
Synthesizing Perceived Challenges in Continuous Delivery -
A Systematic Literature Review

Ville Pulkkinen

MSc Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, October 17, 2016



Faculty of Science Department of Computer Science

Ville Pulkkinen

Synthesizing Perceived Challenges in Continuous Delivery - A Systematic Literature Review

Computer Science

MSc Thesis October 17, 2016 91 pages + 36 appendix pages

Systematic Literature Review, Continuous Delivery, Continuous Deployment, DevOps, Challenges

Continuous delivery is an approach to software development which incorporates the practices,
technologies and processes in order to achieve frequent delivery of valuable software to
customers. Even though the continuous delivery approach has not existed very long yet, there
has been quite a lot of a buzz around it and terms related to it (continuous deployment,
deployment pipeline, and DevOps). Practices and benefits of the approach are presented in
the literature, and organizations have been adopting it to a varying extent.

However, as easy as the advocates of continuous delivery make the adoption look like,
there have been reported challenges along the way. In order to focus research on finding the
causes and creating solutions to these challenges, we must first identify them. To address this,
we conducted a systematic literature review in order to collect perceived challenges related to
the adoption of continuous delivery practices in software development projects, and analyzed
the findings in order to provide synthesized information about these challenges.

From among 13 publications 59 different challenges were identified which we categorized
either as a social (procedural or organizational) or as a technical type of a challenge based
on the evaluation of the findings. Among these challenges we found 14 more frequently
occurring ones which also spanned across multiple software domains. We described these as
common challenges. We also analyzed the reasons behind these challenges and identified five
different themes (main reasons) that were immaturity, unsuitability, complexity, dependency,
and security. We also analyzed how the software domain affected these reasons. Based on
the observed mitigation strategies and research proposals, and our analysis, we proposed
suggestions for future research directions.

This study can be used as a support for finding future research directions regarding
the challenges in the area of adopting continuous delivery practices in software development
projects.

ACM Computing Classification System (CCS):
Software and its engineering ~ Software creation and management
Software and its engineering ~ Software development techniques
Software and its engineering ~ Rapid application development
Social and professional topics ~ Management of computing and information systems

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Continuous Delivery 5
2.1 Origins of Continuous Delivery . . . . . . . . . . . . . . . . . 5
2.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Benefits and Practices . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Research Method 14
3.1 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Search Process . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Quality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Synthesis Strategy . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Results 34
4.1 Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Perceived Challenges . . . . . . . . . . . . . . . . . . . . . . . 40

5 Challenge Analysis 45
5.1 Common Challenges . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Reasons Behind Challenges . . . . . . . . . . . . . . . . . . . 53
5.3 Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Proposed Research Areas . . . . . . . . . . . . . . . . . . . . 72

6 Discussion 73
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ii



6.3 Quality of Primary Studies . . . . . . . . . . . . . . . . . . . 78
6.4 Thematic Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Perceived Challenges . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Challenge Reasons . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Conclusion 82
7.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 84

References 87

A List of Primary Studies 92

B Challenges 94

C Search Screens 110

D Findings (Raw Challenges / Form III) 117

iii



1 Introduction

1.1 Motivation

Continuous delivery is an approach to software development which incorpo-
rates the practices, technologies and processes in order to achieve frequent
delivery of valuable software to customers. Even though the continuous
delivery approach has not existed very long yet, there has been quite a lot of
a buzz around it and terms related to it (continuous deployment, deployment
pipeline, and DevOps). Practices and benefits of the approach are presented
in the literature [HF10] [Fow13] [All], and organizations have been adopting
it to a varying extent. However, as easy as the advocates of continuous
delivery make the adoption look like, there have been reported challenges
along the way [MAK+14] [RHL+16].

Challenges are usually encountered when an organization is trying to
adopt continuous deployment and delivery approach i.e. when implementing
the deployment pipeline (technical challenge) or is adopting continuous
delivery practices in the organization (organizational challenge). To focus
research on finding the causes and creating solutions to these challenges we
must first identify them. We conducted a systematic literature review in
order to collect perceived challenges related in adopting continuous delivery
practices to software development projects, and analyzed the findings in
order to provide synthesized information about these challenges.

Description of continuous delivery (or continuous deployment) practices
and incorporated concepts are described in literature [HF10]. Many benefits
of continuous delivery are presented [HF10] [Fow13] [RHL+16] [All] but the
challenges related to implementation are less studied. One reason might be
that the authors and practitioners are more willing to report positive than
negative results [RHL+16]. Research of continuous delivery is still in its early
stages [RHL+16] and the data is quite dispersed. Even though the continuous
delivery process and the benefits are presented to some extent, and probably
also comprehended by adopting organizations, we feel that the community is
missing a clear view about the challenges encountered when implementing
continuous delivery systems and how to overcome these challenges. In this
study we are going to address and synthesize these challenges encountered

1



in the implementation of continuous delivery process and also explore the
mitigation strategies used to overcome the challenges.

We found only two comprehensive systematic literature review studies
related to continuous delivery of software where also challenges are stud-
ied [MAK+14] [RHL+16]. Rodriguez et al. [RHL+16] made a systematic
mapping study about continuous deployment and identified four different
challenges regarding the transformation when moving towards continuous
deployment. Mäntylä et al. made a composite paper of case study and semi-
systematic literature review of releasing software more rapidly [MAK+14].
They also found four different more frequently occurring issues relating to
rapid releases and reflected those findings to the results from the case study.
In this study, we are going to focus only on the challenges faced in continuous
delivery and continuous deployment and deepen the knowledge about the
challenges.

1.2 Research Questions

The goal of this study is to synthesize the challenges encountered in the
adoption of continuous delivery approach in software development projects,
and to find out if there are some common factors between these challenges.
We also aim to provide some insights for the existing mitigation strategies
and future research directions related to challenges in adopting continuous
delivery. Hence, the main research questions (RQs) are the following:

RQ1 What are the perceived challenges of adopting continuous delivery
practices in a software development project and why?

RQ2 How should the research on continuous delivery be directed according
to these challenges?

To be more precise, in RQ1 we want to know what are the perceived
challenges, which challenges are more common, which are more specific to
certain software domain (considering the frequency of challenges, company
sizes and software/business domain), and also what is causing these challenges.
In RQ2 we try to seek new directions for future research related to the
challenges by figuring out the quality of current studies and presenting

2



Table 1: Research questions

Id Research question
RQ1 What are the perceived challenges of adopting continuous delivery

practices in a software development project and why?
RQ1.1 What are the perceived challenges?
RQ1.2 Which challenges are more common?
RQ1.3 Which challenges are more specific?
RQ1.4 What are the reasons for these challenges?

RQ2 How should the research on continuous delivery be directed according
to these challenges?
RQ2.1 What is the quality status of current research related to these
challenges?
RQ2.2 What are the presented mitigation strategies used to overcome
these challenges?
RQ2.3 What are the proposed research directions related to these
challenges?

proposed mitigation strategies with proposed research directions. Main
research questions and sub questions are presented in Table 1.

To answer these questions we did a systematic literature review. With
the systematic literature review we found a wide range of challenges which
we categorized and analyzed in order to find the common ones. We created
higher-order themes to find out the reasons behind these challenges. We also
studied the quality of the papers related to the challenges met in adopting
continuous delivery practices with the help of quality checklist. This study
will aid researchers to better direct future research regarding the challenges
met in the area of continuous delivery adoption.

1.3 Thesis Structure

In the first chapter we familiarize the reader with a brief introduction to
the concept of continuous delivery, and also present the motivation, goals,
and the research questions so the reader will get a good overview about
why this study has been made. The second chapter is where we deepen the
knowledge about the concept of continuous delivery. In the third chapter we
will present research methods used in this study. It is the chapter for those
who are interested about the methodological aspects of how the research has

3



been made. The fourth chapter is where the results are presented before the
analysis. In the fifth chapter we will analyze the challenges and the reasons
behind the challenge to provide more understanding of them. The discussion
chapter is the sixth one and consists of discussion of the results and potential
threats to the validity of the study. This study will be summed up in the
last chapter where contributions and future research proposals are presented.

4



2 Continuous Delivery

We will briefly go through the basic foundations of continuous delivery in
order to help the reader understand the context from where we are seeking
the challenges. Firstly, we present the origins of continuous delivery practice
and after that, we will describe several terms that are related to continuous
delivery (continuous deployment, continuous experimentation, deployment
pipeline, and DevOps). Secondly, expected benefits and used practices will
be presented. Finally, we will go through the challenges that are already
observed in the previous studies. After this chapter the reader should be
familiar with the main concept this study is considering (i.e. continuous
delivery).

2.1 Origins of Continuous Delivery

Continuous delivery approach has evolved from continuous integration (CI)
practice. Continuous integration is a practice that ensures the use of some
Agile and Extreme Programming (XP) practices appreciated by practitioners.
The goal of CI is to continuously integrate (preferably automatically to save
human labor) all of the pieces of an application in order to form a working
software. Working software is a software that is somehow verified, usually
by testing, to be working as it should be and is deployable [DMG07]. The
main function of continuous integration is to run tests in a centralized server,
as soon as possible, so that developers will get feedback that the code they
commit to the code base is functioning with the rest. With continuous
integration large integration problems can be avoided. The software can be
developed with test-driven development (TDD) approach where tests are
made just before the actual features in small increments.

Beck wrote about continuous integration practice in his book Extreme
Programming Explained already in the year 1999 [BA99]. At that time the
idea of continuous integration was quite new and there was a lack of tools for
such a development strategy. The author also mentioned that testing will be
the most time consuming part of continuous integration and that a complete
test suite should be run in few minutes. He also recommended the practice
of continuous integration because it will help you to split your development

5



tasks in smaller pieces and thus will help to reduce the integration problems
and thereby reduce the risk of delivering the software.

The idea of continuously delivering and deploying software came from prac-
titioners who embraced agile software development methodologies [HRN06]
[DMG07] [Fit09] [HF10] [Fow13] but the idea of continuously delivering soft-
ware (as fast as possible) is also promoted by the lean software development
approach [CSA15]. Lean software development is an approach to software
development that has certain principles (optimize the whole, eliminate waste,
build quality in, learn constantly, deliver fast, engage everyone, and keep get-
ting better) to which everything else (practices, processes and philosophy) is
based on [PC12]. However, the continuous delivery (or deployment) approach
can be used regardless of the software development process or methodology.
Continuous deployment is said to be "a culmination of practices and steps
which enable us to release working software any time, any place, with as
little effort as possible." [DMG07]. It can also be seen as an extension to
continuous integration practice [All].

Because there are slightly different interpretations about the terms con-
tinuous delivery and continuous deployment in the research studies and
literature [FS14] [RHWP15], we will also define these terms to clarify how we
understand them. One trend is to define continuous deployment as a practice
of deploying code immediately to the production environment after some
change [Fit09] [HF10] [Fow13] while another is that it means automation of
the process of deployment to any environment [DMG07] [FS14]. Also some
kind of hybrid interpretation exists as "We define continuous deployment
as a software engineering process where incremental software changes are
automatically tested, and frequently deployed to production environments"
[RHWP15]. In any case, there is no big difference in the overall process of
making changes to the source code and releasing the change to the actual
users. Continuous delivery is mainly an enabler for continuous deployment
[FS14]. To achieve continuous delivery you need DevOps-culture and de-
ployment pipeline to be in place [Fow13]. That applies also for continuous
deployment. Next we will go briefly through all these terms.

6



2.2 Terminology

In this section we define the key terms related to continuous delivery. These
terms are somewhat overlapping in the literature. At the same time we also
set the foundation to our systematic literature review search scope (especially
search keywords).

2.2.1 Continuous Deployment

By continuous deployment, we mean an approach where all changes to the
software that a developer commits to the version control system (VCS)
are deployed automatically, without human interaction, to the production
environment (to end-users) immediately after all the required tests are
passed successfully [Fit09] [HF10] [Fow13]. This approach relies fully on the
TDD approach. The testing phase includes unit, integration, system, and
acceptance (functional and non-functional) testing.

2.2.2 Continuous Delivery

It is said that continuous delivery is "a set of practices and principles to
release software faster and more frequently" [KA14]. Continuous delivery is a
less radical approach, compared to continuous deployment, where new builds
are deployed to the production environment if one chooses so (for example
by a click of a button) after all of the required tests are passed successfully
[Fow13]. With continuous delivery, it is possible to perform for example user
assurance testing, exploratory testing [BF14] or other actions operated by
humans before the build is deployed to the production environment [HF10]
(which is impossible with our definition of continuous deployment). By
definition, you are conducting continuous delivery when your software is
deployable all the time, your priority number one is to keep it that way, you
get feedback fast and automatically about the system, and you can perform
"push of a button" deployments of any version, to any environment, at any
time [Fow13].

7



2.2.3 Deployment Pipeline

To achieve continuous delivery or continuous deployment, the process must
be relying on a fully automated deployment pipeline [Fow13]. A deployment
pipeline automates the process where the latest source code is fetched,
compiled, built, tested, and deployed to different environments which are also
automatically provided and configured [HF10]. Earlier, when the concept
of deployment pipeline was introduced, it was referred to as deployment
production line [HRN06]. Also some other terms are used such as continuous
integration pipeline, build pipeline, or living build [HF10]. The deployment
pipeline consists of different stages which act as gatekeepers for the process
of software delivery automation. These stages are for example commit stage,
automated acceptance testing stage, manual testing stage, and release stage
[HF10]. If a build is failing in some stage it will not proceed to the next
stage. Deployment pipeline is also said, as being part of continuous delivery,
to take continuous integration practice to its logical conclusion [HF10].

2.2.4 DevOps

DevOps is a way of doing things related to delivery which emphasizes a
close and collaborative relationship between everyone involved in the delivery
[Fow13]. In a study which was focusing on definition and perceived adoption
impediments of DevOps, the authors defined DevOps to be as "...a set of
engineering process capabilities supported by certain cultural and technological
enablers" [SNP15]. As such, the definition is overlapping with the continuous
delivery approach. Humble et al. note in their book "Continuous Delivery"
that "the DevOps movement is focused on the same goal we set out in this
book: encouraging greater collaboration between everyone involved in software
delivery in order to release valuable software faster and more reliably" [HF10].
In the paper where DevOps definitions were studied, technological and
cultural enablers and capabilities were presented [SNP15]. Technological
enablers were automation of build, test, deployment, monitoring, recovery,
infrastructure and configuration management. Cultural enablers were sharing,
communication, constant experimentation, and learning. Capabilities were
relating to collaborative and continuous approach to software development.

8



One good observation we found was that the term DevOps is a bit misleading
because it is a combination of development and operations, but actually
there are also other parties involved like testers and database administrators
etc. [Fow13].

2.2.5 Continuous Experimentation

By continuous experimentation approach, we are referring to an approach of
the software development that is heavily influenced by rapid experimentation
of different variations or new features of the software [OAB12]. With the help
of collected customer usage data from the experiments, developers can steer
the direction of the software development project. Continuous deployment is
one of the enablers for efficient utilization of customer usage data throughout
development [OAB12]. However, before you can continuously deploy a
software you need to have a continuous delivery system in place [Fow13].
Because of these pre-requisites, we decided that continuous experimentation
is included in our scope considering the challenges in adoption of continuous
delivery practices.

2.3 Benefits and Practices

In the Internet-article by Fowler [Fow13] which discusses about continuous
delivery, the author states that continuous delivery will reduce the risk of
deployment since the deployment is done more frequently and in smaller
batches so there are fewer things that could go wrong and it is easier to fix if
some problem appears. He also said that the process of software development
is more credible when "done" means that it is actually deployed to production
(or production like environment). The author also noted that the biggest
risk to any effort of software development is that you have built something
that is not useful. The earlier and more frequently you get the feedback
from the actual users, the quicker you will find out if the software is valuable
to your users and you are able to utilize this information to the benefit of
development.

The Agile Alliance community claims that the main benefits arise as a
result of reducing lead time by "achieving earlier return on investment for

9



each feature after it is developed, which reduces the need for large capital
investments" and by "earlier feedback from users on each new feature as it is
released to production, which affords techniques such as parallel (or A/B)
testing to determine which of two possible implementations is preferred by
users" [All].

Also in the book "Continuous Delivery" the following benefits were pre-
sented for continuous delivery: it is empowering teams, it will reduce errors
and lower stress, it enables deployment flexibility, and by practicing it multi-
ple times before actual production deployment the process of delivering will
become better [HF10]. Next we will briefly describe these benefits in more
detail.

Continuous delivery is said to empower teams as the pull system enables
efficient deployment of any version to any environment thus it is easier for
example for testers to get the version they need to test, support personnel to
get some specific version for reproducing a defect, and operations to deploy
version that they want to the production. Also by automating all things in the
delivery process (e.g. provisioning, configuration) continuous delivery is said
to reduce errors because the possibility of introducing errors by doing things
manually is eliminated. Instead of having release days on rare occasions
when the deployment is done to production, continuous delivery encourages
to deploy frequently which will lower the stress in releasing a software. The
automation of the deployment process should also make it easier to create
new instances of an application to completely new environments so the
deployments will become more flexible. Also, the automation begins from the
dedicated development environments that are provided to every developer so
the same deployment process is used for providing these first steps in the
development process. This ensures that the automation is practiced many
times before the actual software is delivered to customers.

Perceived benefits were studied in a systematic mapping study about
continuous deployment of software intensive product and services [RHL+16].
These benefits were shorter time-to-market, continuous feedback, improved
release reliability, increased customer satisfaction, improved developer pro-
ductivity, rapid innovation, and narrower test focus.

In a multiple case study of synthesizing continuous deployment prac-

10



tices, in which cases were mainly based on Internet sources, there were
11 different practices identified [RHWP15]. Identified practices were auto-
mated deployment, automated testing, code review, dark launching, end-user
communication (efficient use of feedback), feature flags (feature toggles),
intercommunication (sharing of development status), monitoring (especially
production environment), repository use (use of VCS), shepherding changes
(developer being responsible for a change throughout the deployment pro-
cess), and staging (dogfooding or gradual rollout). Only a few of these
were identified as common ones. Common ones were automated deployment,
automated testing, and repository use. Even though these practices were
identified from the case companies, the authors failed to understand why
these practices help the case companies to achieve continuous deployment.
These perceived practices also reflect the practices presented in the literature
[HF10].

In the systematic mapping study of continuous delivery of software
intensive products and services [RHL+16] the authors observed following 10
different factors that were recurring among the cases:

1. The approach was to release software fast and frequently so that
organizations could release software on demand. Preference of releasing
frequency was given to shorter-cycles or even continuously.

2. The product usually had a flexible architecture so that balancing
between stability and speed was possible.

3. Typically products were continuously under a test so that quality was
assured alongside fast releases.

4. Delivery pipeline was built so that the whole process (building, testing,
deploying, and monitoring) of delivering software was automated.

5. Version control branching strategies and system configuration manage-
ment were used in a way that enabled continuous delivery.

6. Customers were more involved in the development process by the means
of providing usage data and feedback as early as possible to steer the
development process direction.

7. Also for the same reason small experiments were done rapidly or even
continuously.

11



8. Post-deployment activities were typical for the support of business and
technical decision making.

9. Agile and lean approaches to software development were used and
extended to better fit for continuous delivery.

10. Also organization was adjusted to better support continuous delivery
and towards more experimental and transparent mindset.

2.4 Challenges

However, even though benefits and practices are presented in multiple sources,
there are also reports of challenges along the way in transformation towards
the continuous delivery approach.

Rodriguez et al. made a systematic mapping study about continuous
deployment and identified some challenges regarding the transformation
towards continuous deployment [RHL+16]. Frequent challenges were the
process of transformation towards continuous deployment, customers’ unwill-
ingness to receive continuous product updates, increased quality assurance
(QA) efforts, and difficulties applying continuous deployment in the embed-
ded domain [RHL+16]. They also analyzed briefly in detail the challenges
faced. They noted that challenges were less reported than benefits which
may be because authors and practitioners might be more willing to report
positive than negative results [RHL+16].

Other challenges which appeared less frequently in the literature were
lack of trust in software quality, difficulty in managing various configurations
and run-time environments, a tension between the desire to deliver func-
tionalities quickly and the need for reliable products, release planning and
managing roadmaps in a fast-paced environment, and risks associated with
gathering user feedback from limited population that might even mislead the
development of the product [RHL+16].

Mäntylä et al. made a composite paper of a case study and semi-
systematic literature review of releasing software more rapidly [MAK+14].
Even though the study itself does not state to be concentrating on continuous
delivery, it is closely related to continuous delivery. In the systematic
literature review search phase they used search words of “continuous release”,

12



“continuous delivery”, “continuous deployment” and some related terms and
variations. In the semi-systematic literature review they found four different
problem areas relating to rapid releases. They observed from the literature
that:

1. there are problems with high reliability and lack of high test coverage,
2. it seems unlikely that automated testing can completely solve the

challenges related to reliability or test coverage,
3. customers might get weary of yet another update, and
4. rapid releases may increase technical debt (or lead to staff burnout) as

there is less time available for thinking things through [MAK+14].

Mäntylä et al. also reflected the findings from the literature to their case
study and stated that their findings from the case study partially supported
the findings from the literature. They noticed that there was a reduction in
environments which to test (because of reducing legacy support in testing)
but at the same time increased some in-depth testing of few important
features which was considered as a great benefit. Also, there was not much
of a decline in quality or reliability. Problems of customer adoption were
mitigated by extended support release which did not have so much updates.
Time-pressure, at least to some extent, came into reality as the amount of
testing and testers was decreased.

13



3 Research Method

In this chapter we will present our research method for this study. The
research approach for this study is a systematic literature review which is
presented at the beginning of this chapter. After that we will present the
research scope, search strategy and selection criteria to define the search
process in more detail. We will also present a quality criteria which we
will apply to our primary studies to aid the synthesis process. We will also
provide forms for our data extraction and gathering of the challenges. Finally
we will describe briefly how we conducted the synthesis.

3.1 Research Approach

A systematic literature review (or systematic review) is one of the main
methods for conducting research. It is originating from medical sciences
[KC07] but have also been applied to other fields of science (e.g. social
sciences [BCT+06]). The purpose of a systematic literature review study
is to identify, evaluate and interpret existing relevant research related to a
particular research question, topic area or phenomenon of interest [KC07].
The Cochrane Handbook for Systematic Reviews of Interventions sums the
key points of systematic literature review as:

Systematic reviews seek to collate all evidence that fits pre-
specified eligibility criteria in order to address a specific research
question [HG08].

However, the evidence-based paradigm in software engineering research
is quite different from traditional medical research as noticed in a study
that investigates the applicability of evidence-based paradigm to software
engineering [BCT+06]. Nevertheless, in the same study, the authors noted
that there is no obvious reason why systematic literature review could not
be successfully adaptable also to software engineering research. They also
encouraged the use of evidence-based paradigm to software engineering.
Guidelines have been developed to help researchers in employing systematic
literature reviews especially in the software engineering domain [KC07].

A traditional literature review (or literature review) is a summary of

14



evidence from the studies often conducted by experts or other well-known
figures in the field. However, that does not ensure that the information
produced is unbiased and reliable [PR08]. In comparison to traditional
literature review, which is a selected collection of information gathered by
authors that might be biased, a systematic literature review aims to minimize
bias by using explicit, systematic methods [HG08] that are documented
accurately. In other words, a systematic literature review tries to synthesize
existing work in a manner that is fair, is seen to be fair and is (at least to
some degree) repeatable [KC07].

Because a systematic literature review does not provide empirical data
itself, it is a type of secondary study [PFMM08] compared to the publications
that are contributing to it (which provide empirical data). Contributing
studies are called primary studies. Secondary studies are gathering the data
from the primary studies to synthesize and integrate evidence to answer
some specific research question.

When there are enough secondary studies available related to some
research question, there is a possibility to do a review of the secondary studies
(so called systematic literature review of systematic literature reviews). The
review of the secondary studies is called tertiary study (or tertiary review).
Tertiary studies are usually conducted to answer research questions with a
wider scope [KC07].

According to the guidelines for performing systematic literature reviews in
software engineering there exists also a third variation of systematic literature
reviews called a systematic mapping study [KC07]. In the same guidelines the
authors stated that a systematic mapping study can be useful in situations
when there is very little evidence existing or the topic is very broad. A
systematic mapping study can be made before a systematic literature review
to get an overview of the topic area [PFMM08]. After a systematic mapping
study is conducted, there is a better possibility to investigate certain topics
in more detail. In an example related to our area of interest, Rodriguez et al.
have made systematic mapping study about continuous deployment [RHL+16]
where some challenges were collected related to continuous deployment.

The purpose of this study is to conduct a systematic literature review
of the challenges perceived in the adoption of continuous delivery practice

15



Figure 1: Systematic literature review process [BCT+06]

to software projects. The systematic literature review will be made using
the guidelines for systematic literature reviews of Kitchenham et al. [KC07]
that are specially made for the software engineering domain. Our process
is following the systematic literature review process that is described in a
diagram by Budgen et al. [BCT+06] (see Figure 1) and in more detail in
the guidelines by Kitchenham et al. [KC07]. The process consists of three
different phases: planning the review, conducting the review, and finally
documenting the review.

The search strategy used is automatic database search as the primary
way of finding our primary studies. This is complemented with manual scan

16



of references found in the selected primary studies. Also, the snowballing
strategy [Woh14] was considered as an option for the complementary search
for automatic database search but it was rejected because of the assumed
laborous influence of the method related to the possible outcomes taking into
account the limited amount of time scheduled for the phase of conducting
the review. The snowballing strategy could rather have been an option for
automatic database search.

