs

Let ϕ be the decomposable function of interest and consider the problem of
computing maxG ϕ(G). To avoid an exhaustive enumeration of all graphs,
we formulate the maximization as a recurrence relation that exploits the
common structure present in G and ϕ. Specifically, recall that a graph is
decomposable if and only if there is a junction tree on its maximal cliques.
Consider an arbitrary junction tree T and denote by G(T) the unique de-
composable graph whose maximal cliques are the vertices of T. We may
treat T as a directed tree by picking an arbitrary maximal clique C as its
root. Let C1, . . . , Ck be the children of C in T and denote by T1, . . . ,Tk the
respective subtrees rooted at the children. Then, writing ϕ(T) = ϕ(G(T))
for short and recalling that separators are the intersections between adja-
cent cliques, we may express (3.1) recursively as

ϕ(T) = ϕc(C)
k∏

i=1

ϕ(Ti)

ϕs(C ∩ Ci)
. (3.2)

Computing maxG ϕ(G) is equivalent to computing maxT ϕ(T), where T

runs over all rooted junction trees. To see how (3.2) yields a recurrence for
this problem, consider a recursive procedure for constructing a junction tree

3.2 Maximization over decomposable graphs 21

(a) (b)

(c) (d)

Figure 3.1: Recursive construction of a junction tree. We begin by choosing
an arbitrary root clique (a). Next, we choose a partition of the vertices
outside the clique (b). We then choose a separator within the root clique
for each set in the partition (c). Finally, we apply the first step recursively
to every subtree, choosing a root clique for each of them (d).

on the vertex set V , illustrated in Figure 3.1. First, the procedure chooses
a set of vertices C ⊆ V to be the root clique. Next, the procedure chooses a
partition of remaining vertices, denoted {R1, R2, . . . , Rk} � V \C, with the
intent that each set Ri in the partition will contain a single subtree rooted at
C. For each Ri, independently, the procedure chooses a separator Si ⊂ C,
and then the entire procedure is applied recursively for each subtree, with
the constraint that every root clique Ci must satisfy Si ⊂ Ci.

Clearly, every rooted junction tree on the variables can be constructed in
this manner, by choosing the cliques, partitions, and separators recursively.
Similarly, by maximizing the score over all such choices we maximize it over
all rooted junction trees.

Formally, for all S ⊂ V and ∅ �= R ⊆ V \ S, let f(S,R) = maxT ϕ(T),
where T runs over every rooted junction tree whose vertex set is S ∪R and
whose root clique is a proper superset of S. Then, we have that

f(S,R) = max
S ⊂ C ⊆ S ∪R

{R1, . . . , Rk} � R \ C
S1, . . . , Sk ⊂ C

ϕc(C)
k∏

i=1

f(Si, Ri)

ϕs(Si)
. (3.3)

In particular, f(∅, V) now equals the maximum score over all rooted junc-
tion trees on the vertex set V .

22 3 Bayesian learning in decomposable models

w = 3 w = 5 w = ∞

Figure 3.2: The running time of the DP and ILP algorithms on synthetic
data, using the BDeu score. Each data point represents the median of
the running times on 15 independently generated problems with the same
number of variables n. For ILP, the performance is measured separately for
a varying number of samples m in the data. Both algorithms are evaluated
for restricted width w ∈ {3, 5} as well as unbounded width (w = ∞).

With some basic manipulation the maximization in (3.3) can be split
into three parts, allowing us to write it as a system of simpler recurrences

f(S,R) = max
S⊂C⊆S∪R

ϕc(C) g(C,R \ C) , (3.4)

g(C,U) = max
minU∈R⊆U

h(C,R) g(C,U \R) , (3.5)

h(C,R) = max
S⊂C

f(S,R)
/
ϕs(S) , (3.6)

terminating at the base case g(C,∅) = 1. Each of these recurrences is
defined for all disjoint pairs of subsets of V such that C and R are nonempty.
Hence, a straightforward dynamic programming algorithm tabulates all
values of f , g, and h in O(4n) time and O(3n) space. A graph G that
maximizes ϕ(G) can be found afterwards by a simple backtracking into the
dynamic programming tables.

Somewhat better bounds on time and space can be achieved when cer-
tain easily characterized portions of ϕc and ϕs are zero. For instance, when
searching for optimal graphs of maximum width w ≤ n, we have ϕc(C) = 0
for every C ⊆ V such that |C| > w. Hence, we may evaluate recurrence
(3.4) with the additional constraint |C| ≤ w without changing the result.
Omitting larger cliques from consideration improves the performance, re-
quiring O(

∑w
i=0

(
n
i

)
3n−i) time and O(

∑w
i=0

(
n
i

)
2n−i) space instead. When

w ≤ n/4, the former bound can be replaced by O(w
(
n
w

)
3n−w). The details

of this derivation and the analysis of time and space are included in Paper I.

3.2 Maximization over decomposable graphs 23

Table 3.1: Benchmark instances from machine learning repositories [73, 44]
with different numbers of variables (n) and samples (m).

Dataset n m
Tic-tac-toe X 10 958
Poker P 11 10000
Bridges B 12 108
Flare F 13 1066
Zoo Z 17 101

Dataset n m
Voting V 17 435
Tumor T 18 339
Lymph L 19 148
Hypothyroid 22 3772
Mushroom 22 8124

w = 3 w = 5 w = ∞

Figure 3.3: The running time of the DP and ILP algorithms on the bench-
mark instances.

Paper I evaluates the performance of the dynamic programming (DP)
algorithm against an integer linear programming (ILP) based approach [27],
which likewise guarantees the optimality of its output but has an unknown
worst-case complexity. The comparison is shown in Figure 3.2 for data
sampled from synthetic networks and in Figure 3.3 for benchmark datasets
summarized in Table 3.1. The results suggest that the DP algorithm per-
forms better for very small instances (n < 10) as well as for moderate and
large widths w, while the ILP algorithm can be faster on larger instances as
long as w is small. The ILP approach is also sensitive to the input scores,
performing worse as the sample size m increases, whereas the running time
of DP is strictly a function of n and w. Two larger problems (n = 22) were
given a one-week timeout. The DP algorithm solved both within 33 hours
for w = 3 and 74 hours for w = 4. The ILP algorithm solved Hypothyroid
up to w = 6 within 24 hours and Mushroom up to w = 3.

24 3 Bayesian learning in decomposable models

3.3 Summation over decomposable graphs

Consider now the problem of computing
∑

G ϕ(G) over all decomposable
graphs G. It is easy to see that one can adapt the dynamic programming
algorithm to compute the respective summation over junction trees, by
simply replacing maximization with summation in recurrences (3.4), (3.5),
and (3.6). Unlike with maximization, however, f(∅, V) will not equal the
desired summation over all decomposable graphs due to the one-to-many
relationship between graphs and junction trees. Letting τ(G) denote the
number of rooted junction trees of G, we instead have that

f(∅, V) =
∑
T

ϕ(G(T)) =
∑
G

ϕ(G)τ(G) ,

where T runs over rooted junction trees and G runs over decomposable
graphs. Intuitively, the computed sum will be biased towards graphs with
many junction trees. As noted in Chapter 2, such bias can be viewed
as using a special kind of structure prior that is modular with respect
to rooted junction trees rather than decomposable graphs. For now, we
will thus accept the bias as a natural effect arising from the junction tree
representation. At the end of this chapter we consider countering the bias
and estimating the preferred sum

∑
G ϕ(G) via importance sampling.

While summation still admits the straightforward evaluation of the re-
currences, it also enables more sophisticated techniques. Specifically, with
an extension of the so-called fast zeta transform [118, 56, 12] and fast subset
convolution [9] the recurrences can be computed asymptotically faster, in
O(3nn3) time and O(3nn) space. In particular, the posterior probability
that k specified edges appear in the graph can be computed, via the prin-
ciple of inclusion and exclusion, in O(2k3nn3) time and O(n3n) space. The
proofs of these results are presented in detail in Paper II.

3.4 Sampling schemes

We next consider the problem of sampling decomposable graphs from the
posterior, which is useful for performing (approximate) Bayesian model
averaging as well as estimating posterior expectations for non-decomposable
features. We can turn the dynamic programming algorithm for summation
into a sampling algorithm by first computing the dynamic programming
tables for a Bayesian score ϕ and then employing stochastic backtracking.

3.4 Sampling schemes 25

To exemplify, consider the summation variant of recurrence (3.4),

f(S,R) =
∑

S⊂C⊆S∪R
ϕc(C) g(C,R \ C) .

The recurrence gives the marginal probability f(S,R) of a particular subset
of rooted junction trees defined by S and R. Each term ϕc(C) g(C,R \ C)
is the conditional probability that a tree within this subset has C as its
root clique. Similar observations can be made for the partition sets R and
the separators S in recurrences (3.5) and (3.6). A natural backtracking
procedure starting at f(∅, V) first draws a clique from the marginal distri-
bution Pr(C) ∝ ϕc(C) g(C,R\C) and then recurses on g to draw the other
cliques, partitions, and separators in a similar fashion. Note that the bias
of the summation transfers to sampling: the graph obtained in this manner
will be drawn from the distribution proportional to ϕτ instead of ϕ.

The efficiency of this backtracking procedure depends on how fast we
can sample each C, R, and S. We consider two distinct sampling methods,
which we will call parameterized sampling and adaptive sampling.

3.4.1 Parameterized sampling

Drawing each individual set involves sampling from a discrete distribution
over s elements, where s can be at most 2n. A naive method draws a
number r from the continuous uniform distribution on [0, r), then iterates
over all elements in a predefined order until the cumulative probability
exceeds r, thus using O(s) time and O(1) space. The alias method [114] by
contrast requires O(s) time and space to first construct a data structure,
which thereafter allows one to draw each sample in O(1) time.

By combining the naive method and the alias method we can obtain a
tunable tradeoff between time and space. Specifically, let b ∈ {0, ..., n} be a
tradeoff parameter that is chosen beforehand. In the preprocessing step we
first divide the s elements into bins of size 2b (the last bin can be smaller).
For each bin, we compute the sum of the probabilities of its elements,
then construct the alias data structure for sampling a bin according to its
total probability. This construction requires O(2b) time and O(s/2b) space.
After the preprocessing, an element can be drawn in two phases: first a bin
is selected with the alias method in O(1) time and then an element within
the bin is selected with the naive method in O(2b) time.

