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ABSTRACT 

Matrix metalloproteinases (MMPs) are a group of enzymes that are responsible for the 

degradation of the extracellular matrix (ECM) during e.g. development, repair, and 

remodeling of tissues. In addition to the ECM components, these enzymes have numerous 

non-matrix substrates, such as cytokines, growth factors, and signaling molecules. MMP-8, 

also known as neutrophil collagenase, is released from neutrophils by degranulation when 

they enter the tissue at the site of inflammation. An imbalance in MMP-8 activity leads to 

excess degradation of tissues and destructive inflammation, such as periodontitis. MMP-8 

is also found in atherosclerotic lesions, where it may contribute to plaque rupture and the 

development of acute cardiovascular events. Elevated concentrations of MMP-8 in serum 

and plasma are associated with the risk and outcome of cardiovascular diseases (CVDs). 

The origin of the elevated MMP-8 levels in CVDs is not entirely clear. Tetracyclines have 

anti-proteolytic effects in addition to their well-known property of being antimicrobial. 

Doxycycline inhibits the activity of MMP-8 at both regular, i.e. antimicrobial, and 

subantimicrobial doses. We investigated the genetic variation that affects circulating MMP-

8 levels, the link between MMP-8-associated genetic variants and CVDs, and the role of 

MMP-8 in lipoprotein metabolism and in diagnostics of periodontitis. 

We performed a genome-wide association study (GWAS) in two independent populations 

with a total of 6049 individuals to identify genetic variants and molecular mechanisms that 

affect serum MMP-8 concentrations. In addition, we studied whether MMP-8-associated 

genetic variants are related to increased risk of CVDs and mortality in over 20 000 

individuals. According to the GWAS, genetic polymorphism in the gene of complement 

factor H (CFH) is strongly associated with the concentrations of MMP-8 in serum. By 

conducting functional experiments with isolated human neutrophils, we found that less 

MMP-8 was released from neutrophils in response to activation of the alternative pathway 

of the complement in the carriers of the CFH Ile62 variant compared to the carriers of the 

Val62 variant. In addition, genetic polymorphism in the locus containing the genes of S100 

calcium binding proteins A8, A9, and A12 was associated with serum and plasma MMP-8 

levels and also with the prevalence and incidence of CVD in men. 

We studied the effect of MMP-8 on the structure and function of apolipoprotein A-I (apoA-

I), which is the main protein component of high-density lipoprotein (HDL) particles. In 

addition, we investigated lipid profiles and the capacity of serum to facilitate cholesterol 
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efflux from macrophages in an MMP-8 knockout mouse model. We discovered that MMP-

8 cleaves apoA-I at its C-terminal end. Pre-treatment of apoA-I and HDL with MMP-8 

significantly reduced their ability to promote cholesterol efflux from cholesterol-loaded 

macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux 

capacity was inhibited dose-dependently by doxycycline at clinically attainable 

concentrations. MMP-8 deficient mice had significantly lower serum triglyceride levels and 

larger HDL particle size compared to wild type mice. 

We further investigated whether subantimicrobial-dose doxycycline (SDD) treatment 

affects the ability of serum to promote cholesterol efflux from macrophages in a double-

blind, placebo-controlled randomized clinical trial of two years. The subjects treated with 

SDD had a significant increase in cholesterol efflux from macrophages to the serum 

compared to the baseline, whereas the efflux levels did not change in the placebo group. 

We studied the association of three salivary biomarkers, MMP-8, interleukin-1β, and 

Porphyromonas gingivalis, with periodontal status in 463 subjects with angiographically 

verified coronary artery disease (CAD) diagnosis. In addition, we evaluated the ability of a 

novel diagnostic approach, the cumulative risk score (CRS), to detect periodontitis. The 

concentrations of MMP-8, interleukin-1β, and P. gingivalis were associated with the 

number of deepened periodontal pockets and the extent of alveolar bone loss. The CRS 

index was more strongly associated with moderate to severe periodontitis than any of the 

biomarkers alone. The CAD status of the patients did not affect the diagnostic power of the 

salivary biomarkers. 

Our results indicate that the complement system, especially the alternative pathway, 

contributes significantly to the concentrations of MMP-8 in serum. Genetic polymorphism 

in S100A8/A9/A12 locus affects circulating MMP-8 levels, and is associated with CVDs in 

men. These genetic factors might also be important in other diseases characterized by excess 

MMP-8 activity. Proteolysis of apoA-I by MMP-8 may disturb HDL metabolism and 

reverse cholesterol transport, which leads to accumulation of cholesterol in the vessel walls 

and accelerated atherosclerosis. Inhibition of MMP-8 by doxycycline may reduce the risk 

of CVDs, especially in vulnerable individuals such as periodontitis patients. Saliva MMP-

8, particularly when combined with other biomarkers, has great potential in the diagnostics 

of periodontitis, regardless of the CAD status of the patients. 
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1. INTRODUCTION 

 

Matrix metalloproteinases (MMPs) are a group of structurally related enzymes. Their 

general function is to degrade the extracellular matrix (ECM) during numerous 

physiological processes, such as development, tissue repair, and tissue remodeling. MMP-

8, also known as neutrophil collagenase, is secreted by neutrophils to facilitate their 

movement in the tissues at the site of inflammation. Neutrophils have a major role in the 

innate immune system and the clearance of pathogens, and MMP-8 is essential for 

neutrophil function (Nauseef 2007, Tester et al. 2007). However, neutrophil degranulation 

and the release and activation of MMP-8 may also cause excessive tissue breakdown and 

damage, which leads to destructive inflammation. The major substrate of MMP-8 is 

collagen type I. In addition to collagen and other ECM components, MMP-8 cleaves 

numerous non-collagenous non-ECM substrates, such as receptors, chemokines, and 

protease inhibitors, and therefore it may modulate metabolic pathways and the host 

inflammatory response. 

Atherosclerosis is a major cause of cardiovascular diseases (CVDs). The pathogenesis of 

atherosclerosis is characterized by inflammation and the development of lipid-rich plaques 

within arterial walls. CVDs are responsible for up to 17.5 million deaths every year, and 

they are currently the leading cause of mortality and disability in the world (Naghavi et al. 

2015). Circulating MMP-8 is a promising biomarker of CVDs. Elevated MMP-8 

concentrations in both serum and plasma are associated with the presence of CVD and with 

the incidence of CVD events (Tuomainen et al. 2007, Momiyana et al. 2010, Tuomainen et 

al. 2012). Macrophages, endothelial cells, and smooth muscle cells located in 

atherosclerotic lesions express MMP-8 (Herman et al. 2001). Since MMP-8 degrades 

collagen and the ECM, it may increase the vulnerability of atherosclerotic lesions and 

contribute to plaque rupture and the development of acute cardiovascular events. Indeed, 

elevated concentrations of MMP-8 have been found in unstable atherosclerotic plaques 

(Molloy et al. 2004). The origin of elevated circulating MMP-8 in CVDs is, however, 

unclear. Up to 40% of variation in the concentrations of inflammatory biomarkers in the 

circulation is explained by genetic factors (Schnabel et al. 2009). Therefore, serum MMP-8 

concentrations might also be significantly affected by genetic variation. 
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Periodontitis is a chronic inflammatory disease of the tooth-supporting tissues. It leads to 

the degradation of soft and hard periodontal tissues, and, eventually to the loss of teeth if 

not treated. Periodontitis is one of the most common chronic infections in the adult 

population; in Finland, 64% of adults have signs of the disease, and 21% suffer from 

advanced periodontitis (Knuuttila and Suominen-Taipale 2008). Periodontitis is initiated by 

dysbiotic oral microbiota and disturbed host homeostasis (Darveau 2010). Host-derived 

inflammatory mediators and proteolytic enzymes, such as MMPs, are secreted and activated 

as a response against the dysbiotic microbiota in the tooth-associated biofilms. Enhanced 

release and activation of MMP-8 is one of the key factors responsible for tissue degradation 

during periodontitis. Elevated levels of MMP-8 are found in the gingival tissues, saliva, and 

the gingival crevicular fluid of periodontitis patients (Sorsa et al. 2016). 

Epidemiological and mechanistic evidence indicate that chronic infections, such as 

periodontitis, are associated with an increased risk for CVDs. The causality between the 

diseases is, however, not completely clear, and the exact mechanisms linking infections and 

inflammation to CVDs remain to be clarified. 
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2. REVIEW OF LITERATURE 

 

2.1 Matrix metalloproteinase 8 

2.1.1 General characteristics of MMPs 

Matrix metalloproteinases are a group of structurally related enzymes named after the zinc 

ion at their active site and their ability to degrade ECM. Over 20 MMPs have been identified 

in humans. The MMPs are classified into six subgroups by substrate specificity and cellular 

localization: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, 

and other MMPs. MMPs are able to degrade all components of the ECM. They have an 

essential role in the development, remodeling, and homeostasis of tissues by regulating 

functions such as cell migration, differentiation, interaction, and apoptosis (Vu and Werb 

2000, Visse and Nagase 2003). In addition to degrading ECM components, MMPs 

contribute to proteolysis and inflammation by processing bioactive molecules, such as 

growth factors, receptors, cytokines, and chemokines, and also by activating other MMPs 

(Vu and Werb 2000, Page-McCaw et al. 2007). 

Human MMPs have a conserved domain structure with a pro-domain and a catalytic domain 

(Figure 1A). The pro-domain includes a highly conserved cysteine residue, the so-called 

“cysteine switch” (Van Wart and Birkedal-Hansen 1990). The cysteine residue interacts 

with the zinc ion of the catalytic site, keeping the enzyme in catalytically inactive state. 

When the pro-domain is proteolytically removed or the cysteine thiol group is destabilized, 

the catalytic site becomes exposed and available for enzymatic activity (Figure 1B). The 

active site at the catalytic domain includes a Zn2+ ion bound by three conserved histidine 

residues (Woessner 1991). Most MMPs also have a hemopexin domain attached to their C-

terminal end by a hinge region (Figure 1A). The hemopexin domain mediates protein-

protein interactions, which contributes to substrate recognition and enzyme activation 

(Overall 2001). 
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Figure 1. (A) Basic structure of MMPs. The cysteine residue at the pro-domain interacts with the 

zinc ion at the catalytic site, which keeps the enzyme in a catalytically inactive state. (B) Activation 

of MMPs. When the pro-domain is removed, the active site becomes exposed and available for 

catalytic activity. Adapted from (Page-McCaw et al. 2007). 

 

The activity of most MMPs is regulated at three main levels: RNA transcription, activation 

of the proenzyme, and enzyme inhibition. In addition, the activity may be fine-tuned at the 

levels of protein synthesis, cellular compartmentalization, secretion, cell-surface 

recruitment, substrate targeting, cellular uptake, and autolysis. (Overall and Lopez-Otin 

2002) The transcription and secretion of MMPs are controlled by e.g. inflammatory 

cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, growth factors, 

and hormones (Nagase and Woessner 1999, Overall and Lopez-Otin 2002). The activation 

of the proenzyme usually requires cleavage of the pro-domain, which results in active 

enzyme forms that have lower molecular weights. Several proteinases, including 

endogenous and bacterial proteinases, are capable of activating pro-MMPs. Some MMPs 

require the action of other MMPs to achieve complete activity. (Tatsuya et al. 2005) MMPs 

can also be activated by treatment with mercurial compounds, thiol reagents, or reactive 

oxygen species. These agents probably activate MMPs by disturbing the cysteine-zinc 
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interaction of the cysteine switch, which results in autoproteolytic cleavage of the pro-

domain (Van Wart and Birkedal-Hansen 1990, Bläser et al. 1991). 