3.2 Research Scope

The scope of the systematic literature review may be broad or narrow when
answering some research questions. The choice of the scope is usually based
on multiple factors like perspectives regarding a question’s relevance and
potential impact, supporting theoretical information, the potential general-
izability and validity of answers to the questions, and available resources
[HG08].

The main goal of this study is to gather the information about challenges
when adopting continuous delivery practices in software development projects.
Because the concept of continuous delivery has been around only for a few
years at the time of writing this study, and thus the available research papers
are scarce, we chose to have a broad scope for this study. We will include
every evidence that is somehow related to adopting the continuous delivery
practice. Because of the broad scope, our study faces challenges in categoriz-
ing the findings and trying to resolve the common ones. Also discovering the
challenges that are specific for the setting and are nongeneralizable is one
goal of this review.

Based on preliminary investigation of relevant literature, the continuous
delivery term is used interchangeably with the term continuous deployment.
Also continuous experimentation is a fairly new approach to software devel-
opment that would be enabled by continuous deployment [OAB12]. Hence,
it might lead us to the challenges met in adopting continuous delivery prac-
tice. Because the enabling core technology for both continuous delivery and
continuous deployment is deployment pipeline [HF10], we will include also
that in our study scope. In addition, practitioners have incorporated the

17



term DevOps with continuous delivery and deployment pipeline so we will
include that to our scope too. To learn more about these concepts we ask
readers to refer to the section 2.1 of this study.

3.3 Search Strategy

Search strategy is the definition of how the gathering of the relevant studies
for the systematic literature review is conducted. It describes different stages
of finding and selecting primary data for the study. In an editorial which
discusses about systematic literature reviews in software engineering the
authors made an observation that the search strategy is the key to ensuring
a good starting point for the identification of studies and ultimately for the
actual outcome of the study [WP13]. Hence, we are also defining our search
strategy. The search of primary studies can be made with a manual process
or automatically with the help of database search engines.

Manual search is the form of searching papers by means that do not
necessarily need search databases for conducting the search. However, you
may utilize search databases to actually get the papers you try to find. One
good and relevant example of (systematic) manual search is the snowballing
approach described in the paper "Guidelines for Snowballing in Systematic
Literature Studies and a Replication in Software Engineering" [Woh14]. In
the snowballing approach, you utilize the references of some selected starting
set of papers (backwards snowballing) and papers that are citing those papers
(forwards snowballing). Gradually you increase the amount of primary studies
as you go through the references and citing papers.

Automatic database search, on the other hand, is a way of finding studies
from scientific publication databases using search strings. It is noted that
even though some studies may have proven that automated database search
is better than manual search, it is up to good search strings to ensure the
quality of automatic database search [Woh14]. For example, if the search
string is too broad there might be substantial manual work in the selection
stage of the search process. Also the terminology might not be standardized
which may affect the formulation of good search strings.

In the proposed guidelines for systematic literature reviews in software

18



engineering authors state that automatic database search with a good search
string from the area of study is a good starting point but complementary
search methods are needed [KC07]. They also state that most of the sys-
tematic literature reviews in the field are lacking the complementary search
methods in addition to automatic database searches. Hence, to complement
the automatic database search we are conducting our own additional and
small search, which we are calling reference scanning, to the primary studies
we identified in the automatic database search. The reference scanning is
similar to the backward snowballing phase of the snowballing search strategy
[Woh14].

In the reference scanning we are going through all the references of our
primary studies found in our automatic database search process and try to
find more primary studies. For example in a typical scientific publication,
there might be references to similar studies in the section that discusses
related papers. For every reference we used the same filtering strategy as we
used for our automatic database search results. If a new primary study was
found then it was added to our primary study pool and reference scanning
was done also for that paper. However, we did not find any new primary
studies with the reference scanning.

At first we were planning to conduct an additional snowballing search
for the most relevant (most cited) papers of the area found in the automatic
database search but the idea was rejected at a later stage of the search
because of the expected outcome and the workload of the snowballing search
taking into account the limited time scope.

As there were suggestions in the "Lessons from applying the systematic
literature review process within the software engineering domain" [BKB+07]
we searched many different electronic sources in automatic database search.
Search databases (indexing services) utilized were IEEE Explore, ACM
Digital Library, ScienceDirect and Scopus. We also tried to use CiteSeerX
Digital Library (http://citeseerx.ist.psu.edu) and Google Scholar but their
exporting capabilities were limited and thus we rejected them. The list of
search databases with abbreviation for referencing in this study is provided
in Table 2.

The database searches were conducted with the following keywords:

19



Table 2: List of search databases

Name URL Abbreviation
IEEE Explore http://ieeexplore.ieee.org IEE
ACM Digital Library http://dl.acm.org ACM
ScienceDirect http://www.sciencedirect.com SDT
Scopus http://www.scopus.com SCP

continuous delivery, continuous deployment, continuous experimentation,
devops and deployment pipeline. We limit the results to only include studies
published from 2010 onwards. That was the decision we made based on the
assumption that the publication of the book Continuous Delivery [HF10]
had influenced the research in the area. The assumption is at least to some
extent supported by our brief review of the primary studies in the mapping
study of continuous deployment by Rodriquez et al. [RHL+16]; We noticed
that in the primary studies that were published before 2010 the concept of
continuous delivery did not exist or was too vague. Hence, we decided not
to include papers published before that. The complete search expression in
generalized form is provided in Figure 2.

(’continuous delivery’ <or> ’continuous deployment’ <or> ’continuous
experimentation’ <or> ’deployment pipeline’ <or> ’devops’ <in> (metadata,

pdfdata)) <and> publicationyear >= 2010

Figure 2: Generalized search expression

We planned that we would expand the study to include also grey material
in case the number of the primary papers remains low (eg. less than six
studies). Usually grey material is understood as material that is not formally
published [HG08]. These kinds of studies include for example books, work-
shop and conference presentations and abstracts, technical reports, white
papers, master’s thesis’, world wide web articles and other "non-peer reviewed
material". Because these kinds of grey literature studies may be of lower
quality from a methodological point of view, this should be borne in mind
when analyzing these types of studies. At the end of our search process we
were left with thirteen primary studies which was a sufficient amount for our

20



study to continue without grey material.

3.4 Selection Criteria

In order to narrow down the amount of primary studies included in this review
we made study selection criteria to define which kind of studies we include
in our pool of primary studies. In their guidelines for performing systematic
literature reviews in software engineering, Kitchenham et al. suggest that
these criteria are also used to determine which studies are excluded from a
systematic review [KC07].

Firstly, we developed the inclusion criteria to know what kind of studies
we should include as our primary studies. Secondly, we created an exclusion
criteria to restrict the amount of papers included in the systematic literature
review. As we were doing the search, the screening of papers and the final
selection of including some study in our primary study pool we incrementally
developed the inclusion and exclusion criteria.

Because we are trying to gather synthesis about the perceived challenges,
the type of studies to be included in the pool of primary studies should be
based on empirical research methods. In a paper that discusses the future
of empirical methods in software engineering research, the authors describe
empirical research method as "Empirical research seeks to explore, describe,
predict, and explain natural, social, or cognitive phenomena by using evidence
based on observation or experience. It involves obtaining and interpreting
evidence by, e.g., experimentation, systematic observation, interviews or
surveys, or by the careful examination of documents or artifacts." [SDJ07].
More precisely we are aiming to find experimentation, case study, surveys
or action research type of papers. These are the most common empirical
research methods in software engineering as noted by authors in the same
publication [SDJ07].

When inspecting the challenges presented in surveys we must clearly
detect that the challenge is based on experience and not on assumption. In
experimentation type of papers we must take into account that they are
usually done in a controlled environment and are lacking the uncertainty of
uncontrolled environment. In action research, which may be iterative, reflec-

21



tive or linear, we must take into account that the intentions of practitioners
is to secure the successful outcome for the client organization and as such
may be lacking objectivity [SDJ07].

The main goal is to find evidence-based and objective data to gather the
occurred challenges. If a research is not based on evidence or the presented
challenges are based on previous works or literature, we exclude those kind
of papers and challenges. The main domain is continuous delivery and the
keywords are curated in our search strategy based on research scope and
preliminary investigation of pre-selected papers.

Type of papers we included in the search results:

1. papers that discussed continuous deployment, continuous delivery,
continuous experimentation, deployment pipeline or devops, and

2. were published in 2010 or later.

Type of papers we excluded from the search results (adapted from [RHL+16]):

1. were not related to software domain,
2. were not peer-reviewed science publications,
3. were books or book chapters (non-peer reviewed),
4. were not written in English,
5. were duplicates,
6. did not mention continuous deployment, continuous delivery, continuous

experimentation, deployment pipeline or devops in topic or keywords,
7. were not available (i.e. were not available in the network of University

of Helsinki without payment),
8. were not based on empirical research method (i.e. were not experiment,

case study, survey or action research),
9. were not related enough to continuous delivery of software as an ap-

proach to release software more rapidly, and
10. were not discussing the challenges related to adopting continuous

delivery in the empirical study results section.

In addition to these selection criteria for our pool of primary studies we
also included quality criteria to assess the rigor and relevance of the selected
papers. The quality criteria is described in more detail in section 3.6.

22



3.5 Search Process

An overview of our search process is:

1. conduct automatic database search,
2. conduct reference scanning, and
3. apply quality criteria.

The stages of our automatic database search strategy are:

1. conducting the search on each of the databases based on generalized
search string (fig. 2),

2. screening of papers, phase I (topic and metadata applying selection
exclusion criteria 1-6),

3. combining the results from different search databases, and
4. screening of papers, phase II (by full text applying selection exclusion

criteria 7-10).

Depending on the search database we tried to filter out (with the help of
search query) invalid results based on our exclusion criteria. However, we did
also execute the first phase of filtering to each of our result set from different
search databases. After the first phase we executed the second phase to the
rest of the results. Between these stages we combined the result sets from
each of the search databases and some duplicates were removed. Stages of
automatic database search strategy were adjusted after pilot search in ACM
and IEEE databases. More detailed description of database searches and the
first phase filtering is available in the section 3.5.1. The description of the
second phase filtering is available in the section 3.5.2.

3.5.1 Search and Filtering Phase I

We combined search and filtering phase I to reduce manual work in the
first phase filtering. We applied generalized search string with parameters
from phase I filtering to each database search engine. Because of differences
in search engines the level of filtering varied a bit. Each search query for
different databases is described in Table 3 and each search process later in
this section. Screen captures of search pages and search results pages are
listed in Appendix C.

23



Table 3: Search queries based on generalized search expression

Service Search query and prelimenary filtering Results*
IEE Search query:

(((((("continuous deployment") or "continuous delivery")
or "continuous experimentation") or "deployment pipeline")
or "devops") and "software")
Refined by:
Content Type: Conference Publications or Journals &
Magazines, Year: 2010-2016

450 (413)

ACM Search query:
"query": { ("continuous deployment", "continuous deliv-
ery", "continuous experimentation", "deployment pipeline",
"devops") } "filter": { "publicationYear": { "gte":2010,
"lte":2016 } }, { owners.owner=guide }
Refined by:
Publications: Proceeding, Periodical

156 (129)

SDT Search query:
pub-date > 2009 and "continuous deployment" or "contin-
uous delivery" or "continuous experimentation" or "deploy-
ment pipeline" or "devops"[All Sources(Computer Science)]
Refined by:
Include only Journals

92 (90)

SCP Search query:
all("continuous deployment" or "continuous delivery" or
"continuous experimentation" or "deployment pipeline" or
"devops") and all("software") and pubyear > 2009 and
(limit-to(doctype, "cp") or limit-to(doctype, "ar")) and
(limit-to(subjarea, "comp" )) and (limit-to(language, "En-
glish"))

317 (302)

* The figure in brackets reflects the amount of results after phase I screening

Before we applied phase II filtering we combined the results from each
database with the help of EndNote basic (https://www.myendnoteweb.com).
The EndNote basic ("EndNote") is a free tool for managing a reference library
[Reu]. That result set contained 934 publications. We noticed that there
were many duplicates that EndNote did not find because there were minor
differences in metadata (e.g. author name was presented in a different way)
so we manually removed all duplicate entries and finally before entering
phase II filtering process we had 734 publications.

After we inspected the results from phase I filtering we noticed that
we needed to adjust our phase I filtering because we got too many results

24



before entering to phase II filtering. In phase II filtering we were supposed
to address abstracts and conclusions of publications. We decided to add
criteria for keywords and topic to get a more precise result set from phase I
filtering. Hence, we added exclusion criteria 6 to the phase I filtering. We
noticed that our results from ACM were missing keywords so we had to redo
the search to ACM database to conclude our phase I filtering with the new
exclusion criteria based on keywords. After the redo of phase I filtering with
added exclusion criteria 6 we got 152 publications.

IEEE: We did an advanced search in the IEEE Xplore Digital Library on
12 April 2016 (full-text and metadata) applying generalized search string
with selection criteria to only include conference publications, journals and
magazines. Thereby we got 541 search results. To narrow down the search
results we decided to add an obligatory word "software" to the search string
to filter out non-software domain related papers. After that we got 450
search results. We imported these references to EndNote Basic in our IEEE
search results group for further processing. When the data was listed in
EndNote we noticed that four (4) references had no authors provided because
they were conference keynotes, table of contents or speaker presentations
so we removed them as invalid results. The unique count after automatic
database search was 446. No duplicates were found at this stage. After that
we did the first phase of screening (based on topic and metadata) and were
left with 413 papers from IEEE Xplore Digital Library.

ACM: We did an advanced search in the ACM Guide to Computing
Literature on 21 April 2016 applying the generalized search string and
got 224 results. There were three types of publications in the result set:
periodicals (28), proceedings (128), and books (68). Because we were not
supposed to include books in our primary study pool we selected results
only to include publications that were periodicals or proceedings so we got
156 publications. After that we imported those results to EndNote Basic
in our ACM search results group for further processing. When the data
was listed in EndNote we noticed that four (4) references had no authors
provided because they were conference welcome letters or book summaries

25



so we removed them as invalid results. Also thirteen (13) duplicate papers
were found so the final count for unique papers after the automatic database
search in ACM was 139. After that we did first phase of screening (based on
topic and metadata) and we found still one extra duplicate paper. Finally
after first phase of screening we were left with 129 papers as a result from
ACM.

ScienceDirect: We did an expert search in the Elsevier’s ScienceDirect
search database on 16 April 2016. We applied generalized search string and
applied content filter to include only journal articles (books were excluded).
We also limited search results to only contain publications from computer
science field. This is how we got 92 search results. We imported the results
to EndNote in our ScienceDirect search results group for further processing.
In EndNote we noticed that two (2) of the publications did not have any
author information because they were index papers so we deleted those. No
duplicate articles were found within ScienceDirect search results group. After
that we were left with 90 search results. We did phase I filtering for the
results but all publications passed the filtering.

Scopus: We did an advanced search also in the Elsevier’s Scopus biblio-
graphic database on 17 April 2016. We applied the generalized search string
and applied content filter to include only conference papers and articles
written in English language and only in computer science subject area. With
the database search we got 317 search results. We imported the search results
to EndNote in our Scopus search results group and found five (5) duplicate
papers which we deleted. After that we did phase I filtering and got 302
publications passing the phase I filter.

3.5.2 Filtering Phase II

After the filtering phase I, we had 152 papers for filtering phase II. We read
the abstract from each paper to get a good overview and then we scanned
the papers to find words such as challenge (challeng*), problem (problem*),
barrier (barrier*), issue (issue*), trouble (trouble*), or obstacle (obstacle*).
If such a word was found, we analyzed the context of the sentence to find out

26



if it was strictly related to continuous delivery domain. If a correct type of
sentence was found and if it was in the section of empirical results of study
(case study, survey or action report section) the paper was included.

After the phase II filter we had 13 papers selected in our primary study
pool. The results from each stage is shown in Table 4. The number of
primary studies found in each search databases is shown in Table 5. Almost
all of the primary studies would have been found from SCP search database.
Only two of the primary studies were not found from SCP search database.
Five primary studies existed only in SCP search database and one primary
study existed only in IEE search database. All studies would have been
found only with the help of IEE and SCP search databases. List of resulting
primary studies is shown in Table 6. Bibliographic information of primary
studies is available at Appendix A.

Table 4: Search results after each stage

After search After phase I After phase II
934 152 13

Table 5: Primary studies found from each search database

Search database Count Studies
IEE 7 S1, S3, S4, S6, S7, S8, S9
ACM 3 S6, S8, S9
SDT 1 S2
SCP 11 S1, S2, S3, S4, S5, S8, S9, S10, S11, S12, S13

3.6 Quality Criteria

To assess the quality of individual studies included in the systematic literature
review researchers should develop quality criteria checklists [KC07]. As the
author noted in a study of procedures performing systematic literature
reviews [Kit04], it is important to define the quality criteria because it can
provide:

• extra inclusion and exclusion criteria based on the quality of the paper,
• explanation for differences in study results originating from quality,

27



• weighting of importance of primary studies in the synthesis phase,
• guidance for interpretation of findings and strength of inferences, and
• guidance for recommendations for future research.

Table 6: List of primary studies

Study Title
S1 Continuous Delivery: Huge Benefits, but Challenges Too
S2 On the Journey to Continuous Deployment: Technical and Social Chal-

lenges Along the Way
S3 ResearchOps: The Case for DevOps in Scientific Applications
S4 Automated Testing in the Continuous Delivery Pipeline: A Case Study

of an Online Company
S5 Hitting the Target: Practices for Moving Toward Innovation Experiment

Systems
S6 Towards DevOps in the Embedded Systems Domain: Why is It So Hard?
S7 The Highways and Country Roads to Continuous Deployment
S8 Continuous Delivery? Easy! Just Change Everything (Well, Maybe It Is

Not That Easy)
S9 Climbing the "Stairway to Heaven" - A Mulitiple-Case Study Exploring

Barriers in the Transition from Agile Development towards Continuous
Deployment of Software

S10 Towards R&D as Innovation Experiment Systems: A Framework For
Moving Beyond Agile Software Development

S11 Towards Agile and Beyond: An Empirical Account on the Challenges
Involved When Advancing Software Development Practices

S12 Transitioning Towards Continuous Delivery in the B2B Domain: A Case
Study

S13 DevOps: A Definition and Perceived Adoption Impediments

Even though the exact definition for "quality" is not clearly stated, it is
said that "quality" assesses the minimization of bias (systematic error from
the "true" results) and internal (preventing error when conducting the study)
and external validity (generalisability of results outside the study) [Kit04].

In a quality checklist study [KBBL09] authors evaluate quality checklist
proposals applied to systematic literature reviews in software engineering.
Even though they state that general guidelines for quality checklists do not
provide sufficient help to anyone to allow them to construct appropriate
quality checklists for specific systematic literature review, the guidelines do
have some value as a starting point for constructing such a quality checklist.

28



Table 7: Quality checklist questions (adapted from [DD08], [ABCS10], and
[GWT+14])

Id Question
Q1 Is the paper based on research (or is it merely a “lessons learned” report

based on expert opinion)?
Q2 Is there a clear statement of the aims of the research?
Q3 Is there an adequate description of the context (e.g. industry, laboratory

setting, products used, etc.) in which the research was carried out?
Q4 Is there a justification and a description for the research design?
Q5 Is the research design appropriate to address the aims of the research?
Q6 Is the data collected in a way that addressed the research issue?
Q7 Is there a clear statement of the findings?
Q8 Is the data analysis sufficiently rigorous?
Q9 Is the relationship between the researcher and the participants considered

to an adequate degree?
Q10 Do the authors discuss the credibility of their findings?
Q11 Are limitations of the study discussed explicitly?

In the same paper authors provide a generalized quality checklist that works
as a good starting point for human-based and quasi-experiments primary
studies. As such the checklist should be tailored to fit a specific systematic
literature review, keeping in mind the following aspects:

• answers should preferably have some ordinal scale, not just yes or no,
• number of items should be limited between 6-12,
• questions should be answered as objectively as possible, and
• team should discuss, refine and agree on appropriate quality checklist
items.

Because the purpose of the quality assessment will guide the development
of checklists [KC07] we created an appropriate checklist considering the
research questions presented in this study. We also took into account the
above guidelines except the last point. The quality checklist can be seen in
Table 7.

Other studies have previously used a three point scale [DD08] [ABCS10]
[GWT+14] and we also applied the same scale: yes (1 point), to some extent
(0.5 points) and no (0 points), to answer the questions. This decision is also
in line with the quality checklist recommendations [KBBL09]. The quality

29



score for each individual study was the sum of the points of each question.
Quality criteria were assessed after the primary study selection was made so
it was not used as a filter to our primary study selection process.

3.7 Data Extraction

As instructed in the guidelines [KC07] we will next provide information about
how we obtained the information required from each primary study. Selected
primary studies were carefully read through in order to extract the data
needed for our synthesis of continuous delivery challenges. To obtain data
for all research questions we created two extraction forms before conducting
the extraction process. After piloting the extraction process we realized that
we needed a third separate form for the challenges.

Table 8: General information form (Form I)

Field Description
General Information
Identifier Identifier for primary study
Authors Names of the authors
Year Year of publication
Title Title of publication
Reference Bibliographic reference
Paper type Is the paper from a conference or a journal
Source From which source the article was aquired
Search database Which search databases included the study in search results
Citation count How many times the paper has been cited*
Quality score Quality score provided by quality checklist
Research Specific
Research type Which research method was used (case study, experiment,

survey, action research)
Data collection Was the data collected by questionnaires, interviews, forms

or some other way
Pertinence Is the paper fully, partially, or marginally related to our

scope
* Citation count from ResearchGate (https://www.researchgate.net) on the 18th of June 2016

The first form is for general information about the inspected study. There
is general information i.e. authors, year of publication, research type, etc.
about each individual study. The information of the first form can be seen in

30



Table 8. The second form is for the cases that discussed the challenges found
in primary studies. The information of the second form can be seen in Table
9. Because there might be multiple challenges perceived in each individual
study and each individual case, we decided to collect the challenges to a
separate third form. The information of the third form can be seen in Table
10. The relations between these data extraction forms (and data) is seen in
Figure 3. As we can see from that table there can be multiple cases inspected
from one primary study and in one case there can be multiple challenges
inspected.

Table 9: Case information form (Form II)

Field Description
Identifier Identifier for the case
Primary Study Reference to primary study where this case is presented
Software Domain Software domain for the case (embedded systems, web

software, mobile software, or something else)
Industry Domain Industry domain for the case (telecom network, web service,

mobile gaming, etc.)
Product or service What is the product or service the case is considering
Scope Scope considering the practice of delivering software more

rapidly (continuous delivery, continuous deployment, or
both)

Organization size Size of the organization
Team size Size of the team the case is related to

Table 10: Challenge data extraction form (Form III)

Field Description
Identifier Identifier for the challenge
Case Case this challenge belongs to
Category Challenge category as described in the original study
Title Brief interpretation of the challenge by inspector (or as in

the original study if available)
Description Challenge as descibed in the original study
Mitigation strategy How the organization reacted or was planning to react to

overcome the challenge
Research proposal Research proposal from the authors of the primary study

31



Figure 3: Relations of data extraction forms (and data)

3.8 Synthesis Strategy

After the data was extracted we synthesized it to answer the presented
research questions. Synthesis process was done according to our synthesis
strategy which we describe in this section. Synthesis strategy should state
what kind of techniques are used to provide the analysis i.e. formal meta-
analysis or some other technique [KC07]. As noted in papers which have
studied the experiences of applying systematic literature reviews to software
engineering domains it may not be possible or suitable to perform meta-
analysis for software engineering studies because of the qualitative type of
data [BKB+07] [DDH07]. Formal meta-analysis techniques are based on
statistical techniques to obtain quantitative synthesis of data [Kit04]. Because
our data is more of a qualitative type, we did not use any formal meta-analysis
technique to synthesize the data. Instead we used a narrative approach to the
synthesis i.e. narrative synthesis. A paper which studied narrative approaches
to synthesis of evidence describes narrative synthesis as a "family of methods
for synthesizing data narratively, focusing particularly on the application of
narrative approaches to the synthesis of qualitative evidence" [SOV12]. As
opposed to a statistical based meta-analysis approach, narrative synthesis is
used "to seek and generate new insights and recommendations by going beyond
the summary of findings from different studies as in traditional narrative
reviews" [SOV12]. Many different types of approaches are found to exist to
provide qualitative analysis such as content analysis, thematic summaries,
framework synthesis, thematic synthesis, realist synthesis, meta-ethnography,
grounded theory, textual narrative synthesis, meta-study, meta-narrative,

32



critical interpretive synthesis, and ecological triangulation [BPT09] [SOV12].
We applied the thematic synthesis [TH08] approach to our synthesis

strategy taking into consideration the recommended steps for thematic
synthesis in software engineering [CD11]. After the extraction of data was
done we started creating the synthesis. First, in the coding stage, we
added labels to the findings (raw challenges) and categorized the labels by
similarities (i.e. created descriptive themes). This was done by utilizing a
mind mapping tool. In the coding stage we utilized the so called integrated
approach [CD11] to create the codes where we had pre-specified (collected)
codes but also created new ones along the way. With the help of the labels
(i.e. challenges), we answered the RQ1.1 by the means usually familiar
from the content analysis: frequency of findings i.e. how many findings (raw
challenges) were related to a certain label. We also created descriptive themes
to categorize these labels at this stage of synthesis. To better answer the
RQ1.2 and RQ1.3 we also added information of the domain (web software,
customer specific web software, embedded systems, scientific software, or
mobile software) in which the label usually appeared in. From now on we
are referring to the label as a challenge.