We now select a fixed b and apply this method to each (nonterminating)
f(S,R), g(C,U), and h(C,R). The analysis given in Paper II shows that
we require O(4n) time and O(4n/2b) extra space for preprocessing in total,
and can then draw T independent samples in O(T · 2b(1 + n − b)) time.

26 3 Bayesian learning in decomposable models

In particular, setting b = 0 allows us to draw each sample in linear time
but using O(4n) extra space. The other extreme, b = n, requires O(2n)
time per sample but allows us to omit the alias data structures altogether,
thus requiring no extra space. Notably, by setting b
 n log2(4/3)
 0.42n
we can draw O(4n/2n log2(4/3)n) = O(2n/n) samples for “free”, without
exceeding the asymptotical O(4n) time or O(3n) space already required by
the dynamic programming phase.

3.4.2 Adaptive sampling

For typical real-world data, the posterior distribution tends to be highly
skewed, with most of the probability mass concentrated on a small set of
graphs. In practice it may thus be wasteful to do the preprocessing for all
indexing pairs for f , g, and h, as many of these pairs are visited only rarely
if at all during the sampling procedure. As an alternative, we consider
an adaptive approach that does no preprocessing but instead preemptively
draws multiple samples at once on those indices that are visited more often,
caching them for later visits. Specifically, consider the following procedure.
On the first visit to any f(S,R), g(C,U), or h(C,R), draw and consume one
set from the corresponding distribution using the naive sampling method.
On any subsequent visit: If there are cached samples left from previous
visits, consume the first one of them. Otherwise, use the alias method to
draw twice as many sets as the last time on the same index, consume the
first one of those sets and cache the rest.

By doubling the number of samples every time we effectively amortize
the linear time required to construct the alias data structure. We can show
that, after T sampled graphs, adaptive sampling consumes at most O(nT)
extra space. As a special case, 3n samples can be drawn in O(n4n) time
and O(n3n) space. The proofs of these results can be found in Paper II.

3.5 Monte Carlo estimation

The sampling schemes yield an immediate tool for computing the Monte
Carlo estimate (2.6) for an arbitrary posterior expectation, so long as we
accept the non-modular prior induced by the summation. The importance
sampling estimate (2.7) allows us to target a broader class of priors such
as the natural uniform prior over decomposable graphs, provided that we
can efficiently compute the appropriate importance weights. To target an
arbitrary modular prior, we apply the summation algorithm to a Bayesian
score ϕ of choice and define the importance weights wi = τ(G)−1 for each
graph Gi sampled. The number τ(G) of rooted junction trees is obtained

3.5 Monte Carlo estimation 27

Bridges Flare Voting

100 101 102 103 104 105
10-3

10-2

10-1

100

100 101 102 103 104 105
10-3

10-2

10-1

100

100 101 102 103 104 105
10-3

10-2

10-1

100

Figure 3.4: The maximum error in the estimated edge probabilities over all
edges (y-axis) as the number of samples (x-axis) grows, for three benchmark
datasets. As computing the true edge probabilities is infeasible, the error
is computed by comparison to an estimate obtained with 106 samples.

as a product of the number of (undirected) junction trees and the number
of maximal cliques of G. Counting the cliques is easy as they are readily
available in the junction tree representation of Gi. For counting junction
trees the fastest known algorithm [110] has a guaranteed O(n2) running
time, though its performance can be much better in practice.

Experimental results presented in Paper II demonstrate that the esti-
mate has a steady rate of convergence in practice. Figure 3.4 shows these
results for edge posterior probabilities and the uniform prior.

28 3 Bayesian learning in decomposable models

Chapter 4

Algorithm selection for learning
Bayesian networks

Chapter 3 studied the structure learning problem in decomposable models,
where we have only very recently seen attempts at solving the problem
to optimum. By contrast, for general Bayesian networks the problem of
optimal structure learning has attained considerable interest in the past
decade. As elaborated in Chapter 2, several exact algorithms have been
proposed that are guaranteed to find a network structure with the highest
score. As state-of-the-art algorithms rely on inherently different techniques,
their relative performance typically varies greatly depending on the given
problem instance. Indeed, empirical analysis has demonstrated that no
single algorithm currently dominates the others in terms of speed: rather,
different algorithms perform well on different types of instances.

In this chapter we address the problem of algorithm selection [96, 63] for
structure learning in Bayesian networks: Given a previously unseen prob-
lem instance, which exact algorithm should we run to minimize the expected
running time? To tackle this problem, we learn so-called empirical hardness
models [70, 71] for predicting the running time of an algorithm on a given
problem instance, based on efficiently computable features of the instances
and a large-scale empirical evaluation of the algorithms. Such models in
turn enable the construction of algorithm portfolios [40, 49] that aim to run
the fastest algorithm on any given instance, based on the predictions given
by the models. This approach has proven successful for a variety of other
NP-hard search problems [64] such as Boolean satisfiability [117], answer
set programming [48], and the travelling salesman problem [65].

This chapter is based primarily on Paper IV, which extends the prelim-
inary study presented in Paper III.

29

30 4 Algorithm selection for learning Bayesian networks

4.1 Overview

The optimization problem for Bayesian networks asks for a DAG G that
maximizes a modular score s(G) =

∏n
v=1 sv(Gv), where n is the number of

variables and sv(Gv) is a local score associated with variable v and its set
of parents Gv. A single instance of the problem is assumed to consist of the
precomputed local scores. As noted in Chapter 2, the size of an instance
may be reduced by enforcing a small upper bound on the maximum number
of parents per variable or by pruning out provably nonoptimal parent sets.
We call every remaining set a candidate parent set (CPS) and denote by m
the total number of CPSs of all variables.

Papers III and IV study the behavior of four state-of-the-art exact al-
gorithms for the optimization problem: the URLearning solver [120], based
on heuristic search (A∗); the GOBNILP solver [27], based on integer linear
programming (ILP); the CPBayes solver [112], based on constraint pro-
gramming (CP); and a branch-and-bound search (BB) in the space of cyclic
graphs [29]. Out of these, the BB algorithm was found by an empirical eval-
uation to be always dominated by the ILP approach. The remaining three,
on the other hand, appear highly orthogonal in terms of performance. As
shown in Figure 4.1, not only is no single algorithm consistently faster than
the other two, the running times between algorithms can vary by several
orders of magnitude on the same problem instance. To improve upon the
state-of-the-art, an ideal approach would thus be to consult an oracle that
knows (beforehand) the fastest algorithm for any given instance. Our goal
is to approximate a perfect oracle by using machine learning methods to
predict the running time of an algorithm A on a given instance. Specifically,
we consider the following supervised learning task:

Input: A collection of training instances, x1, x2, . . . , xN represented as
features vectors, and the respective running times y1, y2, . . . , yN
of algorithm A on the instances.

Task: Learn an efficiently computable function fA that, given a new
problem instance x, yields a prediction ŷ = fA(x) of the true
running time y of algorithm A on x, so as to minimize the average
(relative) prediction error.

4.2 Features

The main challenge in constructing a successful predictor is to identify fea-
tures of the problem instances that are efficient to compute yet informative

4.2 Features 31

A∗ vs. ILP A∗ vs. CP CP vs. ILP

Figure 4.1: Running time comparison of three exact algorithms, based on
A∗ search, integer linear programming (ILP), and constraint programming
(CP). Each point represents a single problem instance derived from a col-
lection of benchmark and synthetic datasets. Running times below 1 or
above 7200 seconds are truncated to 1 and 7200, respectively.

about the running times of algorithms. We identify and study a total of 86
potentially useful features, divided into four categories.

For the first category, Basic, we consider two natural measures of in-
stance size, the number of variables n and the number of CPSs m. Specif-
ically, we include n and the mean number of CPS, m/n, which can be
viewed as a measure of density of the instance. Various other statistics can
be extracted directly from the number and size of CPSs, which we include
in the second category, Basic extended.

Relaxing the problem can yield useful upper bounds on the score of
an optimal network. For instance, the simple upper bound is obtained by
letting every variable choose its best parent set independently of other vari-
ables. Although this usually results in a graph that is cyclic and thus not a
valid solution, the structural properties of the graph can be useful predic-
tors of instance hardness. We include such features in our third category,
Upper bounding, including statistics of vertex degrees and connected
components. We also consider a more sophisticated upper bound obtained
with so-called pattern databases [119], which find optimal structures within
small groups of variables but allow cycles between the groups.

Probing refers to running an algorithm for a few seconds and collecting
statistics of its behavior. In particular, all of the three exact algorithms
have anytime characteristics: when stopped, they output the best graph
found so far together with a guaranteed error bound for its optimality.
We probe with all three algorithms as well as greedy search and include

32 4 Algorithm selection for learning Bayesian networks

Table 4.1: Features extracted for every problem instance. Here, sd stands
for standard deviation and NTSSC stands for non-trivial strongly connected
component. The upper bounding features are computed both for the simple
and the pattern database upper bound. The probing features are computed
for four different probing strategies: greedy, A∗, ILP, and CP.

Basic Basic extended
– Number of variables, n – Number of CPSs: max, sum, sd
– Mean number of CPSs, m/n – CPS sizes: max, mean, sd

Upper bounding (×2) Probing (×4)
– In-degree: max, mean, sd – In-degree: max, mean, sd
– Out-degree: max, mean, sd – Out-degree: max, mean, sd
– Total degree: max, mean, sd – Total degree: max, mean, sd
– Number of root variables – Number of root variables
– Number of leaf variables – Number of leaf variables
– Number of NTSCCs – Error bound
– Size of NTSCCs: max, mean, sd

the resulting error bounds and graph properties in our fourth category,
Probing. For purpose of comparison, we will denote by All the category
encompassing all features of the four categories, summarized in Table 4.1.

