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Abstract

Background

Observational epidemiological studies have shown that high body mass index (BMI) is

associated with a reduced risk of breast cancer in premenopausal women but an increased

risk in postmenopausal women. It is unclear whether this association is mediated through

shared genetic or environmental factors.

Methods

We applied Mendelian randomization to evaluate the association between BMI and risk of

breast cancer occurrence using data from two large breast cancer consortia. We created a

weighted BMI genetic score comprising 84 BMI-associated genetic variants to predicted

BMI. We evaluated genetically predicted BMI in association with breast cancer risk using

individual-level data from the Breast Cancer Association Consortium (BCAC) (cases =

46,325, controls = 42,482). We further evaluated the association between genetically pre-

dicted BMI and breast cancer risk using summary statistics from 16,003 cases and 41,335

controls from the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer

(DRIVE) Project. Because most studies measured BMI after cancer diagnosis, we could not

conduct a parallel analysis to adequately evaluate the association of measured BMI with

breast cancer risk prospectively.

Results

In the BCAC data, genetically predicted BMI was found to be inversely associated with

breast cancer risk (odds ratio [OR] = 0.65 per 5 kg/m2 increase, 95% confidence interval
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[CI]: 0.56–0.75, p = 3.32 × 10−10). The associations were similar for both premenopausal

(OR = 0.44, 95% CI:0.31–0.62, p = 9.91 × 10−8) and postmenopausal breast cancer

(OR = 0.57, 95%CI: 0.46–0.71, p = 1.88 × 10−8). This association was replicated in the

data from the DRIVE consortium (OR = 0.72, 95%CI: 0.60–0.84, p = 1.64 × 10−7). Sin-

gle marker analyses identified 17 of the 84 BMI-associated single nucleotide polymor-

phisms (SNPs) in association with breast cancer risk at p < 0.05; for 16 of them, the allele

associated with elevated BMI was associated with reduced breast cancer risk.

Conclusions

BMI predicted by genome-wide association studies (GWAS)-identified variants is inversely

associated with the risk of both pre- and postmenopausal breast cancer. The reduced risk

of postmenopausal breast cancer associated with genetically predicted BMI observed in

this study differs from the positive association reported from studies using measured adult

BMI. Understanding the reasons for this discrepancy may reveal insights into the complex

relationship of genetic determinants of body weight in the etiology of breast cancer.

Author Summary

WhyWas This Study Done?

• Body mass index (BMI) has been linked to breast cancer risk in conventional population
studies.

• In these studies, high BMI is associated with reduced risk of breast cancer in premeno-
pausal women but with increased risk in postmenopausal women. These changed risks
may be caused by BMI or caused by environmental factors that are associated with BMI.

• We sought to use a research tool from the genetics field to understand BMI’s causal role
in breast cancer.

What Did the Researchers Do and Find?

• We took advantage of previously identified genetic sequence variations that are associ-
ated with BMI in European populations and used these variants to predict BMI. These
variants are set at birth and are not affected by environmental factors; thus, outcomes
associated with high BMI as predicted by genetic variants are more likely to be caused by
high BMI itself rather than by environmental factors that are associated with high BMI.

• Using databases containing individual genetic sequences and breast cancer diagnoses in
a European population, we tested whether genetically predicted BMI was associated with
diagnosis of breast cancer in either pre- or postmenopausal women.

• We found that genetically predicted high BMI was associated with decreased breast
cancer risk, in both cancer databases. Unexpectedly, this was true for both pre- and
postmenopausal women.
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What Do These Findings Mean?

• Our results from postmenopausal women contradict prior findings from population
studies, which used measured, rather than genetically predicted, BMI.

• BMI predicted using genetic variants identified to date may be more closely related to
body weight in early life or midlife, which is negatively associated with risk of breast can-
cer. Measured high BMI later in life may be influenced by environmental factors that are
associated with increased risk of breast cancer.

• More research is needed on the interrelationship of genetic factors, environment, and
BMI in the risk of breast cancer.

Introduction
The association between body mass index (BMI) and breast cancer risk has been extensively
investigated in observational epidemiologic studies. Most prospective cohort studies reported
an inverse association between BMI and premenopausal breast cancer risk [1–7]. A modest
positive association has been reported between BMI and postmenopausal breast cancer risk
[1,3,8], and this association was primarily limited to women who did not use postmenopausal
hormone therapy (HT) [2,9,10] or women diagnosed with estrogen receptor (ER)-positive
breast cancer [10].