After we had found some answers to our RQ1.1-3, or actually realized
that we could not provide answer to RQ1.3, we tried to find the causes
behind these challenges (RQ1.4). To get an answer to our last sub research
question (RQ1.4) of RQ1 we put our categorization aside and created new
descriptive themes to figure out the reasons behind these challenges that
emerged from these labels. Lastly we created higher-order themes [CD11]
(or higher-order interpretations or analytic themes) to better answer the
RQ1.4 and thus to complete our analysis for RQ1. These reasons behind the
challenges provided also some insights to our sub research question RQ1.3.

33



4 Results

In this chapter we will present our results based on the collected data and
the first part of synthesis process. First we will give a brief overview of the
collected data to have some insight of what kind of data we collected and
what is the quality of the included publications (answer to the RQ2.1) in
our primary study pool.

After the data overview we will enter into the synthesis of perceived chal-
lenges where we provide answers to our first main research question: "What
are the perceived challenges of adopting continuous delivery practices in a
software development project and why?". We will list all perceived challenges
(RQ1.1) with the following information: frequency, domain, organization
size, and evidence level. Full description of all of the observed challenges
is available at Appendix B. Raw challenges (i.e. findings) are available at
Appendix D.

4.1 Data Overview

Table 11: General information of primary studies

Study Year Paper type Citations* Quality score Evidence
S1 2015 Journal 6 2 low
S2 2015 Journal 14 10 high
S3 2015 Conference 0 4.5 medium
S4 2015 Conference 0 2.5 low
S5 2015 Conference 0 8 high
S6 2016 Conference 0 10 high
S7 2015 Journal 4 8 high
S8 2013 Conference 13 2.5 low
S9 2012 Conference 39 8.5 high
S10 2013 Conference 16 8.5 high
S11 2014 Conference 1 6 medium
S12 2015 Conference 0 8 high
S13 2015 Conference 3 8.5 high

* Citation count from ResearchGate (https://www.researchgate.net) on the 18th of June 2016

We found 13 different research papers to be included in our primary studies
pool. Primary studies are presented in Table 6. Bibliographic information of

34



Figure 4: Publication year distribution

primary studies is available at Appendix A. General information about the
publications is presented in Table 11. Five of the papers did not have any
citing publications and four of the papers got only few citations. Three of
the publications had moderate citation count and one of the papers had over
two times more citations (39) than the second most cited (16). Most of the
papers were published in 2015. The number of primary studies per year is
presented in Figure 4.

The evidence level of our findings was based on the quality score obtained
by the quality score checklist shown in Table 7. We had a quality score
scale from 0 to 13 points and the distribution of our primary studies’ quality
scores was between 2 and 10 points (see Table 11). We divided our quality
scores into thirds after normalization of our quality scores so that we had
three different categories of evidence (based on quality score): low (2-4 pts.),
medium (5-7 pts.), and high (8-10 pts.). The distribution of quality scores is
shown in Figure 5. Even though relatively few had a moderate citation count,
eight out of thirteen studies were considered as a high quality based on the
obtained quality score. Only three of the primary studies were considered as
having a low evidence level and they were all action research type of studies.

35



Figure 5: Quality score distribution

The remaining action research type of paper got medium evidence level as
scoring fourth-worst by 4.5 scores. A more detailed view to our quality scores
is presented in Table 12. Questions for quality score checklist are available
at Table 7 in section 3.6. Quality scores were taken into consideration when
analyzing the perceived challenges in the data synthesis phase.

Most weakest points were given for the first quality score checklist question
"Is the paper based on research (or is it merely a "lessons learned" report based
on expert opinion)?". This was because all of the studies were either action
research or case studies with no controlled environment. Action research
type of papers were given zero points while case studies were given half
a point. Also the three last questions Q9: Is the relationship between the
researcher and the participants considered to an adequate degree?, Q10: Do
the authors discuss the credibility of their findings?, and Q11: Are limitations
of the study discussed explicitly? got rather low points overall (6 points or
lower). The rest of the questions got 8 or more points.

Research specific information is presented in Table 13. In the case of action
research type of papers the data collection method was type of participant
observation or it was not described and it was not derivable from the content
(i.e. it was unknown). Those kind of papers were usually retrospective reports

36



Table 12: Quality score matrix

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Score
S1 0 0 1 0 0 0 0.5 0.5 0 0 0 2
S2 0.5 1 1 1 1 1 0.5 1 1 1 1 10
S3 0 1 0.5 0 0 0.5 1 0.5 1 0 0 4.5
S4 0 0 1 0 0 0.5 1 0 0 0 0 2.5
S5 0.5 1 0.5 1 1 1 1 0.5 0.5 0.5 0.5 8
S6 0.5 1 1 1 1 1 1 1 0.5 1 1 10
S7 0.5 1 0.5 1 1 1 1 1 0.5 0.5 0 8
S8 0 0.5 1 0 0 0 0.5 0.5 0 0 0 2.5
S9 0.5 1 0.5 1 1 1 1 0.5 0.5 1 0.5 8.5
S10 0.5 1 0.5 1 1 1 1 0.5 0.5 1 0.5 8.5
S11 0.5 1 0.5 0.5 1 1 0.5 0.5 0.5 0 0 6
S12 0.5 1 0.5 0.5 1 1 1 1 0 0.5 1 8
S13 0.5 1 0.5 1 1 1 1 1 0 0.5 1 8.5

Overall 4.5 10.5 9 8 9 10 11 8.5 5 6 5.5 -

Table 13: Research specific information of primary studies

Study Research type Main data collection method Pertinence
S1 Action research Participant observation Full
S2 Case study Semi-structured interviews Full
S3 Action research Participant observation Partial
S4 Action research Unknown Full
S5 Multiple case study Semi-structured interviews Partial
S6 Multiple case study Semi-structured interviews Full
S7 Multiple case study Semi-structured interviews Full
S8 Action research Participant observation Full
S9 Multiple case study Semi-structured interviews Partial
S10 Multiple case study Semi-structured interviews Partial
S11 Case study Semi-structured interviews Partial
S12 Multiple case study Semi-structured interviews Full
S13 Case study Semi-structured interviews Partial

of adopting continuous delivery practices by some expert from the adopting
organization. In all case study papers the used data collection method
was semi-structured interviews, sometimes accompanied with open-ended
questions, field notes, and other project related documentation.

From thirteen research papers we identified 28 different cases from where
the challenges were found. All cases are presented in Table 14. Most of the
cases were considering web software or embedded systems domain. In web
software domain, there were two distinct type of applications that we felt
should be considered differently: web software as a product that is installed
in a certain environment that is used by many customers (typical web

37



application), and web software that is installed on specific user environment
(customer hosted or some other customer specific environment). We noticed
that there were slightly different challenges between those types of web
software. We took this into account when we analyzed the domain specific
(and common) challenges. Only in the cases that the raw challenge was
related to a product that had customer specific environments we labeled it
as being in such a domain.

If the software domain was not explicitly mentioned or it was not easily
deducible from the text or context, we stated that the domain was unknown.
Two of the cases belong to such unknown category. In one multiple case
study some of the challenges spanned on multiple cases and thus was labeled
as various. In addition to web software, customer specific web software, and
embedded systems two other software domains were inspected, both with
one case study: scientific software and mobile software. Scientific software
considered customized high-performance computing software products that
were used by the case organization or its customers (probably in supercomput-
ers). Mobile software considered typical mobile application with application
distribution system (like Apple’s App Store or Google’s Google Play) as the
way of installation.

We categorized organization size as micro (less than 10 people), small
(10 - 49 people), medium (50 - 249 people), and large (over 250 people). If
the organization size was not stated the case organization size was unknown
and the challenges found from such data were not related to any size of
organization. The size of organization was known in only twelve of 28 cases.
Two of those were micro, four medium, and six large organizations. The
team size was sometimes ambiguous from the data so we decided not to use
that in our analysis.

38



Table 14: Case descriptions

Case Study Software Domain Industry Domain Product or service Scope Org. Size Team Size
CS1 S1 Web software Internet service Web software Continuous Delivery Large 4-8
CS2 S2 Web software / Cus-

tomer specific
Internet service SaaS and customer-hosted platforms Continuous Deployment Large Unknown

CS3 S3 Scienctific software Science Scientific software, for customer use also Continuous Delivery Unknown Unknown
CS4 S4 Web software Internet service Web software Continuous Delivery Large Unknown
CS5 S5 Embedded systems Wireless embedded system Customable software solution for device Continuous Deployment Unknown Unknown
CS6 S5 Embedded systems Telecom network Compact mobile broadband solution Continuous Deployment Unknown Unknown
CS7 S5 Embedded systems Telecom network Network traffic-monitoring tool Continuous Deployment Unknown Unknown
CS8 S5 Embedded systems Industrial automation Factory automation platform solution Continuous Deployment Unknown Unknown
CS9 S6 Embedded systems Wireless embedded system Customable software solution for device Continuous Deployment Unknown Unknown
CS10 S6 Embedded systems Telecom network Compact mobile broadband solution Continuous Deployment Unknown Unknown
CS11 S6 Embedded systems Industrial automation Factory automation platform solution Continuous Deployment Unknown Unknown
CS12 S6 Embedded systems Telecom network Network traffic-monitoring tool Continuous Deployment Unknown Unknown
CS13 S7 Various Various Various Continuous Deployment Unknown Unknown
CS14 S7 Embedded systems Medical embedded system Medical software Continuous Deployment Medium 10
CS15 S7 Embedded systems Industrial automation Industrial automation Continuous Deployment Large 50
CS16 S7 Mobile software Mobile gaming Game Continuous Deployment Micro 3
CS17 S7 Web software Web software development Web software Continuous Deployment Micro 7
CS18 S7 Web software Internet service Web service Continuous Deployment Medium 3
CS19 S7 Web software Web software development Web framework Continuous Deployment Medium 7
CS20 S7 Web software Web software development Web software development Continuous Deployment Medium 8
CS21 S7 Embedded systems Telecom network Unknown Continuous Deployment Large Approx. 100
CS22 S8 Web software Internet service SaaS product Continuous Delivery Unknown Unknown
CS23 S9 Embedded systems Telecom and multimedia solutions

for mobile and network
Mobile communication solutions and
telecommunication infrastructure compo-
nents

Continuous Deployment Unknown Unknown

CS24 S10 Embedded systems Telecom and multimedia solutions
for mobile and network

Telecommunication systems and equipment,
communications networks and multimedia
solutions for mobile and fixed networks

Continuous Deployment Unknown Unknown

CS25 S10 Unknown Finance tools and services Financial and accountings software products
and services for consumers, small businesses,
acountants, financial institutions and healt-
care providers

Continuous Deployment Unknown Unknown

CS26 S11 Embedded systems Network video Network cameras, video encodes, video man-
agement software and camera applications
for video surveillance

Continuous Deployment Unknown Unknown

CS27 S12 Web software / Cus-
tomer specific

Marketing automation Marketing automation tool and master data
management solution as background service

Continuous Delivery Unknown Approx. 6

CS28 S13 Unknown International IT company Unknown Both Large Unknown

39



4.2 Perceived Challenges

All 113 findings (raw challenges) that we extracted (see Appendix D) from
the primary studies were analyzed and coded into labels of challenges. After
analyzing the findings we found that two challenges were basically the same
(58 and 59) and one was not an issue (98) so the resulting amount of findings
was 111. Then labels were arranged into higher-level categories. Categorized
challenges are listed in Figure 6. After the analysis was done for the findings,
59 different challenges were found. More detailed descriptions of challenges
are available in Appendix B where mitigation strategies, research proposals
and related findings are also listed.

With the help of collected data and based on our analysis of the findings we
noticed that the challenges were considering either technical or social aspects
of software development. Challenges on the social side were divided into two
main categories: procedural and organizational challenges. Organizational
challenges were divided into subcategories of resources, marketing and sales,
customer adoption, hierarchy, and culture. Procedural challenges were
not divided into any subcategories. Technical challenges were divided into
nine different subcategories (tools, architectural, documentation, testing,
resources, dependencies, deployment, security and safety, and integrations)
each containing two to nine challenges. Most of the challenges that we found
were on the technical side (34 of 59) while the social side had 25 observed
challenges.

In Tables 15, 16 and 17 we list the challenges with the information about
the frequency of the findings, software domain of the case organization where
the challenge occurred, size of the organization and the evidence level of the
primary study based on our quality criteria checklist. The software domain
of the case organization is presented as a letter that represents the following
software domains: W as web software, C as customer specific (web) software,
E as embedded systems, S as scientific software, and M as mobile software.
Occurrences of the challenge in question is marked on the domain column.
In some challenges the frequency of challenge is more than the sum of the
occurrences in the domain columns which indicates that some observations
were found from a case with an unknown domain. Sizes of companies are

40



also represented as letters with the following meanings: T as micro, S as
small, M as medium, and L as large size organization.

Level of evidence is presented in the same way as previously mentioned
with the general information of primary studies in the data overview (section
4.1). Only the most highest evidence level of the primary studies from where
the findings were found was preserved. Most of the challenges had evidence
level of high (49 challenges), while medium and low evidence level both had
five challenges. Mainly all of the challenges that got the evidence level of
low or medium had a frequency of one and they did not span to more than
one domain.

We also created high-order themes from these challenges to answer one
of our research questions considering the reasons behind these challenges.
Analyzed reasons will be presented in section 5.2.

Table 15: Procedural challenges (social)

Id Challenge label Freq. W C E S M Sizes Evidence

C1 Incompatibility of processes 2 1 1 L High

C2 Working in small batches 3 3 L High

C3 Utilizing shorter feedback loops 1 1 L High

C4 Lack of standard practices 2 1 1 L High

C5 Keeping the build green 1 1 L High

C6 Propagation of changes 1 1 - High

C7 Ambiguity in coordination 1 1 L High

Table 16: Organizational challenges (social)

Id Challenge label Freq. W C E S M Sizes Evidence

Resources

C8 Lack of motivation 4 3 T, L High

C9 Increased pressure 4 2 1 T, L High

C10 New roles 1 1 L High

C11 Lack of knowledge 1 1 L High

C12 Deep specialization 1 1 - High

C13 Fear of unemployment 1 1 - Low

Marketing and sales

C14 Marketing a versionless product 1 1 L High

C15 Uncertainty of ready features 1 1 - Low

C16 Selling experimental functionality 1 - High

C17 Customer policies 2 1 1 M, L High

Customer adoption

C18 Feature discovery 1 1 L High

C19 Cycle of update (and feedback) 8 3 1 3 L High

41



Hierarchy

C20 Coordinating units 1 1 L High

C21 Barriers between units 1 1 L Low

C22 Different pace between units 2 1 1 - High

Culture

C23 Releasing experimental functional-
ity

1 - High

C24 Sharing of status 2 2 - High

C25 Lack of business model 3 1 2 - High

Table 17: Technical challenges

Id Challenge label Freq. W C E S M Sizes Evidence

Tools

C26 No comprehensive platform suite 1 1 L Low

C27 Branching in VCS 1 1 L High

C28 Cannot use optimal hardware re-
sources

1 1 - Medium

Architectural

C29 Incompatible architectures 2 1 L High

C30 Legacy system integrations 1 1 M High

C31 Codebase size 1 1 M High

Documentation

C32 Maintaining documentation 1 1 L High

C33 Maintaining change logs 1 1 - High

Testing

C34 Insufficient testing 8 4 3 L High

C35 Testability of outputs 1 1 - Medium

C36 Long acceptance tests 2 1 1 M High

C37 Configuration differences 3 1 2 M High

C38 Automated UI testing 2 1 1 T High

C39 Performance testing 1 1 L High

C40 Manual testing 2 1 M High

C41 Differences in environments 1 L High

C42 Ignoring test suite 2 2 - Low

Resources

C43 Infrastructural requirements 1 1 L High

C44 Hardware based infrastructure 1 1 - High

Dependencies

C45 Cross-product dependencies 4 3 1 M, L High

C46 No packages available in reposito-
ries

1 1 - Medium

C47 Outdated environments 1 1 - Medium

C48 Long product lifecycle 1 1 - High

Deployment

C49 Seamless upgrades 5 2 1 2 L High

C50 Diversity of client configurations 5 3 1 L High

C51 Third-party distribution channels 1 1 T High

C52 Efficient rollback mechanism 1 1 - Medium

Security and safety

C53 Critical systems 1 1 - High

42



C54 Not enough access 1 L High

C55 Limited view on run environment 2 2 - High

C56 Product quality may decrease 1 L High

Integrations

C57 Partner plugin integration 1 1 L High

C58 Changes in database schema 1 1 L High

C59 Multiple versions out 2 1 - High

Table 18: Mitigation strategies and research proposals

Challenges Sum
Mitigation Strategy C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11,

C12, C13, C14, C15, C18, C19, C20, C21, C22,
C23, C24, C25, C26, C27, C29, C32, C34, C42,
C43, C44, C45, C46, C47, C49, C56, C57, C58

38 (64%)

Research Proposal C1, C2, C9, C16, C21, C26, C29 7 (12%)

As we can see in Table 18, 64% of the challenges got some kind of observed
mitigation strategy. Mitigation strategies varied from as simple as ”Apply
continuous deployment for non-business critical software development" [S2]
to more advanced as identifying and engaging pilot customers to successfully
adopt the continuous deployment culture and capability [S10]. Research
proposals were less identified as only 12% got some observed proposal.
However, 33% of the challenges did not have any observed mitigation strategy
or research proposal.

Almost all challenges (except C16: Selling experimental functionality
and C17: Customer policies) in social category had some kind of observed
mitigation strategy. Also 5 out of 7 research proposals were considering
social aspects. Only two research proposals were considering technical
issues addressing the issue of missing comprehensive continuous delivery
platform suite and non-modular architectures. While there were 38 mitigation
strategies found overall, 13 of them were considering technical challenges.
Hence, 21 of technical challenges did not have any observed mitigation
strategy.

43



Figure 6: Categorized challenges

44



5 Challenge Analysis

In this chapter we will try to find and analyze the common and specific
challenges (RQ1.2, RQ1.3) based on the domain and frequency analysis. We
will also try to go beyond the data (perceived challenges) to analyze the
reasons behind these challenges (RQ1.4) in sections 5.2 and 5.3. Finally we
will go through observed research proposals in section 5.4.

Also for every common challenge we will provide data on how organiza-
tions have reacted to the challenge (mitigation strategies) and what are the
research proposals regarding the challenges from the authors of the primary
studies (see section 5.4). This information is the grounding information for
our second main research question: "How should the research on continuous
delivery be directed according to these challenges?". Answer to the second
main research question will be processed in the concluding chapter (see
section 7.2). Mitigation strategies and research proposals are also available
for reading in the Appendix B.

Along with the common challenges we tried to find specific challenges
to some domain or size of an organization. Our definition for a challenge to
be specific for a certain domain was that there is high frequency and high
level of evidence but no span across the domains. With such a definition and
with our data we could not find any challenges that were specific to certain
software domains. We did not find any other reliable way to determine which
of the challenges were more specific to a certain domain. We also tried to
consider reliable ways to determine if the size of organization would have
any effect on the challenges but failed to find any. However, we did find
some characteristics in domains regarding the reasons for the challenges (see
section 5.3).

5.1 Common Challenges

We defined a challenge as a common one when it spanned to more than one
software domain and had a high evidence level. The common challenges with
most frequent occurrences (5 or more occurrences) were:

• customers’ adoption of fast cycle of update (and feedback),

45



Table 19: Common challenges

Id Challenge Category
Social
C1 Incompatibility of processes Procedural
C4 Lack of standard practices Procedural
C9 Increased pressure Organizational (recources)
C17 Customer policies Organizational (marketing and sales)
C19 Cycle of update (and feedback) Organizational (customer adoption)
C22 Different pace between units Organizational (hierarchy)
C25 Lack of business model Organizational (culture)
Technical
C34 Insufficient testing Testing
C36 Long acceptance tests Testing
C37 Configuration differences Testing
C38 Automated UI testing Testing
C45 Cross-product dependencies Dependencies
C49 Seamless upgrades Deployment
C50 Diversity of client configurations Deployment

• insufficient level of automated testing,
• configuration diversity in different environments (especially in deploy-
ment phase but also in testing), and

• implementing seamless upgrades that are automated and reliable.

The category with the most perceived common challenges was testing (3
common challenges) which was on the technical side of the observed chal-
lenges. It was also the category with the most number of identified different
challenges (9 different challenges). Next we will go through all 14 common
challenges (see Table 19) we observed in the order they appear in Figure 6
(not in the order of importance). Mitigation strategies and research proposals
are also presented in addition to the challenge description if observed from
the primary studies.

5.1.1 Procedural: Incompatibility of processes (C1)

Many traditional processes are too slow for continuous delivery. There is
usually stages involved in the process where unnecessary delays are introduced

46



(e.g. change advisory board, internal verification loop, or manual acceptance
testing) which might delay the process even with many days [S1] [S9]. Total
cycle time of a feature might become significantly longer for example from a
few days to weeks. The smaller the change is, the more significant this kind
of multiple day delay will become [S1].

There were no mitigation strategies related to the challenge of incompat-
ibility of processes but one research proposal stated that there is a need for
a research that would identify these incompatible processes (business, devel-
opment, operations, etc.) within an organization that hinders the adoption
of continuous delivery [S1].

5.1.2 Procedural: Lack of standard practices (C4)

Lack of understanding of the continuous delivery process and standard
practices [S5], especially for the novice developers [S2], is seen as a challenge.
For some of the teams in a specific case organization there was only some sort
of documentation available associated with the continuous delivery process
or it did not even exist [S2]. However, some developers felt that there were
not so many differences to their original workflow when they were adopting
the continuous delivery practices [S2]. Still there is a demand for industry
standards for the software development processes regarding the continuous
delivery practices.

One mitigation strategy was found for this challenge which advised others
who encountered the same challenge to adopt social rules that complement
the continuous deployment of software which must be adhered to [S2].

5.1.3 Organizational / Resources: Increased pressure (C9)

When adopting the continuous delivery practices software developers will
become more responsible overall, but also on deployments [S2] [S8] [S12].
In addition, the idea that some code could be released to the production
environment immediately will increase the pressure for the software developers
[S7]. In case there is no manual QA phase the pressure will be increased even
more [S2]. Also maintaining the code quality is an increasingly important
part of the software developer’s daily work if there is no manual quality

47



assurance personnel [S2]. For that the practices and static code analysis
tools should be firmly in place.

A software developer’s reputation might suffer if she deploys a broken
build or some other way impairs the customer’s user experience [S7]. This
might even affect the business negatively. Also the possibility to decide what
to deploy and when might create confusion in co-operation with internal
(management, sales, etc.) and external (e.g. customer) stakeholders [S12].
All things considered, the responsibilities and pressures will be increased for
the software developer.

Improving communication between developers and managers was one
way to mitigate the problem of increased pressure. Another advise was that
software developers must be "diligent in writing tests and monitoring the
system" [S8]. There was also expressed need for proper management program
for adopting the continuous deployment process in an organization to ensure
that the process is not destructive [S2]. There were no explicit research
proposals for this challenge.

5.1.4 Organizational / Marketing and sales: Customer policies
(C17)

Releasing software in small increments, in fast pace, and possibly with
some experimental mindset may not necessarily meet the expectations of all
customers. Large companies may hesitate to buy a software which might not
seem to be thoroughly tested because of the risk or fear that there might
be increased amount of bugs in production [S2]. Some internal policies may
even prevent a company from buying such a "not thoroughly tested" software
[S2]. Also compliance with standards (national or international) will pose a
challenge for continuous delivery [S7]. Usually such standards require that
patient or user safety is guaranteed by not introducing adverse side effects
with the changes [S7]. No mitigation strategies or research proposals were
inspected regarding this challenge.

48



5.1.5 Organizational / Customer adoption: Cycle of update (and
feedback) (C19)

Not all of the customers welcome continuous delivery type of development
method simply because of too frequent updates [S2] [S5] [S7] [S12]. It may be
difficult to demonstrate the added value of such a fast pace to all customers,
especially if it might affect somehow negatively the customer organization
[S2]. Negative effects may arise when the customer organization has to react
somehow to the change for example to learn new features or user interface
(UI) (especially if the existing UI is already hard to learn [S12]), adjust
somehow to changes (organization or processes), do acceptance testing [S12],
or to be involved in the installation process [S6]. Especially in the embedded
systems domain, deploying a new software may involve numerous activities
in customer sites (e.g. updating software or dependencies in multiple places
to the same version) and thus be very tedious to customer organizations [S6].
In some cases some actions (e.g. customer acceptance testing) need to be
scheduled with the customer which hinders continuous delivery [S12].

Also just the possibility of introducing new bugs may be a big enough
reason to be reluctant to update, especially for organizations who experience
that the software is working correctly and there is no need for new features
at the moment [S6]. Two different advises (mitigation strategies) were
interpreted from the data: apply continuous deployment only to non-business
critical software [S2] and invest in good UI design [S12]. No research proposals
were found.

5.1.6 Organizational / Hierarchy: Different pace between units
(C22)

There might be challenges in the collaboration between units (or company
functions) if they operate in a different pace. For example development
might run on continuous releases while other business units (for example
marketing) runs with a six month release cycle [S5]. Business runs usually
on "dates and dollars" [S8] with annual and quarterly goals and marketing
events.

To mitigate the problem of different paces between units, the following

49



strategy was presented [S8]: Use annual roadmap but do not make detailed
plans for the future. Plan for current and next quarter but not any further
(some candidate initiates can exist). Participate in monthly product meetings
and discuss the released and to be released features. Take input on the near-
term roadmap. Share the status of the project to other stakeholders. Use
historical data to estimate future throughput of the team. No research
proposals were found.

5.1.7 Organizational / Culture: Lack of business model (C25)

There is no known business model that suits the continuous delivery type of
development [S5]. It is hard to implement continuous delivery practices, as it
flows continuously, if business acts in a more conservative way of promoting
fixed releases and fixed pricing according to the promised features and usually
frozen upfront [S10].