4.3 Experiment setup

Our approach relies on carrying out an empirical evaluation of the three
algorithms on a collection of typical instances. Specifically, we evaluate the
following eight parameterizations: For A∗ we consider three variants, A∗-
ed3, A∗-ec, and A∗-comp, each of which uses a different heuristic. For ILP
we consider four configurations, ilp-141, ilp-141-nc, ilp-162, and ilp-162-nc,
based on versions 1.4.1 and 1.6.2, and additionally differing in how they
solve sub-ILPs. Lastly, we consider cpbayes, the default configuration of
the CP algorithm, which exposes no parameters to control its behavior.

We evaluate each configuration on a large collection of instances, di-
vided into three categories based on the origin of the underlying dataset.
The first category, Real, contains instances based on datasets that origi-
nate from real-world applications, obtained from machine learning reposi-
tories [73, 44]. The second category, Sampled, contains instances sampled
from handmade Bayesian networks that are widely used for evaluating indi-

4.3 Experiment setup 33

Table 4.2: Number of datasets, instances derived from the datasets, and
instances used in training and testing the models.

Category Datasets All Instances Training & Testing
Real 39 637 486
Sampled 19 317 283
Synthetic 477 477 410

vidual solvers. The third category, Synthetic, contains instances sampled
from purely synthetic Bayesian networks, generated by a randomized proce-
dure. We translate the data into instances by applying a variety of scoring
functions, including the Bayesian score BDeu and the penalized likelihood
score BIC/MDL. We also consider various limits on the maximum of num-
ber of parents per variable. The total number of datasets and resulting
instances is summarized in Table 4.2. For training and testing we omit all
instances that are either very easy for all algorithms or not solved by any
of them within the given time limit of 2 hours.

Figure 4.2 shows a comparison of algorithm performance in the empir-
ical evaluation. Based on these results, we focus on a set of representative
configurations, A∗-comp, ilp-141, and cpbayes, as these variants have ar-
guably the best overall performances within their respective families.

Algorithm #solved runtime (s)

ilp-141 1036 1,364,855
ilp-141-nc 1034 1,384,022
ilp-162 1029 1,453,932
ilp-162-nc 1026 1,494,879
cpbayes 896 2,423,547
A∗-comp 768 3,152,809
A∗-ec 519 4,866,797
A∗-ed3 478 5,163,876

Figure 4.2: Left: The percentage of instances on which an algorithm was
fastest, with ties broken at random. Right: The total number of instances
solved and the total cumulative running time (failed runs count as 2 hours).

34 4 Algorithm selection for learning Bayesian networks

Figure 4.3: The proportion of instances solved by algorithms within a given
amount of time, including the VBS and the two portfolios, for Real in-
stances and all instances.

4.4 Model training and evaluation

We use regression trees [14] to model the empirical hardness function fA for
every algorithm A. The preliminary study of Paper III also considers other
models, such as reduced error pruning trees [95] and M5′ trees [116]. We
train the models on a mix of all three categories of instances and use 10-fold
cross-validation to evaluate them. Specifically, for a fixed algorithm A we
partition the set of all instances into folds F1, . . . , F10 evenly at random and
define fA(x) = f i

A(x), where i is such that x ∈ Fi and f i
A is a model that

we train on the union of all 10 folds except Fi. We consider this procedure
for various subsets of features and evaluate the resulting functions fA in
terms of how closely the predictions match the true running times and how
well they translate into efficient algorithm portfolios.

4.4.1 Portfolio performance

A set of predictive models fA immediately yields an algorithm portfolio
that, given a new instance x, computes the predicted running time fA(x)
for all algorithms A and then runs the algorithm with the lowest prediction.
The performance of such a portfolio is commonly evaluated against the
Single Best Solver, the algorithm with the lowest overall running time, and
the Virtual Best Solver (VBS), a hypothetical portfolio that always runs the
fastest algorithm and thus represents the best possible behavior a portfolio
may theoretically achieve on a given set of algorithms.

4.4 Model training and evaluation 35

Figure 4.4: Correlation between the Basic features and the running times
of A∗ (left) and ILP (right).

Figure 4.5: The Basic features plotted against each other and marked
according to whether the fastest algorithm on the instance was from the
A∗, ILP, or CP family, or whether no algorithm solved the instance.

We find that even predictions obtained with very simple features are
enough to construct a highly efficient portfolio. Figure 4.3 presents a com-
parison between two portfolios, portfolio-basic, which only uses the Basic
features (n and m/n) to choose an algorithm, and portfolio-all, which uses
all features of the four categories. While there remains some room for im-
provement compared to the VBS, portfolio-basic performs nearly as well as
portfolio-all and significantly outperforms every individual algorithm.

We can gain insight into the success of the simple portfolio by studying
the role of the two Basic features in determining the fastest algorithm.
To that end, Figure 4.4 presents a correlation between the two features
and running times of the A∗ and ILP algorithms. Figure 4.5 provides an
alternative view, highlighting the advantages of different algorithms in the
space spanned by these two features. Evidently, the A∗ algorithm is rather
heavily limited by the number of variables but scales better for many CPSs.

36 4 Algorithm selection for learning Bayesian networks

Basic All

Figure 4.6: The actual runtimes of the ILP solver compared to the predicted
runtimes when using the Basic (left) or All features.

ILP, on the other hand, cannot cope with a high number of CPSs but has
no trouble with a large number of variables. The CP approach appears to
excel on instances with a moderate number of both variables and CPSs,
while A∗ or ILP outperforms it when either feature grows too high.

4.4.2 Prediction accuracy

We now consider the harder problem of obtaining accurate estimates for
the running time of algorithms. Aside from selecting the best algorithm on
a given instance, such estimates can be useful for job schedulers that need
to determine the time required to complete a task.

While the more sophisticated features offered no notable improvement
on portfolio performance, we find that they have a significant impact on the
quality of predictions. Figure 4.6 illustrates this improvement for the ILP
algorithm. On the left we see the predictions given by the model that only
uses the Basic features. Even though these predictions are sufficient for
good portfolio performance, they exhibit a considerable amount of error,
often by several orders of magnitude, which makes them less useful for
obtaining actual estimates of running time. The right side, on the other
hand, shows the predictions based on All features, demonstrating a clear
increase in accuracy. A similar improvement can be observed for the other
algorithms as well. Table 4.3 summarizes these observations in terms of
change in the approximation factor, defined as ρ = max{a

p ,
p
a}, where a and

p are the actual and predicted running times, respectively. Paper IV also
presents a more fine grained analysis on the effect of incrementally adding
various categories of features.

4.4 Model training and evaluation 37

Table 4.3: The percentage of instances with an approximation factor within
the given ranges of ρ, when predicting running times with either Basic or
All features. Higher percentages with lower approximation values indicate
more accurate predictions.

A∗-comp cpbayes ilp-141
Range of ρ Basic All Basic All Basic All

< 2 48% 60% 49% 65% 52% 63%
[2, 5) 22% 17% 24% 18% 28% 26%
[5, 10) 10% 8% 10% 7% 10% 7%
> 10 21% 15% 18% 9% 10% 4%

4.4.3 Impact of features

Aside from practical applications, empirical hardness models can offer in-
sight into what makes the problem hard or easy for a particular algorithm,
potentially inspiring development of novel techniques that overcome the
shortcomings of existing algorithms. Such knowledge can be extracted by
studying how important certain features are for the predictive model.

Papers III and IV study the utility of the features assigned to them
by the learning algorithms. While the utilities vary somewhat between
different model classes, the Basic features are consistently identified as the
most significant predictors of running time. Another unsurprising result is
that the probing features are relevant for predicting the running times of the
respective algorithms, though the probing features of CP in particular are
also useful for predicting A∗. These two algorithms directly utilize pattern
database upper bounds in their search, and the respective lower bound
features are identified as important for predicting both. Further analysis
and discussion on the models and the relevance of features is presented in
the papers.

38 4 Algorithm selection for learning Bayesian networks

Chapter 5

Counting linear extensions

In Chapter 2 we mentioned how certain MCMC schemes [37, 84] for sam-
pling Bayesian networks attain fast mixing at the expense of drawing their
samples from a biased distribution. Specifically, the probability of each
DAG gets weighted according to the number of its topological sorts, and
countering the bias via importance sampling thus requires one to compute
this number for every sample.

Counting the topological sorts of a DAG is equivalent to counting the
linear extensions of the corresponding partial order, a fundamental prob-
lem of order theory with applications in various areas such as sorting [92],
sequence analysis [79], convex rank tests [82], preference reasoning [75],
partial-order plans [83], and other algorithms for learning graphical mod-
els [115]. Unlike in Chapter 3, where computing the importance weights
turned out to be easy, the problem of counting linear extensions is known
to be #P-complete [15] and is thus unlikely to be tractable in the general
case. The fastest known algorithm [74] for partial orders on n elements runs
in O(2nn) time in the worst case. While polynomial time algorithms exist
for various special cases [81, 3, 43, 36] such as polytrees and series-parallel
orders, DAGs sampled from the posterior rarely fall into these categories.
Randomized approximation schemes [33, 16] are likewise unsatisfactory as
they tend to be impractically slow to attain desired error bounds.

In this chapter we consider exact counting of linear extensions of gen-
eral partial orders. We present two algorithms, one based on recursive
decomposition of the problem and another based on the method of vari-
able elimination. Though neither algorithm avoids the exponential time in
the worst case, they can be significantly faster when the partial orders are
sparse, thus making them practical for typical Bayesian network structures.
This chapter is based on Paper V.

39

40 5 Counting linear extensions

Figure 5.1: Three graph representations of a poset (P,≤P). Left: a DAG
with an arc x → y for all x <P y. Middle: a DAG with an arc x → y for all
x ≺P y. Right: a Hasse diagram, with an undirected edge going upwards
from x to y for all x ≺P y.

5.1 Partial orders

Let P be a finite set associated with a binary relation ≤P , whose elements
(x, y) ∈ ≤P we will write simply x ≤P y. We say that ≤P is a partial order
on P if for all x, y, z ∈ P the following three properties hold:

1. x ≤P x (reflexivity),

2. if x ≤P y and y ≤P x then x = y (antisymmetry),

3. if x ≤P y and y ≤P z then x ≤P z (transitivity).