Under normal physiological conditions, a strict balance between MMP activity and 

inactivity is maintained. Disruption of the balance may lead to excess tissue destruction and 

pathological conditions, such as periodontitis or cardiovascular diseases (Pussinen et al. 

2013). The most important endogenous inhibitors of MMPs are the specific tissue inhibitors 

of metalloproteinases (TIMP) -1, -2, -3, and -4. In addition to TIMPs, endogenous non-

specific inhibitors, such as α2-macroglobulin and serine proteinase inhibitors, also inhibit 

MMPs (Herman et al. 2001a). Various synthetic inhibitors have been developed for in vitro 

and therapeutic use. One mechanism of inhibition is the chelation of the Zn2+ ion at the 

active site; the two first inhibitors used in clinical trials, marimastat and batimastat, are 

mediated by the chelation mechanism (Coussens et al. 2002, Overall and Lopez-Otin 2002). 

General chelating agents, such as EDTA, can also be used to inhibit MMP activity. Ilomastat 

(GM6001) is a broad-spectrum MMP inhibitor. It contains a hydroxamic acid group that 

forms a complex with the zinc at the active site of the MMP, which results in reversible 

inhibition of MMP activity (Grobelny et al. 1992). Medications such as tetracyclines and 

bisphosphonates, originally designed for other purposes, also exert inhibitory effects against 

MMPs (Golub et al. 1998, Teronen et al. 1999). 

 

2.1.2 The structure of MMP-8 

MMP-8, also known as neutrophil collagenase or collagenase 2, belongs to the group of 

collagenases. It has a typical MMP structure that consists of a pro-domain, a catalytic 

domain, a hinge region, and a hemopexin domain (Figure 1). Like most other MMPs, the 

inactive proenzyme needs to be activated to achieve full catalytic activity. (Van Lint and 

Libert 2006) 

 

2.1.3 Expression and activity of MMP-8 

MMP-8 is mainly expressed by polymorphonuclear (PMN) neutrophils. It is stored as a 

proenzyme (molecular weight 85 kDa) in the intracellular secondary granules of the 

neutrophils and released by degranulation in response to inflammatory stimuli (Murphy et 
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al. 1977). MMP-8 is mainly regulated by factors that affect its release from the neutrophils 

rather than its de-novo biosynthesis. Thus, large amounts of MMP-8 can be immediately 

released from the cells when needed. Neutrophil degranulation and release of MMP-8 can 

be induced by e.g. interleukins, TNF-α, and bacterial virulence factors. Following 

exocytosis, the activation of MMP-8 is mediated by oxidative species released from e.g. the 

activated neutrophils (Okamoto et al. 1997a), by endogenous proteinases such as cathepsin 

G, chymotrypsin (Knäuper et al. 1990), and other MMPs (Knäuper et al 1994, Holopainen 

et al. 2003), and by certain bacterial proteases (Sorsa et al. 1992a, Okamoto et al. 1997b). 

The active form of PMN-derived MMP-8 has a molecular weight of approx. 65 kDa 

(Knäuper et al. 1990). 

Even though degranulating neutrophils are the main source of MMP-8 in the tissues, MMP-

8 is also expressed de novo by other cell types. The cells that express MMP-8 include 

macrophages (Herman et al. 2001b), plasma cells (Wahlgren et al. 2001), epithelial cells 

(Tervahartiala et al. 2000, Prikk et al. 2001), fibroblasts (Hanemaaijer et al. 1997), smooth 

muscle cells (Herman et al. 2001b), and endothelial cells (Hanemaaijer et al. 1997). The 

MMP-8 that is produced by cell types other than the PMN cells is often less glycosylated 

and has a smaller molecular weight in comparison to PMN-derived MMP-8 (Van Lint and 

Libert 2006). The same inflammatory mediators that stimulate neutrophil degranulation can 

induce the expression and synthesis of MMP-8 by non-PMN-lineage cells (Chubinskaya et 

al. 1996, Hanemaaijer et al. 1997, Abe et al. 2001). 

The major substrate of MMP-8 is collagen type I, which is the main structural protein in the 

ECM of various tissue types. The degradation and remodeling of the vascular basement 

membrane and ECM by MMP-8 facilitates the transmigration of leukocytes into tissues at 

the inflammatory site. In addition to ECM proteins, MMP-8 also cleaves numerous non-

ECM substrates, such as angiotensin, chemokines, and protease inhibitors (Van Lint and 

Libert 2006). Substrates of MMP-8 identified by in vitro and in vivo studies are presented 

in Table 1. 
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Table 1. Known substrates of MMP-8. 

Substrate Reference 

Collagen type I > type III > type II (Hasty et al. 1987) 

Collagen type VII, type X (Schmid et al. 1986) 

Proteinase inhibitor α-1 (Michaelis et al. 1990) 

C1 inhibitor (Knäuper et al. 1991) 

Cartilage aggrecan (Fosang et al. 1993) 

Pro-MMP-8 (Knäuper et al. 1993) 

Tachykinin substrate P (Diekmann and Tschesche 1994) 

Substance P (Diekmann and Tschesche 1994) 

Bradykinin (Diekmann and Tschesche 1994) 

Angiotensin I and II (Diekmann and Tschesche 1994,  

Laxton et al. 2009) 

Fibrinogen (Hiller et al. 2000) 

Monocyte chemoattractant protein 1 (McQuibban et al. 2002) 

Tissue factor pathway inhibitor (Cunningham et al. 2002) 

Laminin-5 (Pirilä et al. 2003) 

LPS-induced CXC chemokine (Van den Steen et al. 2003) 

MIG / CXCL9 (Van Den Steen et al. 2003) 

IP-10 / CXCL10 (Van Den Steen et al. 2003) 

Estrogen receptor α and β (Korpi et al. 2008) 

Fas ligand (Korpi et al. 2009) 

Macrophage inflammatory protein-1α (Quintero et al. 2010) 

Pro-TNFα (Lee et al. 2014) 
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TGF-1β (Åström et al. 2014) 

Human insulin receptor (Lauhio et al. 2016) 

MMP, matrix metalloproteinase; LPS, lipopolysaccharide; MIG, monokine induced by gamma 
interferon; IP-10, interferon-inducible protein-10; TNF, tumor necrosis factor; TGF, transforming 
growth factor 

 

MMP-8 is a mediator of both acute and chronic inflammation. Neutrophils have a major 

role in the innate immunity system and the clearance of pathogens, and the release of MMP-

8 is essential for neutrophil chemotaxis and movement in the tissues (Nauseef 2007, Tester 

et al. 2007). However, neutrophil degranulation and the release and activation of MMP-8 

may also cause excessive tissue degradation and damage, which leads to destructive 

inflammation. Thus, MMP-8 is a central contributor in various inflammatory disorders that 

are characterized by tissue destruction, such as periodontitis (Sorsa et al. 2004) and 

rheumatoid arthritis (Sorsa et al. 1992b). It is also involved in cancer progression, wound 

healing, and numerous other pathological and physiological conditions (Dejonckheere et al. 

2011). 

 

2.1.4 The genetics of MMP-8 

The gene for MMP-8 is located in the cluster of MMP genes in 11q22.3 (Hasty et al. 1990, 

Pendás et al. 1996). Three single nucleotide polymorphisms (SNPs) in the promoter region 

of MMP8, −799C/T (rs11225395), −381A/G (rs1320632), and +17C/G (rs2155052), affect 

the activity of the gene (Wang H. et al. 2004). However, the effect of these polymorphisms 

on the concentrations of MMP-8 in tissues or in the circulation has not been widely 

investigated. Pradhan-Palikhe et al (2012) studied the association between the MMP8 SNPs 

-799C/T and -381A/G and the serum levels of MMP-8 in the patients with arterial disease 

(n=124) and healthy blood donors (n=100). The -799TT genotype was significantly 

associated with increased serum MMP-8 concentrations in the control group and whole 

study population, but not in patients with arterial disease (Pradhan-Palikhe et al. 2012). In 

another investigation in which 100 systemically healthy individuals were studied, MMP8 -

799 C/T or -381 A/G polymorphisms were not associated with differences in serum MMP-

8 concentrations (Aquilante et al. 2007). Genetic variation explains up to 40% of the 
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variation of the concentrations of circulating biomarkers (Schnabel et al. 2009). Therefore, 

the concentration of MMP-8 in blood may also be affected by unknown genetic factors. 

 

2.2 Cardiovascular disease and lipoproteins 

2.2.1 Lipoproteins 

The clinically most relevant lipids in the circulation are triglycerides (TGs) and cholesterol. 

Triglycerides are a major source of energy and a storage form of lipids in humans. 

Cholesterol is an essential component of cell membranes, a precursor for certain hormones, 

vitamins and bile acids, and involved in signaling pathways. Lipids are water-insoluble 

molecules, and therefore they are combined with amphipathic apolipoproteins for 

transportation in the circulation. Lipoproteins are complex aggregates of lipids and proteins. 

Their general function is to transport cholesterol and TGs between organs and tissues for 

storage, utilization, and degradation. (Brown et al. 1981, Hegele 2009)  

Lipoproteins are spherical particles with a hydrophobic core composed mainly of TG and 

cholesteryl esters (CE), surrounded by an amphiphilic outer layer composed of 

phospholipids (PL), free cholesterol (FC), and amphipathic apolipoproteins (Steim et al. 

1968) (Figure 2). Lipoproteins are classified into five main fractions according to their 

density, protein composition, and function: chylomicrons (CM), very low density 

lipoproteins (VLDL), intermediate density lipoproteins (IDL), low density lipoproteins 

(LDL), and high density lipoproteins (HDL). These main fractions can be divided further 

into subfractions according to the size, composition, and electrophoretic mobility of the 

particles. In addition, lipoprotein(a) [Lp(a)] is considered to be a distinct lipoprotein 

subclass (Krempler et al. 1979). The hydrated density of a lipoprotein particle is 

proportional to its lipid-protein ratio: the more protein a lipoprotein particle contains, the 

denser it is. The densest particles have a smaller diameter compared to less dense 

lipoproteins. Triglycerides are mainly transported by the chylomicrons and VLDL, whereas 

LDL and HDL are the main carriers of cholesterol. The apolipoprotein composition of 

lipoproteins varies significantly between the particles. CMs, VLDL, IDL, and LDL contain 

an apolipoprotein B molecule, which is apoB48 in CM, and apoB100 in VLDL, IDL, and 

LDL. In addition to apoB, CMs and VLDL also contain apoC, and CMs, VLDL, and IDL 

contain apoE. HDL particles contain apoA, apoC, and apoE apolipoproteins, but not apoB. 
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In addition, numerous other types of apolipoproteins have been identified in lipoprotein 

particles. The composition of particles in lipoprotein fractions is presented in Table 2.  