Inspected mitigation strategy for this challenge was to identify lead
(pilot) customers with whom you can start to build culture and capability
to continuously deliver a software [S10] [S12]. Use lead customers as role
models to other customers [S10]. Review the business model to support
continuous delivery practices and align all business functions with the R&D
unit in order to facilitate continuous delivery [S10]. Word of caution was
that getting a pilot customer might be challenging [S10]. In a way, this
mitigation strategy can be interpreted also as a research proposal of how to
identify a lead customer and how to proceed with such a piloting approach
to successfully develop a suitable business model for continuous delivery.

5.1.8 Technical / Testing: Insufficient testing (C34)

There may be challenges in having enough production quality tests, test
automation, and maintaining existing automated acceptance testing [S2] [S5]
[S6] [S7] [S12]. It will be very laborious to build automated testing suite
from the scratch that is sufficient. This might be especially laborious for
mature software [S12]. Also there might be challenges in prioritizing the tests
that should be created to validate a release [S12]. Testing suite should also
be maintained which needs resources [S12]. Automated acceptance testing

50



must be in place in deployment pipeline before deployment to production is
possible with continuous delivery [S12].

One suggestion for a mitigation strategy was to invest in testing practices,
testing, testing automation, and ensure its thoroughness [S2] [S5]. No research
proposals were given.

5.1.9 Technical / Testing: Long acceptance tests (C36)

In embedded systems some factory acceptance testing might take several
months [S6] and it is done after the development is completed. This can be
considered as a barrier for continuous delivery. However, a test suite that
takes hours, for example a test suite run in a web software development [S7],
delays instant releases and hence, it is a hindering issue for the continuous
delivery practice. For this challenge no mitigation strategies or research
proposals were found.

5.1.10 Technical / Testing: Configuration differences (C37)

In software which is installed particularly for each customer, usually there
are different environments with different configurations and external depen-
dencies, probably connected with other vendors [S6]. That poses major
challenges for automated acceptance testing. These kinds of configuration
differences lead to multiple and complex variations which are very difficult
to test reliably [S6]. Hence, the testing is usually done with similar configu-
rations. This leads to the problem that there might be many faults to be
found in the acceptance testing phase on the customer end [S6]. The same
problem occurs also in internal development process if there exists differences
between environments (for example development, testing and production
environments) [S7]. We did not find any mitigation strategies or research
proposals related to this challenge from the data.

5.1.11 Technical / Testing: Automated UI testing (C38)

Web browsers introducing different implementations of standards and mobile
game user interfaces with a fragmented device base may pose a challenge

51



for automated acceptance testing [S7]. No mitigation strategies or research
proposals were found for this challenge.

5.1.12 Technical / Dependencies: Cross-product dependencies
(C45)

If a software product has tightly coupled cross-product or module dependen-
cies it may pose a challenge for deployment process as there is a great need for
rigorous integration testing across these products [S2] [S7]. Also there may
be challenges if the products or some parts of the products are in a different
stage of development [S7]. The same applies for application programming
interfaces (API) integrations [S12]. And in addition to the rigorous testing,
the API changes must be planned and discussed in advance with stakeholders
[S12]. The support for automatically updating the integrations may "require
unduly amount of work considering the results" [S12].

One mitigation strategy to overcome this challenge was that an organiza-
tion should provide enough hardware resources to testing infrastructure [S2].
No research proposals were found.

5.1.13 Technical / Deployment: Seamless upgrades (C49)

There may be complications related to seamless upgrades that continuous
delivery demands. Extra resources (for multiple instances of software) might
be needed to perform zero-downtime upgrades and customer data has to be
preserved correctly [S2]. This is also a great problem for embedded systems
domain where it is critical to have no downtime and two parallel systems
would be inconvenient to use. For example some factories must stop the
whole production line for a day or so to run the update process [S6]. This is
usually also a big cost for the customer. The same applies for a web software,
if seamless upgrades are not achieved, the user has to stop working or might
lose data in the progress [S12]. There should be no interferences with the
ongoing usage in case of a frequent update pace.

The use of two parallel systems to perform upgrades to shift a user from
an old to a new version of the software (known as blue-green deployment
technique) was a presented mitigation strategy related to this challenge [S2].

52



No research proposals were found.

5.1.14 Technical / Deployment: Diversity of client configurations
(C50)

Diversity of configurations is also a great challenge for application deployment
phase. For example diversity of client network configurations increases the
deployment time complexity when deploying new releases of software to
network devices [S7]. Diversity of configuration is also a challenge when there
is a legacy product to be updated and the configuration is very complex [S9].
Configurations should be updated automatically in the deployment process
[S12]. Managing the diversity of configurations is also problematic [S12]. No
clear mitigation strategies or research proposals were observed regarding this
challenge.

5.2 Reasons Behind Challenges

In order to clarify the reasons behind these challenges, we processed them
further to create descriptive themes. We identified 9 different reasons behind
the technical challenges and 8 different reasons behind the social challenges.
To continue our analysis in order to find out the main reasons behind the
perceived challenges, we created higher-order themes (main reasons) and
identified five different ones. The identified main reasons were: immaturity,
unsuitability, complexity, dependency, and security. The complete list of
reasons with higher-order themes is presented in Table 20.

From the extracted data we resolved the distribution of findings to the
main reasons (see Table 21). Most of the findings were related to immaturity
(39%). Dependency was the second most common main reason (27%). Least
number of findings were related to security (7%). The frequency of challenges
we observed from these findings was following the frequency of findings pretty
well. From the differences in frequency of challenges and frequency of findings
we can say that there was slightly more findings behind the main reasons of
immaturity and dependency while unsuitability had bit less in contrast to
our observed challenges.

53



Table 20: Reasons behind the challenges

Reason Type Challenges Freq.
Immaturity
Inability to work in small and fast
batches

Social C1, C2 5

No standardized process plan Social C3, C4, C5, C6, C7 6
Lack of motivation and skills Social C8, C11 5
Change resistance Social C9, C10, C12, C13 7
Unavailability of mature tools Technical C26, C28 2
Immature automated testing Technical C34, C35, C36, C38,

C39, C42, C43
17

Unsuitability
Organization silos Social C20, C21, C22, C24 6
Unsuitable culture Social C23, C25 4
Non-modular architecture Technical C29, C31 3
Incompatible practices Technical C27, C33, C40, C52 5
Complexity
Complex configuration Technical C37, C41, C50 9
Multiple version product Technical C32, C59 3
Dependency
Traditional marketing Social C14, C15, C18 3
Non-adaptable customers Social C16, C17, C19 11
Legacy systems Technical C30, C44, C46, C47,

C48
5

Third-party dependencies Technical C45, C51, C55, C57,
C58

10

Security
High-level safety, security or availabil-
ity

Technical C49, C53, C54, C56 8

54



5.2.1 Immaturity

Immaturity in software development organization means that the knowledge,
practices, or tools are in an insufficient state which will result in unsuccessful
adoption of continuous delivery. Immaturity consists of six different reasons,
four of them being on the social side (inability to work in small and fast
batches, no standardized process plan, lack of motivation and skills, and
change resistance) and two of them being on the technical side (unavailability
of mature tools and immature automated testing). Immaturity could be
addressed by training, education, improvement of current methods, tools, and
technologies. Creating industry standards would be one major solution for
reducing immaturity. There indeed was an expressed need for standardization
of technological aspects in continuous delivery in one of our primary studies
[S1].

Overall, most of the challenges we observed were related to immaturity
(37%) (see Table 21). As we can see in Table 22 most of the challenges that
were immaturity based were in the web software domain (60%) followed by
the embedded systems domain (25%). In scientific software (7%), customer
specific web software (4%), and mobile software (4%) the immaturity was
not so often the reason behind perceived challenges.

Inability to work in small and fast batches. Traditional processes
are described as too slow for continuous delivery practice. In traditional
processes there is usually stages involved that may take from hours to even
weeks to complete by a person or a group of people. These kinds of delays
should be eliminated to achieve a faster release cycle that the continuous
delivery embraces. However, it is not enough to only adapt processes to the
faster release cycle but also the people who plan and implement the features
or changes should be adapted. Developers are supposed to be able to split
tasks so that the tasks could be done in small and fast batches. To overcome
these kinds of challenges, education and suitable technology is needed.

The use of dark features (or dark launches) could help to alleviate the
problem of working in small batches when developing a large feature. This
type of a release technique allows deployment of features to the production

55



without the appearance of incomplete features to the customer. This kind of
mitigation strategy was reported to be in use for this kind of a challenge in
one of the case companies [S1]. In the same study the author suggested that
even though the concept of working in small batches is not new, there is a
lack of research of how the size of the feature affects the deployability of a
feature when using continuous delivery [S1].

Table 21: Distribution of main reasons

Reason Challenges %
Immaturity 22 37%
Unsuitability 12 20%
Complexity 5 9%
Dependency 16 27%
Security 4 7%

No standardized process plan. Lack of industry based standard process
descriptions which are especially adapted for continuous delivery causes
ambiguities among the people who are trying to follow the continuous delivery
practices but carry on with the old process models. Also new developers
may be a bit lost with continuous delivery practices because of a lack of
standards. Even simple things are not clear for all organizations, for example
when a build fails, how should the team react: who should fix, what should
be fixed and when should it be done? One of our primary studies suggested
an advice which could help organizations with process planning: adopt social
rules that complement the practices in the continuous deployment which
must be adhered to [S2].

However, keeping the build green is one of the principles of continuous
delivery approach (because of continuous integration). The strategy for
stopping the entire team to concentrate on the fixing issues must be planned
and in place to keep the build green. The team should collectively aim for
this goal and it should be the primary goal as stated in one of our primary
studies [S2].

The team is usually aware of the status of the current project, possibly
with the help of continuous integration server and issue/project tracking

56



tools, but one question seems to be that how do we share the status of a
project and propagate information about new features across the organization
in a continuous basis? This should somehow be taken into account in the
whole organization when planning the process model for releasing software
more rapidly. Teams should be responsible for accepting continuous flow of
changes and also propagating the changes rapidly to other teams [S6].

Also to be successful in continuous delivery the use of feedback data
should be efficient. Efficiently using the feedback is not yet understood in
all organizations. Including the utilization of feedback to the process model
might help the situation. One of our primary studies suggested, that in order
to enhance the use of feedback, a strategy to monitor customer behavior
through some data analytics platform should be implemented [S2]. Authors
stated that with such a strategy, tools, and process it is possible to steer the
development of features in a way that might be more inline with customer’s
expected needs. They also noted that experiments should be as small as
possible and made as quickly as possible.

Lack of motivation and skills. In adopting continuous delivery practices
there might be problems if the top-level management is not motivated.
Also the motivation and skills are important among those whose job is
to implement things. Education is needed to improve skills. Experienced
resources may be helpful. Top-level management motivation is seen as
very important because establishing the deployment pipeline and creating a
sufficient level of automated testing might be costly and time consuming. In
the worst case, if the management or other personnel have not been clearly
instructed about the benefits of continuous delivery there might be even
resistance towards it.

An author in one of our primary study noted that you have to make sure
that the top-management is implementing a strategy to push the need of
continuous delivery all the way through the lower organization units and
setting a goal for achieving continuous delivery [S2]. They also noted that it
is also important to ensure that there is a low or nonexistent learning curve
for team members in adopting continuous delivery practices when introducing
it to the existing systems and process, for example when integrating the new

57



practices to the old workflow [S2].

Change resistance. Fear of unemployment because of increasing automa-
tion, increased pressure towards software developers, and new roles (or
decreasing specialization) as continuous delivery embraces cross-functional
teams are issues that organizations might end up struggling with. However,
some of the reasons behind the resistance might be irrelevant. For example
the fear of unemployment because of increasing the amount of automation
in quality assurance (instead of manual testing) might be an unnecessary
fear. As noted in one of the primary studies, planning good automated tests
requires a professional QA mindset [S8]. They also continued that planning
requires hours of reading stories, performing research into the background of
the story and creating different angles to test cases and if there is some time
left, QA could invest in monitoring and analyzing the system.

One suggestion was that shifting from personal to team thinking would
help to decrease the pressure towards single developer and thus reduce change
resistance. So, take responsibility as a team of delivering the software to
customers without negative effects to the customers [S2]. Also improving
communication between developers and managers is said to reduce the
increased pressure towards developers [S2].

One mentioned challenge related to cross-functional teams was that in
some cases there is a need for deep specialization (for example in the level
close to the hardware in embedded systems domain). In these kinds of
situations it is good to ensure that there is effective communication taking
place between modules and that CI practices are implemented and work as
a coordinating mechanism both within and across the teams, as suggested in
the study considering challenges in adopting DevOps in embedded systems
domain [S6].

Unavailability of mature tools. According to our data there is no com-
prehensive, robust, and open (no vendor lock-in) continuous delivery platform
available. Creating a custom solution for a continuous delivery platform
requires multiple different tools, lots of customization, and development of
available tools. Especially some special fields may be missing solutions for

58



their needs, for example automation of infrastructure for software where
hardware optimization is required [S3].

One way to overcome this is to develop own continuous delivery platform
solution which might be costly as in one case company [S1]. They also noted
that building such a comprehensive platform might involve many different
tools and technologies and because of that avoiding vendor lock-in could be
challenging.

Immature automated testing. To move towards continuous delivery
of software a high level of test automation is needed. If an organization
is undeveloped (i.e. is immature) in this area, the adoption of continuous
delivery will be challenging and time consuming (especially for large and
mature software). Not only the development of testing suite but also the
management of and running the tests will be resource intensive. Also if
there is not enough expertise in the area of testing there will be problems as
continuous delivery relies heavily on automation; you need to know exactly
how to test and what are the expected results. Sometimes acceptance testing
is not advanced enough to run fast enough (for example in web software
development). Sometimes different browser engine implementations or device
fragmentation introduces challenges to test automation.

Improvement of testing suite may be hindered also because of domain
constraints. They might even set barriers to test automation. In some cases
the acceptance testing phase just takes too long (i.e. embedded systems in
factory automation). Embedded systems consist of software and a device
which might introduce problems in performance testing; it might be hard to
implement testing infrastructure with enormous amount of devices (barrier
to test automation).

There might also be challenges when software developers are not diligent
enough to follow the practices. Ignoring test suite results (for example in
case of flaky tests [S8]) might ruin the goal of continuous delivery which is
"delivery of working software faster" [HF10]. Diligent testing practices must
be adopted to ensure that testing is thorough since deploying software is
dependent on tests passing on the continuous integration server [S2]. Tests,
gates, and checks are there for a reason [S8]. So there should be investments

59



to enhance testing: testing practices, testing automation, hardware resources,
and ensuring the thoroughness of testing [S2] [S5].

Table 22: Main reason distribution across domains

Main reason W C E S M
Immaturity 60% 4% 25% 7% 4%
Unsuitability 54% 15% 31% 0% 0%
Complexity 16% 50% 33% 0% 0%
Dependency 50% 11% 22% 11% 6%
Security 25% 25% 50% 0% 0%

5.2.2 Unsuitability

By unsuitability we mean cultural, practical, and structural aspects of the
software development organization and software that are not suitable when
adopting continuous delivery practices. Reasons for unsuitability behind
the social challenges are organization silos and unsuitable culture. Fast
and continuous pace that continuous delivery builds upon requires seamless
collaboration and experimental mindset without too far into the future
predicted plans that are unchangeable. This is a challenge especially for the
business (i.e. traditional business models) but also for the technological parts
of software. Non-modular architecture and incompatible practices that are
impractical or problematic to automate are the reasons behind the challenges
in the technical side for these kinds of challenges. To overcome the problem
of unsuitability major changes must be made which will span across the
organization.

Unsuitability was the third most frequent (20%) reason behind the
perceived challenges (see Table 21). As we can see in Table 22 the distribution
of challenges in the main reason of unsuitability across the domain was
following the distribution of immaturity regarding the web software (54%),
customer specific web software (15%) and embedded systems domain (31%)
but the distribution did not have so much variation. However, there were no
observed challenges in scientific or mobile software domain that were related
to unsuitability.

60



Organization silos. According to one of our primary studies [S2] in order
to fully succeed in continuous delivery and deployment it requires involvement
of multiple organizational units with the common goal for continuous delivery.
This might pose a challenge especially if there exists barriers between units.
If the structure of organization is hierarchical this might add tension between
the units. One advice was that the organization should restructure itself in
order to break down barriers and promote a collaborative culture [S1].

Organization silos will also pose a challenge in sharing the current status of
projects across the organization. Typical silos are between the following three
units: research and development, marketing and sales, and the management.
However, silos can also be formed inside a company function for example
between different research and development units. Also if the units operate
in a different pace this might cause problems in collaboration.

One study [S8] proposed a mitigation strategy to this problem where they
encouraged the product team to participate in monthly product meetings to
discuss released and to be released features, to take input on the near-term
roadmap, and to share the status of the project to other stakeholders. To
enable this they also use an annual roadmap but not make any detailed
plans for the future, only for the current and next quarter. According to one
primary study also the deployments should be more carefully discussed with
related stakeholders [S2].

Unsuitable culture. If a company has a strong tradition of a conservative
way of doing things, for example rigorous testing and validation processes,
there might be resistance towards more experimental mindset of continuous
delivery where functionality may be released although it is not fully completed.
This is also problematic for businesses as they are lacking suitable business
models for this kind of progression. Traditionally, business promotes fixed
releases and fixed pricing according to promised features that are already
available.

For these experiments that are made in run-time infrastructure, tools,
data collection, and early feedback collection must be in place. These
functions usually require some sort of architectural modifications if they do
not exist already according to a study about moving towards R&D as a

61



innovation experiment system [S10].
Also one suggestion was that in case a business is tackling the mindset

and business model problems, an identification of lead (pilot) customers,
with whom you can start to build a culture and capability for continuously
delivering a software, might help [S10]. With these pilot customers you can
review the business model to support continuous delivery practices and align
all business functions with the R&D organization. Also these pilot customers
can be used as role models to other customers.

Non-modular architecture. A large monolithic application that is not
amenable to continuous delivery practice might pose a challenge for adoption
of continuous delivery practices because of the problems in automating the
delivery of software in such an architecture. According to one of our studies
[S1] there is a huge number of non-amenable applications in the industry.
Also, typical for such applications, a huge code base and high complexity
might pose a challenge to continuous delivery as it might take too much time
to build and compile the code, and create a package, to deliver software in a
fast pace.

One suggestion was to transform architecture towards more modular
architecture which allows upgrading the system in smaller and independent
parts or improve capability for continuous delivery some other way [S13]. Of
course this must be justified as the value for this kind of a change is not as
evident as with other new features.

Incompatible practices. Incompatible practices also cause problems in
the technical side. Branching in the VCS, updating version logs, and rolling
back deployments to previous version are examples of such questioned prac-
tices. Continuous delivery promotes that there should be only one branch of
the software in the version control system which is under development. Some
companies are used to developing multiple branches at the same time for
example large and long-lasting feature branches. This might pose a challenge
for companies with such practices. Smaller and short-living feature branches
are preferred [S2].

Also because of smaller and faster releases it might become as a surprise

62



that managing the version log requires more effort. There is no point in
discussing every release in detail with every customer. Fast pace in moving
forward will also question the strategy to rollback a release [S11]. Is it a
sufficient strategy when moving rapidly towards more frequent releases?

In some companies there are manual or explorative testing phases before
the release. There might be support for such a testing because quality assur-
ance testers might find bugs that were not caught by the automatic testing
suite. This might hinder the rapid releasing of software that continuous
delivery is aiming at.

5.2.3 Complexity

Complexity was the main reason for the challenges that were related to the
configuration of the software products. This was especially problematic in the
products that had multiple versions available and in software that was very
complex to configure because of environment differences. In our analysis the
complexity was related only to the technical side of challenges. Complexity
caused problems especially in software testing automation and deployment
of the software. Avoiding decisions that would increase the complexity would
be recommended. Harmonization of software environments would help to
overcome the problem of complexity.

Challenges that originated from complexity were not so common. Only
9% (second least) of the challenges were complexity based as we can see
in Table 21. However, half of the complexity based challenges were found
from customer specific web software domain (see Table 22). Also in the
embedded systems domain, the complexity was the major reason behind the
challenges (33%) while web software domain had only some (16%). There
were no challenges that were complexity based in scientific or mobile software
domain.

Complex configuration. Configuration differences caused challenges in
testing and deployment phases but also increased the burden in sharing
information between developers (managing diversity of configurations). If
there is multiple different environments with multiple different configurations
there will be multiple complex configuration variations that will be hard to

63



test completely and thus will cause bugs to slip past the testing phase. A
typical example is differences in testing/development and production envi-
ronment. Another example is products that have multiple versions available
(for example multiple user specific versions) with different configurations.
Deployment time complexity was reported to increase with the configuration
variations. One example was diversity of network client configurations when
deploying new software to network devices [S7]. Configurations should be
updated during the automatic upgrade of software (i.e. in the deployment
phase).

Multiple version product. Multiple version products caused problems
especially with the configuration variety but also with the documentation.
There were reported challenges in documentation when there is a hosted
version and customer specific versions out, the documentation is probably
not identical. One mitigation strategy for documentation challenges was to
use a wiki-type of tool to maintain it [S2].

Sometimes the ability to gather only the needed modules for specific
users to use will produce multiple different variations of the software which
may bring challenges to the completeness of testing.

5.2.4 Dependency

By dependency we mean dependency of the software system, process, or
organization on some internal or external stakeholder in order to work cor-
rectly. From a social point of view traditional marketing and non-adaptable
customers are the reasons for the challenges in this theme. Problems from the
technical point of view are the legacy systems and third-party dependencies.
These kinds of problems are often not easily removable. Our suggestion
to cope with the problems based on dependency is to increase the level of
communication and openness.

Dependency based challenges were the second most common (27%) after
the immaturity (37%) as we can see in Table 21. There were challenges
observed from every domain regarding the dependency. Usually these kinds
of challenges were found from web software (50%) or embedded systems
domain (22%) (see Table 22). On rare occasions these kinds of challenges

64



were found from mobile software domain (6%) while both customer specific
web software and scientific software domains had relatively low percentage
of challenges (11%).

Traditional marketing. Traditional marketing strategies are not suitable
for software that is developed in the continuous delivery approach as there
may not be a clear version which can be promoted. As such it may pose a
challenge in the relationship between marketing and development units as
there is an uncertainty regarding when the expected features are ready. One
mitigation strategy was to increase the level of transparency between the
development team and sales and marketing unit [S8].

However, when you are releasing these small and possibly experimental
features there should be a way to promote those changes to the users as soon
as they are released. In this way users can find new features and produce
usage data (and feedback) that can be gathered to help the direction of
development. One advice for such rapid discovery of new features was to
create a blog which is available to customers where you can post about
product’s changes and present new features [S2].

Non-adaptable customers. From a customer’s point of view it is not
easy to buy software where the features are not clearly stated and there might
be intentions for experimentation. This, accompanied with the customer’s
assumption that the rapidly changing software is not thoroughly tested (the
fear of introducing bugs) will challenge business even more. Also it might
not be easy to demonstrate the added value of rapidly changing software to
the customers especially if the updating requires some actions from them
(learning and adopting the introduced changes or even installation). Because
of this, there was an advice to invest in good UI design [S12].

The most challenging issue is the compliance with standards which
require certain steps in the release process that are not possible in the
continuous delivery approach. These kinds of policies are barriers for starting
to use a software that is developed in the continuous delivery way. One
simple mitigation strategy especially for continuous deployment was to apply
continuous deployment only to non-business critical software [S2]. A more

65



forward looking suggestion was the development of business and pricing
models that support this kind of short-cycle innovation with the help of
customer usage data [S10].

Legacy systems. Legacy and outdated systems are causing challenges
in adopting continuous delivery practices. Usually these are related to the
automation of software delivery. Legacy integrations, outdated operating
systems with missing libraries, and PC based infrastructure are holding
back the automation attempts. If some libraries are missing, create custom
packages and set them available for private repository [S3]. It would be
better to update an old PC based infrastructure to a modern virtualized
cloud environment [S5]. Virtualization and containerization would also help
to test binary compatibility issues [S3].

Some customers may have strict hardware or environment policies which
may lead to outdated operating systems. According to one of our primary
studies [S6] especially in the embedded systems domain the legacy code de-
pendencies will cause compatibility issues in long life-cycle software products.

Third-party dependencies. Dependencies on third-parties are problem-
atic as they cause compatibility issues if not properly handled. Integrations
to third-party APIs, components, and plugins will require extra amount
of care to successfully maintain the status of fully working software across
releases. One advice was that there should be enough hardware resources
provided for testing and that sufficient amount of testing around database
and third-party plugins should be ensured [S2]. In case there are too many
plugins to manage, the amount of maintained and compatible plugins could
be reduced [S2].

There are also domains that require a third-party to be involved in the
process of deployment of software such as mobile software domain. Applica-
tion stores usually have some kind of a verifying process for the software to
be released that will take from few days to weeks to complete. The same goes
for software that is supposed to be installed to customers’ environment but
there is also a customer-end quality assurance phase. Sometimes customer
environments are also inaccessible from the software development team point

66



of view which will pose a challenge for debugging and monitoring software
which is a problem for continuously learning from usage data and deliver
new functionality.

5.2.5 Security

This main reason contains safety, high-level availability and confidentiality
as sub reasons behind the challenges. These kinds of challenges were only
on technical side according to our synthesis. The access restrictions to some
systems and the seamless upgrading of software without losing user data
or reducing availability are examples of these kinds of challenges. Security
based challenges are not easy to overcome and they may require some kinds
of trade-offs. It may be that the solutions to security originated challenges
will increase the amount of complexity.