Several explanations have been proposed for the opposite direction of the association
between BMI and breast cancer risk by menopausal status. For example, it is postulated that
overweight and obese women are more likely to experience anovulatory menstrual cycles,
potentially leading to lower exposure to ovarian hormones and thus reducing the risk of breast
cancer in premenopausal women [11,12]. Among postmenopausal women, the primary source
of estrogen is the conversion of androgens in adipose tissue. Overweight women have been
found to have higher estrogen levels than normal weight women, providing a possible explana-
tion for positive associations observed between BMI and breast cancer risk in postmenopausal
women. Although these postulated explanations are biologically plausible for the different
associations observed between measured BMI and breast cancer risk in pre-and postmeno-
pausal women, it remains unclear whether BMI is causally associated with breast cancer risk or
serves as a surrogate measure for other risk factors. These uncertainties should be clearly com-
municated in public health messages about breast cancer prevention.

Recent genome-wide association studies (GWAS) have identified multiple loci associated
with BMI. A genetic score, comprising BMI-associated single nucleotide polymorphisms
(SNPs) capturing the portion of BMI determined by genetic factors, can be used in Mendelian
randomization (MR) as the instrumental variable to evaluate the association between BMI and
breast cancer risk by eliminating concerns of reverse causation and reducing the likelihood of
selection bias and confounding in conventional epidemiologic studies. This is because the
alleles associated with BMI should be randomly assigned to offspring from parents during
gamete formation. In this study, data from two large consortia were used to conduct a MR
analysis to assess the association between BMI and breast cancer risk.

BMI and Breast Cancer Risk: Mendelian Randomization Analyses of Data fromWomen of European Descent

PLOSMedicine | DOI:10.1371/journal.pmed.1002105 August 23, 2016 5 / 18



Methods

Study Population: BCAC and DRIVE Consortia
We obtained data from two large consortia, the Breast Cancer Association Consortium (BCAC)
and the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Project.
All participating studies obtained written, informed consent from all subjects and received
study protocol approval from their respective Institutional Review Boards. Our first analysis
included 39 studies contributing participants of European ancestry to the BCAC Collaborative
Oncological Gene Environment Study (COGS) project (S1 Table). This analysis included data
from 46,235 breast cancer cases and 42,482 controls. Selected characteristics of BCAC partici-
pants by study are provided in S2 Table. Details of the genotyping protocol in the BCAC are
described elsewhere [13] (http://ccge.medschl.cam.ac.uk/research/consortia/icogs/). Genotype
data were obtained either by direct genotyping using a custom Illumina iSelect genotyping array
(iCOGS) that contains 211,155 SNPs [13] or by imputation, using data from the iCOGS array
and the 1000 Genomes Project Phase I integrated variant set (March 2012 release) as the refer-
ence using the program IMPUTE2 [14]. Population-specific variations in allele frequencies of
the SNPs were accounted for by eight principal components using a set of 37,000 uncorrelated
SNPs, including those selected as ancestry-informative markers, as previously described [13].

To further assess the association between genetically predicted BMI and breast cancer risk,
we analyzed data from the DRIVE project, for which summary-level statistics from 16,003
breast cancer cases and 41,335 controls of European ancestry from 11 participating studies
were available (S3 Table). DRIVE project genotyping data were generated by Illumina and
Affymetrix SNP genotyping arrays or by genotype imputation with the HapMap phase 2 CEU
panel as reference using MACH v1.0 [15] or IMPUTE [14].

Selection of BMI-Associated SNPs
SNPs associated with variation in BMI were identified from the NHGRI-EBI Catalog of Pub-
lished Genome-Wide Association Studies in August 2015 [16]. Furthermore, we included all
BMI-associated SNPs from the latest finding of Genetic Investigation of Anthropometric Traits
(GIANT) [17]. SNPs associated with BMI at genome-wide significance levels (p< 5 × 10−8) in
populations of European ancestry were selected for this study. We selected independent SNPs,
defined as r2< 0.1 based on International HapMap Project phase 3 data. For any two SNPs
with an r2� 0.1, the SNP with the lower p-value for association with BMI was selected. In total,
84 SNPs were selected for analysis. In BCAC data, 50 of the 84 SNPs were successfully geno-
typed, and the remaining 34 SNPs were imputed with high quality (imputation r2> 0.8).