 

Table 2. Composition of human lipoprotein fractions. 

Lipoprotein Density  

(g/ml) 

Size  

(nm) 

FC (%) CE (%) TG (%) PL (%) Protein (%) Major apo-

lipoprotein 

Chylomicron < 0.95 100-500 1-3 2-4 85-90 3-7 1-2 B-48 

VLDL 0.95-1.006 30-80 4-8 12-22 45-65 15-20 6-10 B-100 

IDL 1.006-1.019 25-35 8-10 29-35 24-30 19-27 10-20 B-100 

LDL 1.019-1.063 18-25 6-10 40-50 5-15 18-24 18-22 B-100 

HDL 1.063-1.210 5-12 3-5 13-30 2-10 25-46 40-55 A-I, A-II 

VLDL, very low density lipoprotein; IDL, intermediate density lipoprotein; LDL, low density 
lipoprotein; HDL, high density lipoprotein; FC, free cholesterol; CE, cholesteryl ester; TG, 
triglyceride; PL, phospholipid. Modified from (Gotto et al. 1986) and (Hegele 2009). 

 

 

 

Figure 2. Basic structure of a lipoprotein particle. The hydrophobic core of the particle contains 

TGs and CEs, whereas PLs, FC, and apolipoproteins are located at the surface of the particle. 

Reprinted from (Wasan et al. 2008) with the permission of Nature Publishing Group. 
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2.2.2 The structure of apoA-I and HDL particles 

Apolipoprotein A-I is the major protein component of HDL. Most apoA-I in plasma is 

bound to mature HDL particles. ApoA-I may also be associated with discoidal HDL or exist 

in lipid-free or lipid-poor configurations. Approximately 5 – 10% of human plasma apoA-I 

is found in a lipoprotein-unassociated, lipid-free or lipid-poor form (Asztalos 1997, 

O’Connor 1998). ApoA-I comprises a single polypeptide chain of 243 amino acid residues 

with an estimated molecular weight of 28 kDa. The peptide chain in organized into eight 

amphipathic α-helical segments.  

The HDL particles are a heterogeneous group that differ in size and composition (Shah et 

al. 2013). Approximately 70% of the protein content of HDL is composed of apoA-I. In 

addition, HDL particles may contain other apolipoproteins such as apoA-II, apoC, and apoE, 

enzymes that are involved in lipid metabolism or have antioxidant activities, such as 

lecithin-cholesteryl acyl transferase (LCAT) or paraoxonase (PON), and other proteins, 

such as members of the complement system, proteinase inhibitors, and acute phase response 

proteins (Shah et al. 2013). ApoA-I is an essential component of HDL; individuals with 

apoA-I deficiency fail to form normal HDL particles (Matsunaga et al. 1991).  

HDL is found in the blood in spherical and discoidal forms. Conventionally, spherical HDL 

is divided into two classes: larger and less dense HDL2 and smaller, denser HDL3. These 

classes can be further divided into subfractions of HDL2a, HDL2b, HDL3a, HDL3b, and 

HDL3c. Spherical HDL has a typical lipoprotein structure composed of a hydrophobic core 

with CE and TG, and an amphipathic surface layer of PL, FC, and apolipoproteins. 

Discoidal HDL is composed of a bilayer of PL, a small amount of FC, and apoA-I. HDL 

particles can also be classified according to their mobility in native and two-dimensional 

gel electrophoresis (Kunitake et al.1985, Kunitake et al. 1992). The majority of HDL has α-

mobility, but a small proportion of HDL particles found in plasma displays pre-β mobility. 

 

2.2.3 Overview of lipoprotein metabolism 

Lipoproteins are dynamic transporter particles, and their size and composition are constantly 

modified in the circulation. An overview of endogenous lipoprotein metabolism is presented 

in Figure 3. 
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Dietary fats are emulsified by bile acids in the intestine and hydrolyzed into free fatty acids 

(FFAs), monoacylglycerols, and non-esterified cholesterol. After their internalization into 

the enterocytes, TGs and CE are resynthesized and packaged into CM particles with 

phospholipids, free cholesterol, and apolipoproteins, particularly apoB48, but also others, 

such as apoC and apoE (Havel 1997). CMs are secreted into the lymphatic circulation. They 

enter the subclavian vein via the thoracic duct and are transported to the peripheral tissues. 

In normolipidaemic individuals, the CMs are recovered in plasma only postprandially. In 

the endothelial surface of capillaries, lipoprotein lipase (LPL) releases fatty acids from the 

TGs in CMs. This results in TG-depleted CM remnants, which are transported to the liver 

where they are taken up by the hepatocytes via LDL receptor (LDLR) or LDL-receptor 

related protein (Mahley et al. 1989, Hussain et al. 1991). The FFAs released from CMs are 

transported in the circulation mainly bound to albumin and taken up e.g. by adipose tissue 

for storage and by muscle cells for energy (Havel 1997).  

Only a small amount of circulating cholesterol is derived exogenously from the diet; 

approximately 80% originates from endogenous biosynthesis. The major endogenous 

source of lipids is the liver. In the liver, endogenously produced cholesterol and TGs are 

assembled into VLDL with various apolipoproteins, particularly apoB100, and secreted into 

the circulation. LPL hydrolyzes TGs in the VLDL into FFAs, which results in VLDL 

remnant particles. The remnants can be taken up by the liver or remodeled into IDL 

particles. The IDL particles are hydrolyzed by hepatic lipase and LPL, which yields LDL 

particles. 

LDL particles are the major carriers of cholesterol in the blood (Expert Panel on Detection, 

Evaluation, and Treatment of High Blood Cholesterol in Adults 2002). They are taken up 

by the cells via LDL receptors by receptor-mediated endocytosis and are then degraded in 

the lysosomes. Most cells strictly control the intake of cholesterol by regulating the 

expression and recycling of LDLR. However, macrophages may take in large amounts of 

cholesterol via scavenger receptors that are not down-regulated by the amounts of 

intracellular cholesterol, i.e. there is no negative feedback control. This mechanism may 

lead to the formation of foam cells and the accumulation of cholesterol in, for example, the 

subendothelial space in arterial walls, and eventually to the development of atherosclerosis. 

In the liver, which is the main organ responsible for removing LDL from the circulation, 
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LDL is degraded and the released cholesterol is re-esterified or converted into bile acids for 

secretion. (Brown et al. 1981) 

 

2.2.4 Reverse cholesterol transport and HDL metabolism 

The transportation of cholesterol from peripheral cells and tissues to the liver is mainly 

mediated by HDL in a process called reverse cholesterol transport (RCT) (Fielding and 

Fielding 1995).  

Lipid-free apoA-I and lipid-poor, disc-like apoA-I particles are synthetized by hepatocytes 

and intestinal cells. They are also generated from excess surface material in the lipolysis of 

CM and VLDL particles (Rader 2006). Lipid-poor apoA-I interacts with cells via the ATP-

binding cassette transporter A1 (ABCA1) and receives FC and PLs to form nascent, 

discoidal pre-β HDL (Wang et al. 2001).  

Esterification of FC at the surface of nascent HDL by LCAT converts the particles into 

small, spherical α-HDL (HDL3). When HDL3 picks up more cholesterol and PLs, it becomes 

larger HDL2. Nascent and small HDL particles receive cholesterol from peripheral cells via 

ABCA1 (Oram et al. 2000, Du et al. 2015), and mature HDL interacts mainly with ABCG1 

and ABCG4 transporters (Wang N. et al. 2004). Along with cholesterol absorption, apoC 

and apoE are transported to HDL particles from VLDL and IDL.  

The CEs of HDL can be transferred to apoB-containing lipoprotein particles, such as LDL, 

via cholesteryl ester transport protein (CETP), and be replaced by TGs that are transferred 

in the reverse direction (Stein and Stein 2005). CETP can also exchange CEs for TGs among 

HDL particle populations. Phospholipids are transferred from tTG-rich lipoproteins to HDL 

by phospholipid transfer protein (PLTP) (Stein and Stein 2005). In addition, PLTP mediates 

the conversion of small HDL3 particles into larger HDL2 particles and small preβ-HDL 

particles (Jauhiainen et al. 1993). Thus, the HDL particles are constantly modified in the 

circulation by the actions of PLTP and CETP. In the liver, HDL is taken up by the 

hepatocytes via the hepatic scavenger receptor B1 (SRB1) (Acton et al. 1996).  
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Figure 3. Overview of human lipoprotein metabolism. Reprinted from (Wasan et al. 2008) with 

the permission of Nature Publishing Group. 

 

2.2.5 Atherosclerosis and cardiovascular disorders 

Atherosclerosis is a major cause of cardiovascular diseases. It is a systemic disease 

characterized by inflammation and the formation of lipid-rich plaques within the arterial 

walls. Cardiovascular disorders lead to up to 17.5 million deaths every year, and they are 

the leading cause of mortality globally (Naghavi et al. 2015). Risk factors for CVDs are 

divided into lipid factors and non-lipid factors, which can be further classified as non-

modifiable and modifiable factors. Lipid factors include high levels of LDL or VLDL 

cholesterol, low levels of HDL cholesterol, elevated serum TGs, and high levels of Lp(a). 

The modifiable, non-lipid risk factors include smoking, hypertension, diabetes or impaired 

glucose tolerance, overweight or obesity, physical inactivity, and unhealthy diet. The non-

modifiable factors are advanced age, male gender, family history of premature coronary 

heart disease, and genetic factors. (Expert Panel on Detection, Evaluation, and Treatment 

of High Blood Cholesterol in Adults 2002) Moreover, biomarkers of the disease include C-

reactive protein (CRP) measured by the high-sensitivity assay (hsCRP) and serum 
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homocysteine (Eckel and Cornier 2014). Early signs of atherosclerosis can be found as early 

as in childhood, but manifestations of the disease are usually encountered in middle-aged 

or older men and postmenopausal women.  

The arterial wall is composed of three layers: the intima, the media, and the adventitia. The 

innermost layer, the intima, comprises an endothelium, basement membrane, connective 

tissue, and resident smooth muscle cells (SMCs). The endothelium is a monolayer of 

specialized epithelial cells that separates the vessel lumen from the subendothelial space. 

The next layer, the media is a layer of smooth muscle cells that lie in a complex extracellular 

matrix. The outermost layer, the adventitia, is a dense layer of connective tissue. 

The formation of an atherosclerotic lesion is presented in Figure 4. Persistently high levels 

of LDL, IDL, and VLDL in blood leads to their accumulation in the vessel walls (Williams 

and Tabas 1998). Alteration in the permeability of the endothelium facilitates the infiltration 

of LDL into the intima where it becomes trapped in the subendothelial matrix (Skalen et al. 