Security was least often the reason behind the challenges (only 4%) (see
Table 21). Half of the challenges based from security were found from em-
bedded systems domain (see Table 22) while the rest were evenly distributed
between web software and customer specific web software domains (25%
each). No security based challenges were found from scientific or mobile
software domains.

High level of safety, security or availability. If there is a requirement
that users should be able to use the system with extremely high availability
and releases are made in a fast and continuous pace there is a requirement
for seamless upgrades. Implementation of seamless upgrades are not so
trivial and the difficulty depends on the type of software under development.
For example in embedded systems it may not be feasible to duplicate the
system in order to achieve seamless upgrades in contrast to web software
development where this kind of blue-green deployment technique may be
used [S2].

Sometimes if a seamless upgrade fails, it might even be dangerous for
users (e.g. medical and health systems) and in some cases even the business
may be damaged if some interruptions occur. In these critical domains there
is also a fear for decrease in quality and thus a fear of risking user’s safety or
business. In turn, in case of a not so critical domain the potential increase

67



of bugs in the production environment was reported to be overridden by
the benefits of continuous delivery when the bugs are immediately fixed or
rollback is made to the previous working build.

Also high level of security might prevent continuous delivery to be suc-
cessful. Access restrictions may be blocking development and debugging of
systems.

68



Figure 7: Reasons behind challenges

69



5.3 Domain Analysis

As noted in the introduction of challenge analysis, we could not find any
reliable way to figure out what were the specific challenges for some specific
domain but now that we have analyzed the main reasons behind the challenges,
we can take a look at how the main reasons were distributed in a domain
(see Table 23). However, it is good to notice that especially considering the
scientific and mobile software domains the amount of cases were very low.
Because of the low amount of data for scientific and mobile software domains
we excluded them from the summary of domain analysis (section 5.3.5).

5.3.1 Web Software

The main reason that was clearly above others in web software domain
was immaturity. Almost half (49%) of all the perceived challenges in the
web software domain were related to immaturity. Dependency (26%) and
unsuitability (20%) were the main reasons behind almost all of the rest of
the challenges. Minority of challenges were related to complexity (3%) and
security (3%).

Table 23: Distribution of main reasons inside a domain

Main reason W C E S M
Immaturity 49% 11% 35% 50% 50%
Unsuitability 20% 22% 20% 0% 0%
Complexity 3% 33% 10% 0% 0%
Dependency 26% 22% 20% 50% 50%
Security 3% 11% 10% 0% 0%

5.3.2 Customer Specific Web Software

In the customer specific web software domain the complexity was the most
common reason behind the challenges (33%) followed by unsuitability and
dependency (both 22%). Immaturity and security were the least common
main reason behind the challenges in this domain (both 11%).

70



5.3.3 Embedded Systems

In embedded systems domain the main reason behind the challenges that
was most common (35%) was immaturity. Unsuitability and dependency
were the second most common main reasons behind the challenges (both
20%). Also complexity and security based challenges were present in some
cases (both 10%).

5.3.4 Scientific And Mobile Software

Immaturity (50%) and complexity (50%) were the reasons behind the per-
ceived challenges in both scientific and mobile software domain. No challenges
that were based on unsuitability, complexity or security were found. However,
the amount of cases were negligible regarding these two domains (one case
per domain).

5.3.5 Summary Of Domain Analysis

Most of the variation between the main reason distribution in domains
(web software, customer specific web software, and embedded systems) was
among immaturity, complexity, and security. In web software domain, the
immaturity based challenges were emphasized while complexity and security
based challenges were not. In turn in customer specific web software domain
the complexity was the most common main reason behind the challenges. In
embedded systems domain the immaturity was again the most emphasized
but not so much as in web software domain. Also in embedded systems
domain the complexity and security were more often the main reason behind
the challenge.

The occurrence of challenges that were based on unsuitability and depen-
dency were quite similar between the web software, customer specific web
software, and embedded systems domains. It varied from 20% to 26% so we
could say that unsuitability and dependency are common reasons behind
the challenges for all domains and are occurring on a quite similar frequency.
One thing to notice is that security based challenges were less perceived in
every domain.

71



5.4 Proposed Research Areas

Clear research proposals to observed challenges were found only from a few
different studies. Some of the research proposals were considering a much
higher level of abstraction than a single challenge so we decided to present
them all here in their own section.

Process of adopting continuous delivery. There was an expressed
need for research that would identify existing incompatible processes (busi-
ness, development, operations, etc.) within an organization that hinder the
adoption of continuous delivery practices [S1]. After the identification, the
existing processes should be developed furthermore and alternative options
should be verified to suit continuous delivery [S1]. Also regarding the process
of adopting continuous delivery practices, there was an expressed need for
proper management program in an organization to ensure that the adopting
process is not destructive for it [S2]. From a customer point of view, devel-
opment of an engagement model with lead customers (i.e. pilot customer)
to facilitate continuous deployment would be needed [S9]. An engagement
model could also help with the expressed need for development of business
models and pricing models that support short-cycle innovation processes
[S10]. Innovation is based on customer usage data and thus, customers are
needed.

Understanding and developing strategies to overcome challenges.
Further research is also needed to understand the challenges organizations
face when adopting the continuous delivery in more depth and to develop
strategies and practices to tackle them more efficiently [S1]. A few more
specific research topics were already presented regarding observed challenges
such as: how the size of some feature affects the deployability of a feature
when using continuous delivery [S1], need for widely accepted standards, open
APIs, and active plugin ecosystems for existing or future continuous delivery
platforms [S1], and understanding unsuitable architecture characteristics and
identifying and developing the best strategies or practices to tackle them
[S1].

72



6 Discussion

In this chapter we discuss the results, analysis, and validity of our study.
First, we compare our results to related works and after that we discuss the
validity of our study regarding the different parts of the research.

6.1 Related Work

In a systematic mapping study of continuous deployment of software intensive
products and services [RHL+16] the found challenges were quite similar to
our findings. However, only four of our primary studies were also included
in the mapping study of Rodriguez et al. The particular study was focusing
mainly on analyzing the frequency of findings however, they also noticed
that there were difficulties adopting continuous deployment especially in the
embedded domain.

Transforming organization, culture, and personnel mindset towards con-
tinuous deployment was considered as a challenge. We also observed the
same difficulties and also analyzed that these types of challenges existed
mainly because of immaturity and unsuitability reasons. These challenges
were mainly on the social side in our categorization which supports the
observation made in the mapping study that "...human factors, including
personality and cognitive aspects, play a fundamental role in truly achieving
continuous delivery" [RHL+16].

They also observed that even though customers are more satisfied there
were reports of challenges in customer adoption of the continuous deployment
approach. Customers were reported to be reluctant towards new releases
because of poor quality of releases and a learning curve of a new functionality.
Also privacy and security issues were concerned related to monitoring (in
customer environments) and usage data collection. All these issues were also
observed from our primary studies. The customers’ adoption of fast cycle
of update and feedback (C19) was also one of the common and frequently
observed challenge.

One observation was that QA efforts were increased due to the difficulties
in management of test automation infrastructure [RHL+16]. This is in line
with our findings that there was insufficient level of automated testing (C34)

73



which was one of the most frequently observed challenge and a common one
among the domains.

Rodriguez et al. reported that the embedded systems domain was prob-
lematic regarding the adoption of the continuous deployment practice. Some
domain constraints such as hardware equipment and physical assets were
causing challenges for the automation process. Architecture, resources, and
security (safety, security, and privacy) were mentioned as sources for the
challenges. We also collected the challenges involved in adopting contin-
uous delivery practices in embedded systems domain and similar things
were observed. We also noticed that security based challenges were mainly
found from the embedded systems domain (along with customer specific web
software domain).

As we also observed, Rodriquez et al. reported that there were diffi-
culties in managing various configurations and run-time environments. We
also observed that these kinds of complexity based challenges were mostly
occurring in customer specific web software and embedded systems domains.
Also, lack of trust in quality was mentioned as one of the less frequently
occurred challenges and we also observed the same challenge but interpreted
it to be more of a problem of sharing the status of current build across an
organization and stakeholders (C24: Sharing of status). In our study, this
challenge was also a rare observation. This challenge type was observed
in two cases in embedded systems domain, from two different papers ([S9]
and [S10]) but the authors were the same. However, there was also one
observation of the fear about product quality (C56: Product quality may
decrease) but that was more of a fear than lack of trust. This was also quite
rare as we observed it only from one case.

Rodriquez et al. reported other less frequently occurred challenges that
we did not observe such as: lack of trust in quality, natural tensions between
the desire to deliver functionalities quickly and the need for reliable products,
release planning and managing the roadmap, and risks associated with
gathering user feedback from a limited population [RHL+16].

Overall, especially the most frequent type of challenges in Rodriguez et
al. paper (the process of transformation towards continuous deployment,
customers’ unwillingness to receive continuous product updates, increased

74



quality assurance (QA) efforts, and difficulties applying CD in the embedded
domain) were also observed in our study. Customers’ unwillingness to receive
continuous product updates and increased quality assurance (QA) efforts were
also observed as common challenges in our study. Customers’ unwillingness to
receive continuous product updates was a similar finding to our challenge of
customers’ adoption of fast cycle of update (and feedback) (C19). Increased
quality assurance efforts was related to our observed challenge of insufficient
level of automated testing (C34). Also difficulties applying CD in the
embedded domain were present in our observations, but of course our primary
studies were mainly considering web software and embedded systems domains.
After all, both of these studies confirm the existence of these challenges as
significant ones, especially because we had only four same primary study
papers.

A semi-systematic literature review and a case study on rapid releases and
software testing by Mäntylä et al. [MAK+14] observed from the literature
that there are problems with high reliability and lack of high test coverage,
automation cannot solve all challenges related to reliability and test coverage,
customers might get weary of yet another update, and the technical quality
of the product may decrease (increase in technical debt).

We also observed the problems with high reliability and the lack of high
test coverage but there were no clear indications that automation cannot
solve all challenges related to reliability and test coverage, except in the
embedded systems domain where some domain constraints like inability to do
blue-green deployments in factory settings prevents such things. So, to some
extent, we agree with the fact that automation cannot solve all problems
with reliability and test coverage. One major and a common challenge we
observed was the customers’ adoption of fast cycle of update and feedback
which is in line with the finding of Mäntylä et al. that customers might get
weary of yet another update.

Concerns regarding the increase in technical debt because of having
less time available for each release, presented in the literature according to
Mäntylä et al., was not observed in our study. The same observation was
made by Mäntylä et al. in their case study reflection. However, we did have
one observation about product quality decrease (C56: Product quality may

75



decrease) but that was considering more the increasing amount of bugs, not
technical debt.

Only two of the primary studies in the paper by Mäntylä et al. were in
common with our primary studies. We can confirm the findings in the study
by Mäntylä et al. especially relating to the problems with high reliability
(C49: Seamless upgrades), lack of high test coverage (C34: Insufficient
testing) and customers getting weary of yet another update (C19: Cycle
of update and feedback). We can partially confirm the observation from
Mäntylä et al. that automation cannot solve all problems related to reliability
and high test coverage, especially in the embedded systems domain because
there are some domain specific constraints that might block the automation.
For the last issue Mäntylä et al. observed, the increase in technical debt, we
did not find any support.

In summary considering these three studies, the most frequently perceived
common challenges regarding the adoption of continuous delivery practices
in software development projects are insufficient level of automated testing
and customers’ adoption of fast cycle of update and feedback.

6.2 Data Collection

Our main interest was to find out the challenges in adoption of continuous
delivery practices in software projects and to create a synthesis about the
data. In our opinion, to gather data for such a broad synthesis, viable options
are either a multiple case study or a systematic literature review. A multiple
case study would be a primary study type of a paper while systematic
literature review would be a secondary study a type of paper [PFMM08].
Because multiple case study, especially a comprehensive one, would require
a large number of cases we decided to create a systematic literature review.

The fact that there are multiple primary studies instead of one multiple
case study reduces the bias the authors might introduce (either accidentally
or intentionally) which is also a good thing for systematic literature reviews.
Of course, the fact that systematic literature reviews make use of other
authors’ work will introduce challenges in the interpretation of the data. To
ensure the possibility to interpret the findings in a correct way, we collected

76



not only the challenge description itself but also the category, mitigation
strategy and research proposals for every challenge if they were available.

A challenge for us was to define the scope of the systematic literature
review considering the continuous delivery approach. Albeit we defined our
scope to be broad, there are still examples of even broader scopes related to
continuous delivery and related practices. For example, systematic mapping
study of continuous deployment [RHL+16] and a semi-systematic literature
review considering rapid releasing of software [MAK+14], both had much
broader variation of search terms compared to ours.

Based on the distribution of the amount of papers published across the
years (see Figure 4) we can say that the limitation by the publication year
of the study (published in 2010 or later) was to some extent a successful
decision as most of the papers were published in the year 2015. We can
imagine that more papers will be expected related to the area of this study
in the following years. One could argue that there are some earlier papers
missed due to the limitation but we wanted that the primary studies’ authors
and organizations would have a clear understanding about the continuous
delivery and related approaches. As we previously expressed the different
interpretations of continuous delivery and related terms in section 2.1 this
was not an unnecessary concern. This was one way for us to ensure that
the authors of primary studies understood the concept, though maybe not a
perfect one.

The amount of primary studies was quite low which may affect the validity
of our results and analysis. Also a few papers had same authors which may
suggest that there might be some duplicate findings or some biases. Papers
S5 and S6 were written by almost the same authors. The same applies to
papers S9, S10, and S11. Considering these primary studies there was a
possibility to observe the same challenge multiple times.

One problem for our data collection was that it was not always easy to
identify if a suggestion to overcome a challenge was a mitigation strategy or
research proposal. However, this study presents both, mitigation strategies
and research proposals, to the reader so there is a possibility to consider
them further.

77



6.3 Quality of Primary Studies

To answer our second main research question, we provide an insight to the
quality of primary studies (RQ2.1). Quality scores for each primary study is
available at Table 11 and in more detail in Table 12. We did evaluate the
quality of our primary studies with the help of quality checklist questions (see
Table 7) which resulted in providing a quality score for every primary study.
These scores were used in the analysis of common challenges in section 5.1.

We combined the evidence level of the primary study with the observed
challenge. The evidence level of a challenge was based on the primary study
(where the challenge was observed) with the highest evidence level. Almost
all of the challenges associated with medium or low evidence level got a
frequency of one and did not span across different domains. Based on that
we could say that it has at least in some respect fulfilled its purpose of
evaluating the evidence for our findings. In other words, all of the challenges
that spanned more than one domain did have a high evidence level.

Considering the quality checklist questions the first one got the lowest
points which was the one questioning if the primary study was based on
research or if it merely was a "lessons learned" report based on expert
opinion. We had quite a strict evaluation that gave the action research type
of papers zero points while case studies got only half a point. This was
based on a decision that to earn full points the research should be based on
a controlled environment. However, in software engineering (and related)
research empirical evidence may be scarce [Kit04] considering the systematic
literature reviews and possible primary studies.

Based on the sum of our last three quality score questions (see Table 7)
we may say that the threats to validity of the research is the most weakest
point among the studies in our primary study pool. Those questions were
considering the relationship between the researchers and the participants,
credibility of findings, and the limitations of the study. Especially in the
action research type of studies these things were hardly discussed which
might be natural to those types of papers.

78



6.4 Thematic Synthesis

Thematic synthesis is an approach which is used to identify recurring themes
or issues from multiple studies [CD11]. It is based on thematic analysis
which is traditionally used to analyze data in primary studies. The aim for
both is to interpret and explain these themes, and draw conclusions. As
described in method recommendations of thematic synthesis [TH08] [CD11]
we first did the label coding, then created descriptive themes, and finally went
beyond the data with analytical themes (or higher-order interpretations).
Weaknesses for thematic synthesis and thematic analysis is said to be the
uncertainty of how the synthesis is done [DWAJ+05] [SOV12]. One reason
for this is that the synthesis process may be either driven by data or by
theory [SOV12].

We were trying to approach the synthesis fully by relying only on data,
but of course we were under the influence of our data which had already
some theories applied. Hence, it is difficult to describe the approach in a
reliable way. We state that the intention for our synthesis approach was
to be fully based only on data in every phase. However, especially in the
interpretation of higher-order themes, the original data was less emphasized
and our own created labels were the primary sources of our analysis. So, the
further we proceeded in our synthesis, the further we went from the original
data. We also provided the reader with the original findings (see Appendix
D) and our observed challenges (i.e. labels, see Appendix B) to allow the
examination of our chain of deduction.

Issue that may pose a threat to our synthesis process is that the context
from different cases were a bit differing (software and business domains).
However, we did observe them in our data collection phase and later on in
the synthesis phase. Also the understanding of the key terms was not always
clear, or yet similar between studies, so there might be some obscurity in
challenges especially related to terms continuous delivery and continuous
deployment. However, as we noted in the continuous delivery chapter (see
section 2.1) the difference is not so remarkable.

79



6.5 Perceived Challenges

In our analysis we defined a challenge to be a common one when the challenge
was observed from more than one domain. The problem is that because some
of the challenge occurrences did not have domain information, we might have
missed some common challenges. This was also one of the reasons why the
domain specific challenges were difficult to find. Also another issue was that
in some challenges there were multiple findings from the same case that we
ended up categorizing them in a same challenge and hence, there was higher
number of occurrences in that particular domain. A good example of this is
the challenge C19 (cycle of update) which had findings 102, 103, 106, and
107 that were collected from the same case CS27.

There was also a problem with web software and customer specific web
software domains. We had two cases which were considering web software
domain and customer specific web software domain. Every time a challenge
was found from this kind of a case we had to interpret to which domain the
challenge belonged to. For example in challenge C19 (cycle of update) the
findings 102, 103, 106, and 107 were considering a case which domain was
defined as "web software / customer specific" and three of those findings were
interpreted as originating from web software domain and one as a customer
specific web software domain. Practically, the customer specific web software
domain cases were similar to web software domain and embedded systems
domain cases. Accordingly, if the challenge was identified as originating from
the customer specific web software domain and there were more than one
occurrences (with known domain), the challenge was usually also found from
web software or embedded systems domain (or both).

Interestingly, even though a larger part of the challenges observed were
in the technical side of our categorization (34 of 59), half of the common
challenges were actually considering the social aspects (procedural or or-
ganizational). So, we can strengthen the observation made in continuous
deployment systematic mapping study that human factors play a significant
role in achieving continuous delivery [RHL+16].

80



6.6 Challenge Reasons

Security based challenges were least observed challenges among our primary
studies. Nevertheless, we are afraid of drawing a conclusion that it would be
so. Maybe such challenges are not encountered because continuous delivery
is not achieved at a sufficient level yet (maybe because of some other type
of challenges). Or maybe these kinds of issues are not so openly discussed
because after all, security based problems, and especially the announcement
of such issues, could probably make an organization vulnerable.

Complexity was the main reason behind the challenges in customer
specific web software domain. Maybe that was because in the two cases that
were identified as a such domain (along with the web software domain) these
kinds of challenges were often mentioned to occur due to customer specific
web software. This does not mean that we disagree with the results but just
to note that in our analysis the amount of other types of challenges may be
underestimated in customer specific web software domain. Hence, some of
the web software domain challenges are probably challenges also in the case
of customer specific web software domain.

81



7 Conclusion

Our goal in this study was to figure out the challenges organizations encounter
when adopting continuous delivery and to provide a broad view to analyze
commonalities and differences between them. The motivation for this was
that with the help of these perceived challenges we could better understand
what are the barriers in moving towards the continuous delivery approach and
thus, create a foundation for future research to tackle these problems (another
goal). We were aware of primary studies that were addressing the challenges
(for example [OAB12]) but noticed a lack of more comprehensive broad
research related to the challenges in adopting continuous delivery (and related
approaches). Hence, we decided to contribute to the knowledge by collecting
and analyzing these perceived challenges from multiple different studies. To
achieve our goal we made a systematic literature review that, unlike other
similar studies [MAK+14] [RHL+16], focused only to the challenges. We
applied thematic synthesis approach to figure out the challenges and analyze
them further.

7.1 Contribution

In our study we observed various challenges from multiple cases taking into
account the software domain where the challenge occurred and the frequency
of analyzed challenge. Nearly sixty different challenges were identified and
categorized as a social or technical issues. Social challenges were either
related to procedural or organizational issues. With the help of software
domains, frequencies, and evidence levels (which were based on our quality
analysis) we analyzed which of the challenges were more common among the
cases. We also evaluated the quality of our primary studies based on our
quality checklist. Most of the papers had a high level of quality. However,
in our quality analysis we noticed that the validity of the research was the
weakest point among our primary studies. The weakest points were given
to action research type of studies. However, we want to point out that the
approach set by the quality checklist may have resulted in lower scores for
the action research type of studies compared with the case study type of
studies.

82



If a challenge was observed in many different domains and got a high
evidence level, we defined it as a common challenge. With this definition
we found 14 common challenges that were evenly distributed to social and
technical sides. Four of the common challenges had a high frequency: cycle
of update (and feedback) (C19), insufficient testing (C34), seamless upgrades
(C49), and diversity of client configurations (C50). Of these, cycle of update
was the only challenge that was considered as a social (organizational) issue.
So most of the common challenges that had a high frequency were considering
technical issues. With the help of these categorized challenges we also tried
to find out if there could have been some evidence about specific challenges
for example to certain domain (or regarding the organization size) but failed
to find any. However, after we analyzed the reasons behind the challenges
we did find some signs that the software domain might affect the challenges
that might be faced.

As we continued our thematic synthesis process even further, we identified
17 different reasons behind the challenges. These themes were still processed
further and resulted in five different main reasons (high-order themes). The
main reasons behind the challenges according to our analysis were immaturity,
unsuitability, complexity, dependency, and security. Most of the challenges
were related to the immaturity followed by the dependency based challenges.
With the help of these main reasons, we analyzed how the challenges were
distributed across the domains in the domain analysis. The domain analysis
was mostly considering only three of our inspected domains (web software,
customer specific web software, and embedded systems) because the last two
domains (mobile software, scientific software) did not have enough findings
to provide any reasonable results. As a result, the challenges that were
based on unsuitability and dependency were observed in a quite similar
way from all of the domains, so we could say that in that way the domains
had something in common. However, they were never the most emphasized
reasons behind the challenges. Complexity was emphasized in customer
specific web software domain. In web software domain and embedded systems
domain the immaturity was the main reason behind the challenges.

With these results we fulfilled our first main goal of this study which
was aiming to find what are the perceived challenges of adopting continuous

83



delivery practices in a software development project and why (RQ1).

7.2 Future Research

Another main goal (or research question) in our study considering the chal-
lenges in adopting the continuous delivery approach in software development
projects was to provide new directions for future research with the help of
observed mitigation strategies and research proposals (RQ2). Mitigation
strategies were provided for over sixty percentages of the challenges but only
a few different research proposals were collected from the primary studies
(see section 5.4). Hence, there should be lots of research topics still to be
discovered. We propose some follow-up questions to some of the mitigation
strategies and provide our view for future research.

One of our primary studies suggested that the adoption of social rules
that complement the continuous deployment of software (which must be
adhered to) could be helpful when developing process standards [S2]. These
social rules should be identified. After the identification of social rules,
proposals for process enhancements or new processes can be made. This
could probably be combined with the research proposal which stated the
need for process models that suits continuous delivery [S1].

A need for development of business and pricing models that support short-
cycle innovation (with the help of customer usage data) was also presented
[S10]. For that, existing business and pricing models should be reviewed and
improved to better suit continuous delivery practices. Probably also new
business and pricing models could be developed.

There were very few mitigation strategies or research proposals for com-
plexity based problems. Especially the complex configuration was identified
as a reason for challenges which did not have any mitigation strategies or
research proposals. The reasons for such complex configurations should be
studied and the strategies (if any) to reduce the complexity to facilitate the
adoption of continuous delivery practices should be considered. It would be
wise to take into account the software domain because the needs might differ.
Considering all of the observed challenges, there were a lot fewer solutions
or strategies presented to mitigate technical problems. The same applied to

84



research proposals.
Overall, more research is needed from different domains regarding the

challenges. We identified five different domains of which only two had a
significant amount of research made (web software domain and embedded
systems domain). It would be welcoming to target research also in other
software domains such as mobile software, customer specific software domain
(such as desktop applications and customer hosted web software), and more
less common software domains such as scientific and high-performance com-
puting domain. It would be important to distinguish the different domains
where continuous delivery is adopted, as there are slightly different kinds of
problems in every domain, as we can note from this study.

Especially detailed case studies would be useful but also action research
type of reports are needed. It would be good to remember that when
doing these types of research it is very important that the description of
the environment should be in an accurate level. When the environment is
described in a detailed level the results can be utilized in a correct manner
later in other research studies, for example in systematic literature reviews
to gather broad synthesis.

Considering the results from this study and results from the related works,
the most frequently perceived common challenges regarding the adoption of
continuous delivery practices in software development projects are insufficient
level of automated testing and customers’ adoption of fast cycle of update
and feedback. These are the topics that we recommend researchers to pay
extra attention to. We believe that both topics will raise many research
questions. For example there is a possibility to focus on a certain area of
the challenges to deepen the knowledge as has been done in the systematic
literature review focusing on customer involvement in continuous deployment
[YSRK+16].

Just to bring up a few examples regarding the insufficient level of test
automation: what is a sufficient level of test automation for moving towards
continuous delivery, what are the drawbacks if the level of test automation is
not sufficient, how could organizations discover the insufficient level of test
automation before transitioning to continuous delivery practices, and what
is the best strategy to move towards continuous delivery (or deployment)

85



in case the test automation level is not sufficient (i.e. prioritization of test
automation development). Considering the customers’ adoption of fast cycle
of update and feedback there were already valid research proposals presented
(e.g. lead/pilot customer model, see 5.4).