The pair (P,≤P) is called a partially ordered set or poset for short. For a
pair of elements x, y ∈ P such that x ≤P y we say that x precedes y and
y succeeds x. Elements x, y ∈ P are called comparable if either x ≤P y or
y ≤P x; otherwise they are called incomparable. We will identify the poset
with the elements P , assuming that the underlying order ≤P is fixed.

We define two other relations that can equivalently represent the partial
order. First, let <P be the strict variant of ≤P , that is, for all x, y ∈ P
we have x <P y if and only if x ≤P y and x �= y. Second, let ≺P be the
transitive reduction of <P , that is, for all x, y ∈ P we have x ≺P y if and
only if x <P y and there is no z ∈ P such that x <P z <P y. The relation
≺P is commonly known as the cover relation. A poset can be visualized
as a DAG, where each vertex corresponds to an element in P and an arc
between vertices corresponds to a pair in one of the relations (Figure. 5.1).
A particularly concise representation is the Hasse diagram, where the arcs
correspond to the cover relation and the elements are arranged so that all
arcs point upwards, allowing one to omit the arrowheads.

5.2 Counting by recursive decomposition 41

A subset of elements A ⊆ P is a chain if all pairs of elements in A
are comparable. Conversely, a subset A ⊆ P is an antichain if no pairs of
elements in A are comparable. The height of P is the size of the largest
chain in P , while the width of P , denoted w(P), is the size of the largest
antichain. A downset is a set D ⊆ P such that if y ∈ D and x ≤P y then
x ∈ D. Dually, an upset is a set U ⊆ P such that if x ∈ U and x ≤P y
then y ∈ U . An element x ∈ P is minimal if it has no predecessors, that
is, there is no y ∈ P such that y ≤P x. Likewise, x is maximal if it has
no successors, that is, there is no y ∈ P such that x ≤P y. All of these
definitions remain equivalent if ≤P is replaced with <P or ≺P .

If P is a chain, then the order relation ≤P is called a total order or
linear order on P . Further, a linear order ≤� is called a linear extension
of ≤P if x ≤P y implies x ≤� y for all x, y ∈ P . A linear extension can
be equivalently represented as a bijection σ : P → [n] such that n = |P |
and x ≤P y implies σ(x) ≤ σ(y) for all x, y ∈ P . In particular, this
characterization holds if ≤P is replaced by ≺P , which we will be using in
the latter part of this chapter.

We denote by �(P) the number of linear extensions of P .

5.2 Counting by recursive decomposition

The task of counting linear extensions can be decomposed into subproblems
in multiple ways. One such method follows from the basic observation that
every linear extension of a nonempty poset P begins with some minimal
element. By applying this observation recursively, we have that

�(P) =
∑

x∈min(P)

�(P \ x) , (5.1)

where min(P) denotes the set of minimal elements of P and P \ x denotes
the poset obtained by removing the element x. Evaluating recurrence (5.1)
directly is equivalent to enumerating linear extensions one by one and will
thus require factorial time in the worst case. This evaluation involves com-
puting the subproblem �(U) for all upsets U ⊆ P , often multiple times. By
caching these intermediate results one obtains an algorithm [74] running in
O(|U| ·w) time, where U is the set of upsets of P , and thus in O(2nn) time
in the worst case. By using Dilworth’s theorem [31] we can also show that
|U| = O(nw), making the algorithm fast for posets of low width but very
inefficient when the graph representation of the poset is sparse.

We next observe that when recurrence (5.1) is applied to a sparse poset,
many of the subproblems turn out to be disconnected, which allows one to

42 5 Counting linear extensions

Figure 5.2: A poset on six elements (a–f) split into subproblems recursively.
Left: All subproblems are solved by applying recurrence (5.1). Right: Dis-
connected subproblems (dark grey) are solved by applying recurrence (5.2).

solve them faster. Specifically, whenever P can be partitioned into sets A
and B such that a and b are incomparable for all a ∈ A and b ∈ B, we have
that

�(P) = �(A) · �(B) ·
(
|P |
|A|

)
. (5.2)

Applying recurrence (5.2) whenever possible and recurrence (5.1) otherwise
may significantly reduce the number of subproblems that need to be solved,
as illustrated in Figure 5.2. Recurrence (5.2) can also be generalized for
more than two components, in which case for each connected upset the
algorithm will consider at most w upsets that are not connected. The total
number of subproblems is thus at most |U ∩ C| · (w + 1), where C denotes
the set of connected sets of P , that is, subsets to which recurrence (5.2) is
not applicable. We next discuss a variant of the first recurrence that may
further reduce the number of subproblems.

Consider briefly the algorithm that only applies recurrence (5.1). By
a symmetrical argument, the recurrence still holds if we have x run over
the maximal elements of P instead, in which case the subproblems we need
to solve are the downsets of P . Since the complement of an upset is a
downset and vice versa, the number of subproblems and the running time
of the algorithm remain unchanged. With the addition of recurrence (5.2)

5.2 Counting by recursive decomposition 43

Figure 5.3: Left: A poset where all upsets are connected. Right: A poset
where all upsets and downsets are connected.

this no longer holds, however, as the complement does not in general pre-
serve connectivity. To exemplify, consider the simple poset in Figure 5.3
(left), where removing minimal elements will never make recurrence (5.2)
applicable, whereas removing the lone maximal element splits the remain-
der into singletons.

In general, it is non-trivial to decide which variant of recurrence (5.1)
should be used on a given poset. In some cases (Figure 5.3, right) it is
clearly beneficial to alternate the choice depending on the subproblem. On
the other hand, this also breaks the property that the number of subprob-
lems is always bounded by the number of upsets and might thus increase
the time requirement. Indeed, preliminary experiments for Paper V sug-
gested that on most posets one should make the choice once only and then
apply it consistently to every subproblem. Two heuristics for making this
decision are proposed, one based on the number of minimal and maximal
elements only and another that aims to estimate the number of resulting
subproblems. Paper V shows that in practice both heuristics turn out to
almost always make the better choice on randomly generated posets.

Other recursive techniques for counting linear extensions include the so-
called admissible partitions and static sets. Following Paper V, we will call
these Rule 2 and Rule 3, respectively, while the recurrences (5.1) and (5.2)
are called Rule 1 and Rule 4. We will refer to all algorithms as the com-
bination of rules they apply; hence, the two algorithms introduced so far
are denoted R1 and R14. Other algorithms include R24 [92] and R34 [72],
where the latter falls back into raw enumeration when neither rule is ap-
plicable and can therefore be immediately improved to R134. Experiments
presented in Paper V show that R14 equipped with the simple heuristic
outperforms the other algorithms by a large margin on a wide range of
randomly generated posets (Figure 5.4). They also demonstrate the signifi-
cance of making a good choice between the two variants of recurrence (5.1).

44 5 Counting linear extensions

0 20 40 60 80 100
Percentage of posets solved

10−1

100

101

102

103

T
im

e
(s

)

R14

R134

R1

R24

10−1 100 101 102 103

Running time of R14-worst (s)

10−1

100

101

102

103

R
u
n
n
in

g
ti
m

e
o
f
R

1
4
-b

e
s
t
(s

)

Figure 5.4: Experimental results on counting linear extensions by recur-
sive decomposition. Left: The percentage of problem instances (posets)
that were solved by each algorithm within a certain amount of time. The
performance of R14 and R134 was evaluated using the simple heuristic for
choosing between the two variants of recurrence (5.1). Right: A compar-
ison between R14-best and R14-worst, which illustrate the best and worst
possible running time of R14 in the hypothetical event that the heuristic
always makes a good or bad choice, respectively.

5.3 Counting by variable elimination

In the past few decades it has been discovered that several problems that
are NP-hard in the general case become tractable when an associated graph
has bounded treewidth. Such results typically stem from a general method
of nonserial dynamic programming [7], which has been rediscovered and
reformulated several times [98, 30] under different names such as variable
elimination [60, Ch. 9]. Briefly, consider a sum-product problem of form∑

x1,...,xn

∏
fS∈F

fS(xS) ,

where each variable xi runs over a finite set of values and each fS ∈ F
is a real-valued function that depends on a subset S ⊆ {1, . . . , n} of the
variables. We associate such a problem with an interaction graph, an undi-
rected graph where the variables are vertices and two variables are joined
by an edge if and only if some fS ∈ F depends on both of them. With vari-
able elimination the sum-product and many similar problems can be solved
in time that is polynomial in n and exponential only in the treewidth t of
the interaction graph. This assumes an optimal tree decomposition on the
graph, which can be found in O(nt+2) time [2].

5.3 Counting by variable elimination 45

Many important problems such as inference in graphical models [69, 30]
can be expressed as a sum-product and thus solved by variable elimination.
In particular, we aim to formulate the problem of counting linear extensions
as a sum-product problem, with the intent that the summation ranges over
all permutations σ of the elements, and the product equals either 1 or 0,
depending on whether σ is a valid linear extension.

To that end, let P be a poset and consider an arbitrary mapping σ :
P → [n]. Recall that σ is a linear extension of P if and only if it is bijective
and respects the cover relation ≺P . To characterize such σ, we define the
product

Φ(σ) =
∏

x,y ∈P
x≺P y

[σx < σy] .

For each pair (x, y) of the cover relation, the Iverson bracket [σx < σy]
evaluates to 1 if σ respects the order of the pair and otherwise to 0. Thus,
for all bijections σ we have that Φ(σ) is an indicator function for whether σ
is a linear extension. Therefore, we obtain the number of linear extensions
by summing Φ over all bijections,

�(P) =
∑

σ :P → [n]
bijection

Φ(σ) . (5.3)

The summation over σ can be equivalently expressed as a summation over
variables σ1, . . . , σn, each σi taking values in {1, . . . , n}. The only obstacle
now is the requirement that σ must be a bijection. This imposes a global
constraint on the variables, which the variable elimination scheme does not
readily accommodate.