Statistical Analysis
Genetic scores for BMI (BMI-GS) used for MR were computed using previously described
methods [18–22]. The GS used in our primary analysis was constructed using external weights,

and calculated using the following formula: GS ¼
X84

i¼1
biSNPi, where βi is the effect of the ith

SNP for BMI reported in previous studies [17] and SNPi is the dosage of the effect allele (range:
0 to 2) of the ith SNP. To scale the GS to the unit of BMI, we first performed a linear regression
among controls, observed BMI ~ GS + error, where the expectation of error is zero. From this
regression we obtained β0 (slope = 18.99) and β1 (effect = 0.451). Then, we used the values of β0
and β1 to compute BMI-GS using the formula, BMI-GS = β0 + β1 � GS. The BMI-GS is a linear
transformation of GS, and thus, these two variables were perfectly correlated (r = 1.0).

Pooled analyses and meta-analysis were conducted to evaluate the association of BMI-GS
with breast cancer risk. In pooled analysis, subjects from all BCAC studies were analyzed with
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adjustment for the BCAC study sites. In meta-analysis, we estimated the risk of breast cancer
associated with BMI-GS in each of the BCAC studies, and then combined the results using a
fixed effects model. Sensitivity analyses were performed using an unweighted BMI-GS to evalu-
ate the robustness of the association (S4 Table). The percentage of BMI variation explained by
BMI-GS was calculated using linear regression models. We performed Egger regression [23]
analysis to detect possible pleiotropic effects of the instrumental variable used in our analyses.

Logistic regression was used to calculate adjusted odds ratios for the association between
BMI-GS (continuously and categorically: 25.5–25.9, 26.0–26.5, and�26.5 kg/m2), versus
<25.5. Traditional World Health Organization BMI cutoffs were not used because of the nar-
row range of the BMI predicted by BMI-GSs (range: 24.14–28.53).

We performed stratified analyses by factors that could potentially modify the association,
including age, menopausal status, and postmenopausal HT. We assessed heterogeneity by hor-
mone receptor status. Potential confounders included in logistic regression models were BCAC
study site, age, and the eight principal components as described previously [13]. In some analy-
ses, we also adjusted for known and suspected breast cancer risk factors, including age at men-
arche, HT use, and smoking. We used the two-sample method [24] to analyze the association
of BMI-GS and breast cancer risk using the summary statistics data obtained from the DRIVE
project (available on the Genetic Associations and Mechanisms in Oncology [GAME-ON]
website: http://gameon.dfci.harvard.edu). The potential causal association between BMI (X)
and breast cancer risk (Y) was modeled using BMI-associated SNPs as the instrumental vari-
able [25]. Specifically, the causal effect (βYX) was calculated by using the Wald estimator:

bYX ¼ bYG
bXG

, where βYG is the natural log-scale odds ratio (OR) for breast cancer risk associated

with the instrumental variable; βXG is the regression coefficient of the instrumental variable for
BMI obtained from previous GWAS [17]. The standard error for the causal effect was com-

puted using the delta method [26]: SEYX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SYG
bXG

� �2

þ ðSXGbYGÞ2
bXG4

� �s
; SYG and SXG are the corre-

sponding standard errors. We used an inverse-variance weighted method [27] to evaluate the
combined association of the 84 BMI-associated SNPs with breast cancer risk.

To evaluate the associations between individual SNPs and breast cancer risk, summary esti-
mates from the BCAC and DRIVE datasets were combined using the inverse-variance
weighted method [28]. Analyses were performed using PLINK (v 1.07), R (v 3.02), and SAS (v
9.3). A two-sided p-value< 0.05 was considered statistically significant unless stated otherwise.

Results
In pooled analyses including BCAC controls, the point estimates for the associations between
all 84 SNPs and BMI were in the same direction as reported in the literature. However, only 39
of the 84 SNPs showed associations with BMI at p� 0.05, likely because of small sample size
(S5 Table).

As expected, we observed a positive association between BMI-GS and observed BMI in
pooled analyses using data from controls (p< 0.001 for premenopausal women, p< 0.001for
postmenopausal women, and p< 0.001for all controls combined) (Table 1). Using data from
cases and controls combined, we showed associations of BMI-GS with age at menarche
(p< 0.001), postmenopausal HT use (p = 0.004), smoking (p< 0.001), and weight (p < 0.001).
Results were unchanged after adjusting for observed BMI (S6 Table).