To extend this study we would like to create a questionnaire (based on
the found challenges) for organizations which would indicate the difficulty
level of adoption of continuous delivery practices. With the help of the
questionnaire organizations could evaluate the cost of such a transformation
and probably also discover areas that would need some preparations before
the transformation. Also the questionnaire could help organizations in
planning the transformation towards continuous delivery (i.e. what are going
to be the pain points in the transformation).

86



References

[ABCS10] Ali, M. S., Babar, M. A., Chen, L., and Stol, K. J.: A systematic
review of comparative evidence of aspect-oriented programming.
Information and Software Technology, 52(9):871 – 887, 2010,
ISSN 0950-5849.

[All] Alliance, Agile: Continuous deployment. https://www.

agilealliance.org/glossary/continuous-deployment/,
visited on 2016-09-03.

[BA99] Beck, K. and Andres, C.: Extreme Programming Ex-
plained: Embrace Change. Addison-Wesley Professional, 1999,
ISBN 0201616416.

[BCT+06] Budgen, D., Charters, S., Turner, M., Brereton, P., Kitchen-
ham, B., and Linkman, S.: Investigating the applicability of the
evidence-based paradigm to software engineering. In Proceedings
of the 2006 International Workshop on Workshop on Interdisci-
plinary Software Engineering Research, WISER ’06, pages 7–14,
New York, NY, USA, 2006. ACM, ISBN 1-59593-409-X.

[BF14] Bourque, P. and Fairley, R. E., IEEE Computer Society: Guide
to the Software Engineering Body of Knowledge (SWEBOK(R)):
Version 3.0. IEEE Computer Society Press, Los Alamitos, CA,
USA, 3rd edition, 2014, ISBN 0769551661, 9780769551661.

[BKB+07] Brereton, P., Kitchenham, B., Budgen, D., Turner, M., and
Khalil, M.: Lessons from applying the systematic literature re-
view process within the software engineering domain. Journal of
Systems and Software, 80(4):571 – 583, 2007, ISSN 0164-1212.
Software Performance, 5th International Workshop on Software
and Performance.

[BPT09] Barnett-Page, E. and Thomas, J.: Methods for the synthesis of
qualitative research: a critical review. BMC Medical Research
Methodology, 9(1):1–11, 2009, ISSN 1471-2288.

87

https://www.agilealliance.org/glossary/continuous-deployment/
https://www.agilealliance.org/glossary/continuous-deployment/


[CD11] Cruzes, D. S. and Dyba, T.: Recommended steps for thematic
synthesis in software engineering. In 2011 International Sym-
posium on Empirical Software Engineering and Measurement,
pages 275–284, Sept 2011.

[CSA15] Claps, G. G., Svensson, R. S., and Aurum, A.: On the journey
to continuous deployment: Technical and social challenges along
the way. Information and Software Technology, 57:21 – 31, 2015,
ISSN 0950-5849.

[DD08] Dybå, T. and Dingsøyr, T.: Empirical studies of agile software
development: A systematic review. Information and Software
Technology, 50(9–10):833 – 859, 2008, ISSN 0950-5849.

[DDH07] Dyba, T., Dingsoyr, T., and Hanssen, G. K.: Applying systematic
reviews to diverse study types: An experience report. In null,
pages 225–234. IEEE, 2007.

[DMG07] Duvall, P., Matyas, S. M., and Glover, A.: Continuous Inte-
gration: Improving Software Quality and Reducing Risk (The
Addison-Wesley Signature Series). Addison-Wesley Professional,
2007, ISBN 0321336380.

[DWAJ+05] Dixon-Woods, M., Agarwal, S., Jones, D., Young, B., and
Sutton, A.: Synthesising qualitative and quantitative evidence: a
review of possible methods. Journal of Health Services Research
& Policy, 10(1):45–53B, 2005.

[Fit09] Fitz, T.: Continuous deployment, 2009. http://timothyfitz.

com/2009/02/08/continuous-deployment/, visited on 2016-
09-01.

[Fow13] Fowler, M.: Continuousdelivery, May 2013. http:

//martinfowler.com/bliki/ContinuousDelivery.html, vis-
ited on 2016-09-03.

[FS14] Fitzgerald, B. and Stol, K.: Continuous software engineering
and beyond: Trends and challenges. In Proceedings of the 1st

88

http://timothyfitz.com/2009/02/08/continuous-deployment/
http://timothyfitz.com/2009/02/08/continuous-deployment/
http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html


International Workshop on Rapid Continuous Software Engi-
neering, RCoSE 2014, pages 1–9, New York, NY, USA, 2014.
ACM, ISBN 978-1-4503-2856-2.

[GWT+14] Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avgeriou,
P.: Variability in software systems - a systematic literature
review. Software Engineering, IEEE Transactions on, 40(3):282–
306, March 2014, ISSN 0098-5589.

[HF10] Humble, J. and Farley, D.: Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Au-
tomation. Addison-Wesley Professional, 1st edition, 2010,
ISBN 0321601912, 9780321601919.

[HG08] Higgins, J. PT and Green, S.: Cochrane handbook for systematic
reviews of interventions, volume 5. Wiley Online Library, 2008.

[HRN06] Humble, J., Read, C., and North, D.: The deployment produc-
tion line. In Proceedings of the Conference on AGILE 2006,
AGILE ’06, pages 113–118, Washington, DC, USA, 2006. IEEE
Computer Society, ISBN 0-7695-2562-8.

[KA14] Krusche, S. and Alperowitz, L.: Introduction of continuous deliv-
ery in multi-customer project courses. In Companion Proceedings
of the 36th International Conference on Software Engineering,
ICSE Companion 2014, pages 335–343, New York, NY, USA,
2014. ACM, ISBN 978-1-4503-2768-8.

[KBBL09] Kitchenham, B., Brereton, P., Budgen, D., and Li, Z.: An
evaluation of quality checklist proposals: a participant-observer
case study. In Proceedings of the 13th international conference
on Evaluation and Assessment in Software Engineering, pages
55–64. British Computer Society, 2009.

[KC07] Kitchenham, B.A. and Charters, S.: Guidelines for perform-
ing systematic literature reviews in software engineering. In
Technical report, Ver. 2.3 EBSE Technical Report. EBSE . 2007.

89



[Kit04] Kitchenham, B.: Procedures for performing systematic reviews.
Keele, UK, Keele University, 33(2004):1–26, 2004.

[MAK+14] Mäntylä, M. V., Adams, B., Khomh, F., Engström, E., and
Petersen, K.: On rapid releases and software testing: a case study
and a semi-systematic literature review. Empirical Software
Engineering, 20(5):1384–1425, 2014, ISSN 1573-7616.

[OAB12] Olsson, H. H., Alahyari, H., and Bosch, J.: Climbing the "stair-
way to heaven" - a mulitiple-case study exploring barriers in
the transition from agile development towards continuous de-
ployment of software. In 2012 38th Euromicro Conference on
Software Engineering and Advanced Applications, pages 392–399,
Sept 2012.

[PC12] Poppendieck, M. and Cusumano, M. A.: Lean software devel-
opment: A tutorial. IEEE Software, 29(5):26–32, Sept 2012,
ISSN 0740-7459.

[PFMM08] Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.: Sys-
tematic mapping studies in software engineering. In 12th inter-
national conference on evaluation and assessment in software
engineering, volume 17, pages 1–10. sn, 2008.

[PR08] Petticrew, M. and Roberts, H.: Systematic reviews in the social
sciences: A practical guide. John Wiley & Sons, 2008.

[Reu] Reuters, Thomson: Endnote basic. http://endnote.com/

product-details/basic, visited on 2016-09-18.

[RHL+16] Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola,
S., Suomalainen, T., Eskeli, J., Karvonen, T., Kuvaja, P, Verner,
J. M., and Oivo, M.: Continuous deployment of software inten-
sive products and services: A systematic mapping study. Journal
of Systems and Software, pages –, 2016, ISSN 0164-1212.

[RHWP15] Rahman, A. A. U., Helms, E., Williams, L., and Parnin, C.:
Synthesizing continuous deployment practices used in software

90

http://endnote.com/product-details/basic
http://endnote.com/product-details/basic


development. In Agile Conference (AGILE), 2015, pages 1–10,
Aug 2015.

[SDJ07] Sjoberg, D. I. K., Dyba, T., and Jorgensen, M.: The future of
empirical methods in software engineering research. In Future
of Software Engineering, 2007. FOSE ’07, pages 358–378, May
2007.

[SNP15] Smeds, J., Nybom, K., and Porres, I.: DevOps: A Definition
and Perceived Adoption Impediments, pages 166–177. Springer
International Publishing, Cham, 2015, ISBN 978-3-319-18612-2.

[SOV12] Snilstveit, B., Oliver, S., and Vojtkova, M.: Narrative approaches
to systematic review and synthesis of evidence for international
development policy and practice. Journal of Development Effec-
tiveness, 4(3):409–429, 2012.

[TH08] Thomas, J. and Harden, A.: Methods for the thematic synthesis
of qualitative research in systematic reviews. BMC Medical
Research Methodology, 8(1):1–10, 2008, ISSN 1471-2288.

[Woh14] Wohlin, C.: Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In Proceedings
of the 18th International Conference on Evaluation and Assess-
ment in Software Engineering, EASE ’14, pages 38:1–38:10, New
York, NY, USA, 2014. ACM, ISBN 978-1-4503-2476-2.

[WP13] Wohlin, C. and Prikladniki, R.: Editorial: Systematic literature
reviews in software engineering. Inf. Softw. Technol., 55(6):919–
920, June 2013, ISSN 0950-5849.

[YSRK+16] Yaman, Sezin Gizem, Sauvola, Tanja, Riungu-Kalliosaari, Leah,
Hokkanen, Laura, Kuvaja, Pasi, Oivo, Markku, and Männistö,
Tomi: Customer Involvement in Continuous Deployment: A
Systematic Literature Review, pages 249–265. Springer Interna-
tional Publishing, Cham, 2016, ISBN 978-3-319-30282-9.

91



A List of Primary Studies

S1: Chen, L.: Continuous delivery: Huge benefits, but challenges too. IEEE
Software, 32(2):50–54, Mar 2015, ISSN 0740-7459.

S2: Claps, G. G., Svensson, R. S., and Aurum, A.: On the journey to contin-
uous deployment: Technical and social challenges along the way. Information
and Software Technology, 57:21 – 31, 2015, ISSN 0950-5849.

S3: Bayser, M. de, Azevedo, L. G., and Cerqueira, R.: Researchops: The
case for devops in scientific applications. In 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages 1398–1404, May
2015.

S4: Gmeiner, J., Ramler, R., and Haslinger, J.: Automated testing in the
continuous delivery pipeline: A case study of an online company. In Software
Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth
International Conference on, pages 1–6, April 2015.

S5: Karvonen, T., Lwakatare, L. E., Sauvola, T., Bosch, J., Olsson, H. H.,
Kuvaja, P., and Oivo, M.: Software Business: 6th International Conference,
ICSOB 2015, Braga, Portugal, June 10-12, 2015, Proceedings, chapter Hitting
the Target: Practices for Moving Toward Innovation Experiment Systems,
pages 117–131. Springer International Publishing, Cham, 2015, ISBN 978-3-
319-19593-3.

S6: Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H. H.,
Bosch, J., and Oivo, M.: Towards devops in the embedded systems domain:
Why is it so hard? In 2016 49th Hawaii International Conference on System
Sciences (HICSS), pages 5437–5446, Jan 2016.

S7: Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V. P., Itkonen,
J., Mäntylä, M. V., and Männistö, T.: The highways and country roads
to continuous deployment. IEEE Software, 32(2):64–72, Mar 2015, ISSN
0740-7459.

92



S8: Neely, S. and Stolt, S.: Continuous delivery? easy! just change every-
thing (well, maybe it is not that easy). In Agile Conference (AGILE), 2013,
pages 121–128, Aug 2013.

S9: Olsson, H. H., Alahyari, H., and Bosch, J.: Climbing the "stairway
to heaven" - a mulitiple-case study exploring barriers in the transition from
agile development towards continuous deployment of software. In 2012 38th
Euromicro Conference on Software Engineering and Advanced Applications,
pages 392–399, Sept 2012.

S10: Olsson, H.H., Bosch, J., and Alahyari, H.: Towards R&D as Innova-
tion Experiment Systems: A Framework For Moving Beyond Agile Software
Development, pages 798–805. 2013.

S11: Olsson, H. H. and Bosch, J.: Towards Agile and Beyond: An Empirical
Account on the Challenges Involved When Advancing Software Development
Practices, pages 327–335. Springer International Publishing, Cham, 2014,
ISBN 978-3-319-06862-6.

S12: Rissanen, O. and Münch, J.: Transitioning Towards Continuous
Delivery in the B2B Domain: A Case Study, pages 154–165. Springer
International Publishing, Cham, 2015, ISBN 978-3-319-18612-2.

S13: Smeds, J., Nybom, K., and Porres, I.: DevOps: A Definition and
Perceived Adoption Impediments, pages 166–177. Springer International
Publishing, Cham, 2015, ISBN 978-3-319-18612-2.

93



B Challenges

Id Challenge Description Mitigation strategies Research proposals Findings

Social / Procedural

C1 Incompatibility of tradi-
tional processes

Many traditional processes are too slow for
continuous delivery. There is usually stages
involved in the process where unnecessary
delays are introduced (e.g. change advisory
board or manual acceptance testing) which
might delay the process with many days. To-
tal cycle time of a feature might become
significantly longer, for example from a few
days to weeks. The smaller the change is the
more significant the delay will become.

In transitioning towards continuous deploy-
ment the internal action is to involve prod-
uct management in the short, agile cycle of
product development.

There is a need for a
research that would iden-
tify these incompatible
processes (business, devel-
opment, operations, etc.)
within an organization
that hinder adopting con-
tinuous delivery practices.
After the identification
processes should be
developed furthermore
and alternative options
should be verified to suit
continuous delivery.

2, 81

C2 Working in small batches Continuous delivery embraces development
in small batches. There might be challenges
to break them in to smaller batches. It is
also challenging to ensure that the incom-
plete changes are not available to customers.
Some companies have a tradition of long
lived feature branches.

The use of dark features (or dark launches)
will help to alleviate the problem of work-
ing in small batches when developing a large
feature. This type of release technique al-
lows deployment of features to the produc-
tion without the appearance of incomplete
feature to the customer.

Even though the concept
of working in small batches
is not new, there is a lack
of research of how the size
of the feature affects the
deployability of a feature
when using continuous de-
livery.

5, 6, 96

C3 Utilizing shorter feedback
loop

There might be challenges on how to utilize
efficiently the feedback that is provided by
the shorter feedback loops to justify, direct
or discard the development of some feature.

Implement a strategy to monitor customer
behavior through some data analytics plat-
form. With such a strategy, tools, and pro-
cess it is possible to steer the development
of features in a way that might be more in
line with customer’s expected needs. Exper-
iments should be made as small as possible
and as quickly as possible.

- 7

94



C4 Lack of standard practices Lack of understanding of the continuous de-
livery process, especially for the novice devel-
opers, is seen as a challenge. For some of the
teams in a specific case organization there
was only some sort of documentation avail-
able associated with the continuous delivery
process or it did not even exist. However,
some developers felt that there were not so
many differences to their original workflow
when they were adopting the continuous de-
livery practices. Still there is a demand for
industry standards for the software develop-
ment processes regarding to the continuous
delivery practices.

Adopt social rules that complements the con-
tinuous deployment of software which must
be adhered.

- 21, 36

C5 Keeping the build green Merge conflicts and assuring the deployabil-
ity of every software version may pose a chal-
lenge.

Strategy for stopping the entire team to con-
centrate on the fixing issues must be planned
and in place to keep the build green.

- 28

C6 Propagation of changes
across teams

If systems are complex (i.e. embedded sys-
tems) there might be challenges on changes
across company (from team to team) on con-
tinuous basis.

Teams should be responsible for accepting
continuous flow of changes and also propa-
gating the changes rapidly to other teams.

- 113

C7 Ambiguity in coordination When some incident occurs the question is
who should fix, what, and when?

To continuously deliver a software the build
should always be green. Team should collec-
tively aim for this goal and it should be the
primary goal.

- 11

Social / Organizational / Resources

95



C8 Lack of motivation Because successful adoption of continuous
delivery practices needs collaboration from
different organizational units the lack of mo-
tivation for continuous delivery might pose a
challenge. Management commitment is cru-
cial because of motivation but also because
establishing deployment pipeline is time con-
suming and costly which is usually made
in the initial phase of moving towards con-
tinuous delivery. Management might even
be resistant towards continuous delivery or
changes to existing processes which will be
a challenge for adopting continuous delivery
practices.

Make sure that top-management is imple-
menting a strategy to push the need of con-
tinuous delivery all the way through lower
organization units. Set a goal for achieving
continuous delivery.

- 10, 33, 53, 63

96



C9 Increased pressure When adopting the continuous delivery prac-
tices software developers will become more
responsible for deployment process. In ad-
dition, the idea that some code could be re-
leased to the production environment imme-
diately will increase the pressure for the soft-
ware developers. In case there is no manual
QA phase the pressure will be increased even
more. Software developers must be "diligent
in writing tests and monitoring the system"
[S8]. Also maintaining the code quality is an
increasingly important part of the software
developer’s daily work if there is no man-
ual quality assurance personnel. For that
the practices and static code analysis tools
should be firmly in place.
Software developer’s reputation might suffer
if she deploys a broken build or some other
way impairs the customer’s user experience.
It might even affect negatively the business.
Also the possibility to decide what to de-
ploy and when might create confusion in co-
operation with internal (management, sales,
etc.) and external (e.g. customer) stakehold-
ers. All things considered the responsibilities
and pressures will be increased for the soft-
ware developer.

Improving communication between develop-
ers and managers.

Need for proper manage-
ment program for adopting
the continuous deployment
process in an organization
to ensure that the process
is not destructive for it.

12, 62, 75,
100

C10 New roles Team members have to take new roles related
to different tasks when adopting continuous
delivery practice.

Shift from personal to team thinking. Tak-
ing the responsibility as a team of delivering
the software to customers without negative
effects to the customers.

- 13

C11 Lack of knowledge It requires enough knowledge and experience
from team members to fully succeed in the
adoption of continuous delivery practices.

Ensure that there is low or nonexistent learn-
ing curve for team members in adopting con-
tinuous delivery practices when introducing
it to existing systems and process for exam-
ple integrating the new practices to old work-
flow.

- 9

97



C12 Deep specialization Some modules (especially modules close to
the hardware) might require some level of
specialization. That may pose a challenge for
cross-functional teams that continuous deliv-
ery needs.

Ensure that there is effective communica-
tion taking place between modules and that
CI practices are implemented and work as
a coordinating mechanism both within and
across the team.

- 42

C13 Fear of unemployment Especially the QA team might get irrational
fear of unemployment as there are supposed
to shift mindset towards automated testing
instead of manual testing.

Planning good automated tests requires pro-
fessional QA mindset. Planning requires
hours of reading stories, performing research
into the background of the story and creat-
ing different angels to test cases. If there is
some time left from the old way of working,
QA could invest in monitoring and analyzing
the system.

- 76

Social / Organizational / Marketing and sales

C14 Marketing versionless
product

Traditional marketing strategies are not suit-
able for marketing a product that has no ver-
sions.

Make a blog and post about product’s
changes.

- 14

C15 Uncertainty of ready fea-
tures

Because there might exist uncertainty within
development team about when some feature
will be ready, there may be challenges in re-
lationship between marketing and develop-
ment teams.

Increase the level of transparency between
the development team and sales and market-
ing unit.

- 73

C16 Selling experimental func-
tionality

From customer perspective the idea of buy-
ing partially developed functionality with in-
tentions to experiment might be challenging.

- Develop business and pric-
ing models that support
this kind of short-cycle in-
novation with the help of
customer usage data.

86

98



C17 Customer policies Releasing software in small increments, in
fast pace, and possibly with some experimen-
tal mindset may not necessarily meet the ex-
pectations of all customers. Large companies
might hesitate to buy a software which might
seem not to be thoroughly tested because of
the risk or fear that there might be increased
amount of bugs in production. Some internal
policies may prevent a company from buy-
ing such a "not thoroughly tested" software.
Also compliance with standards (national or
international) will pose a challenge for con-
tinuous delivery. Usually such standards re-
quire that patient and user safety is guaran-
teed by not introducing adverse side effects
with the changes.

- - 18, 55

Social / Organizational / Customer adoption

C18 Feature discovery Continuous delivery enables software to be
delivered and deployed to customers in faster
pace but it is also important to aid users to
find these new features.

Make a blog and post about product’s
changes.

- 1999



C19 Cycle of update (and feed-
back)

Not all of the customers welcome continuous
delivery type of development method simply
because of a too frequent update pace. It
may be difficult to demonstrate the added
value of such a fast pace to all customers es-
pecially if it might affect somehow negatively
the customer organization. Negative effects
may arise when the customer organization
has to react somehow to the change for exam-
ple to learn new features, to learn new UIs
(especially if the existing UI is already hard
to learn), adjust somehow to changes (orga-
nization or processes), do acceptance testing,
or to be involved in the installation process.
Especially in embedded systems domain de-
ploying a new software may involve numer-
ous activities in customer sites (updating
dependencies in multiple places) and thus
be very tedious to customer organizations.
Some actions (e.g. customer acceptance test-
ing) need to be even scheduled with the cus-
tomer which hinders continuous delivery.
Also just the possibility of new bugs may be
big enough reason to be reluctant to update,
especially for organizations who do experi-
ence that the software is working correctly
and there is no need for new features at the
moment.

Apply continuous deployment only to non-
business critical software. Invest in good UI
design.

- 20, 37, 48, 50,
54, 102, 103,
106, 107

Social / Organizational / Hierarchy

C20 Coordinating units There are strong indications that to fully
succeed in the continuous delivery practice
requires involvement of multiple organiza-
tional units. That poses a challenge of coor-
dination and collaboration of multiple orga-
nizational units to achieve the common goal
of successful continuous delivery.

The deployments should be more carefully
planned in a way that supports continuous
delivery of multiple systems that are interde-
pendent.

- 8

100



C21 Barriers between units Releasing activities may involve operations
and communication needs between many dif-
ferent units of an organization. If organiza-
tion hierarchy promotes competing goals for
different units there might be too much ten-
sion between them.

Restructure the organization to break down
barriers and promote collaborative culture.

Further research is needed
to understand challenges
the organizations face
when adopting the con-
tinuous delivery in more
more depth and to develop
strategies and practices
to tackle them more
efficiently.

1

C22 Different pace between
units

There might be challenges in the collabora-
tion between units (or company functions) if
they operate in a different pace. For exam-
ple development might run on continuous re-
leases while marketing runs with six months
release cycle. Business runs usually on "dates
and dollars" [S8] with annual and quarterly
goals and marketing events.

Use annual roadmap but do not make de-
tailed plans for the future. Plan for current
and next quarter but no further. Some candi-
date initiates can exist for the rest quarters.
Participate in monthly product meetings and
discuss released and to be released features.
Take input on the near-term roadmap. Share
the status of the project to other stakehold-
ers. Use historical data to estimate future
throughput of the team.

- 39, 79

Social / Organizational / Culture

C23 Releasing experimental
functionality

In companies where there is a strong tradi-
tion of rigorous testing and validation pro-
cesses there might be a resistance towards ex-
perimentation of functionality that may not
be fully completed.

Infrastructure and tools for testing run-time
variations, data collection and early provi-
sion of feedback must be in place. These
functionalities require usually some sort of
architectural modifications if they do not ex-
ist already.

- 85

C24 Sharing of status If the quality status of the projects are not
visible to other business units they may not
be able to react to customer requests re-
lated to status, quality, or problem situa-
tions. Also other units do not know what is
the effect of some build to the product if it is
not clearly communicated. There might also
exist a lack of trust in quality of the product
if such information is not available.

Mechanism for the rollback of releases and to
deploy components instead of whole system
might ease the lack of trust in quality.

- 82, 83

101



C25 Lack of business model There is a lack of business model that suits
continuous delivery type of development. It
is hard to implement continuous delivery
practices, as it flows continuously, if busi-
ness acts in a more conservative way, promot-
ing fixed releases and fixed pricing according
to features promised and usually frozen up-
front.

Identify lead (pilot) customers with whom
you can start to build a culture and capa-
bility for continuously delivering a software.
Use lead customers as role models to other
customers. Review business model to sup-
port continuous delivery practices and align
all business functions with R&D organiza-
tion in order to facilitate continuous deliv-
ery.

- 34, 84, 105

Technical / Tools

C26 No comprehensive plat-
form suite

Comprehensive and robust highly customiz-
able solutions for continuous delivery are
scarce or do not exist or might introduce ven-
dor lock-in.

Develop own continuous delivery platform so-
lution which might be costly. Also building
comprehensive platform might involve many
different tools and technologies. Avoiding
vendor lock-in is challenging.

Widely accepted stan-
dards, open APIs, and
active plugin ecosystems
for existing or future
platforms will alleviate
the challenge.

3

C27 Branching in VCS There should be only one branch of the soft-
ware in the version control system which is
under development. This poses a challenge
when developing larger features.

Develop larger features on a separate branch
and merge as soon as possible to mainline.
Split large features to smaller batches.

- 22

C28 Cannot use optimal hard-
ware resources

In scientific computing it is important to use
optimal resources (CPU vs GPU or other
co-processors) depending on the calculation.
Usually the information is only available at
deployment so the deployment scripts should
make the decision about the best variation of
configurations. This might need even recom-
pilation of the code.