The principle of inclusion and exclusion allows us to write (5.3) as

�(P) =
n∑

k=1

(
n

k

)
(−1)n−k

∑
σ :P → [k]

Φ(σ) ,

thus removing the bijectivity constraint from the inner summation at the
cost of having to compute it for all k = 1, . . . , n. The inner sum is now a
proper sum-product problem whose interaction graph (by definition of Φ)
is exactly the undirected cover graph of P . With variable elimination the
inner sum can be computed in O(n2 · kt+1) time, which brings the total
running time to O(nt+4), where t is the treewidth of the cover graph. The
details of the inclusion–exclusion step and the running time analysis are
given in Paper V.

46 5 Counting linear extensions

30 40 50 60 70 80 90 100
Poset size (n)

10−1

100

101

102

103

T
im

e
(s

)

t = 2

VEIE

R1

R14-a

30 40 50 60 70 80 90 100
Poset size (n)

−1

00

01

02

03

t = 3

Figure 5.5: The behavior of variable elimination (VEIE) on graphs of
treewidth 2 (left) and 3, compared to the recursive algorithms.

Paper V presents an experimental evaluation of the variable elimination
algorithm (VEIE) on graphs of low treewidth, obtained by linking small grid
posets along their sides and orienting the edges so that no directed cycles
are introduced. Figure 5.5 shows that, while the recursive algorithms are
often be faster in practice, the variable elimination algorithm eventually
outperforms them in the worst case as the size n grows. In particular, since
the recursive algorithms cache all subproblem solutions, their space usage
often becomes prohibitively high for larger posets, whereas VEIE runs in
polynomial space for bounded treewidth.

In the context of parameterized complexity [32], the running time of
form nf(t) places the problem of counting linear extensions in the com-
plexity class XP when parameterized by the treewidth of the cover graph,
whereas a strictly better running time of form f(t) · nO(1) would place the
problem in the class FPT (fixed-parameter tractable). A recent complexity
result [34] by the present author et al. complements the variable elimination
algorithm by establishing that the problem is W[1]-hard when parameter-
ized by the treewidth of the cover graph. Unless a common assumption
W[1] �= FPT fails, this implies that the problem is not fixed-parameter
tractable, though we may still hope to reduce the t + 4 exponent of the
running time.

Chapter 6

Connected sets

Previous chapters have focused on the score-based approach to structure
learning, with the approach based on independence tests briefly mentioned
in Chapter 1. For Bayesian networks, a hybrid [93] of these two approaches
aims to narrow down the search by first using independence tests to learn
a super-structure, an undirected graph that contains an optimal structure
with high confidence. An optimal structure is then found with a score-
based search, restricted to DAGs whose undirected skeletons are subgraphs
of the super-structure.

The running time of the score-based search phase is bounded by the
number of so-called connected sets of the super-structure. Formally, in an
undirected graph G with the vertex set V , a subset of vertices U ⊆ V is
called a connected set if the induced subgraph G[U] is connected. Besides
structure learning, the number of connected sets bounds the running time
of algorithms for graph problems such as travelling salesman [11], maximum
internal spanning tree [8], evaluation of the Tutte polynomial [10], and, by
the result in Chapter 5, the problem of counting linear extensions. In this
light, it is natural to ask if we can obtain upper bounds on the number
of connected sets in different graph classes. Since an n-star already has
2n−1+n connected sets, to improve upon the trivial O(2n) bound it appears
necessary to restrict the maximum vertex degree of the graph.

In this chapter we study the number of connected sets in graphs of
bounded vertex degree. For maximum degree d ≤ 2, the strict upper
bounds are trivial, attained by disjoint edges for d = 1 and by cycles for
d = 2. For d ≥ 3, an entropy lemma known as Shearer’s inequality has
yielded a general upper bound βn

d + n, where βd = (2d+1 − 1)1/(d+1) [11].
This is the best known bound for general d, and is suggested by empirical
estimation [93] to be relatively loose. By considering the entropy lemma
in an expanded context we will show improved upper bounds bnd + nO(1)

47

48 6 Connected sets

Table 6.1: Upper and lower bounds on the maximum number of connected
sets in graphs of degree d.

d 3 4 5

βd 1.9680 1.9874 1.9948
bd 1.9351 1.9812 1.9940
ad 1.5537 1.6180 1.7320

in the case d ∈ {3, 4, 5}. Dually, we will prove respective lower bounds
by constructing infinite families of graphs with at least and connected sets.
Table 6.1 summarizes the values of ad, bd, and βn. This chapter is based
on Paper VI.

6.1 Upper bounds

Our main tool for obtaining upper bounds is Shearer’s inequality [22], which
relates the entropies of a joint random variable and its subsets. In a combi-
natorial context, this lemma allows us bound the size of a set family based
on the sizes of its projections:

Lemma 6.1. Let V be an n-element set with subsets A1, A2, . . . , Ak, called
projectors, such that each v ∈ V appears in at least δ subsets. Let F be a
family of subsets of V , and for each i = 1, . . . , k define the projection of F
onto the projector Ai as Fi = {F ∩Ai : F ∈ F}. Then,

|F|δ ≤
k∏

i=1

|Fi| . (6.1)

For the remainder of the section, consider an undirected graph G on
the vertex set V . Let n = |V | and let d be the largest vertex degree of G.

Our intent is to apply Lemma 6.1 to bound the number of connected
sets of G. Evidently, the bound given by the lemma is useful only if we
can also obtain a good bound on the size of each Fi. To that end, it will
be useful to let the projectors Ai be the vertex neighborhoods of G. As we
will see, this allows us to prune out subsets that cannot be intersections
between connected sets and Ai. For every v ∈ V and r = 0, 1, . . ., let N r[v]
denote the closed neighborhood of radius r of v, that is, the set containing
v and all u ∈ V such that the shortest path between u and v uses at most

6.1 Upper bounds 49

r edges. The size of N r[v] is bounded by the Moore bound δr, defined as

δr = 1 + d

r−1∑
i=0

(d− 1)i =
d(d− 1)r − 2

d− 2
.

For now, let F be an arbitrary set of subsets of V . We would like to
apply Lemma 6.1 by using the neighborhoods N r[v] as the projector sets
Ai for some fixed choice of r. To this end, let Fv,r = {F ∩N r[v] : F ∈ F}
denote the projection of F into N r[v]. Recall that the bound given by
Lemma 6.1 depends crucially on δ, which we want to be as large as possible.
In the best case all neighborhoods are of maximum size, and we can choose
δ = δr. When this is not the case, we can still reach δr by augmenting the
neighborhoods with additional vertices. Specifically, for each v ∈ V define
the projector Av by first setting Av := N r[v]. Then, for each u ∈ V that
is contained in k < δr projectors, add u to δr − k projectors that do not
already contain it (it does not matter which).

We now define for each v ∈ V the projection Fv = {F ∩ Av : F ∈ F}.
Each additional vertex at most doubles the size of Fv and it is thus sufficient
to bound the size of Fv,r. Suppose that we can give a uniform bound that
rules out a fixed proportion of potential subsets, that is, for some 0 ≤ ρ ≤ 1
we have that |Fv,r| ≤ 2|Nr[v]|ρ for all v ∈ V . Then,

|Fv| ≤ |Fv,r| · 2|Av |−|Nr[v]| ≤ 2|N
r[v]|ρ · 2|Av |−|Nr[v]| ≤ 2|Av |ρ .

and by Lemma 6.1 we have that

|F| ≤ (2ρ1/δr)n . (6.2)

Obtaining an upper bound for the size of F thus comes down to finding a
good value for ρ.

The aforementioned βn
d +n bound follows by considering the case r = 1.

Specifically, let F be the set connected sets excluding the n singleton sets
{v} for all v ∈ V . Since N1

v [v] contains all neighbors of v, we must have
F ∩ N r[v] �= {v} for all v ∈ V and F ∈ F. As a result we may take
ρ = 1− 1/2d+1, where δr = d+ 1, and the bound follows from (6.2).

Our intent is to improve on this bound by considering a radius r ≥ 2. As
above, it will be useful to exclude a polynomial number of special subsets
from consideration. We say that a nonempty connected set is local if it is
contained entirely in at least one of the neighborhoods. We observe that
there are at most (2δr −1)n local connected sets and thus define F to be the
set of connected sets that are not local. In order to find a good value for ρ,
let us consider what feasible projections of F to vertex neighborhoods may

50 6 Connected sets

(a) (b) (c)

(d) (e) (f)

Figure 6.1: A possible neighborhood N2[v] in a graph of degree d = 3, and
subsets of the neighborhood that can (a–c) or cannot (d–f) belong to the
respective projection Fv,2 of non-local connected sets. The dashed lines
represent potential edges that may connect vertices at the boundary to
vertices outside of the neighborhood.

look like. Consider an intersection U between a non-local connected set C
and a neighborhood N r[v]. Since C contains a vertex outside of N r[v], it
must thus “exit” the neighborhood via a vertex u ∈ U that has a neighbor
outside of N r[v]. To have such a neighbor, the vertex u must be exactly
at distance r from v and may have at most d − 1 neighbors within N r[v].
We say that such a vertex resides at the boundary of the neighborhood.
Further, we say that U is boundary-connected if every connected component
of G[U] contains a vertex at the boundary. Figure 6.1 shows examples of
neighborhood subsets that are and are not boundary-connected.

The number of boundary-connected sets bounds the size of the projec-
tion Fv,r and can be computed without looking outside of the neighborhood
N r[v]. To optimize the value of ρ, it is therefore sufficient to count the
number of boundary-connected sets in all possible neighborhoods. For a
fixed choice of d and r, the number of such neighborhoods is finite and the
computation can be carried out with computer search. The details of this
procedure are presented in Paper VI. For r = 2 and d ∈ {3, 4, 5}, the search
yields the upper bounds bnd + nO(1), where the polynomial term accounts
for the local connected sets. For greater values of r and d, however, the
method appears not to improve the bounds.

6.2 Lower bounds 51

Figure 6.2: Ladder graphs with 8 vertices for degrees d = 3, 4, 5.