2002, Tabas et al. 2007). The endothelium may become irritated and injured as a response 

to e.g. hypertension, smoking, microbial infection, or haemodynamic forces. The branching 

sites of arteries are especially prone to atherosclerotic lesions, as the blood flow at these 

sites is turbulent. In the intima, the lipid and protein components of the trapped LDL become 

oxidized (oxLDL) and modified by several enzymes, which leads to an inflammatory 

response (Steinbrecher et al. 1984, Palinski et al. 1989, Parthasarathy et al. 1989, 

Pentikäinen et al. 2000). Endothelial cells at the site of the lesion express cell adhesion 

molecules, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion 

molecule 1 (ICAM-1), and E-selectin, that attract monocytes (Khan et al. 1995, Takei et al. 

2001). Monocytes enter the intima, differentiate into macrophages, and take up oxidized 

and modified lipoproteins by their scavenger receptors (Figure 4, part a). When LDL levels 

in the circulation are persistently high, an imbalance between the influx and efflux of 

cholesterol leads to the formation of CE-loaded macrophage foam cells in the intima.  

The early atherosclerotic lesion is a simple fatty streak. When the lesion evolves, SMCs 

from the media migrate to the intima (Figure 4, part b). They proliferate and synthesize 

extracellular matrix components, such as collagen and elastin, and form a fibrous cap, a 

connective tissue layer beneath the endothelial cells. This results in the further accumulation 

and retention of pro-atherogenic lipoproteins in the intima. The SMCs may also fill up with 

CE. As excess cholesterol is toxic to cells, the foam cells eventually undergo necrosis and 
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release their cholesterol content into the extracellular space forming a cholesterol-rich 

necrotic core of the atherosclerotic lesion (Figure 4, part c). 

 

 

Figure 4. Pathogenesis of atherosclerosis. (a) LDL particles enter the intima and undergo oxidative 

modification. The oxLDL stimulates the expression of adhesion molecules and chemokines by the 

endothelial cells, which leads to monocyte recruitment. The monocytes differentiate into 

macrophages. (b) Macrophages uptake oxLDL and transform into cholesterol-containing foam cells. 

Cytokines and growth factors stimulate endothelial activation and proliferation of the smooth muscle 

cells. (c) The increasing volume of the lesion promotes neovascularization. The foam cells 

eventually undergo necrosis and release cell debris and lipids. The SMCs synthesize ECM 

components, such as collagen, that forms a fibrous cap beneath the endothelium. (d) Pro-

inflammatory and pro-apoptotic processes and physical disruption may result in plaque rupture. 

Rupture of the plaque leads to thrombosis. Modified from (Steinl and Kaufmann 2015) and reprinted 

with the permission of MDPI Publishing Services. 

 

The enlargement of atherosclerotic plaques may lead to stenosis of the arteries and tissue 

ischaemia. Moreover, pro-inflammatory and pro-apoptotic processes and physical 

disruption may result in plaque rupture and release of intraplaque material into the arterial 
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lumen. Plaque rupture initiates coagulation of blood and formation of a thrombus (Figure 

4, part d), which may result in acute events, such as acute coronary syndrome (ACS) or 

stroke.  

Coronary artery disease (CAD), also known as ischaemic heart disease or coronary heart 

disease (CHD), results from atherosclerosis of the coronary arteries. The formation of 

atherosclerotic plaques narrows the lumen of the coronary arteries, which results in 

ischaemia of the heart muscle. A typical symptom of CAD is angina pectoris, but the disease 

may also remain silent, the first symptom being an acute myocardial infarction (AMI). 

Diagnostic examinations for CAD include electrocardiogram (ECG), echocardiography, 

computed tomography scan (CT), and coronary angiography. 

 

2.2.6 Inflammatory background of atherosclerosis 

Since the 1990’s, inflammation has been identified as a key process in the pathogenesis of 

atherosclerosis. The inflammatory mechanisms involved in atherosclerosis include both 

innate and adaptive immunity. Modification of LDL, such as oxidation by myeloperoxidase 

or reactive oxygen species (Steinbrecher et al. 1984, Palinski et al. 1989, Parthasarathy et 

al. 1989), or other enzymatic modifications, leads to the expression of chemokines, growth 

factors, and adhesion molecules by the endothelial cells (Cushing et al. 1990, Rajavashisth 

et al. 1990, Zernecke et al. 2008). This results in the recruitment of monocytes and other 

inflammatory cells, such as dendritic cells and T-lymphocytes, to the site of the lesion 

(Hansson and Hermansson 2011). Monocytes, macrophages, smooth muscle cells, and 

endothelial cells produce proinflammatory cytokines such as IL-1β, IL-6, and TNFα, and 

these amplify the inflammatory status within the intima (Libby et al. 2009). In addition, 

activated mast cells release histamine, proteinases, and heparin (Shi et al. 2015). These 

events lead to a chronic inflammatory response.  

High levels of hsCRP predict future cardiovascular events independent of conventional risk 

factors (Libby and Ridker 2004). In addition to being a biomarker, CRP itself may 

contribute to atherosclerosis, e.g. via enhancing endothelial dysfunction (Pasceri et al. 2000, 

Venugopal et al. 2002). Patients with certain chronic inflammatory disorders have a higher 

risk of CAD. Such diseases include rheumatoid arthritis, psoriasis, and systemic lupus 

erythematosus, and several infections, such as periodontitis, Chlamydia pneumoniae, 
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cytomegalovirus, and Helicobacter pylori (Mattila et al. 1989, Saikku et al. 1992, Danesh 

1999, Franceschi et al. 2009, Grahame-Clarke et al. 2003). Multiple infections cause a 

pathogen burden that is more strongly associated with CAD than single infections (Epstein 

et al. 2000). 

The acute phase response (APR) leads to changes in lipoprotein metabolism and structure 

(Sammalkorpi et al. 1988, Khovidhunkit et al. 2004). In general, higher plasma 

concentrations of VLDL and TGs and lower concentrations of HDL are observed. The size 

distribution of LDL shifts towards smaller particles, and the lipid composition of VLDL and 

LDL becomes altered (Khovidhunkit et al. 2000). During APR, HDL undergoes remarkable 

changes in its protein composition, resulting in proinflammatory particles called acute-

phase-HDL (Khovidhunkit et al. 2004). In acute-phase-HDL, the amount of apoA-I 

decreases and it is replaced by e.g. serum amyloid A (SAA) or lipopolysaccharide-binding 

protein (Malle et al. 1993, Jahangiri et al. 2009, Jahangiri 2010). The remodeling of HDL 

particles results in the generation of lipid-poor apoA-I and pre-β HDL (Pussinen et al. 2001, 

Jahangiri et al. 2009). According to some studies, the capacity of HDL to promote 

cholesterol efflux is impaired during APR (Jahangiri et al. 2009, McGillicuddy et al. 2009), 

but there are also contradictory results (van der Westhuyzen et al. 2007, Jahangiri 2010).  

 

2.2.7 Anti-atherogenic mechanisms of HDL 

The most recognized anti-atherogenic function of HDL is its ability to promote cholesterol 

efflux from cells in the arterial walls. In addition to mediating reverse cholesterol transport, 

HDL has several other atheroprotective features that are unrelated to lipid transportation. 

The major protein components of HDL, apoA-I and apoA-II, have antioxidant properties 

(Garner et al. 1998). Moreover, other proteins that are cotransported with HDL in the 

circulation, such as PON1, are effective antioxidants that destroy lipid hydroperoxides 

(Watson et al. 1995). The antioxidative feature inhibits the oxidation of LDL particles in the 

intima, thereby reducing their atherogenicity. HDL also suppresses the cytokine-induced 

expression of adhesion molecules by the endothelial cells, which reduces the recruitment of 

monocytes into the intima (Barter et al. 2004). It also enhances the synthesis of nitric oxide 

by the endothelium, and can thus ameliorate endothelial dysfunction (Yuhanna et al. 2001, 

Nofer et al. 2004). Moreover, HDL has anti-coagulant, anti-thrombotic, and antiapoptotic 
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properties (Epand et al. 1994, Sugatani et al. 1996, Viswambharan et al. 2004, Riwanto et 

al. 2013). 

 

2.2.8 MMP-8 in atherosclerosis and cardiovascular disease 

Several studies suggest that MMP-8 has a role in atherosclerosis. A major component of the 

fibrous cap in atherosclerotic lesions is collagen type I. Since MMP-8 is a collagenolytic 

enzyme that efficiently cleaves especially type I collagen, it may increase the vulnerability 

of atherosclerotic plaques and, thus, contribute to plaque rupture. Indeed, unstable 

atherosclerotic lesions and progressing atheromas display elevated concentrations of MMP-

8 (Molloy et al. 2004, Turu et al. 2006, Peeters et al. 2011), and MMP-8 colocalizes with 

cleaved collagen type I in the plaques (Herman et al. 2001b). At least macrophages, 

endothelial cells, and smooth muscle cells express MMP-8 within the atherosclerotic lesions 

(Herman et al. 2001b).  

Animal model studies that use MMP-8 and apoE double knockout mice display 

atherosclerotic plaques with reduced size, a decreased macrophage infiltration, and an 

increased collagen content compared to MMP-8+/+ apoE-/- mice (Laxton et al. 2009). Fewer 

endothelial cells, less angiogenesis (Fang et al. 2013), and fewer smooth muscle progenitor 

cells (Xiao et al. 2013) were observed in the plaques of MMP-8 and apoE double knockout 

animals. The adhesion of leukocytes onto the vascular epithelium is also reduced in MMP-

8 knockouts (Laxton et al. 2009). According to in vitro studies, MMP-8 cleaves angiotensin 

I and generates angiotensin II (Diekmann and Tschesche 1994, Laxton et al. 2009); 

concordantly, the MMP-8 knockout mice had lower angiotensin II levels and lower blood 

pressure (Laxton et al. 2009). The MMP-8-/- apoE-/- mice transplanted with MMP-8-

deficient SMCs had smaller atherosclerotic lesions than double knockout mice that had 

received SMCs from wild type mice (Xiao et al. 2013), which suggests that MMP-8 also 

promotes the migration of SMCs.  

In addition to the mouse models, knockdown of endogenous MMP-8 in human umbilical 

vein endothelial cells (HuVECs) down-regulated the platelet/endothelial cell adhesion 

molecule-1 (PECAM-1) expression via a reduced conversion of angiotensin I to angiotensin 

II (Fang et al. 2013). Knockdown of MMP-8 also significantly reduced the migration 

capacity and proliferation of HuVECs (Fang et al. 2013). A deficiency of MMP-8 in smooth 
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muscle cell progenitors diminished their ability to migrate through the endothelium and the 

ECM and into the arterial lesions (Xiao et al. 2014). The activation of MMP-8 in stem cells 

promoted the development of atherosclerotic lesions (Xiao et al. 2013). 

Numerous epidemiological studies suggest that circulating MMP-8 is a promising 

biomarker of cardiovascular diseases. Elevated serum and plasma MMP-8 concentrations 

are associated with the presence of CVD as well as with the incidence of CVD events 

(Tuomainen et al. 2007, Tuomainen et al. 2008, Momiyama et al. 2010, Tuomainen et al. 

2012, Pussinen et al. 2013). The exact origin of elevated serum and plasma MMP-8 in CVDs 

remains unclear. 