- - 31

Technical / Architectural

102



C29 Incompatible architectures For example large monolithic applications
that aren’t amenable to continuous delivery
practice are a great challenge. There might
be a huge number of such applications in the
industry.

Transform architecture towards more modu-
lar architecture which allows upgrading the
system in smaller and independent parts or
improve capability for continuous delivery
some other way. Also motivation for a such
possibly expensive transformation is needed
especially because the value is not immedi-
ately evident as it might seem for new fea-
tures.

There is a need for un-
derstanding the character-
istics of such incompati-
ble architectures and to
develop strategies to over-
come and figure out the
steps of how to move to-
wards continuous delivery.

4, 109

C30 Legacy system integra-
tions

If there is some legacy system integrations
they might pose a challenge to the adoption
of continuous delivery practices in full scale.

- - 64

C31 Code base size If the code base size and complexity is too
high it might pose a challenge for continuous
delivery practice as it takes too much time to
build, compile and package code.

- - 66

Technical / Documentation

C32 Maintaining documenta-
tion

If the software has different versions out
(for example in customer’s environments and
software that is versionless but hosted in
separated environments for each customer)
there might be a challenge of managing the
documentation for these different versions.

Use wiki type of tool to maintain the docu-
mentation.

- 15

C33 Maintaining change logs Because of smaller and faster version releases
it might become as a surprise that managing
the version log requires more effort. There is
no point in discussing every release in detail
with every customer.

- - 104

Technical / Testing

103



C34 Insufficient testing There may be challenges in having enough
and maintaining existing automated accep-
tance testing. It will be very laborious
to build automated testing suite from the
scratch that is sufficient. This might be es-
pecially laborious for mature software. Also
there might be challenges in prioritizing the
tests that should be created to validate a
release. Testing suite should also be main-
tained which needs resources. Automated ac-
ceptance testing must be in place in deploy-
ment pipeline before deployment to produc-
tion is possible with continuous delivery.

Diligent testing practices must be adopted to
ensure that testing is thorough since deploy-
ing software is dependent on tests passing on
the continuous integration server. Invest in
testing practices, testing, testing automation
and ensure its thoroughness.

- 17, 35, 38, 47,
60, 89, 90, 95

C35 Testability of outputs In physical simulation the results are com-
plex and even the experts are not able to say
whether the result is right or wrong. There
is a possibility to say whether the results are
in line with a theory but deciding based from
the result if the calculation was wrong or
right is not always possible. The situation
might be even more complex in the context
of cognitive systems.

- - 32

C36 Long acceptance tests In embedded systems some factory accep-
tance testing might take several months and
it is done after the development is completed
what can be considered as a barrier for con-
tinuous delivery. However, test suite that
takes hours, for example a test suite run in
a web software development, delays instant
releases and hence it is a hindering issue for
continuous delivery practice.

- - 43, 65

104



C37 Configuration differences In a software which is installed specifically
for each customer, usually there are different
environments with different configurations
and external dependencies, probably inter-
fered with other vendors. That poses major
challenges for automated acceptance testing.
These kinds of configuration differences lead
to multiple and complex variations which are
very difficult to test reliably. Hence the test-
ing is usually done with similar configura-
tions. This leads to the problem that there
will be many faults to be found in the ac-
ceptance testing phase on the customer end.
Same problem occurs also in internal devel-
opment process if there exist differences be-
tween environments.

- - 45, 46, 68

C38 Automated UI testing Web browsers introducing different imple-
mentations of standards and mobile game
user interfaces with fragmented device base
may pose a challenge for automated accep-
tance testing.

- - 61, 71

C39 Performance testing If the subject of testing is a component of
some network infrastructure, load testing
might require enormous amount of hardware.

- - 69

C40 Manual testing Existing manual or explorative testing
phases before release might hinder rapid re-
leases of software that continuous delivery is
aiming at. There might be support for man-
ual testing because QA testers might find
bugs that automated tests did not catch.

- - 70, 72

C41 Differences in environ-
ments

If development and testing environments do
not simulate or are not similar to production
it may pose a threat to validation of the soft-
ware (testing) and thus continuous delivery.
This is also a problem for sharing informa-
tion and responsibilities.

- - 110

105



C42 Ignoring test suite False assumption that there is nothing wrong
even though the tests fail (wrong data etc.)
might lead to bad situations and probably
hides real problems with the code. Same
goes with flaky tests.

Never ignore failing tests. Always dig into
the failure and fix what’s wrong. To re-
lease quick doesn’t mean you should rush.
Use flaky tests tools that inspect and han-
dle flaky tests to get real results. Flaky
tests must be fixed, eliminated or handled
correctly.

- 74, 78

Technical / Resources

C43 Infrastructural require-
ments

To properly handle cross-product dependen-
cies and testing there must be suitable infras-
tructure in place and enough resources for
the deployment pipeline processing to keep
the pace fast enough.

Provide enough hardware to continuous de-
livery pipeline components to continuously
run the deployment pipeline.

- 25

C44 Hardware based infrastruc-
ture

Hardware/PC based infrastructure is a great
barrier for adopting continuous delivery prac-
tices.

Update the product architecture from PC
platform to a virtualized cloud environment.

- 40

Technical / Dependencies

C45 Cross-product dependen-
cies

If a software product has tightly coupled
cross-product or module dependencies it may
pose a challenge for deployment process as
there is a great need for rigorous integration
testing across these products. Also there
may be challenges if the products or some
parts of product are in different stage of de-
velopment. The same applies for API inte-
grations. And in addition to the rigorous
testing, the API changes must be planned
and discussed in advance with stakeholders.
The support for automatically updating the
integrations may "require unduly amount of
work considering the results" [S12].

Provide enough hardware resources to test-
ing infrastructure.

- 26, 67, 91, 97

C46 No packages available in
repositories

No package available for certain operating
system version to satisfy a library depen-
dency.

Create custom packages and set them avail-
able for private repository.

- 29

106



C47 Outdated environments Customers may have strict hard-
ware/environment policies which may
lead to outdated operating systems. This is
a challenge for compatibility and testing.

Use containers/virtual machines (i.e. Va-
grant) to test binary compatibility to cus-
tomers’ environments (i.e. if customer is us-
ing RHEL5, use centOS5 as a base for soft-
ware testing).

- 30

C48 Long product lifecycle In the embedded systems domain the life-
cycle of installed software might often be
quite long with lots of legacy code involved.
When new features are added the software
may have dependencies to old software made
years ago. Ensuring the compatibility be-
tween versions might be challenging.

- - 49

Technical / Deployment

C49 Seamless upgrades There may be complications related to seam-
less upgrades that continuous delivery de-
mands. Extra resources (instances of soft-
ware) might be needed to perform zero-
downtime upgrades and customer data has
to be preserved correctly. This is also a
great problem for embedded systems domain
where it is critical to have no downtime and
two parallel systems would be inconvenient
to use. For example some factories must stop
the whole production line for a day or so to
run the update process. This is usually also
a big cost for the customer. Same applies
for a web software, if seamless upgrades are
not achieved the user has to stop working
or might lose data in the progress. There
should be no interferences with ongoing us-
age in case of frequent update pace.

Use of two parallel systems to perform up-
grades to shift user from an old to a new ver-
sion of the software (blue-green deployment).

- 27, 51, 56, 88,
108

107



C50 Diversity of client configu-
rations

Diversity of configurations is also a great
challenge for the application deployment
phase. For example diversity of client net-
work configurations increases the deploy-
ment time complexity when deploying new
releases of software to network devices. Di-
versity of configuration is also a challenge
when there is legacy product to be updated
and the configuration is very complex. Con-
figurations should be updated automatically
in the deployment process. Managing the di-
versity of configurations is also problematic.

- - 57, 80, 92, 93,
94

C51 Third-party distribution
channels

If there is a third party involved in the dis-
tribution process which also contributes or
manages somehow the software updates it
will pose a challenge for continuous deliv-
ery practice. For example mobile games and
AppStore, or some other device (for exam-
ple mobile solutions) software update which
is distributed through third party (telephony
companies).

- - 58/59 (dupli-
cate)

C52 Efficient rollback mecha-
nism

The only way to rollback a deployment is to
degrading to previous system version which
is not so efficient and not sufficient when
moving towards more frequent releases.

- - 87

Technical / Security and safety

C53 Critical systems Performance, security (and business) critical
systems are a challenge for continuous deliv-
ery.

- - 41

C54 Not enough access Not having enough access to environments is
a challenge for continuous delivery.

- - 112

108



C55 Limited view on run envi-
ronment

Development companies might have lim-
ited view on the environment (configuration,
monitoring) the software is installed to (cus-
tomers environment) especially in the embed-
ded systems domain. Monitored data may be
accessible only when testing or fault diagnos-
tic.

- - 44, 52

C56 Product quality may de-
crease

Because the deployments occur in a more
faster pace there might be an increase in the
amount of bugs in the production environ-
ment.

Fix bugs immediately and deploy the fix to
the production environment as soon as pos-
sible. Roll back to previous working state if
software is not in a fully functioning state.

- 16

Technical / Integrations

C57 Partner plugin integration Constantly changing version and code affects
integration issues to partner plugins. If plu-
gin is not continuously tested for the integra-
tion and maintained, the plugin will become
broken.

Offer customers a smaller amount of plugins
which are maintained and compatible with
the latest versions.

- 24

C58 Changes in database
schema

Minor changes in code may introduce an un-
planned database schema change. This goes
beyond internal development in case of plu-
gin ecosystem to external partners.

Ensure that there is sufficient amount of test-
ing around the database to prevent deploy-
ments to affect the database. Use rollbacks
to reset issues.

- 23

C59 Multiple versions out If deployed software product is built from dif-
ferent components and there is multiple cus-
tomers with own environments there might
be multiple versions out at the same time
because components can be in different ver-
sions in different customer installations.

- - 99, 111

109



C Search Screens

Figure 8: ACM advanced search screen

110



Figure 9: ACM search results screen

111



Figure 10: IEEE advanced search screen, part 1

112



Figure 11: IEEE advanced search screen, part 2

113



Figure 12: IEEE search results screen

Figure 13: ScienceDirect expert search screen

114



Figure 14: ScienceDirect search results screen

Figure 15: Scopus advanced search screen

115



Figure 16: Scopus search results screen

116



D Findings (Raw Challenges / Form III)

Findings were collected with the Form III and they are presented in the next
page as included spreadsheet.

117



CH CS Category Title Description Mitigation strategy Research proposal
1 1 Organizational Barriers among teams Release activities involve many divisions

of the company. Each has its own
interests, ways of working, and
perceived territories of control. Tension
existed between divisions due to
competing goals. For example, we
needed root access to the servers, and
another team controlled this permission.
Arriving at a solution involved much
consultation and negotiation over six
months.

To address the organizational
challenges, the leadership team
restructured the organization to break
down barriers among teams and
promote a collaborative culture. The
situation has improved since.

Although literature on organizational
change exists, little, if any, research
focuses on introducing continuous
delivery to an organization. Further
research on this topic—for example,
understanding the challenges in more
depth and developing strategies and
practices to tackle them more
effectively—will significantly help an
organization’s smooth adoption of
continuous delivery.

2 1 Process Traditional processes
do not fit for
continuous delivery

Many traditional processes hinder
continuous delivery. For example, a
feature that’s ready for release normally
must go through a change advisory
board. This can delay the release for up
to four days. If a feature takes only a few
days from conception to being ready for
release, this four-day period accounts for
too much of the feature’s total cycle time.

- Research is needed to identify these
processes (covering areas of business,
software development, operations, and
so on) and develop and verify
alternatives that suit continuous delivery.

3 1 Technical No comprehensive
continuous delivery
platform tool

A robust, out-of-the-box, comprehensive,
and yet highly customizable solution for
continuous delivery doesn’t exist yet.

So, we developed our own solution,
which was costly. When we’re building
the continuous delivery platform, we use
many different tools and technologies as
building blocks. Avoiding vendor lock-in
is challenging.

Work on developing widely accepted
standards, de�fining open APIs, and
building an active plugin ecosystem will
help alleviate the challenge.

4 1 Technical Applications that are
not suitable for
continuous delivery

Dealing with applications that aren’t
amenable to continuous delivery (for
example, large, monolithic applications)
is also challenging. A huge number of
such applications exist in the industry.

- Research is needed on understanding
their characteristics and identifying and
developing the best strategies or
practices to tackle them.

5 2 Technical (being
'lean')

Development of large
features prevents
continuous
deployment (working
in small batches)

The ability to break up large features into
small batches, and to ensure that
incomplete features do not get sent to
customers, are challenges that Atlassian
is actively working to overcome.

Organization adopted the strategy of
using ‘dark features’ when deploying
large features. Dark features are
features that are too large to develop in
a small period of time, and that are
instead developed in small batches that
only appear visible to the customer when
the entire feature has been developed.

While the concept of working in small
batches is not new, there is no literature
to date that has specified the size of the
features that can be deployed using
continuous deployment.

6 2 Technical (being
'lean')

Development of
bigger change to
software prevents
continuous
deployment (working
in small batches)

Another challenge faced by Atlassian
related to small batches was incomplete
changes. If a small batch of code is
developed and deployed to customers,
but is not fully complete, customers will
potentially see the incomplete change
and may interact with the software
product in undesirable ways.

For Atlassian, using small batches to
deploy low risk features to customers
was the starting point and, as their
confidence grew, larger features were
deployed using dark features.

-

7 2 Social (being
'lean')

Efficiently utilizing
shorter feedback loop

To effectively utilise the shorter feedback
loop that results from implementing
these lean software development and
DevOps techniques...being able to
analyse data when
justifying the deployment of a new
feature

...Atlassian has implemented a strategy
to monitor customer behaviour through a
data analytics platform. By
understanding how their customers use
their software products, Atlassian can
change what software they develop in
response to customers’ actions, thus
eliminating waste and minimising
inventory. In addition, Atlassian conducts
experiments by developing features and
deploying them to certain subsets of
customers to test whether these new
features are likely to be used by other
customers. Deploy minimal versions of
features quickly using experiments, then
use the results to update or remove
depending on the customers’
interactions with the feature.

-

8 2 Social (team
coordination)

Coordinating multiple
teams requires extra
effort

...adopting the continuous deployment
process ‘‘requires involvement of
different organisational units in order to
fully succeed’’. This holds true for
Atlassian, which has required an
increased amount of collaboration to
take place between teams for products
that adopt continuous deployment.

Engage in an increased amount of
planning in terms of planning around
deployments with multiple systems that
are interdependent.

-

9 2 Social (team
experience)

Inexperienced team Having an experienced team is critical in
the successful adoption of continuous
deployment.

Integrate the automated deployment of
software using continuous deployment
into the existing continuous integration
workflow of developers to ensure there is
no, or a low learning curve.

-

10 2 Social (company-
wide effort)

A lack of motivation
for adopting
continuous
deployment

Cross-team collaboration could not be
achieved without top-management
implementing a strategy to push the
need to implement the continuous
deployment process. A technical lead
from Team A described a challenge in
adopting the continuous deployment
process as: "It is something that I would
find very hard to do just from a, you
know, intrinsic motivation like from within
the product team, because it touches so
many things."

Ensure that top-management implement
a strategy to push the need to implement
the continuous deployment process. This
will make the implementation of the
continuous deployment process a goal
for specific product teams to achieve.

-

11 2 Social
(coordination)

Ambiquity in
coordinating of fixing
things

Another challenge of team coordination
when using continuous deployment was:
who should fix, what, and by when?

As described by a software developer
from Team A, ‘‘there is a much bigger
incentive for the team to keep the build
green because it does give us the bonus
of having it continuously deployed’’.

-

Challenges (Form III)

118



12 2 Social (changes
in responsibilities)

More pressure to
software developers

Software developers may feel an
increased amount of pressure to have
code ready to be deployed immediately.
After adopting the continuous
deployment process, software
developers also become responsible for
deployments, which meant that the
quality assurance team did not overlook
quality of the deployed code. This
change in responsibility has placed the
burden for code quality on the software
developers, which in turn has resulted in
increased pressure on these developers.

Atlassian mitigates this issue by
improving communications between
developers and managers.

Need for a proper management program
for adopting the continuous deployment
process in a company to ensure that the
continuous deployment process is not
destructive for teams that adopt it.

13 2 Social (changes
in responsibilities)

Changing team roles Team members have to adapt to
different tasks in new roles due to
working in a continuous deployment
environment.

The team, as a whole, must work closer
together to allow the frequent
deployment of software to customers
without negatively affecting customers.

-

14 2 Social (changes
in responsibilities)

Marketing
'versionless' product

Marketing continuous deployment
products requires marketing a
versionless product, which requires
alternative marketing strategies.

Blog a product’s changes. -

15 2 Social (changes
in responsibilities)

Technical product
writing

Maintaining multiple documentation for
each product which may have multiple
offerings (e.g. a customer-hosted version
and a versionless Atlassian-hosted
online version), where features may be
released in one offering, but not in the
other.

Use Atlassian’s own product, Confluence
(which is a wiki), to document software
products.

-

16 2 Technical Product quality may
decrease

The quality of the software product may
decrease since bugs may slip through
and be deployed to customers since
deployments occur more frequently.

This challenge is outweighed by the
benefits of continuous deployment. It is
mitigated by fixing bugs quickly, and by
roll back software to a previous version if
any code changes leave the software in
a less than fully functioning state.

-

17 2 Technical Testing Having production quality tests and
maintaining the process of ‘code review’

Adopt diligent testing, i.e. ensure testing
is thorough since deploying software is
dependent on tests passing on the
continuous integration server.

-

18 2 Social Customer policies Nonetheless, since it is easier to deploy
bugs when using to deploy software,
larger companies are seemingly hesitant
to purchase such software. For example,
in some cases, large companies have
internal policies which state that they
cannot use software that is not
thoroughly tested.

- -

19 2 Social Customers may not
notice the newly
added features

Continuous deployment enables
software products to be constantly
updated, but it does not assist in
introducing these updates to customers.
One product manager from Team B
found it especially important, ‘‘you know
we deploy continuously and like it just
goes over their [a customer’s] head, so
feature discovery is actually, I think, our
biggest challenge right now for
customers’’.

Show the new features in blogs that can
be viewed by customers.

-

20 2 Social Customer adoption –
Not all customers are
pleased to receive
updates of features.

Atlassian has found it difficult to show
customers when they have deployed
new features. Atlassian has found when
using continuous deployment that not all
of their customers welcome this method
of development. A software developer
from Team B commented that ‘‘...it’s
affecting them negatively a little bit, but
it’s only a small subset of customers,
because just in general it runs fine’’. This
has inhibited Atlassian from being able
to demonstrate to customers the added
value of the ability to introduce new
features into their OnDemand software
products.

Apply continuous deployment for non-
business critical software development

-

21 2 Social (process) No process
documentation

A lack of understanding of the
continuous deployment process by
novice developers due to inconsistent
documentation and a lack of industry
standards. The Atlassian developers
also pointed out that there was little or
no process documentation associated
with the continuous deployment process
in their teams. However, in most cases
they also stated that they did not feel
that there were any changes to their
original workflows when their teams
adopted continuous deployment.

Adopt ‘social rules’ which must be
adhered to when deploying software

-

22 2 Technical Source code control Having one single branch of code to
maintain one working version of the
software product in a continuous
deployment environment.

Develop each feature for a software
product on a separate branch and, when
completed, merge that feature into the
main branch of code.

-

23 2 Technical Changing database
schemas

Minor changes in code create unplanned
changes in database schema.  Changing
database schemas issues go beyond
internal development and extend to
partners who provide plugins for
Atlassian.

Ensure there is rigorous testing around
the database of a software product to
help prevent any deployments affecting
the database. Roll backs can also help
reset issues.

-

24 2 Technical Partner plugins
integration issues

Only a small fraction of plugins are
available due to code integration issues
involved with a continuously changing
software product. By constantly
changing versions and the code of their
continuous deployment based software,
some partner plugins no longer work
with Atlassian’s latest software updates,
and it has become infeasible for partners
to keep updating their plugins to work
with Atlassian’s constant updates.

Offer customers a smaller fraction of
plugins that are known to be compatible
with the Atlassian product.

-

119



25 2 Technical Infrastructural
requirements

It requires proper hardware and software
to handle the continuous deployment
process and its related problems e.g.
cross-product dependencies.

Provide more hardware resources to a
product’s continuous integration servers
to allow the software product to be
continuously integrated as often as
necessary, thus allowing the software
product to be deployed at any time.

-

26 2 Technical Cross-product
dependencies

To handle cross-product dependencies,
Atlassian has changed its product
upgrading process by removing the
product that is being upgraded from
OnDemand, and then re-integrating the
product once it has been upgraded. Due
to the complexity of cross-product
dependencies, several interviewees
believed this was the main challenge for
the company when adopting continuous
deployment. A software developer from
Team A explained, ‘‘we had to overcome
a lot of obstacles because the
OnDemand product is kind of a set of
tightly coupled applications’’.

Provide more hardware resources to a
product’s continuous integration servers
to allow the software product to be
continuously integrated as often as
necessary, thus allowing the software
product to be deployed at any time.

-

27 2 Technical Seamless upgrades Complications in implementation of
seamless upgrades due to resource
limitations, zero downtime deployment
and customer data preservation.

Use two parallel running systems (the
old and the new system) to upgrade the
user to the next version of software.

-

28 2 Technical Continuous
integration process
challenges

Challenges with the continuous
integration process include merge
conflicts, having Atlassian’s software in
an everready state of deployment, and
determining the deployability status of
software builds.

Employ a strategy of stopping the entire
team (i.e. as many people as necessary)
from doing what they are doing to fix
issues to make sure the software is in an
ever-ready state of being.

-

29 3 Technical No packages
available to satisfy
dependencies

...it is common to encounter a situation
where the dependencies of a library are
not satisfied by any package that is
available in the repositories of the
particular Linux version required to be
used.  As an example, it is quite
challenging to install a new version of
the PETSc package together with a new
version of the g++ compiler that supports
the C++11 standard on a RHEL 5
machine.

When a package for a specific tool or
library is not available, we create custom
ones and maintain a private repository
for those packages.

-

30 3 Technical Outdated
environments at
clients

In many cases, they (clients) do not have
the freedom to choose their operating
system. They have workstations that are
tightly controlled by corporate IT who are
extremely conservative, having them use
very outdated versions of Linux.

One platform, usually the one that the
client is using, is chosen as the base for
this automation. For instance, if the client
uses RHEL5 then, we use Vagrant to set
CentOs5 virtual machines that are binary
compatible to test our environment
automation and the deployment and
execution of our software.

-

31 3 Technical ? Depending on the hardware, numerical
calculations can be carried out either by
CPUs, GPUs or other co-processors
such as the Xeon Phi 11 or FPGAs
(Field Programmable Gate Arrays). The
information about the exact execution
infrastructure would only be available at
deployment so the IaC scripts would
have to select the correct variation and
apply device specific configurations,
maybe even recompile code to run
optimally on the local system.

- Extending the software product line
approach to IaC would allow us to
approach the development of
infrastructure code in a more systematic
and reusable way.

32 3 Technical Testability of outputs ...in physical simulation the results are
often quite complex and it is not feasible
to calculate them by hand. Even experts
are not able to say with precision if a
result is right or wrong, they are able
only to assess if the result is consistent
with the theory. In other words, there is a
continuous spectrum of results where
the limits between right and wrong are
fuzzy. In cognitive systems, the situation
can be even more challenging.

- -

33 4 Organizational Management
commitment

Establishing a continuous delivery
pipeline is a time consuming and costly
endeavor. Thus, first of all we would like
to emphasize that such a step can only
be made with the firm commitment of a
sponsor from the top management.
Furthermore, when major parts of the
pipeline are established, development is
initially – for a short period of time –
slowed down before the investment
starts to pay off. The commitment of the
top management is also crucial to
survive this phase.

- -

34 5 Organizational Lack of business
model

- - -

35 5 - Test automation - More investments in test automation and
CI build system

-

36 5 - Lack of practices Lack of common practices for continuous
deployment

- -

37 6 - Adjusting
stakeholders to
shorter feedback
cycle

How to ajust and align internal and
external stakeholders to shorter
development cycles

- -

38 6 - Inadequate level of
test automation

- - -

39 7 - Pre-defined
milestones in other
units

Some company functions still work
according to pre-defined milestones, and
those functions still support a six-month
release cycle

- -

120



40 7 - PC based
infrastructure

- ...current product architecture must be
updated from a PC platform to a
virtualized cloud computing platform.

-

41 8 - Perfomance- and
safety critical system
blocks continuous
deployment

- - -

42 10 Culture of
continuous
improvement

Too much
specialization

Module teams tend to require some level
of specialisation to develop software
modules for the lower layers of the
system stack, particularly closer to the
hardware. People working for a certain
module don’t know enough what’s
happening outside their modules. "I
would prefer that we would have only
cross-functional teams that will work in
end-to-end solution in the bigger picture.
… There’s too little interaction between
the different modules. Cross-functional
teams with more responsibility on the
end-to-end aspect of the feature for each
team would be a great benefit." (Senior
developer, Company B)

Development of new features in silos of
modules requires effective
communication and underscores the
importance of agile software
development in a large scale context and
CI practices as coordination
mechanisms both within the team and
across the team when building an end-
to-end product

-

43 11 Configuration
management of
test environments

Long acceptance
tests

A factory acceptance test takes several
months after start-up after the
completion of system development

- -

44 10
11

Configuration
management of
test environments

Limited view on
configuration

Companies have limited view of how
customer environments are configured.