6.2 Lower bounds

It is natural to ask how far the improved bounds are from tight upper
bounds on the number of connected sets. Obtaining corresponding lower
bounds for graphs of bounded degree appears to be equally challenging.
While empirical analysis [93] suggests that graphs having most connected
sets are tree-like within neighborhoods of bounded radius, the global nature
of connectedness makes analyzing such graphs highly non-trivial. We next
provide lower bounds based on generalized ladder graphs, where the number
of connected sets may be characterized recursively.

A ladder graph of length k and degree d contains 2k vertices, labelled
u1, u2, . . . , uk and v1, v2, . . . , vk, with exactly the following edges: First,
ui is adjacent to ui+1 and vi is adjacent to vi+i for all 1 ≤ i ≤ k − 1.
Second, ui is adjacent to vj if and only if 0 ≤ i − j ≤ �(d − 3)/2)� or
0 ≤ j − i ≤ �(d − 3)/2)�. Figure 6.2 shows examples of ladder graphs for
d ∈ {3, 4, 5}. We analyze each of these cases separately.

Consider first a ladder graph of degree 3. For each p = 1, 2, . . . , k, denote
by Cp the set of connected sets that intersect {uj , vj} for all 1 ≤ j ≤ p. For
our purposes, it will be sufficient to analyze the size of Ck, as the number
of other connected sets is within a polynomial factor from it. We will
characterize the size of Cp inductively over p. To that end, partition each
Cp into Sp and Tp such that every set in Sp contains exactly one of up and
vp, while every set in Tp contains both of them. Denote the size of Sp and
Tp by sp and tp, respectively. We now have that s1 = 2 and t1 = 1, and for
p ≥ 2 we observe that sp = sp−1 + 2tp−1 and tp = sp−1 + tp−1. From these
we can derive the homogeneous linear recurrence sp = 2sp−1 + sp−2, which
has the solution

sp =
1√
2
(1 +

√
2)p − 1√

2
(1−

√
2)p .

A similar analysis for tp yields that |Ck| = sk + tk ≥ (1 +
√
2)k − 1 and

therefore we get the lower bound a3 = (1 +
√
2)1/2
 1.5537.

52 6 Connected sets

The analysis for d = 4 is very similar. We now let xp, yp, and zp
be the number of elements of Cp that contain, respectively, up but not
vp, vp but not up, and both up and vp. One now obtains the recurrences
xp = xp−1 + zp−1, yp = xp−1 + yp−1 + zp−1, and zp = xp−1 + yp−1 + zp−1,
and from their solutions |Ck| = xk + yk + zk ≥ (12(3 +

√
5))k − 1, implying

the lower bound a4 = (12(3 +
√
5))1/2
 1.6180.

The case d = 5 is comparatively easy. Simply observe that C ∈ Cp if
and only if for all i = 1, 2, . . . , p it holds that C contains at least one of ui
and vi. Thus, |Ck| = 3k, giving us the lower bound a5 = 31/2
 1.7320.

Chapter 7

Discussion

This thesis studied combinatorial problems that arise in structure learning
in two families of graphical models, the Bayesian networks and the decom-
posable models. Papers I–VI gave new algorithms for such problems, as
well as provided both empirical and analytical results on the performance
of existing approaches.

Papers I and II considered Bayesian learning in decomposable models.
By formulating the problem as dynamic programming over a recursive de-
composition of junction trees, Paper I presented the first algorithm that is
guaranteed to discover an optimal structure in at most exponential time.
Paper II adapted the algorithm for computing posterior expectations but
could only solve the problem for a specific non-modular structure prior.
As a partial remedy, Paper II further turned the approach into a sampling
algorithm that, via importance sampling, enables unbiased estimation of
posterior expectations for modular and other priors. Papers I and II estab-
lished the applicability of these techniques for instances of moderate size
(up to around 20 variables). The algorithms run in O(4n) time, which is in
sharp contrast with the O(2nn2) time algorithms for learning Bayesian net-
works. A major open question is whether the running time can be reduced,
or whether structure learning is indeed inherently harder in decomposable
models, despite the fact that they are a strictly more constrained model
class. Unlike in Bayesian networks, it is also not clear whether there exists
an efficient way to prune the input scores or to employ A∗ style methods
to avoid visiting the entire search space. Other challenges for future work
include reducing the space complexity, possibly in exchange for time, as
well as obtaining controllable approximation guarantees on the estimates
of posterior expectations.

Papers III and IV studied the empirical hardness of structure learning
in Bayesian networks. As a starting point, the papers demonstrated that

53

54 7 Discussion

the performance of state-of-the-art exact algorithms varies significantly on
per-instance basis, thus raising the problem of algorithm selection. To
tackle the problem, supervised learning of running time predictors for the
algorithms was considered. In particular, the papers showed that (i) even
simple features of problem instances are sufficient to yield a portfolio that
accurately determines the fastest algorithm on a given instance, and (ii)
incorporating more sophisticated features significantly improves prediction
accuracy. An immediate challenge for future work is to identify more useful
features and close the remaining gap between current and optimal portfolio
behavior. A potential further step is to leverage the hardness models to
develop novel search techniques that go beyond the current state-of-the-art,
possibly by employing a divide-and-conquer method and using the models
to choose appropriate algorithms for different subproblems.

Paper V studied the classic problem of counting linear extensions of
partially ordered sets, which arises in various contexts such as bias correc-
tion for sampling Bayesian networks. The paper presented two algorithms
for the problem, based on recursive decomposition into subproblems and
the method of variable elimination, respectively. Both algorithms target
sparse orders in particular, and their practical efficiency was demonstrated
by experiments. Whether the first algorithm can be improved further is de-
pendent on the discovery of novel decomposition rules and efficient ways to
determine when they are applicable. For the second algorithm, the problem
had to be transformed via a step of inclusion–exclusion in order to make
variable elimination applicable. It remains an open question whether there
exists a more straightforward formulation that is equally or more efficient
but avoids this complication.

Finally, Paper VI studied the extremal combinatorics of connected sets,
whose number bounds the running time of algorithms for structure learn-
ing and other problems. Specifically, the paper generalized and seemingly
exhausted an entropy method for deriving upper bounds on the number of
connected sets in graphs of bounded degree. This resulted in a modest im-
provement in previously known bounds, which was complemented by lower
bounds derived from a simple family of graphs. There remains a consider-
able gap between current upper and lower bounds, and narrowing it down
remains a task for future research.

References

[1] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and
Michael I. Jordan. An introduction to MCMC for machine learn-
ing. Machine Learning, 50(1-2):5–43, 2003.

[2] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Com-
plexity of finding embeddings in a k-tree. SIAM Journal on Algebraic
Discrete Methods, 8(2):277–284, 1987.

[3] Mike D. Atkinson. On computing the number of linear extensions of
a tree. Order, 7(1):23–25, 1990.

[4] Mark Bartlett and James Cussens. Integer linear programming for the
Bayesian network structure learning problem. Artificial Intelligence,
In press, 2015.

[5] Richard Bellman. Dynamic programming treatment of the travelling
salesman problem. Journal of the ACM, 9(1):61–63, 1962.

[6] Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning opti-
mal bounded treewidth Bayesian networks via maximum satisfiabil-
ity. In Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 33 of JMLR Workshop
and Conference Proceedings, pages 86–95. JMLR.org, 2014.

[7] Umberto Bertelè and Francesco Brioschi. Nonserial dynamic pro-
gramming. Mathematics in science and engineering. Academic Press,
New York, 1972.

[8] Daniel Binkele-Raible, Henning Fernau, Serge Gaspers, and Math-
ieu Liedloff. Exact and parameterized algorithms for max internal
spanning tree. Algorithmica, 65(1):95–128, 2013.

[9] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko
Koivisto. Fourier meets Möbius: fast subset convolution. In Proceed-

55

56 References

ings of the 39th Annual ACM Symposium on Theory of Computing
(STOC), pages 67–74, 2007.

[10] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko
Koivisto. Computing the Tutte polynomial in vertex-exponential
time. In 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 677–686. IEEE Computer Society, 2008.

[11] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko
Koivisto. The traveling salesman problem in bounded degree graphs.
ACM Transactions on Algorithms, 8(2):18:1–13, 2012.

[12] Andreas Björklund, Mikko Koivisto, Thore Husfeldt, Jesper Nederlof,
Petteri Kaski, and Pekka Parviainen. Fast zeta transforms for lattices
with few irreducibles. In Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1436–1444, 2012.

[13] Remco R. Bouckaert. Probalistic network construction using the min-
imum description length principle. In Proceedings of the European
Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty (ECSQARU), volume 747 of Lecture Notes in Com-
puter Science, pages 41–48. Springer, 1993.

[14] Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Ol-
shen. Classification and Regression Trees. Chapman and Hall/CRC,
1984.

[15] Graham Brightwell and Peter Winkler. Counting linear extensions.
Order, 8(3):225–242, 1991.

[16] Russ Bubley and Martin E. Dyer. Faster random generation of linear
extensions. Discrete Mathematics, 201(1-3):81–88, 1999.

[17] Wray Buntine. Theory refinement on Bayesian networks. In Proceed-
ings of the Seventh Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 52–60. Morgan Kaufmann Publishers Inc., 1991.

[18] Jie Cheng, Russell Greiner, Jonathan Kelly, David A. Bell, and Weiru
Liu. Learning Bayesian networks from data: An information-theory
based approach. Artificial Intelligence, 137(1-2):43–90, 2002.

[19] David M. Chickering. Learning from Data: Artificial Intelligence and
Statistics V, chapter Learning Bayesian Networks is NP-Complete,
pages 121–130. Springer, 1996.

References 57

[20] David M. Chickering, Dan Geiger, and David Heckerman. Learning
Bayesian networks: Search methods and experimental results. In Pro-
ceedings of the Fifth International Workshop on Artificial Intelligence
and Statistics, pages 112–128, 2003.

[21] David M. Chickering, David Heckerman, and Christopher Meek.
Large-sample learning of Bayesian networks is NP-Hard. Journal
of Machine Learning Research, 5:1287–1330, 2004.

[22] Fan R. K. Chung, Ronald L. Graham, Peter Frankl, and James B.
Shearer. Some intersection theorems for ordered sets and graphs.
Journal of Combinatorial Theory, Series A, 43(1):23–37, 1986.