In pooled analyses of BCAC data, an inverse association was observed between breast cancer
risk and genetically predicted BMI (Table 2). The OR per 5 kg/m2 increase in BMI using meta-
analyses was 0.65 (95% CI: 0.56–0.75, p< 3.32×10−10), which was similar to that derived from
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the pooled analyses, OR = 0.68 (95% CI: 0.58–0.81, p< 2.50 × 10−5). There was no apparent
evidence for heterogeneity in the OR among BCAC studies (heterogeneity p = 0.06) (Fig 1).
MR-Egger regression testing on funnel plot asymmetry yielded p = 0.44, suggesting no viola-
tion of the basic assumptions for MR (S1 Fig). In pooled analysis, adjusting for observed BMI
did not change the results (OR = 0.57, 95% CI: 0.45–0.70, p = 8.17×10−9). As a part of the sen-
sitivity analysis, we also performed pooled analysis adjusting for breast cancer risk factors as
covariables. As expected, adjustment of these variables slightly attenuated the association.
However, the association remained highly statistically significant (Fig 2). The OR for the asso-
ciation between genetically predicted BMI and breast cancer risk was similar for pre- and
postmenopausal women (heterogeneity test, p = 0.45), and in postmenopausal women, it was
similar for women with and without use of HT (heterogeneity test, p = 0.42). There was some
evidence for a stronger association for ER-positive tumors than ER-negative tumors (heteroge-
neity test, ER p = 0.03). Associations were similar in population-based studies (OR = 0.52, 95%
CI: 0.38–0.70, p = 1.84×10−6) and non-population-based studies (OR = 0.71, 95% CI: 0.54–
0.92, p = 0.007). Analyses using categorical variables of genetically predicted BMI showed
inverse results similar to analyses treating predicted BMI as a continuous variable. We also
stratified subjects by age (<50 y, 50–55 y, 55–65 y,>65 y) and found an inverse association

Table 1. Associations of the weighted BMI-GSs with BMI and traditional breast cancer risk factors.

Outcome Number of Participants Summary Effect* Standard Error P-value

BMI (kg/m2)†

Controls 22,056 0.451 0.0286 1.55 × 10−55

Premenopausal controls 5,532 0.456 0.0565 9.38 × 10−16

Postmenopausal controls 15,025 0.449 0.0345 4.96 × 10−38

Traditional Risk Factors**

Age (years) 88,807 0.0012 0.0034 0.71

Age at menarche (years) 53,990 −0.0719 0.0061 4.06 × 10−32

Menopausal status (post versus pre) 61,686 0.0044 0.0082 0.59

Age at menopause (years) 26,921 0.0359 0.0322 0.26

Family history of breast cancer (yes versus no) 47,417 −0.0102 0.0111 0.36

Parous (yes versus no) 62,683 0.0118 0.0103 0.25

Parity (numbers) 61,837 0.0049 0.0049 0.32

Age at first live birth (years) 44,735 −0.0563 0.0206 0.006

Use of HRT (postmenopausal) (ever versus never) 22,400 −0.0367 0.0128 0.004

Breastfeeding (ever versus never) 43,321 0.0125 0.0095 0.19

Smoking (ever versus never) 39,562 0.0305 0.009 0.0007

Weight (control) (kg) 15,410 1.3769 0.0971 2.35 × 10−45

Height (cm) 50,706 0.0336 0.0255 0.19

HRT, hormone replacement therapy. The results stratified by menopausal status for significant risk factors are as follows: formatted as (summary effect,

standard error, and p-value); age at menarche: premenopausal (−0.0802, 0.0106, 6.63 × 10−14) and postmenopausal (−0.0099, 0.001, 5.75 × 10−23); age at

first birth: premenopausal (−0.0634, 0.0392, 0.11) and postmenopausal (−0.0431, 0.0246, 0.08); smoking: premenopausal (0.0382, 0.0168, 0.02) and

postmenopausal (0.0285, 0.0109, 0.009); and weight: premenopausal (1.4767, 0.2133, 5.31 × 10−12) and postmenopausal: (1.3893, 0.1175, 5.24 × 10−32).

* The regression coefficient is presented for continuous variables and natural log-scale OR for dichotomous variables, per unit increase of the weighted

BMI-GS.
† There was no heterogeneity in the association of the weighted BMI-GS with observed BMI among cases and controls.