 

2.3 Periodontitis 

Periodontitis is an inflammatory disease of the tooth-supporting tissues. Its etiology includes 

environmental (microorganisms of the oral cavity), lifestyle (e.g. poor oral hygiene and 

smoking), genetic, and systemic factors (e.g. certain systemic diseases). Periodontitis is 

initiated by disturbances in the dental biofilm and host homeostasis. The host response 

against the microorganisms leads to local and systemic inflammation, and, eventually, to 

degradation of the tissues surrounding the teeth. Periodontitis is a widespread disease: 

according to WHO epidemiological data, its prevalence is 10-15% in adult populations 

worldwide (Petersen and Ogawa 2012). In the United States, 46% of adults have 

periodontitis, and 8.9% have the severe form of the disease (Eke et al. 2015), whereas in 

Finland, 64% of adults display signs of periodontitis (Knuuttila and Suominen-Taipale 

2008). Periodontitis, in addition to advanced caries, is a major cause of tooth loss and 

impaired mastication, and therefore it may have a severe effect on the quality of life. In 

addition, periodontitis may influence systemic health, as it has been associated with 

conditions such as CVD, diabetes, and adverse pregnancy outcomes (Mattila et al. 1989, 

Offenbacher et al. 1996, Grossi and Genco 1998, Sanz and Kornman 2013).  

Two major forms of periodontitis are aggressive periodontitis and chronic periodontitis. 

Additional categories of periodontal diseases include periodontitis as a manifestation of 

systemic disease, necrotizing ulcerative periodontitis, abscesses of the periodontium, and 

combined periodontic-endodontic lesions (Armitage 2004). This section mainly focuses on 

the most common form of the disease, chronic periodontitis. 
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2.3.1 The structure of the periodontium 

The periodontium is the functional unit that is formed by the tissues surrounding and 

supporting teeth: gingiva, root cementum, periodontal ligament, and the alveolar bone 

(Figure 5). The general function of the periodontium is to support, protect, and nourish the 

teeth.  

The gingiva covers the alveolar bone and the surface of the tooth coronally to the 

cementoenamel junction. The gingival epithelium is classified into three types: the oral 

keratinized epithelium, the sulcular parakeratinized epithelium facing the tooth in the 

gingival sulcus, and the junctional nonkeratinized epithelium attached to the tooth surface. 

The gingiva, especially the junctional epithelium, provides the first line of defence against 

oral pathogens. The connective tissue under the epithelium consist mainly of extracellular 

matrix with type I collagen, and fibroblasts. 

The periodontal ligament attaches the root to the alveolar bone. It is formed out of fibrous 

connective tissue, mainly type I collagen. The cells of the ligament are specialized 

fibroblasts. The one end of the periodontal ligament is attached to the root cementum and 

the other end is attached to the alveolar bone. The periodontal ligament absorbs chewing 

forces, and it contains nerve receptors that provide feedback on the magnitude of those 

forces to the brain. The periodontal ligament also provides nutrients to the periodontium 

and participates in the remodeling of the connecting tissue, alveolar bone, and cementum. 

The cementum is a calcified tissue covering the root apically to the cementoenamel junction. 

The alveolar bone is the bone that surrounds each tooth.  

 

2.3.2 Pathogenesis of periodontitis 

Periodontitis is a complex disease with a multifactorial aetiology. Its pathogenesis involves 

a dysbiotic microbial state, the host response against the microbes, and the resulting local 

and systemic inflammation. The severity of periodontal disease ranges from reversible 

inflammation of the gingiva (gingivitis) to irreversible breakdown of the periodontal tissues, 

loss of attachment and formation of periodontal pockets, and ultimately the loss of teeth. 

Adhesion and colonization of bacteria on the surface of the teeth leads to gingival 

inflammation that is characterized by swelling, redness, and bleeding. If the inflammation 
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is restricted to the gingiva, it can be reversed by appropriate treatment. Untreated gingivitis 

may lead to a more severe inflammation and degradation of deeper periodontal tissues, the 

periodontal ligament and the alveolar bone. One of the most significant pathological 

changes in periodontitis is the formation of periodontal pockets. A periodontal pocket is a 

deepened sulcus between the tooth and periodontal tissues (Figure 5, right side). It 

originates from the migration of the gingival epithelium apically along the surface of the 

tooth. A periodontal pocket is a favourable site for biofilm accumulation and a niche for 

anaerobic bacterial species.  

 

Figure 5. Structure of the periodontium and the effects of periodontitis. The left side of the 

tooth illustrates a healthy periodontium and the right side represents alterations caused by 

periodontitis. Reprinted from (Lockhart et al. 2012) with the permission of Wolters Kluwer Health. 

 

Dental biofilm is a complex and dynamic structure in which the bacteria interact with each 

other. Initial colonizers of the periodontal area adhere to each other by adhesins and form 

polymicrobial communities. The organisms in the communities are metabolically 

compatible, and they produce metabolic enzymes that enable the utilization of nutritional 

substrates more efficiently than for individual species in isolation. The microbes 

communicate and adapt to the communities, and they may develop collective activity and 

functions. (Hojo et al. 2009) 
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In periodontitis, the composition of the subgingival biofilm transforms from the symbiotic 

community that is characterized by the dominance of Gram-positive bacteria to a dysbiotic 

state with a majority of Gram-negative bacteria. Certain bacterial species are often found 

together in the subgingival plaque (Socransky et al. 1998). Of these bacterial complexes, 

especially the “red complex” which includes Porphyromonas gingivalis, Treponema 

denticola, and Tannerella forsythia, is strongly associated with the signs of periodontitis, 

such as periodontal pocket depth. However, these pathogens do not necessarily initiate the 

disease per se, but the inflammation and periodontal pockets create preferable conditions 

for the periodontitis-associated pathogens (Wade 2013). The current view is that the 

microbiota in periodontitis is diverse, and the organisms of the red complex can also be 

found in the absence of the disease (Könönen et al. 2007, Wade 2013). Plaque volume or 

the presence of certain pathogen species do not by themselves explain the severity of 

periodontitis, but the individual susceptibility and host response have a major role. For 

example, in individuals with genetic susceptibility, even a small amount of biofilm may lead 

to extensive tissue destruction.  

Recent approaches describe periodontitis as a polymicrobial perturbation of host 

homeostasis (Darveau 2010), and the pathogenesis can be explained by a “polymicrobial 

synergy and dysbiosis” model (Hajishengallis and Lamont 2012). According to these views, 

periodontitis is characterized by a synergistic and dysbiotic polymicrobial community rather 

than by just the presence of bacteria traditionally known as periodontopathogens. The 

keystone pathogen hypothesis suggests that certain pathogens, such as P. gingivalis, may 

induce the transformation of symbiotic microbial communities of the oral cavity into 

dysbiotic populations (Hajishengallis et al. 2012). The pathogenesis of periodontitis, 

including the transition of symbiotic microbiota to dysbiotic microbiota, is schemed in 

Figure 6. 

In the healthy state, the host immune response limits bacterial overgrowth in oral microbial 

communities. A controlled immune-inflammatory state maintains tissue homeostasis, which 

prevents excessive tissue destruction. Colonization with so-called keystone pathogens such 

as P. gingivalis disturbs the balance between the host and the microbiota, leading to 

dysbiosis (Hajishengallis and Lamont 2012, Hajishengallis et al. 2012). Even a low 

concentration of keystone pathogens may significantly modulate the host response and 

elevate the virulence of bacterial communities by interactive communication with other 
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bacterial species (Hajishengallis et al. 2012). The manipulation of the host response leads 

to quantitative and qualitative changes in the composition of biofilms. 

The virulence factors of P. gingivalis include the capsule, fimbriae, lipopolysaccharide 

(LPS), lipid A phosphatases, and gingipains. Gingipains are cysteine proteinases. They 

degrade large peptides and transferrin, which provides nutrients for the bacteria. They are 

involved in bacterial adhesion and invasion, and in the crosstalk between bacterial species 

in the biofilm. Gingipains modulate the host response by cleaving antibodies, antimicrobial 

peptides, complement components, and numerous cytokines, such as ILs and TNF-α 

(Hajishengallis et al. 2011, Vincents et al. 2011). Together, the virulence factors of P. 

gingivalis subvert the host immune response and increase the pathogenicity of oral 

microbial communities (Zenobia and Hajishengallis 2015). 

 

Figure 6. Schematic representation of the pathogenesis of periodontitis. Adapted from (Page 

and Kornman 1997) and (Hajishengallis 2015). 

 

Periodontitis has an episodic character, with periods of intense host response and periods of 

resolution of inflammation. Moreover, the disease is not evenly distributed among all teeth, 

but has sites of predilection. These characteristics further complicate the diagnostics of 

periodontitis and the evaluation of disease progression. 
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2.3.3 Host response 

Periodontal tissues are in close proximity to the microbes of the dental biofilm. As a 

defensive mechanism, the tissues express E-selectin, ICAMs, and IL-8 that facilitate the 

transmigration of neutrophils through the junctional epithelium to the gingival crevice, 

where they form a wall between the host tissues and the microbes (Tonetti et al. 1998, 

Darveau 2010). Even in healthy periodontium, approximately 30 000 neutrophils transit 

through the periodontal tissue every minute (Schiott and Loe 1970, Tonetti et al. 1998). 

Individuals with congenital or acquired neutrophil deficiencies invariably develop 

periodontitis (Hart et al. 1994). 

In periodontitis, the host immune response is dysregulated and the tissue homeostasis 

becomes disrupted. The dysregulation of the host response may originate from the challenge 

caused by the keystone pathogens and the pathogenic microbial state, or from 

immunoregulatory defects that may be driven by e.g. smoking or diabetes. As a response to 

dysbiotic microbiota, periodontal cells and inflammatory cells begin to produce cytokines, 

chemokines, and proteolytic enzymes, which leads to a cascade of inflammation. 

Neutrophils are considered to be the most important leukocytes that mediate the destruction 

of periodontal tissues. In the later stages of periodontitis, macrophages, antigen-presenting 

cells, and lymphocytes are also recruited at the site of inflammation. The expression of e.g. 

IL-1β, IL-6, and TNF-α by gingival epithelial cells and inflammatory cells amplify the 

inflammation of the periodontium and lead to the secretion of MMPs by host cells. This 

results in the destruction of hard and soft periodontal tissues. Thus, host-derived factors are 

mainly responsible for the tissue destruction in periodontitis. (Darveau 2010) 

 

2.3.4 Risk factors 

The established risk factors of periodontitis include poor oral hygiene, smoking, advanced 

age, male gender, ethnicity, and genetic factors (Genco and Borgnakke 2013). In addition 

to these, other behavioural and systemic factors, such as alcohol use, unhealthy diet, and 

stress, have been proposed. Medical conditions that include diabetes, obesity, and 

osteoporosis may also predispose to periodontal disease. Most of the risk factors, such as 

smoking, stress, and diabetes, are unlikely to initiate the disease, but rather modify the host 

immune response (Knight et al. 2016). The genetic factors associated with susceptibility for 
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periodontitis mainly include polymorphisms in immune response genes (Loos et al. 2005). 