[23] Gregory F. Cooper and Edward Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Machine Learning,
9:309–347, 1992.

[24] Jukka Corander, Mats Gyllenberg, and Timo Koski. Bayesian model
learning based on a parallel MCMC strategy. Statistics and Comput-
ing, 16(4):355–362, 2006.

[25] Jukka Corander, Tomi Janhunen, Jussi Rintanen, Henrik Nyman,
and Johan Pensar. Learning chordal Markov networks by constraint
satisfaction. In Advances in Neural Information Processing Systems
26 (NIPS), pages 1349–1357. Curran Associates, Inc., 2013.

[26] James Cussens. Bayesian network learning with cutting planes. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 153–160. AUAI Press, 2011.

[27] James Cussens and Mark Bartlett. Advances in Bayesian network
learning using integer programming. In Proceedings of the 29th Con-
ference on Uncertainty in Artificial Intelligence (UAI), pages 182–
191. AUAI Press, 2013.

[28] Alexander P. Dawid and Steffen. L. Lauritzen. Hyper Markov laws in
the statistical analysis of decomposable graphical models. The Annals
of Statistics, 21(3):1272–1317, 1993.

[29] Cassio P. de Campos and Qiang Ji. Efficient structure learning of
Bayesian networks using constraints. Journal of Machine Learning
Research, 12:663–689, 2011.

[30] Rina Dechter. Bucket elimination: A unifying framework for reason-
ing. Artificial Intelligence, 113(1-2):41–85, 1999.

58 References

[31] Robert P. Dilworth. A decomposition theorem for partially ordered
sets. Annals of Mathematics, 51(1):161–166, 1950.

[32] Rodney G. Downey and Michael R. Fellows. Parameterized Complex-
ity. Springer, 2012.

[33] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polyno-
mial time algorithm for approximating the volume of convex bodies.
Journal of the ACM, 38(1):1–17, 1991.

[34] Eduard Eiben, Robert Ganian, Kustaa Kangas, and Sebastian Ordy-
niak. Counting linear extensions: Parameterizations by treewidth. In
24th Annual European Symposium on Algorithms (ESA), volume 57
of Leibniz International Proceedings in Informatics (LIPIcs), pages
39:1–39:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

[35] Xiannian Fan, Brandon M. Malone, and Changhe Yuan. Finding opti-
mal Bayesian network structures with constraints learned from data.
In Proceedings of the 30th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 200–209. AUAI Press, 2014.

[36] Stefan Felsner and Thibault Manneville. Linear extensions of N-free
orders. Order, 32(2):147–155, 2015.

[37] Nir Friedman and Daphne Koller. Being Bayesian about network
structure. A Bayesian approach to structure discovery in Bayesian
networks. Machine Learning, 50(1-2):95–125, 2003.

[38] Paolo Giudici and Robert Castelo. Improving Markov Chain Monte
Carlo model search for data mining. Machine Learning, 50(1-2):127–
158, 2003.

[39] Paolo Giudici and Peter J. Green. Decomposable graphical Gaussian
model determination. Biometrika, 86(4):785–801, 1999.

[40] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial
Intelligence, 126(1-2):43–62, 2001.

[41] Peter J. Green and Alun Thomas. Sampling decomposable graphs
using a Markov chain on junction trees. Biometrika, 100(1):91–110,
2013.

[42] Marco Grzegorczyk and Dirk Husmeier. Improving the structure
MCMC sampler for Bayesian networks by introducing a new edge
reversal move. Machine Learning, 71(2-3):265–305, 2008.

References 59

[43] Michel Habib and Rolf H. Möhring. On some complexity properties
of N-free posets and posets with bounded decomposition diameter.
Discrete Mathematics, 63(2-3):157–182, 1987.

[44] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA data mining software:
an update. SIGKDD Explorations, 11(1):10–18, 2009.

[45] David Heckerman. A tutorial on learning with Bayesian networks. In
Innovations in Bayesian Networks: Theory and Applications, volume
156 of Studies in Computational Intelligence, pages 33–82. Springer,
2008.

[46] David Heckerman, Dan Geiger, and David M. Chickering. Learning
Bayesian networks: The combination of knowledge and statistical
data. Machine Learning, 20(3):197–243, 1995.

[47] Michael Held and Richard M. Karp. A dynamic programming ap-
proach to sequencing problems. In Proceedings of the 16th ACM
National Meeting, ACM ’61, pages 71.201–71.204. ACM, 1961.

[48] Holger Hoos, Marius T. Lindauer, and Torsten Schaub. claspfolio 2:
Advances in algorithm selection for answer set programming. Theory
and Practice of Logic Programming, 14(4-5):569–585, 2014.

[49] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown.
Algorithm runtime prediction: Methods & evaluation. Artificial In-
telligence, 206:79–111, 2014.

[50] Tommi S. Jaakkola, David Sontag, Amir Globerson, and Marina
Meila. Learning Bayesian network structure using LP relaxations.
In Proceedings of the 13th International Conference on Artificial In-
telligence and Statistics (AISTATS), volume 9 of JMLR Proceedings,
pages 358–365. JMLR.org, 2010.

[51] Stasys Jukna. Extremal Combinatorics: With Applications in Com-
puter Science. Springer, 1st edition, 2010.

[52] Kustaa Kangas, Teemu Hankala, Teppo Niinimäki, and Mikko
Koivisto. Counting linear extensions of sparse posets. In Proceedings
of the 25th International Joint Conference on Artificial Intelligence
(IJCAI), pages 603–609. IJCAI/AAAI Press, 2016.

60 References

[53] Kustaa Kangas, Petteri Kaski, Mikko Koivisto, and Janne H. Korho-
nen. On the number of connected sets in bounded degree graphs. In
Proceedings of the 40th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG), volume 8747 of Lecture Notes
in Computer Science, pages 336–347. Springer, 2014.

[54] Kustaa Kangas, Mikko Koivisto, and Teppo Niinimäki. Learning
chordal Markov networks by dynamic programming. In Advances in
Neural Information Processing Systems 27 (NIPS), pages 2357–2365.
Curran Associates, Inc., 2014.

[55] Kustaa Kangas, Teppo Niinimäki, and Mikko Koivisto. Averaging
of decomposable graphs by dynamic programming and sampling. In
Proceedings of the 31st Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 415–424. AUAI Press, 2015.

[56] Robert Kennes and Philippe Smets. Computational aspects of the
Mobius transformation. In Proceedings of the Sixth Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pages 401–416,
1990.

[57] Mikko Koivisto. Advances in exact Bayesian structure discovery in
Bayesian networks. In Proceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence (UAI). AUAI Press, 2006.

[58] Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery
in Bayesian networks. Journal of Machine Learning Research, 5:549–
573, 2004.

[59] Kaname Kojima, Eric Perrier, Seiya Imoto, and Satoru Miyano. Op-
timal search on clustered structural constraint for learning Bayesian
network structure. Journal of Machine Learning Research, 11:285–
310, 2010.

[60] Daphne Koller and Nir Friedman. Probabilistic Graphical Models -
Principles and Techniques. MIT Press, 2009.

[61] Janne H. Korhonen and Pekka Parviainen. Exact learning of bounded
tree-width Bayesian networks. In Proceedings of the 16th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS),
volume 31 of JMLR Workshop and Conference Proceedings, pages
370–378. JMLR.org, 2013.

References 61

[62] Timo Koski and John Noble. A review of Bayesian networks
and structure learning. Mathematica Applicanda (Matematyka
Stosowana), 40(1):51–103, 2012.

[63] Lars Kotthoff. Algorithm selection for combinatorial search problems:
A survey. AI Magazine, 35(3):48–60, 2014.

[64] Lars Kotthoff, Ian P. Gent, and Ian Miguel. An evaluation of machine
learning in algorithm selection for search problems. AI Communica-
tions, 25(3):257–270, 2012.

[65] Lars Kotthoff, Pascal Kerschke, Holger Hoos, and Heike Trautmann.
Improving the state of the art in inexact TSP solving using per-
instance algorithm selection. In Revised Selected Papers of the Ninth
International Conference on Learning and Intelligent Optimization
(LION), volume 8994 of Lecture Notes in Computer Science, pages
202–217. Springer, 2015.

[66] Wai Lam and Fahiem Bacchus. Using causal information and local
measures to learn Bayesian networks. In Proceedings of the Ninth
Annual Conference on Uncertainty in Artificial Intelligence (UAI),
pages 243–250. Morgan Kaufmann, 1993.

[67] Pedro Larrañaga, Mikel Poza, Yosu Yurramendi, Roberto H. Murga,
and Cindy M. H. Kuijpers. Structure learning of Bayesian networks
by genetic algorithms: A performance analysis of control parameters.
IEEE Trans. Pattern Anal. Mach. Intell., 18(9):912–926, 1996.

[68] Steffen L. Lauritzen. Graphical models. Oxford statistical science
series. Clarendon Press, 1996.

[69] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations
with probabilities on graphical structures and their application to
expert systems. Journal of the Royal Statistical Society. Series B
(Methodological), 50(2):157–224, 1988.

[70] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learn-
ing the empirical hardness of optimization problems: The case of
combinatorial auctions. In Eighth International Conference on Prin-
ciples and Practice of Constraint Programming (CP), volume 2470 of
Lecture Notes in Computer Science, pages 556–572. Springer, 2002.

[71] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empiri-
cal hardness models: Methodology and a case study on combinatorial
auctions. Journal of the ACM, 56(4), 2009.

62 References

[72] Wing-Ning Li, Zhichun Xiao, and Gordon Beavers. On computing
the number of topological orderings of a directed acyclic graph. Con-
gressus Numerantium, 174:143–159, 2005.

[73] Moshe Lichman. UCI machine learning repository, 2013. University
of California, Irvine, School of Information and Computer Sciences.

[74] Karel De Loof, Hans De Meyer, and Bernard De Baets. Exploiting the
lattice of ideals representation of a poset. Fundamenta Informaticae,
71(2-3):309–321, 2006.