** The linear regression models fitting weight included only controls; models of all other traditional breast cancer risk factors included all subjects. The total

number of subjects is 88,807 (cases + controls) in our dataset. A total of 22,056 controls have observed BMI. The premenopausal controls and the

postmenopausal controls do not add up to the total number of controls because of missing menopausal status.

doi:10.1371/journal.pmed.1002105.t001
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between genetically predicted BMI and breast cancer risk for all age groups� 65 y (S7 Table).
No association between predicted BMI and breast cancer was observed in the age group> 65
(OR = 0.85, 95% CI: 0.62–1.15, p = 0.29). The BMI predicted using unweighted GS was also
associated with reduced breast cancer risk (Fig 2). The effect sizes were similar, but somewhat
weaker for unweighted analyses. The BMI-GS explained 1.23% of variation in BMI in the
BCAC control group. Analyses of summary statistics from the DRIVE project replicated the
inverse association between genetically predicted BMI and breast cancer risk, OR = 0.72 (95%
CI: 0.60–0.84, p = 1.64×10−7) (S8 Table). The strength of the association observed was similar
to that observed in the BCAC dataset.

In pooled analysis of the BCAC data, 15 of the 84 SNPs analyzed in the study showed an
inverse association with breast cancer risk, and one showed positive association with breast
cancer risk at p< 0.05 (S9 and S10 Tables). In the DRIVE dataset, 12 of the 84 SNP were signif-
icantly inversely associated with breast cancer risk, including 9 SNPs that were also significant
in the BCAC data (S8 and S10 Tables). When the datasets were combined, 17 SNPs showed an
association with breast cancer risk at p< 0.05, and 16 of them showed an inverse association
(Table 3 and S10 Table). Five of the associations remained statistically significant after adjust-
ing for multiple comparisons (p< 0.0006 for 84 comparisons).

Using data from BCAC, we conducted pooled analyses to evaluate the association of
observed BMI with breast cancer risk by study design. Data from prospective cohort studies
showed a positive association between observed BMI and breast cancer risk among postmeno-
pausal women, while an inverse association was seen among premenopausal women (S11
Table). Data from nonprospective studies, however, showed an inverse association for both

Table 2. Associations between genetically predicted BMI and breast cancer risk.

By BMI Group* Per 5 kg/m2 Increase †

Subjects 25.5–25.9 26.0–26.5 �26.5

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) P-value

All Women Combined

All subjects 88,807 0.95 (0.87–1.02) 0.90 (0.82–0.98) 0.84 (0.71–0.97) 0.65 (0.56–0.75) 3.32 × 10−10

By Menopausal Status

Premenopausal 19,262 0.96 (0.88–1.05) 0.91 (0.83–1.00) 0.78 (0.67–0.9.0) 0.44 (0.31–0.62) 9.91 × 10−8

Postmenopausal 42,424 0.96 (0.9–1.01) 0.91 (0.85–0.96) 0.88 (0.81–0.96) 0.57 (0.46–0.71) 1.88 × 10−8

Never HRT use 11,433 0.98 (0.87–1.09) 0.92 (0.80–1.03) 0.89 (0.75–1.04) 0.60 (0.38–0.90) 0.0097

Ever HRT use 10,967 0.93 (0.82–1.04) 0.86 (0.74–0.97) 0.84 (0.69–0.99) 0.47 (0.29–0.73) 0.0002

By ER Status

ER-positive 69,556 0.98 (0.93–1.02) 0.93 (0.89–0.98) 0.90 (0.84–0.96) 0.68 (0.57–0.81) 2.74 × 10−6

ER-negative 49,770 1.01 (0.87–1.15) 0.95 (0.88–1.02) 0.91 (0.83–0.98) 0.45 (0.33–0.59) 3.41 × 10−10

By PR Status

PR-positive 62,231 0.98 (0.93–1.02) 0.93 (0.87–0.98) 0.89 (0.82–0.95) 0.65 (0.53–0.78) 9.52 × 10−7

PR-negative 52,208 1.13 (1.01–1.25) 0.92 (0.86–0.98) 0.90(0.84–0.97) 0.47 (0.36–0.60) 2.84 × 10−11

By ER/PR Status

ER/PR-positive 61,430 0.97 (0.92–1.02) 0.93 (0.87–0.98) 0.89 (0.82–0.95) 0.66 (0.55–0.8) 5.46 × 10−6

ER/PR-negative 28,855 0.93 (0.85–1.01) 0.90 (0.82–0.98) 0.80 (0.69–0.90) 0.42 (0.3–0.58) 7.19 × 10−10

ER, estrogen receptor; PR, progesterone receptor. Models were adjusted for age, first eight principal components, study sites, age at menarche, parity, use

of contraceptive, use of hormone replacement therapy, breast feeding, and smoking status.