Genetics is likely to have a stronger role in aggressive periodontitis and in early-onset 

periodontitis than in chronic periodontitis. The risk factors of periodontitis interact with 

each other and form a complex interrelationship. For example, heavy alcohol use is 

associated with poor oral hygiene and low socioeconomic status, and has effects on systemic 

health and the immune response. Therefore, it is usually impossible to define a single 

aetiological risk factor or attribute direct causality between risk factors and the disease 

(Heaton and Dietrich 2012).  

 

2.3.5 Diagnosis and treatment 

Usually, periodontitis has only few symptoms. They may include bleeding, redness and 

swelling of gingiva, halitosis, gingival recession, or movement of the teeth. The clinical 

diagnosis of periodontitis is based on the measurement of periodontal pockets with a 

periodontal probe. Usually, a pocket depth of 4 mm or more is considered pathological. In 

addition to pocket depths, at least bleeding on probing, plaque index, and gingival recessions 

are recorded. The amount of alveolar bone loss around the teeth is evaluated from 

radiographs. Loss of bone and attachment reflects the accumulated tissue destruction that 

has occurred during the current and past episodes of periodontitis.  

The basis of the treatment of periodontitis is to eliminate the biofilm and plaque retentions. 

The subgingival biofilm is removed by scaling and root planing using hand and ultrasonic 

instruments (Sanz et al. 2012). In addition, local antimicrobial agents, usually chlorhexidine, 

may be used. Certain severe cases may require systemic antibiotics and surgical therapy 

(Herrera et al. 2012). Oral hygiene instructions and tobacco counseling are essential for the 

successful treatment and prevention of periodontitis. Furthermore, all patients need regular 

supportive periodontal therapy to maintain the treatment outcome (The American Academy 

of Periodontology 2000). 

 

2.3.6 Biomarkers of periodontitis 

The clinical examination of periodontal tissues requires dental professionals and is time-

consuming and expensive. For large-scale studies, health promotion, and the screening for 
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high-risk individuals in the general population, an attractive approach is to measure 

biomarkers of periodontitis in oral fluids. Biomarkers reflect the current inflammatory 

activity, whereas bone loss evaluated from radiographs and periodontal pockets might have 

originated from previous episodes of periodontal tissue destruction (Buduneli and Kinane 

2011). Clinical and radiographic examinations may not be optimal for identifying 

individuals highly susceptible to periodontitis or non-responsive to treatment. This is 

because subject-level factors, such as microbial composition or the type and magnitude of 

the immune response have a major effect on the progression of the disease (Offenbacher et 

al. 2008). Optimally, measurement of biomarkers could aid early detection of periodontitis, 

the evaluation of response to therapy, and the identification of sites with active disease 

progression.  

Biomarkers of periodontitis include host-derived markers, such as cytokines, MMPs, or 

byproducts of tissue breakdown, and also pathogen-derived markers such as bacterial DNA. 

The markers are usually detected in a sample of saliva, mouthrinse, or gingival crevicular 

fluid (GCF), which are all non-invasively obtained. The GCF is a serum-derived fluid that 

contains locally produced molecules, such as inflammatory mediators and tissue breakdown 

products, and systemically derived markers (Golub and Kleinberg 1976). Its flow increases 

in periodontitis along with increased blood flow and vascular permeability in the periodontal 

tissues. Samples of GCF are collected from periodontal pockets or gingival sulcus using 

paper pins. Saliva is a promising diagnostic fluid of periodontitis, since it is easy to collect 

without specialized equipment or personnel, and it is available in relatively large volumes. 

Biomarkers in saliva and mouthrinse reflect the overall status of the mouth, whereas the 

GCF represents an individual site.  

As periodontitis is a complex and multifactorial disease, it is unlikely that a single marker 

of disease activity and prognosis could be found. Up to now, hundreds of studies have 

evaluated different biomolecules in oral fluids as possible biomarkers of periodontitis 

(Buduneli and Kinane 2011). Examples of these biomarkers are shown in Table 3. 
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Table 3. Examples of periodontitis biomarkers 

Biomarkers of bacterial origin 

 Bacterial DNA detected by conventional PCR or quantitative PCR 

 Viable bacteria detected by culture 

 LPS 

 

Biomarkers of host origin 

 Inflammatory markers 

 IL-1β, IL-6, IL-8 

 TNF-α 

 Matrix metalloproteinases 

 MMP-8, MMP-9, MMP-13 

 Tissue breakdown products 

 ICTP 

 Markers of bone remodeling 

 RANKL, OPG, OPN, cathepsin K 

 Antibodies against periodontal pathogens 

 IgG, IgA 

LPS, lipopolysaccharide; IL, interleukin; TNF, tumour necrosis factor; MMP, matrix 
metalloproteinase; ICTP, carboxyterminal telopeptide of type I collagen; RANKL, receptor 
activator of NF-κB ligand; OPG, osteoprotegerin; OPN, osteopontin; Ig, immunoglobulin 

 

In addition to oral fluids, markers of periodontitis can be detected in samples of serum or 

plasma (Pussinen et al. 2007a). Periodontitis patients manifest elevated systemic levels of 

cytokines, CRP, fibrinogen, SAA, and MMPs (Loos et al. 2000, Joshipura et al. 2004, 

Amabile et al. 2008, Vuletic et al. 2008, Marcaccini et al. 2009). In addition, serum antibody 

levels against periodontopathogens reflect the host immune response in periodontitis 

(Pussinen et al. 2011). 
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2.3.7 MMP-8 in periodontitis 

Enhanced expression and activation of host-derived MMPs is a major factor responsible for 

tissue degradation in periodontitis. MMP-8 is considered as the most important MMP 

involved in the breakdown of periodontal tissues, because neutrophil derived MMP 8 is the 

predominant MMP found in the GCF obtained from periodontal lesions (Sorsa et al. 1988, 

Sorsa et al. 1990, Sorsa et al. 1994, Ingman et al. 1996, Kiili et al. 2002). MMP-8 in 

periodontal tissues originates mainly from degranulating neutrophils. In addition to 

neutrophils, sulcular epithelial cells, gingival and periodontal ligament fibroblasts, and 

endothelial cells in the periodontal tissues express MMP 8 during periodontitis (Kiili et al. 

2002, Sorsa et al. 2006). Proteases produced by periodontal pathogens, such as P. gingivalis 

and T. denticola, are capable of activating MMP-8 (Sorsa et al. 1992a). The primary 

component of the ECM in periodontal tissues is collagen type I, which is the major substrate 

of MMP-8. In addition to degrading collagen, MMP-8 may influence the immune response 

in periodontitis by processing non-matrix bioactive molecules, e.g. cytokines such as TGF-

β, and chemokines such as CXC chemokines (neutrophil chemoattractants) (Van den Steen 

et al. 2003, Van Lint and Libert 2006, Tester et al. 2007, Åström et al. 2014).  

Because of its central role in the pathogenesis of periodontitis, MMP-8 is among the most 

studied biomarkers of periodontal disease. Elevated levels of MMP-8 in gingival tissue 

samples, GCF, mouthrinse, and saliva are associated with the presence and the severity of 

periodontitis (Sorsa et al. 2016). MMP-8, especially the active form, also reflects the 

progression of the disease, as well as the response to periodontal treatment (Lee et al. 1995, 

Chen et al. 2000).  

 

2.4 Periodontitis and cardiovascular disease 

The first studies to show a link between oral infections and CVD were published in the 

1980’s (Mattila et al. 1989, Syrjänen et al. 1989). Since then, numerous epidemiological 

cross-sectional, case-control, and prospective cohort studies, complemented by several 

meta-analyses, have found an association between periodontitis and cardiovascular 

disorders (Bahekar et al. 2007, Humphrey et al. 2008, Blaizot et al. 2009, Orlandi et al. 

2014, Leng et al. 2015). The outcomes in these studies have included the presence of CVD, 

intima-media thickness, carotid plaque thickness, myocardial infarction, acute coronary 
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syndrome, peripheral arterial disease, abdominal aortic aneurysm, stroke, and 

cardiovascular death. A recent study on a cohort of nearly 40 000 individuals with more 

than 15 years of follow-up shows that prevalent and incident periodontitis is associated with 

an increased risk of CVD (Yu et al. 2015). Additionally, a prospective study with clinical 

examination and microbiological sampling found that longitudinal improvement in 

periodontal status and a decreased amount of periodontal bacterial species are related to a 

decreased progression of carotid atherosclerosis (Desvarieux et al. 2013).  

The association between periodontitis and cardiovascular disorders persists even when 

confounding factors, such as smoking, age, gender, or overweight, are taken into account 

(Bahekar et al. 2007, Humphrey et al. 2008, Buhlin et al. 2011, Lockhart et al. 2012, Rydén 

et al. 2016). However, the cause-and-effect relationship between the diseases has been under 

debate (Lockhart et al. 2012). Periodontitis and CVD share several risk factors, such as 

smoking, diabetes, stress, and obesity, which are also common in populations. Certain 

genetic polymorphisms also predispose to both diseases (Schaefer et al. 2009, Kallio et al. 

2014). In most observational studies, the association between periodontitis and CVD is 

partially, but not totally, explained by adjustment for the cardiovascular risk factors (Leng 

et al. 2015).  

Periodontal pathogens, their virulence factors, and endotoxins are able to access the 

systemic circulation via inflamed periodontal pockets while e.g. brushing or flossing teeth, 

causing repeated bacteremia (Kinane et al. 2005, Forner et al. 2006, Crasta et al. 2009). In 

addition, the bacteria may be transported in the circulation inside the phagocytosing cells 

(Li et al. 2008, Carrion et al. 2012). The bacteria are also able to attach to the surface of 

leukocytes and erythrocytes via complement receptors (Belstrøm et al. 2011). Periodontal 

pathogens and their DNA have been found in atherosclerotic plaques in coronary and carotid 

arteries, in aneurysmal walls, and in intraluminal thrombi (Haraszthy et al. 2000, Ohki et al. 

2012, Rangé et al. 2014). Even viable bacteria have been detected in the plaques (Kozarov 

et al. 2005). However, it is not clear whether the bacteria in the plaques have a role in 

atherogenesis or whether they have been found by chance. Some periodontopathogens are 

capable of invading endothelial cells and smooth muscle cells within the plaques 

(Deshpande et al. 1998, Reyes et al. 2013). The bacteria and their products such as LPS may 

increase the expression of adhesion molecules and proinflammatory cytokines by the 

endothelial cells, promoting the adherence of monocytes and the development of local 
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inflammation in the vascular wall (Doherty et al. 1989, Montgomery et al. 1991). 

Furthermore, the pathogens and their products may be toxic to the endothelial cells, leading 

to apoptosis and disturbance in endothelial integrity. P. gingivalis and LPS induce LDL 

aggregation and the transformation of macrophages into foam cells (Giacona et al. 2004, 

Miyakawa et al. 2004, Hashimoto et al. 2006), and enhance the proliferation of SMCs in the 

intima (Inaba et al. 2009). Periodontal bacteria are able to activate platelets and induce 

coagulation, platelet aggregation, and thrombosis (Roth et al. 2006). In addition, they 

stimulate the production and activation of MMPs by various cell types (Ding et al. 1995). 