[75] Thomas Lukasiewicz, Maria V. Martinez, and Gerardo I. Simari.
Probabilistic preference logic networks. In Proceedings of the 21st
European Conference on Artificial Intelligence (ECAI), volume 263
of Frontiers in Artificial Intelligence and Applications, pages 561–566.
IOS Press, 2014.

[76] David Madigan, Jeremy York, and Denis Allard. Bayesian graphical
models for discrete data. International Statistical Review / Revue
Internationale de Statistique, 63(2):215–232, 1995.

[77] Brandon Malone, Kustaa Kangas, Matti Järvisalo, Mikko Koivisto,
and Petri Myllymäki. Empirical hardness of Bayesian network struc-
ture learning. Under revision.

[78] Brandon Malone, Kustaa Kangas, Matti Järvisalo, Mikko Koivisto,
and Petri Myllymäki. Predicting the hardness of learning Bayesian
networks. In Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI), pages 2460–2466. AAAI Press, 2014.

[79] Heikki Mannila and Christopher Meek. Global partial orders from
sequential data. In Proceedings of the Sixth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages
161–168. ACM, 2000.

[80] Christopher Meek. Causal inference and causal explanation with
background knowledge. In Proceedings of the 11th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pages 403–410.
Morgan Kaufmann, 1995.

[81] Rolf H. Möhring. Algorithms and Order, chapter Computationally
tractable classes of ordered sets, pages 105–193. Springer, 1989.

References 63

[82] Jason Morton, Lior Pachter, Anne Shiu, Bernd Sturmfels, and Oliver
Wienand. Convex rank tests and semigraphoids. SIAM Journal on
Discrete Mathematics, 23(3):1117–1134, 2009.

[83] Christian J. Muise, J. Christopher Beck, and Sheila A. McIlraith. Op-
timal partial-order plan relaxation via MaxSAT. Journal of Artificial
Intelligence Research, 57:113–149, 2016.

[84] Teppo M. Niinimäki and Mikko Koivisto. Annealed importance sam-
pling for structure learning in Bayesian networks. In Proceedings of
the 23rd International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1579–1585. IJCAI/AAAI, 2013.

[85] Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding optimal models
for small gene networks. In Proceedings of the Pacific Symposium on
Biocomputing 2004, pages 557–567. World Scientific, 2004.

[86] Pekka Parviainen, Hossein Shahrabi Farahani, and Jens Lagergren.
Learning bounded tree-width Bayesian networks using integer linear
programming. In Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 33 of JMLR
Workshop and Conference Proceedings, pages 751–759. JMLR.org,
2014.

[87] Pekka Parviainen and Mikko Koivisto. Exact structure discovery in
Bayesian networks with less space. In Proceedings of the 25th Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pages 436–443.
AUAI Press, 2009.

[88] Pekka Parviainen and Mikko Koivisto. Bayesian structure discovery
in Bayesian networks with less space. In Proceedings of the 13th In-
ternational Conference on Artificial Intelligence and Statistics (AIS-
TATS), volume 9 of JMLR Proceedings, pages 589–596. JMLR.org,
2010.

[89] Pekka Parviainen and Mikko Koivisto. Finding optimal Bayesian
networks using precedence constraints. Journal of Machine Learning
Research, 14(1):1387–1415, 2013.

[90] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers Inc., 1988.

[91] Judea Pearl and Thomas Verma. A theory of inferred causation.
In Proceedings of the Second International Conference on Principles

64 References

of Knowledge Representation and Reasoning (KR), pages 441–452.
Morgan Kaufmann, 1991.

[92] Marcin Peczarski. New results in minimum-comparison sorting. Al-
gorithmica, 40(2):133–145, 2004.

[93] Eric Perrier, Seiya Imoto, and Satoru Miyano. Finding optimal
Bayesian network given a super-structure. Journal of Machine Learn-
ing Research, 9:2251–2286, 2008.

[94] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C, 2nd Edition. Cambridge
University Press, 1992.

[95] J. Ross Quinlan. Simplifying decision trees. International Journal of
Man-Machine Studies, 27(3):221–234, 1987.

[96] John R. Rice. The algorithm selection problem. Advances in Com-
puters, 15:65–118, 1976.

[97] Paul Saikko, Brandon Malone, and Matti Järvisalo. MaxSAT-based
cutting planes for learning graphical models. In 12th International
Conference on Integration of AI and OR Techniques in Constraint
Programming (CPAIOR), volume 9075 of Lecture Notes in Computer
Science, pages 347–356. Springer, 2015.

[98] Ross D. Shachter, Bruce D’Ambrosio, and Brendan Del Favero. Sym-
bolic probabilistic inference in belief networks. In Proceedings of the
Eighth National Conference on Artificial Intelligence, pages 126–131.
AAAI Press / The MIT Press, 1990.

[99] Tomi Silander and Petri Myllymäki. A simple approach for finding
the globally optimal Bayesian network structure. In Proceedings of
the 22nd Conference on Uncertainty in Artificial Intelligence (UAI),
pages 445–452. AUAI Press, 2006.

[100] Tomi Silander, Teemu Roos, Petri Kontkanen, and Petri Myllymäki.
Factorized normalized maximum likelihood criterion for learning
Bayesian network structures. In Proceedings of the Fourth European
Workshop on Probabilistic Graphical Models (PGM), pages 257–264,
2008.

[101] Ajit Singh and Andrew Moore. Finding optimal Bayesian networks by
dynamic programming. Technical report, Carnegie Mellon University,
2005.

References 65

[102] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Pre-
diction, and Search. The MIT Press, second edition, 2001.

[103] Peter Spirtes and Christopher Meek. Learning Bayesian networks
with discrete variables from data. In Proceedings of the First Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD),
pages 294–299. AAAI Press, 1995.

[104] Nathan Srebro. Maximum likelihood bounded tree-width Markov
networks. Artificial Intelligence, 143(1):123–138, 2003.

[105] Milan Studený and James Cussens. The chordal graph polytope for
learning decomposable models. In Proceedings of the Eighth Inter-
national Conference on Probabilistic Graphical Models (PGM), vol-
ume 52 of JMLR Workshop and Conference Proceedings, pages 499–
510. JMLR.org, 2016.

[106] Joe Suzuki. A construction of Bayesian networks from databases
based on an MDL principle. In Proceedings of the Ninth Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI), pages 266–
273. Morgan Kaufmann, 1993.

[107] Yoshinori Tamada, Seiya Imoto, and Satoru Miyano. Parallel algo-
rithm for learning optimal Bayesian network structure. Journal of
Machine Learning Research, 12:2437–2459, 2011.

[108] Claudia Tarantola. MCMC model determination for discrete graphi-
cal models. Statistical Modelling, 4(1):39–61, 2004.

[109] Marc Teyssier and Daphne Koller. Ordering-based search: A simple
and effective algorithm for learning Bayesian networks. In Proceedings
of the 21st Conference on Uncertainty in Artificial Intelligence (UAI),
pages 548–549. AUAI Press, 2005.

[110] Alun Thomas and Peter J. Green. Enumerating the junction trees
of a decomposable graph. Journal of Computational and Graphical
Statistics, 18(4):930–940, 2009.

[111] Jin Tian and Ru He. Computing posterior probabilities of structural
features in Bayesian networks. In Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 538–547. AUAI
Press, 2009.

66 References

[112] Peter van Beek and Hella-Franziska Hoffmann. Machine learning of
Bayesian networks using constraint programming. In Proceedings of
the 21st International Conference on Principles and Practice of Con-
straint Programming (CP), volume 9255 of Lecture Notes in Com-
puter Science, pages 429–445. Springer, 2015.

[113] Thomas Verma and Judea Pearl. An algorithm for deciding if a set
of observed independencies has a causal explanation. In Proceedings
of the Eighth Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 323–330. Morgan Kaufmann, 1992.

[114] Michael Vose. A linear algorithm for generating random numbers with
a given distribution. IEEE Transactions on Software Engineering,
17:972–975, 1991.

[115] Chris S. Wallace, Kevin B. Korb, and Honghua Dai. Causal discovery
via MML. In Proceedings of the 13th International Conference on
Machine Learning (ICML), pages 516–524. Morgan Kaufmann, 1996.

[116] Yong Wang and Ian H. Witten. Inducing model trees for continuous
classes. In Proceedings of the Ninth European Conference on Machine
Learning Poster Papers, pages 128–137, 1997.

[117] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-based algorithm selection for SAT. Journal of
Artificial Intelligence Research, 32:565–606, 2008.

[118] Frank Yates. The design and analysis of factorial experiments. Im-
perial Bureau of Soil Science. Harpenden, 1937.

[119] Changhe Yuan and Brandon M. Malone. An improved admissible
heuristic for learning optimal Bayesian networks. In Proceedings of
the 28th Conference on Uncertainty in Artificial Intelligence (UAI),
pages 924–933. AUAI Press, 2012.

[120] Changhe Yuan and Brandon M. Malone. Learning optimal Bayesian
networks: A shortest path perspective. Journal of Artificial Intelli-
gence Research, 48:23–65, 2013.

[121] Changhe Yuan, Brandon M. Malone, and XiaoJian Wu. Learning
optimal Bayesian networks using A* search. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 2186–2191. IJCAI/AAAI, 2011.

	Acknowledgements
	Contents
	Original publications
	Introduction
	Preliminaries
	Bayesian learning in decomposable models
	Algorithm selection for learning Bayesian networks
	Counting linear extensions
	Connected sets
	Discussion
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.165 x 10.079 inches / 182.0 x 256.0 mm
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20161107080955

 32

 D:20160929140429
 725.6693
 B5 varoilla
 Blank
 515.9055

 Tall
 1
 0
 No
 838
 446
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 19.8425
 Right

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 76
 168
 167
 168

 1

 HistoryItem_V1
 DefineBleed

 Range: all pages
 Request: bleed all round 8.50 points
 Bleed area is outside visible: yes

 D:20161107081400

 0.0000
 1
 0.0000
 8.5039
 0
 1
 952
 435

 0.0000
 Fixed

 Both
 AllDoc

 CurrentAVDoc

 0.0000

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 167
 168
 167
 168

 1

 HistoryList_V1
 qi2base