* BMI <25 is used as reference.
† Results are presented for per 5 kg/m2 increase.

doi:10.1371/journal.pmed.1002105.t002
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pre- and postmenopausal women. Additional adjustment for BMI-GS did not alter the associa-
tion between observed BMI and breast cancer risk.

Discussion
Utilizing data from two large consortia, we found in this large MR study a consistent inverse
association between BMI predicted by GWAS-identified genetic variants and premenopausal
breast cancer risk in all subgroups examined, which is qualitatively consistent with the majority
of published epidemiologic studies using measured BMI, although our predicted association, a
46% reduction in risk per 5 kg/m2 increase in BMI, is larger than that estimated in observa-
tional studies using measured BMI [1,3,5,8,29]. Prominent hypotheses regarding the underly-
ing cause of the association between higher BMI and decreased premenopausal breast cancer

Fig 1. Meta-analysis of the association between genetically predicted BMI and breast cancer risk in the
BCAC. The summary OR was calculated by combining individual analysis results from each study in BCAC (p for
heterogeneity = 0.06).

doi:10.1371/journal.pmed.1002105.g001
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risk implicate more frequent anovulation, lower endogenous estrogen levels, and fewer breast
cell divisions in obese women as compared to leaner women.

Our MR analyses demonstrate an inverse association between genetically predicted BMI
and postmenopausal breast cancer risk, with a predicted effect similar to that seen in premeno-
pausal women. In contrast, previous large observational studies indicate a 5%–15% increased
risk for postmenopausal breast cancer per 5 kg/m2 increase in BMI [1,8]. In our analysis of pro-
spective cohort studies included in BCAC, we observed a similar increase in breast cancer risk
associated with observed BMI among postmenopausal women. However, this positive associa-
tion was not found in the analysis of data from case-control studies included in BCAC, perhaps
due to reverse causation. Because disease diagnosis and progress could change body weight,
BMI measured after cancer diagnosis, which is done in most case-control studies, does not
reflect usual or long-term BMI, and case-control studies are biased in evaluating the association
of BMI and cancer risk. Because no BMI data from cases were used in our MR analyses, we
have effectively overcome the possible influence of reverse causation in our study results from
MR analyses.

The finding for an inverse association between BMI predicted using GWAS-identified SNPs
and postmenopausal breast cancer risk differs from findings reported previously in studies
using measured BMI, revealing a complex relationship of genetic determinants of BMI, weight
gain, and breast cancer risk. A recent study found that a BMI-GS composed of 31 GWAS-iden-
tified SNPs (the majority of which are included in our study) was positively associated with
annual weight gain between age 20 y and the time of the study baseline interview when partici-
pants were middle-aged [30]. On the other hand, this GS was related to a reduced weight in
later adulthood. These results suggest that the genetic portion of BMI, as measured using the
BMI-GS in our study, may reflect an early-life BMI.

Several studies found that early-life BMI was inversely associated with breast cancer risk,
and this inverse association is consistent in premenopausal [31,32] and postmenopausal

Fig 2. Sensitivity analyses using pooled data for associations between genetically predicted BMI and breast cancer risk in the
BCAC. (A) Adjusted for age, study sites, and the first eight principal components. (b) Adjusted for age, study sites, the first eight principal
components, and additional breast cancer risk factors: age at menarche, parity, use of contraceptive, use of hormone replacement
therapy, breast feeding, and smoking status. Weighted: the BMI-GS was constructed using the additive model weighted by external beta
reported from previous literatures. Unweighted: the BMI-GS was constructed using the additive model without any weight.

doi:10.1371/journal.pmed.1002105.g002
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[31,33] women. It is possible that weight gain during later adulthood, not adult BMI per se, is
related to increased postmenopausal breast cancer risk among overweight women as deter-
mined using measured BMI. However, we were unable to directly evaluate this hypothesis in
our study because adult weight change was not consistently measured in the BCAC contribut-
ing studies. Furthermore, the SNPs used to construct the BMI-GS were identified from genetic
association studies that included mostly middle-aged adults, and thus, they may not be able to
measure weight gain in later adulthood adequately.