According to seroepidemiological studies, elevated levels of serum antibodies against 

periodontal pathogens, especially P. gingivalis and Aggregatibacter 

actinomycetemcomitans, are associated with prevalent CVD and the risk for stroke, AMI, 

or future CHD (Pussinen et al. 2003, Pussinen et al. 2004a, Pussinen et al. 2004b, Beck et 

al. 2005, Pussinen et al. 2005, Pussinen et al. 2007b, Mustapha et al. 2007). A study with a 

nationally representative sample of almost 7000 individuals in the US found that 

cardiovascular mortality was lowest in either individuals with low or high levels of antibody 

against P. gingivalis (Sanchez-Torres et al. 2015). Thus, the host response might also have 

a protective role in the complex relationship between periodontitis and CVD. In addition, 

individuals with increased serum IgG antibody titres against periodontal bacteria exhibited 

lowered serum CRP levels and lower serum 8-isoprostane levels, which in turn have an 

inverse association with CVD (Singer et al. 2015). 

Chronic periodontitis leads to systemic inflammation. Locally produced cytokines and 

inflammatory mediators, such as IL-1β, IL-6, TNF-α, and prostaglandins, are spread into 

the circulation. These inflammatory mediators may lead to acute phase response, 

characterized by elevated concentrations of CRP and SAA (Ebersole et al. 2002, Schenkein 

and Loos 2013). CRP, which is considered a marker of CVDs, is significantly elevated in 

periodontitis patients (Paraskevas et al. 2008). In addition, cross-reactivity between 

bacterial and host-derived antigens may contribute to atherogenesis. The systemic antibody 

response to periodontal pathogens may lead to the production of cross-reactive antibodies 

against host antigens through molecular mimicry (Schenkein and Loos 2013). The most 

relevant of such antigens for increased atherosclerosis risk are modified LDL and the 

members of the heat shock protein family (Buhlin et al. 2015). The gingipain of P. gingivalis 

and chaperonin 60 of A. actinomycetemcomitans share molecular identities with epitopes on 
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modified LDL (Turunen et al. 2012, Wang et al. 2016). Increased oxidative stress is also 

associated with periodontitis and the pathogenesis of CVDs. Peripheral neutrophils isolated 

from periodontitis patients exhibited superoxide hyperactivity (Ling et al. 2016).Moreover, 

the oxidative status is increased both locally in the saliva and GCF, and also systemically, 

i.e. in the serum of periodontitis patients (Akalιn et al. 2007).   

Periodontitis is associated with changes in lipoprotein structure and metabolism. Patients 

with chronic periodontitis have elevated levels of LDL cholesterol and TGs (Lösche et al. 

2000, Katz et al. 2002, Joshipura et al. 2004), and also high VLDL cholesterol (Ramirez-

Tortosa et al. 2010). In addition, they have low HDL cholesterol and apoA-I levels (Buhlin 

et al. 2003, Pussinen et al. 2004c, Monteiro et al. 2009). The over-production of reactive 

oxygen species in periodontitis patients may lead to increased LDL oxidation (Bastos et al. 

2012). In addition to oxidation, P. gingivalis is able to cleave apoB-100 and modify LDL 

structure (Miyakawa et al. 2004, Bengtsson et al. 2008). The pro-atherogenic lipoproteins 

that are isolated from periodontitis patients carry LPS, which leads to macrophage activation 

and increased uptake of cholesterol (Kallio et al. 2008, Kallio et al. 2013). Periodontitis 

decreases the cholesterol efflux capacity of HDL and causes changes in HDL metabolism 

and structure similar to those observed during APR (Pussinen et al. 2004c). 

Intervention studies show that periodontal treatment is related to an improvement of 

atherosclerotic conditions. Improved endothelial function following periodontal 

intervention has been observed in several studies and meta-analyses (Mercanoglu et al. 

2004, Seinost et al. 2005, Elter et al. 2006, Tonetti et al. 2007, Piconi et al. 2009, Gurav 

2014, Orlandi et al. 2014). In addition, significantly decreased concentrations of systemic 

inflammation markers hsCRP, TNFα, and IL-6, decreased concentration of total cholesterol, 

and increased HDL cholesterol were detected after periodontal therapy in a meta-analysis 

that included 25 intervention trials (Teeuw et al. 2014). Periodontal patients who already 

suffered from other additional systemic diseases, such as CVD or diabetes, showed most 

improvement in response to treatment. However, at present there is insufficient evidence to 

demonstrate that periodontal treatment per se could prevent CVD in periodontitis patients 

(Li et al. 2014), since randomized controlled clinical trials to evaluate the effect of 

periodontal interventions on CVD events have not been conducted due to ethical issues. 
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2.5 Subantimicrobial-dose doxycycline 

Tetracyclines are widely used antimicrobial agents. In the 1990’s, it was discovered that, in 

addition to destroying pathogens, tetracyclines also inhibit the degradation of the ECM by 

downregulating host-derived MMPs (Golub et al. 1995). The MMP-inhibitory property of 

tetracyclines is unrelated to their antimicrobial activity (Golub et al. 1998).  

Doxycycline is the most commonly used tetracycline. It inhibits MMPs by 1) inhibiting the 

catalytic activity, 2) suppressing gene expression, and 3) preventing the proteolytic and 

oxidative activation of MMPs (Sorsa et al. 1994, Uitto et al. 1994, Smith et al. 1999). 

Doxycycline reduces collagenase activity in oral fluids at both regular and low 

(subantimicrobial) doses (Golub 1995). At the moment, subantimicrobial-dose doxycycline 

(SDD) is approved as an adjunctive treatment for periodontitis with a dose of 20 mg twice 

daily. The use of SDD, in adjunction with scaling and root planing, results in statistically 

and clinically significant gains in clinical attachment levels and reductions in probing depths 

when compared to those achieved by scaling and root planing alone (Reddy et al. 2003, 

Preshaw et al. 2004). Doxycycline at subantimicrobial dose targets the host response, not 

bacteria. It does not have antibacterial effects, and therefore the SDD treatment does not 

result in the development of resistant strains or the acquisition of multiantibiotic resistance 

(Preshaw et al. 2004). The frequency of adverse events, such as musculoskeletal syndrome, 

is also low at these dose levels (Reddy et al. 2003). 

In addition to the inhibition of MMPs, doxycycline may also have beneficial effects on 

systemic inflammation, oxidative stress, and serum lipoproteins. In rats with experimental 

periodontitis, SDD decreased the total oxidative status and oxidative stress index of serum 

(Yagan et al. 2014). In a placebo-controlled clinical trial, a 2-year treatment with SDD 

significantly decreased serum MMP-9 and hsCRP levels in postmenopausal women with 

periodontitis (Payne et al. 2011). In addition, the treatment increased HDL cholesterol 

among women who were more than 5 years postmenopausal in the same trial (Payne et al. 

2011).  
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3. AIMS OF THE STUDY 

 

The general aim of this thesis was to investigate genetic variation that affects circulating 

MMP-8 levels, the link between MMP-8-associated genetic variants and cardiovascular 

disorders, and the role of MMP-8 in lipoprotein metabolism and in diagnostics of 

periodontitis.  

The specific aims were: 

1. To find genetic variants and regulatory mechanisms that affect serum MMP-8 

concentration, and to investigate the relevance of these genetic variants in 

cardiovascular disorders (I). 

2. To examine if MMP-8 affects the structure and function of apoA-I and HDL in 

vitro and in an MMP-8 knockout mouse model (II). 

3. To study the effect of doxycycline as an MMP inhibitor on the processing of 

apoA-I by MMP-8 (II). 

4. To investigate the effect of SDD treatment on the cholesterol efflux capacity of 

serum in a placebo-controlled clinical trial (III). 

5. To evaluate the potential of salivary MMP-8, IL-1β, P. gingivalis, and their 

cumulative combination in the diagnostics of periodontitis in patients with 

cardiovascular disorders (IV). 
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4. STUDY SUBJECTS AND METHODS 

 

A summary of the methods used in the studies I-IV is presented in Table 4. The methods 

are explained in detail in Section 4.2. 

 

Table 4. Summary of methods used in the studies. 

Method Publication 

Genotyping I 

Isolation of human neutrophils I 

Complement activation by inulin I 

Serum and plasma MMP-8 concentration (IFMA) I 

Release of MMP-8 from neutrophils (ELISA) I 

Measurement of complement activity (WIESLAB® immunoassay) I 

Isolation of LDL and HDL II, III 

Preparation of LPDS II 

Preparation of apoA-I-lipid discs II 

Incubation of apoA-I, apoA-I-lipid discs, and HDL with activated MMP-8 II 

Protein sequencing by ISD-MALDI-MS II 

Acetylation of LDL II, III 

Radiolabeling of acetylated LDL II, III 

Culturing of THP-1 cells II, III 

Protein concentration (Lowry method) II, III 

Cholesterol efflux from THP-1 cells II, III 

MMP-8 knockout mouse model II 

Serum lipoprotein profiles II 

Serum cholesterol concentration (enzymatic method) II 
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Serum triglyceride concentration (enzymatic method) II 

Serum apoA-I concentration (ELISA) II, III 

Serum phospholipid concentration (enzymatic method) II 

Serum PLTP activity II 

Serum PON1 activity II 

SDS PAGE II 

Silver staining II 

Western blotting II 

Serum apoA-II concentration (ELISA) III 

Serum SAA concentration (ELISA) III 

Saliva MMP-8 concentration (IFMA) IV 

Saliva IL-1β concentration (Luminex®-xMAPTM technique) IV 

Saliva P. gingivalis quantitation (qPCR) IV 

Statistical analysis I, II, III, IV 

MMP, matrix metalloproteinase; IFMA, time-resolved immunofluorometric assay; ELISA, enzyme-
linked immunosorbent assay; LDL, low-density lipoprotein; HDL, high density lipoprotein; LPDS, 
lipoprotein-deficient serum; apoA-I, apolipoprotein A-I; ISD-MALDI-MS, in source decay matrix-
assisted laser desorption/ionization mass spectrometry; PLTP, phospholipid transfer protein; PON1, 
paraoxonase 1; SDS PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis; SAA, 
serum amyloid A; IL, interleukin; qPCR, quantitative polymerase chain reaction 

 

4.1 Study subjects 

4.1.1 The Corogene study 

The Corogene study is a cohort study that was conducted in the Helsinki University Central 

Hospital between June 2006 and March 2008 (Vaara et al. 2012). It included 5295 

symptomatic patients of Finnish origin that had been assigned to coronary angiogram for 

any reason. The general purpose of the study was to follow contemporary trends in CHD 

and its treatment, risk factors, genetics, and epigenetics. The subjects were classified into 

four groups according to the cardiologic diagnosis and findings of the coronary angiogram: 
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(1) Patients with no significant CAD with < 50% stenosis of the coronary arteries; (2) 

Patients with stable CAD with ≥ 50% stenosis in at least one coronary artery; (3) Patients 

with acute coronary syndrome (ACS) having an episode of chest pain, typical ECG changes, 

elevated levels of cardiac biomarkers, and ≥ 50% stenosis in at least one coronary artery; 

and (4) ACS-like, non CAD patients having chest pain with or without changes in ECG, but 

no significant stenosis in coronary angiogram. 