- -

45 10
11

Configuration
management of
test environments

Difficulity to construct
test environments

For these companies, each customer
environment has its own configuration,
with several elements provided and
configured by other vendors. That
creates complexity and makes it difficult
for companies to repeatedly and reliably
construct test environments that are also
representative of a wide range of
possible customer configurations.

- -

46 9
10
11
12

Configuration
management of
test environments

Many faults in
acceptance testing
phase

Tend to discover many faults in the
system during customer acceptance
tests in the field. This is due to having a
variety of tests performed in a similarly
configured test environment.

- -

47 10 Configuration
management of
test environments

Lack of fully
automated
acceptance tests

Lack of fully automated acceptance test
coverage, requiring a lot of time to be
spent on manual acceptance and
regression testing.

- -

48 9
10
11
12

Deployment
process
automation

Deploying requires
numerous activities

In the embedded systems domain,
deploying new software functionality to
customer sites involves numerous
activities that also require gaining
consent from customers. In most cases,
the complex systems cannot be updated
easily because specific versions of
software need to be updated in multiple
places.

- -

49 11 Deployment
process
automation

Long lifecycle of
products and thus
support for multiple
versions

Embedded systems also have a long
lifecycle with large amounts of legacy
code that cannot be updated easily. Very
often, customers acquire new product
features for their existing systems, which
may have old software versions from
releases made several years earlier. The
long lifecycle of products requires
companies to ensure high compatibility
between new software features and the
existing software features at customer
sites. Ensuring system compatibility is a
challenging task.

- -

50 9
10
11
12

Deployment
process
automation

Customers do not
want to upgrade

...that customers do not like to upgrade
existing systems if they are working
correctly.

- -

51 11 Deployment
process
automation

Lack of technology to
automatically deploy
without downtime

...we observed a lack of technology to
automatically deploy new features
repeatedly and reliably without downtime
in complex and critical embedded
systems.

- -

52 9
10
11
12

Monitoring in the
production
environment

Not possible to
monitor customer
systems

It is impossible to monitor customer
systems, especially after product
launches, unless the customer sends
direct reports to the company. The four
companies in the study rarely had
access to monitored data from customer
systems, except during customer trial
tests or when doing fault diagnostics
during maintenance.

- -

53 13 Social Resistance to change One interviewee mentioned that the
company’s management downright
resisted changes to the current
development practices and was unwilling
to switch to continuous deployment.
Several other interviewees also said they
felt their organizational culture wasn’t
particularly receptive toward new ideas
and continuous deployment, which was
seen as a challenge.

- -

54 13 Social Customer preferences An interviewee from a telecom provider
mentioned that the company tried to
ramp up its release frequency from
quarterly releases but that the receiving
end wasn’t prepared to handle a shorter
release cycle. Eventually, dissuaded by
the experience, the company reverted to
its previous schedule.

- -
121



55 14 Domain constraint Compliance to
standards

The interviewee from company A pointed
out that the company emphasized
compliance to national or international
medical standards. The company
needed to ensure that changes had no
adverse side effects, guaranteeing
patient and user safety.

- -

56 15 Domain constraint No zero-downtime
deployment capability

The interviewee from company B, which
works on automation control systems,
reported that the company might have to
stop the whole process for a day or so or
run the control system updates during
weekends. Such a setting prohibits
instant deployment because each
update must be scheduled. Also, the
costs related to factory downtime can
make automation software providers
think twice before pushing a new release
to production systems.

- -

57 13 Domain constraint Diversity of clients Deploying software releases directly to
network devices is challenging because
network configurations might vary
among clients.

- -

58 13 Domain constraint Third party distribution
channels

The distribution channels that provide
software to customers might also slow
down deployment. When a software
development company doesn’t fully
control the distribution channel, a third
party is responsible—at least partly—for
making a product available.

- -

59 16 Domain constraint Third party quality
assurance

The interviewee from company L, which
develops mobile games, noted that its
company’s releases couldn’t be instant
because an application store took a
week to review the submissions and
publish the product.

- -

60 13 Developer trust
and confidence

Lack of automated
testing

According to the interviews, many
companies saw the need to improve
their automated testing; they viewed the
existence and volume of such testing as
paramount for continuous deployment.
The lack of automated testing was a
major barrier the companies faced on
their path to more continuous software
releases.

- -

61 13 Developer trust
and confidence

Automated user
interface tests

Some companies, especially those
working with the quirks of Web browsers
or mobile games, found automating user
interface tests particularly challenging.

- -

62 13 Developer trust
and confidence

Developer
responsibility

Also, developers’ reputations are on the
line: deploying a broken build to
customers could strain the relationship
between parties and create an unwanted
user experience. Any lack of confidence
in an application’s quality is amplified by
the knowledge that any and all changes
are immediately deployed.

- -

63 17 Developer trust
and confidence

Lack of resources The interviewee from company G, which
develops Web-based products, noted
that the company simply didn’t have the
time to update the existing setup to
better support continuous deployment. In
cases such as this, developing software
trumps infrastructure setup and
configuration.

- -

64 18 Legacy code
considerations

Legacy system
integrations

Although legacy code wasn’t the most
common barrier, the interviewee from
company I, which develops Web
products, mentioned that it was a
challenge for one project. The company
couldn’t employ fully continuous
deployment because of legacy system
integration.

- -

65 19 Duration, Size,
and Structure

Long test execution The interviewee from company J, which
develops Web frameworks, mentioned
that the full test suite took a good hour
and a half to finish. Under these
circumstances, instant releases are
harder to achieve because the release
process takes at least as long as test
execution, given that all the tests run
after the code changes are committed.

- -

66 13 Duration, Size,
and Structure

Long execution of
compile, build and
creating packages

The code base’s size also affects the
time to deploy software releases.
Company K, which works with a user
interface framework, had to compile,
build, and assemble deployable
packages out of 8 Gbytes of source
code. The interviewees from companies
A and F also identified the code base’s
size and complexity as challenges to
continuous deployment.

- -

67 20 Duration, Size,
and Structure

Dependencies to
other projects

One project he was working on had been
split to subprojects, each of which had to
be compiled and built separately before
a release could occur. In this project, the
interrelations between the subprojects
weren’t restricted to building.
Development tasks could have
dependencies from one subproject to
another, and parts of the project could
be at different development stages.

- -

122



68 20 Different
Development and
Production
Environments

Configuration
differences between
environments

Company F’s interviewee commented
that the company did extra checks
because the production system used a
different database than was used in
development. Also, the code could work
differently in the production system,
causing unforeseen defects.

- -

69 21 Manual and
Nonfunctional
Testing

Perfomance testing
requires lots of
hardware for
embedded software

For network infrastructure services, load
testing can be resource intensive and
requires plenty of hardware, as the
interviewee from company C, a large
telecom provider, noted.

- -

70 13 Manual and
Nonfunctional
Testing

Explorative testing ...besides the possible performance and
security tests, they performed a round of
manual or exploratory testing, trying out
the product on actual devices with or
without a test plan.

- -

71 16 Manual and
Nonfunctional
Testing

Acceptance testing
requires lots of
different devices

The interviewee from company L, which
develops games, stated that the
multitude of devices and fragmented
base of hardware partly stopped the
company from doing continuous
releases.

- -

72 19 Manual and
Nonfunctional
Testing

Automated
acceptance testing do
not catch all defects

Company E’s interviewee explained that
the company’s product had a public
application interface and was used on
various devices. Although the release
frequency was rapid with weekly
releases, the company had to alert a
third-party organization a day before the
release date. That organization then
tested the product on different devices
before release.The company couldn’t
skip this phase because exploratory
testing could reveal defects that
automated tests didn’t catch.

- -

73 22 - Sales and marketing
were not quite sure
when anything would
be released

So, since Sales and Marketing could not
rely on feature a, b and c coming out
with the next release in x weeks, they
asked the product owner. But the
product owner did not really know
exactly when the next feature was going
to come out. They would give vague and
unsatisfying answers to Sales and
Marketing when asked. As you can
imagine this was not great for their
relationships.

We eventually learned, that we need to
increase the level of transparency with
Sales and Marketing. We found it easier
to maintain a calendar communication
cadence with stakeholders. As a
company we have annual planning and
quarterly planning. Each product line has
a monthly council to gather stakeholder
feedback and to keep them current on
what is being being built and what is
coming next.

-

74 22 - Ignoring the test suite We were having problems deploying a
significant code change because our test
deployment kept failing in the pipeline.
We decided that it was because there
was bad data on the test system. This
was incorrect. The actual problem was
that our new code was incompatible with
the old data format. To get the tests to
pass we deleted all the historical test
data and the new code made it out to
production. Then everything stopped
working... the new code was not
compatible with the production data.

The lesson learned from this is that your
tests, gates and checks are there for a
reason. Always run them with old data
and never circumvent the process
without a clear understanding of what
you are doing. The ability to release
quickly does not mean you should rush
without full understanding.

-

75 22 - Added responsibility
to developers

The transition to a continuous delivery
model can make stakeholders
uncomfortable. The ability to push code
directly to production does come with
added responsibility - developers must
be diligent in writing tests and monitoring
the system.

- -

76 22 - Fear of
unemployment among
QA team

Members of our QA team were
particularly worried about not having
time to test code before it shipped. They
needed to switch to a mindset that trusts
the automatic tests to perform this task.
This naturally led to the fear that they
would be automated out of employment.

As mentioned earlier, before a story is
coded we execute a “test planning”
phase. This needs a professional QA
mindset. QA does not just appear blindly
at this stage. They will have spent hours
reading stories in the backlog,
performing research into the background
of the story and brain storming testing
angles.
 With the decreased load from test
automation some of our QA team have
adopted a TestOps role. TestOps
monitor our application with tools like
Splunk and Ganglia to discover changes
deep within the system. DevOps is a
commonly talked about role in our
community and we suspect that TestOps
will become a familiar role in engineering
teams of the future.

-

77 22 - Adding concurrency
to already
implemented GUI
testing suite was hard

At one time our GUI test suite took nine
hours to run. Since a passing test run is
a prerequisite for a production release
this mean the fastest we can ever
release is nine hours. When test runs
take this long people begin to ignore
them.

To resolve this one must break down the
suite, optimize long running tests and
parallelize. Our advice here, learnt from
pain, is to thread early and often. Adding
concurrency de facto is far more time-
consuming than working on it up front.

-

123



78 22 - Flaky tests If tests are nondeterministic people will
stop listening. Tests that pass or fail
based on race conditions or test
execution ordering are essentially
useless. We call these ”flaky” tests.
Flaky tests cannot be tolerated. We fell
foul of a set of flaky tests when making a
cross cutting change to improve
performance of our application. The GUI
tests were still slow at this time and
failed on an nine hour overnight run. We
ignored the failing GUI test run because
they regularly flaked out. After a day of
high stress fixing the defective
production systems we ran a “PER”
retrospective and realized that the GUI
tests were indicating this problem.

This lesson encouraged us to invest
heavily in our GUI test framework. Flaky
tests cannot be tolerated. We wrote a
flaky finder application that hammers
new test to see if they contain
determinism or concurrency bugs and,
more recently, we built Flowdock
integrations with bots that report build
health and can be queried for statistics
on the test suites.

-

79 22 - Business runs on
dates, not on
continuous flow

The business still runs on dates and
dollars. We set annual goals, quarterly
goals and target market events. But if
the delivery teams are running
continuous flow how do you reconcile
this?

The product team still maintains an
annual roadmap but the future is less
defined now. By this we mean, the
roadmap is detailed for the current
quarter, defined for the next and has
candidate initiatives for the rest of the
year.
We still have monthly product council
meetings where we discuss recently
released work, work in progress and
take input on the near-term roadmap. All
our planning and in progress work is
organized using Rally Software’s
product. We have built dashboards that
make it easy for stakeholders to check in
on progress and provide vision to what
features are coming soon. Using
historical data on team throughput we
can estimate with a reasonable accuracy
when a feature will be shipped.

-

80 23 Organizational Network configuration
and upgrade
complexity

The interviewees at company D all
mention the complexity of the network
and the many different configurations
that their customers have. A very
common challenge is when a customer
wants a new feature but has an old
version of the product to which this new
feature has to be configured. Similarly,
an upgrade of any kind is considered
stressful by customers, something that is
highlighted by the release manager: “it is
more difficult to guarantee minimal
network impact if the configuration of the
product is complex”. From the interviews
it is clear that customers still regard
upgrades and new features as a
challenge due to the risk of interfering
with legacy.

- In transitioning towards continuous
deployment the external action is to
develop a new engagement model with
lead customers to facilitate for
continuous deployment

81 23 Organizational Internal verification
loop is too long

Another barrier is the internal verification
loop which needs to be shortened and
automated in order to meet up with the
requirements that continuous
deployment raises. As mentioned by one
of the product line maintenance
managers, more automated tests are
needed in order to increase speed and
frequency of delivery.

In transitioning towards continuous
deployment the internal action is to
involve product management in the
short, agile cycle of product
development.

-

82 23 Organizational No information about
build quality status

Also, several interviewees highlight the
importance of improving the quality on
each build and to increase awareness on
what effect each build has on the overall
software package. In this, the teams
would benefit from knowing more about
the quality status of the development
projects, i.e. the current quality of
features, the number of errors etc. If
such knowledge could be better
established, teams could respond faster
and act more pro-actively towards
customers.

- -

83 24 - Lack of trust in quality As mentioned by one of the product line
maintenance managers in company D,
the development teams would benefit
from knowing more about the status of
the development projects, i.e. the current
quality of features, the number of errors
etc. If such knowledge could be better
established, teams could respond faster
and act more pro-actively towards
customers.

- Mechanisms to roll back unsuccessful
deployments, and to deploy components
of the system rather than the entire
system, are needed.

84 24 - Interface towards
customers

Also, the interface towards customers is
considered a barrier since adjustments
of business models are needed. In our
study, a number of interviewees mention
the difficulty in acting agile and promote
continuous deployment of functionality at
the same time as the business model
gives a conservative impression in
promoting fixed releases and fixed price
models assuming that requirements are
frozen upfront.

Lead customers need to be identified
with whom the R&D organization can
start building a continuous deployment
culture and capability. These lead
customers serve as role models to other
customers. The business model needs
to be reviewed so that there are
mechanisms that support continuous
deployment of functionality. All corporate
functions, such as for example the
release organization, need to be aligned
with the R&D organization in order to
facilitate continuous deployment.

-

124



85 25 - Resistance to release
experimental
functionality

Besides benefits, the barriers relate to
the resistance that might be the case for
releasing “experimental functionality” to
customers. In the companies, the
tradition of rigorous test and validation
processes is well anchored and the
culture is that all testing and validation
activities are to be performed before
functionality is released to any customer.

- Customers need to be involved in
providing early feedback on new
functionality. To collect, analyze and
capitalize on customer feedback is
important and the establishment of
mechanisms that allow for quick
response to customers is the major
initiative to undertake. Infrastructures
need to be established in order to
support run-time variation of functionality
that allow for innovation experiments
with customers. Also, a variety of data
collection mechanisms are necessary
which means an extension of current
architectures.

86 25 - Resistance to buy
experimental
functionality

Also, from a customer perspective, the
idea of having partially developed
functionality released with the intention
to “experiment” might be a challenging
task to pursue.

- Business models and pricing models
need to support short-cycle innovation
processes based on customer usage
data.

87 26 - Difficulties in
establishing efficient
rollback mechanisms

The challenge is to have efficient
rollback mechanisms to manage
potential problems with the deployment
of new software. Our respondents report
on a situation in which the only way to
rollback is to de-grade to the previous
system version.

- While this is common practice it is not
considered a sufficient mechanism when
moving to more frequent deployment of
software.

88 27 Technical Downtime is critical
for certain customers

According to the Dialog product owner,
downtime causes end-users being
unabale to perform their job. Downtime
can also interrupt ongoing customer
tasks, possibly losing critical data in the
progress.

Currently the deployment time for both
projects is negotiated with the customer
to prevent these cases, and the version
deployments are done when the system
can be closed for a short period of time.

-

89 27 Technical Automated testing
has to be built on top
of a matured software
product

The developers perceive automated
testing and test environments to be the
largest technical task. The developers
state that building a sufficient test
automation is a very laborious process
especially due to the maturity of the
software, and are concerned with the
maintainability of the test suite.

- -

90 27 Technical Prioritizing of
automated tests to be
implemented for
matured software
product is not clear

The management is not sure what to test
with automatic acceptance testing to
validate a version.

- -

91 27 Technical Software is often
integrated to multiple
third party
applications

Both of the case company’s software
products are integrated to various third
party applications and APIs. Changes to
the interfaces communicating with these
applications must be planned and
discussed in advance. Based on the
interview results, automatically updating
the integrations requires an unduly
amount of work considering the results.

- -

92 27 Technical Software is often
accompanied by
multiple external
components

It is also common for B2B applications to
have external components that have to
be configured when the software is
installed or the APIs to these
components changed. The
configurations for these external
components either have to be manually
updated, or automated as well.

- -

93 27 Technical There exists multiple
different
configurations due to
having multiple
customers with
different specifications

One of the main differences between
B2B and B2C domains is the production
environment. Both of the case
company’s products are used in multiple
different customer environments. This
introduces a problem of managing
different configurations per customer
environment and software instance.

- -

94 27 Technical Transferring the
software product to
diverse customer-
owned environments
requires different
deployment
configurations

One of the main differences between
B2B and B2C domains is the production
environment. Both of the case
company’s products are used in multiple
different customer environments. This
introduces a problem of managing
different configurations per customer
environment and software instance.

- -

95 27 Procedural User acceptance
testing environment is
a requisite for
production release

The basic deployment pipeline in the
case company first includes a deploy to
a user acceptance testing server, which
is then tested manually by either the
team or the customer. Only after the
version has been acceptance tested and
validated to work properly, can the
production version be released.
Continuous deployment to production is
seen very risky due to the applications
playing a major role in running the
customers business.

- -

125



96 27 Procedural The development
process drifts towards
small feature
branches from long-
lived feature branches

Both of the case company’s products are
developed with a branching model,
where feature branches are first
thoroughly developed and then
integrated to the master branch. With
continuous delivery the long-lived feature
branches should be changed to short-
lived and relatively small feature
branches to allow exposing new
functionality faster to the customers, and
receive feedback faster. While the small
feature branches might be common for
companies with a relatively new software
products, companies that have been
developing products for a long time
might be more devoted to the practice of
long-lived feature branches.

- -

97 27 Procedural Triggering the
compilation and
deployment of a
modular project to
maintain integrity is
hard

The software applications in B2B often
are large and modular applications, as is
the case in the case company. The point
when a deployment is triggered has to
be designed to maintain the integrity of
the application. As the deployment
process is currently manually triggered
by first releasing a version, a suitable
time can be chosen each time. When a
production deployment is triggered in
continuous delivery, each module has to
be in the correct state in order to
produce a coherent version.

- -

98 27 Procedural The software has to
be deployed to
multiple customers

Both of the case company’s products are
used by multiple customers, each having
their own environments. As the
deployments are currently done
manually, the customers receiving each
deployment can be manually chosen.
However, with a continuous delivery
process whenever a feature or a new
release is ready to be delivered, it can
either be deployed to a single customer
or to every customer.

- -

99 27 Procedural Versioning is affected
by having different
customer profiles of
the product

Multiple customer environments affects
versioning of the software product. In the
case company, each customer has a
unique configuration of the product, with
possibly different versions of certain
components. According to Jan Bosch, in
an Innovation Experiment System
environment only a single version exists:
the currently deployed one. Other
versions are retired and play no role [3].
However, with multiple environments,
multiple different versions of the software
are necessary at least in the early
phase.

- -

100 27 Procedural Responsibility of
deploying moves
towards developers

Continuous delivery also drifts response
towards the developer, and the
developers decide what is ready to be
released. Currently in the case company
the product owners and team leaders
are responsible for negotiating the
deployment date with the customer, and
they also inform the developers that a
new version is required. If the developer
can single-handedly deploy a feature,
the management can quickly lose track
on the features available to customers.
This also requires the developers to
deeply understand the details of the
version control system and automated
testing.

- -

101 27 Procedural Management and
sales loses track of
versions

Due to increased developer
responsibility and varying interval of
version updates continuous delivery
causes, a team leader expresses
concern that the delivery process
complicates tracking when deployments
are performed, and when features are
finished. This also concerns other parties
working in the cus- tomer interface, such
as sales.

- -

102 27 Customer Some customers are
reluctant towards new
versions

Some customers of the case company
are reluctant towards new releases. One
of the reasons for this reluctancy is that
new releases occasionally contain new
bugs.

- -

103 27 Customer Customers are trained
to use a certain
version, and
modifications confuse
the users

In the case company, customers have
been trained to perform certain tasks
with a certain user interface. The
customer might perform these tasks
daily, once every two weeks or even less
frequently. If the UI changes often, the
customers feel lost and initially take
more time to perform the tasks. This
causes frustration in the users, and
visible changes generally increases the
reluctancy customers have towards new
versions, unless the changes are
significantly improving the user
experience.

“The user interface should be easy to
use. Now it’s relatively hard to learn. If
customers have just learned to perform a
task, and we change the UI, the
feedback is terrible.” -Product Owner

-

126



104 27 Customer Changelogs are
especially important,
since as versions are
released faster the
cus- tomers become
less aware on what
has changed

Listing the changed features in
changelog entries is especially important
when releases are made more often.
While the changes become smaller the
faster versions are released, customers
become less aware of when the version
will be updated and when features have
changed. Currently the version
deployments are negotiated with the
customers, and when the deployments
are made more often, discussions
regarding version releases may be
reduced or even ceased.

- -

105 27 Customer Pilot customer is
required for
developing the
continuous delivery
process

A way to identify the best practices in
continuous delivery is to develop the
continuous delivery process with a pilot
customer. Pilot customer is a company
willing to help the company to quickly
learn what works and what needs to be
improved. The interviewees expressed a
desire to first test the continuous delivery
process with a single customer that is
willing to receive updates in a continuous
manner, since the engagement model
inevitably differs from the current model.

- -

106 27 Customer Acceptance testing is
performed by both the
company and the
customers, and
requires a lot of
resources from the
customers

The acceptance testing is performed in
varying ways. Some customers require
to perform manual acceptance testing
before the product can be deployed into
production. Other customers trust the
developers to perform the acceptance
testing. The technical implementation
therefore should make it possible to con-
tinuously deploy versions to the user
acceptance testing environment, and by
the push of a button to the production
environment. However, if the versions
are deployed to user acceptance testing
environment very often, customers might
feel encumbered by the amount of
required testing.

- -

107 27 Customer Production
deployment schedule
has to be negotiated
with the customer

The customers also have to be informed
whenever a new version is available to
the user acceptance testing
environment.

- -

108 27 Customer Ongoing critical tasks
by users cannot be
interrupted by
downtime

Customers might be using the software
when a new version is deployed, and the
deployment process shouldn’t interfere
with ongoing usage.

- -

109 28 Technological
Enablers

Monolithic
architecture

The architecture of the system is closely
coupled with how the system is
developed, tested, and deployed for use.
A monolithic architecture can be a
bottleneck to rapid continuous build, test,
and deployment. Transforming the
architecture or improving the capability
of the continuous deployment system is
needed to overcome this impediment.

It was mentioned during the interviews
that a more modularized architecture
allows for upgrading smaller parts of the
system independently and, for example,
shorter wait times for build, test, and
deployment results. As the interviews
suggest, overcoming this impediment
can be particularly challenging if the
value of such technical change is not
evident. Without clear value in
architectural improvements, these are
easily postponed, for example, in favor
of work on new software features.

-

110 28 Technological
Enablers

Development and
testing environments
do not reflect
production
environments

Some interviewees perceived
differences between development,
testing, and production environments as
a possible impediment. Difficulty to
simulate production environments in
testing environments create a risk that
software is not properly validated before
it is deployed to production. Differences
between development, testing, and
production environments can be
problematic not only for continuous
delivery and deployment, but also for
sharing responsibilities.

- -

111 28 Technological
Enablers

Multiple production
environments

Based on the perception of some of the
interviewed people, multiple production
environments and differences between
them could be a possible impediment for
continuous delivery. Different needs of
environments cause complexity.
Automating and having common tools
and processes becomes challenging.
Even different access rights can cause
issues. The main perceived difficulties
that multiple production environments
cause are related to deployments and
configurations.

-

112 28 Technological
Enablers

Multiple production
environments

Even different access rights can cause
issues.

In the interviews, it was for example
stated that when fixing production
problems, it is essential to have free
enough access.

113 11 Culture of
continuous
improvement

Propagation of rapid
changes across
company

As embedded systems are very
complex, there is oftentimes no
mechanism to propagate rapid changes
made by one team to other teams across
the company on a continuous basis.

To enable fast feedback loops, systems
development needs to encompass new
ways of working whereby teams bear the
responsibility for accepting a continuous
flow of rapid changes and also
propagating their changes rapidly to
other teams.

-

127


	Introduction
	Motivation
	Research Questions
	Thesis Structure

	Continuous Delivery
	Origins of Continuous Delivery
	Terminology
	Benefits and Practices
	Challenges

	Research Method
	Research Approach
	Research Scope
	Search Strategy
	Selection Criteria
	Search Process
	Quality Criteria
	Data Extraction
	Synthesis Strategy

	Results
	Data Overview
	Perceived Challenges

	Challenge Analysis
	Common Challenges
	Reasons Behind Challenges
	Domain Analysis
	Proposed Research Areas

	Discussion
	Related Work
	Data Collection
	Quality of Primary Studies
	Thematic Synthesis
	Perceived Challenges
	Challenge Reasons

	Conclusion
	Contribution
	Future Research

	References
	List of Primary Studies
	Challenges
	Search Screens
	Findings (Raw Challenges / Form III)