After menopause, the primary source of estrogen is formed in adipose tissue, [11,34] caus-
ing overweight and obese postmenopausal women to have higher circulating overall and free
estradiol levels than their normal BMI counterparts. In premenopausal women, a high BMI is
related to anovulatory menstrual cycles. Women with high BMI in both pre- and postmeno-
pause may have lower lifetime estrogen exposure (and thus lower risk of breast cancer) than

Table 3. Significant associations detected at p < 0.05 between breast cancer risk and BMI-related SNPs.

BCAC* GAME-ON DRIVE Combined

SNP Chr Position Gene Alleles EAF OR (95% CI) P EAF OR (95% CI) P OR (95% CI)* P

rs1558902 16 53803574 RABEP1(N) A/T 0.41 0.93 (0.91–
0.95)

2.77 × 10−14 0.68 0.95 (0.91–
0.99)

0.008 0.93 (0.91–
0.95)

3.63 × 10−16

rs713586 2 25158008 STXBP6(N) C/T 0.47 0.94 (0.92–
0.97)

1.82 × 10−6 0.48 0.96 (0.93–
1.00)

0.03 0.95 (0.93–
0.97)

3.19 × 10−7

rs7903146 10 114758349 NRXN3 C/T 0.72 0.96 (0.94–
0.98)

7.01 × 10−5 0.70 0.96(0.92–
1.00)

0.04 0.96 (0.94–
0.98)

8.65 × 10−6

rs7599312 2 213413231 LMX1B(B,N) G/A 0.72 0.96 (0.94–
0.98)

0.0004 0.96 0.94(0.84–
1.03)

0.17 0.96 (0.94–
0.98)

0.0002

rs17024393 1 110154688 BDNF(B/M) C/T 0.03 0.93 (0.87–
0.98)

0.007 0.41 0.96 (0.92–
0.99)

0.009 0.94 (0.91–
0.97)

0.0003

rs2867125 2 622827 GNPDA2(N) C/T 0.83 0.96 (0.94–
0.99)

0.003 0.64 0.97 (0.94–
1.00)

0.07 0.96 (0.94–
0.99)

0.0008

rs2287019 19 46202172 LI NG02(D,N) C/T 0.79 0.96 (0.93–
0.99)

0.009 0.80 0.96 (0.92–
1.00)

0.06 0.96 (0.94–
0.99)

0.0010

rs3810291 19 47569003 CLIP1(N) A/G 0.67 0.98 (0.95–
1.00)

0.01 0.43 0.96 (0.92–
0.99)

0.01 0.97 (0.95–
0.99)

0.002

rs571312 18 57839769 NT5C2(N) A/C 0.24 0.97 (0.95–
1.00)

0.02 0.23 0.96 (0.92–
1.00)

0.04 0.97 (0.95–
0.99)

0.002

rs543874 1 177889480 ELAVL4(B,D,N,
Q)

G/A 0.19 0.97 (0.95–
1.00)

0.04 0.20 0.96 (0.92–
1.00)

0.04 0.97 (0.95–
0.99)

0.005

rs12401738 1 78446761 HIP1(B,N) A/G 0.38 0.98 (0.96–
1.00)

0.05 0.38 0.96 (0.93–
1.00)

0.05 0.97 (0.96–
0.99)

0.008

rs1528435 2 181550962 EHBP1(B,N) T/C 0.62 0.97 (0.95–
0.99)

0.01 0.63 0.98 (0.94–
1.01)

0.22 0.97 (0.96–
0.99)

0.008

rs2112347 5 75015242 PRKDI(N) T/G 0.63 0.98 (0.96–
1.00)

0.03 0.44 0.97 (0.94–
1.00)

0.08 0.98 (0.96–
0.99)

0.008

rs10733682 9 129460914 FUBPI(N) A/G 0.49 0.97 (0.95–
0.99)

0.009 0.47 0.99 (0.95–
1.02)

0.41 0.98 (0.96–
0.99)

0.01

rs13191362 6 163033350 GPRC5B(C/Q) A/G 0.88 1.03 (1.00–
1.06)

0.047 0.87 1.04 (0.98–
1.09)

0.18 1.03 (1.01–
1.06)

0.02

rs17405819 8 76806584 PRKD1(N) T/C 0.69 0.97 (0.95–
1.00)

0.02 0.69 0.99 (0.95–
1.02)

0.5 0.98 (0.96–
1.00)

0.02

rs3736485 15 51748610 CADM2 A/G 0.47 0.98 (0.96–
1.00)

0.12 0.43 0.98 (0.94–
1.01)

0.15 0.98 (0.96–
1.00)

0.04

* Results are presented for per allele increase of BMI-related SNP. Chr, chromosome; EAF, effective allele frequency. BCACmodels were adjusted for age,

study, and first eight principal components.

doi:10.1371/journal.pmed.1002105.t003
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those who gain weight primarily after menopause. Additionally, measured BMI in postmeno-
pausal women may be a surrogate breast cancer risk factor for adiposity-related changes occur-
ring near or after menopause, such as age-associated slowing metabolism and inflammation
associated with increased abdominal fat [35]. Previous investigations support the theory that
adult weight gain is positively associated with postmenopausal breast cancer risk, and some
investigators have suggested that weight gain may be a more important risk factor for postmen-
opausal woman than postmenopausal BMI [36,37]. Future research will be necessary to deter-
mine the potentially complicated causal mechanisms underlying the association between BMI
and breast cancer risk for postmenopausal women.

In our study, we observed associations of high BMI-GS with early age at menarche, low
prevalence of postmenopausal HT use, and high prevalence of cigarette smoking. It is known
that high body weight is associated with an early age at menarche [38], and overweight women
are more likely to smoke cigarettes regularly to reduce or maintain body weight [39,40]. Over-
weight women are less likely to use HT [41] (likely because their endogenous estrogen levels
are higher than normal/underweight women, and thus, they are less likely to experience post-
menopausal symptoms—the major reason for HT use). Therefore, it is most likely that the
association of these variables with the BMI-GS is mediated through BMI, indicating that the
association of the BMI-GS with these breast cancer risk factors does not violate the assumption
of MR analyses in our study. Indeed, analyses without adjusting for these variables revealed a
stronger association of BMI-GS with breast cancer risk than those with adjustments of these
variables. Some of the BMI-associated variants may be associated with certain functions in the
central nervous system [17], and these functions in turn are associated with BMI and perhaps
other behaviors currently unknown to us. It is also possible that some of the BMI-associated
SNPs may be related to other traits. However, we were unable to evaluate these hypotheses in
our study. It would be interesting to further evaluate possible pleiotropic effects of BMI-GS in
future large MR analyses with extensively measured environmental factors.

We evaluated whether postmenopausal HT use may modify the association between
BMI-GS and breast cancer risk or whether the association may vary by tumor hormone recep-
tor status. Unlike some conventional observational studies on observed BMI-postmenopausal
breast cancer association [9,42], we did not find the association for BMI-GS to be modified by
HT use. We found that the association between the BMI-GS and breast cancer risk was consis-
tent across hormone receptor subtypes. Although ER-positive and ER-negative breast cancer
are heterogeneous clinically, they do have a number of shared risk factors, such as age at men-
arche, benign breast disease, and family history [43].

Our study has certain limitations. To date, GWAS-identified SNPs represent a small, but
statistically significant, portion of the explained variance of observed BMI—approximately
2.7% [17,44,45]. Nevertheless, the instrumental variable created in our study is sufficiently
strong for conducting MR analyses [46]. Only summary statistics data were available from the
DRIVE project, and thus, we were unable to perform analyses stratified by menopausal status
and hormone receptor status. However, most of the subjects included in the DRIVE project
were postmenopausal women, and the strength of the association between BMI-GS and breast
cancer observed in BCAC and DRIVE consortia was similar.

Using data from approximately 146,000 women involved in two large consortia, we provide
strong evidence of an inverse association between genetically predicted BMI and breast cancer
risk for both premenopausal and postmenopausal women. The present study adds to the body
of knowledge on the influence of body mass on breast cancer risk and points to further work
required to elucidate the mechanisms responsible for the complex relationship between BMI
and breast cancer risk. Our study, along with recent findings of an association of BMI-GS with
weight gain in early adult life but weight loss in late adult life, suggests that weight gain later in
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adulthood may explain, at least partially, the positive association reported from previous stud-
ies between measured adult BMI and postmenopausal breast cancer risk, providing further
support for lifestyle modification to reduce obesity as the primary prevention of breast cancer.
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