Data on medications, other diseases, previous laboratory measurements, and other relevant 

information were collected by questionnaires and from hospital records. Patients were 

considered as having hypertension, dyslipidemia, or diabetes if they were prescribed with 

medication for these disorders. Patients were defined as current smokers if they had smoked 

tobacco during the previous six months or had quit smoking within the past six months of 

the time of examinations. Those who had quit smoking for more than six months prior to 

examinations were defined as ex-smokers. Blood samples were drawn from the arterial line 

during angiography. 

The study was approved by the Helsinki University Central Hospital Ethics Committee. All 

patients signed an informed consent form. 

 

4.1.2 The Parogene study 

The Parogene study was a sub-study of the Corogene study. The purpose of the Parogene 

study was to investigate the association between CAD and oral health concentrating on 

periodontitis (Buhlin et al. 2011). Ten per cent of the Corogene subjects were randomly 

selected for a complete clinical and radiographic oral examination performed by two 

periodontists and one radiologist. A total of 506 patients participated in the Parogene study. 

Stimulated saliva and subgingival plaque samples were collected during the clinical 

examination and the subjects filled in a questionnaire about their previous dental care and 

intake of antibiotics.  

 

4.1.3 The FINRISK study 

The FINRISK study is a Finnish national population-based survey on non-communicable 

diseases and their risk factors (Borodulin et al. 2015). The survey has been conducted every 
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five years since 1972. The study was performed in five geographical areas in Finland in the 

years 1992, 1997, 2002, and 2007, and it included a clinical examination, questionnaire, and 

a wide spectrum of laboratory analyses. The study includes up to 20 years of follow-up data. 

Cases with prevalent CHD or CVD at baseline were identified 1) as a physician-diagnosed 

disease in the questionnaire, 2) from the disease-associated drug reimbursement records 

obtained from the Social Insurance Institution of Finland, and 3) from the National Hospital 

Discharge register for hospitalizations. The CHD events included AMI, bypass surgery, and 

coronary angioplasty. The CVD events included CHD events and stroke. The incident CHD 

events, CVD events, and cause-specific and all-cause deaths during the follow-up were 

identified via 1) the drug reimbursement records from the Social Insurance Institution of 

Finland, 2) the National Hospital Discharge register for hospitalizations, and 3) the National 

Causes-of-Death Register. 

The study was approved by the Ethics Committee of the National Public Health Institute 

(KTL) and all the subjects gave their informed consent. 

 

4.1.4 Postmenopausal osteopenic females with periodontitis 

The study on subantimicrobial-dose doxycycline treatment was a placebo-controlled, 

double-blind, randomized clinical trial that was conducted at the University of Stony Brook, 

School of Dental Medicine (Stony Brook, NY, USA). The participants were 

postmenopausal osteopenic females aged between 45 and 70 years with at least nine 

posterior teeth. They had a history of moderate to advanced chronic periodontitis defined as 

at least two sites with probing depths of ≥ 5 mm together with bleeding on probing, ≥ 5 mm 

clinical attachment loss, and radiographic evidence of alveolar bone loss. They were 

undergoing periodontal maintenance treatment at the moment of the study. The participants 

had no history of myocardial infarction, stroke, or chest pain. Forty-five subjects who had 

been randomly assigned to take placebo (n = 26) or doxycycline hyclate (20 mg, n = 19) 

tablets twice daily for 2 years were included in the study. Blood samples were drawn at 

baseline, 1-, and 2-year appointments. The Stony Brook Institutional Review Board 

approved the study protocol and the participants signed an addendum consent form to 

conduct additional serum analyses. 
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4.2 Methods 

4.2.1 Genotyping and imputation (I) 

Genome-wide SNP data on 2500 patients of the Corogene cohort with either ACS or 

previous myocardial infarction were obtained with the Illumina Human 610K genotyping 

SNP (Illumina, San Diego, CA) in the Wellcome Trust Sanger Institute (Hinxton, 

Cambridge, UK). Individuals with a non-European background based on multi-dimensional 

scaling, a failed gender check, low genotyping frequency (< 95%), excess relativeness, or 

excess heterozygosity were excluded. SNPs were excluded if they had a low call rate (< 

95%), a low minor allele frequency (< 1%), or if they were not in Hardy-Weinberg 

equilibrium (p < 10-6). After filtering, the data set was imputed with MACH 1.16 using 

HapMap 2, release 22 CEU reference population. Imputed SNPs were filtered for high 

imputation quality (r2 > 0.8) and for minor allele frequency (MAF > 1%), which resulted in 

~2.3 million SNPs for the Corogene study subjects. 

The FINRISK subjects were genotyped by using Illumina HumanCoreExome, Illumina 

OmniExpress, Illumina Human 610-Quad, or Affymetrix Genome-Wide Human SNP 6.0 

genotyping arrays. Individuals with a failed gender check, excess heterozygosity, or excess 

relatedness were excluded. The filtered dataset was imputed using IMPUTE v2 and the 1000 

Genomes Project EUR population as the reference panel. After imputation, the SNPs were 

filtered for high imputation quality (r2 > 0.8) and for minor allele frequency (MAF > 1%), 

which resulted in ~7.4 million SNPs for the FINRISK subjects. 

In total, after the exclusions, the genome-wide SNP data and serum MMP-8 concentrations 

were available for 2203 subjects of the Corogene cohort and 3846 subjects of the FINRISK 

1997 cohort. 

 

4.2.2 Measurement of serum and plasma MMP-8 (I) and saliva MMP-8 (IV) 

MMP-8 was measured from the serum samples taken from the Corogene subjects and the 

subjects of the FINRISK 1997 cohort (study I), and from the saliva samples of the Parogene 

subjects (study IV) with a time-resolved immunofluorometric assay (IFMA) (Medix 

Biochemica, Kauniainen, Finland) according to the manufacturer’s instructions. The 

interassay coefficient of variation (CV%) was 7.3% and the detection limit 0.08 ng/ml. 
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After performing the genome-wide association analysis on serum MMP-8, we investigated 

if the SNPs that were associated with serum MMP-8 were also associated with plasma 

MMP-8. For this purpose, we randomly chose 100 individuals from the Corogene cohort 

with each genotype of the SNP rs800292 (GG, GA, and AA; 300 individuals in total), and 

another 100 individuals with each genotype of the SNP rs1560833 (GG, GA, and AA; 300 

individuals in total) who were matched for age, gender, and CAD status. Their citrate plasma 

samples were analyzed for MMP-8 by the same assay as the serum samples. 

We searched for Trans- and Cis- expression quantitative trait loci (eQTLs) in the Blood 

eQTL Browser (http://www.genenetwork.nl/bloodeqtlbrowser/) (Westra et al. 2013) to 

study whether the top SNPs identified from the genome-wide association analysis were 

associated with gene expression levels. 

 

4.2.3 The Complement activation assay (I) 

For the complement activation assay, twelve male subjects with each genotype of the SNP 

rs800292 (GG, GA, and AA; 36 individuals in total) matched for age and CAD status were 

selected from the Corogene cohort. The alternative pathway of complement was activated 

in their serum samples by adding 2 mg/ml inulin. Human neutrophils were isolated from 

fresh blood of a healthy volunteer by using PolymorphPrep (Axis-Shield PoC, Oslo, 

Norway) according to the instructions of the manufacturer. Red blood cells were lysed with 

erythrocyte lysis buffer (150 mM NH4Cl, 10 mM NaHCO3, 1 mM EDTA, pH 7.7) and the 

neutrophils were placed into Hank’s Balanced Salt Solution (HBSS). Inulin-treated serum 

samples were applied on the neutrophils and the cells were incubated at +37°C for 2 h. The 

samples were centrifuged at low speed and the supernatants were collected. MMP-8 

concentrations were analyzed from the supernatants and sera by Human Quantikine MMP-

8 ELISA kits (R&D Systems, Minneapolis, USA) according to the instructions of the 

manufacturer.The MMP-8 concentrations in the serum samples were subtracted from the 

MMP-8 concentrations in the supernatants to account for background MMP-8. Mean values 

of four replicated measurements were used in the statistical analyses. 

For evaluation of the activities of complement pathways, one hundred individuals with each 

of the three genotypes of the GWAS top SNP rs800292 (300 individuals in total) matched 

for age, gender, and CAD status were randomly chosen from the Corogene cohort. The 



 

53 
 

activities of classical, alternative, and lectin pathways of complement in serum samples 

were measured by the WIESLAB® Complement system enzyme immunoassays 

(EuroDiagnostica, Malmö, Sweden) according to the instructions of the manufacturer. The 

complement activity levels were expressed as percentage of positive control. 

 

4.2.4 Isolation of human LDL and HDL and bovine LPDS (II, III) 

Human LDL, HDL2, and HDL3 were isolated from a fresh plasma pool by sequential 

ultracentrifugation with density cut-offs of 1.019 - 1.063 g/ml for LDL, 1.063 – 1.12 g/ml 

for HDL2, and 1.12 – 1.21 g/ml for HDL3 using solid KBr to adjust the densities. 

Lipoprotein-deficient serum (LPDS) was prepared from fetal bovine serum (FBS) by 

ultracentrifugation using solid KBr to adjust the density, and dialyzed and sterile filtered 

prior to use. 

 

4.2.5 Preparation of apoA-I-lipid discs (II) 

Discoidal proteoliposomes were prepared from apoA-I, phosphatidylcholine (PC), and 

cholesterol by the sodium cholate dialysis method (Matz and Jonas 1982). The molar ratios 

of apoA-I:PC:cholesterol in the particles were 1:50:0, 1:50:7, and 1:200:12. 

 

4.2.6 Incubation of apoA-I, apoA-II, apoA-I-lipid discs, and HDL with MMP-8 and 

inhibitors (II) 

Human recombinant MMP-8 (ProteaImmun, Berlin, Germany) was activated by incubating 

with 1 mM aminophenyl mercuric acetate (APMA). Lipid-free apoA-I, apoA-II, apoA-I-

lipid discs with three different compositions, HDL2, and HDL3 were incubated with 

activated MMP-8 in a reaction buffer containing 50 mM Tris-HCl, 200 mM NaCl, and 1 

mM CaCl2, pH 7.4. Incubations were performed in the absence and presence of the MMP 

inhibitors Ilomastat and doxycycline. ApoA-I, apoA-I-lipid discs, and HDL that had been 

incubated without MMP-8 in the reaction buffer with APMA served as controls. 

For SDS PAGE, the reactions were stopped by adding Laemmli sample buffer and boiling 

for 5 minutes. The contents of the samples were visualized by running 15% SDS PAGE 
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under reducing conditions and then by silver staining. In addition, Western blotting was 

performed with a polyclonal and two monoclonal apoA-I antibodies with known epitopes. 

The epitopes for the monoclonal antibodies were the amino acids 2-8 (N-terminal domain) 

and 211-220 (C-terminal domain) of human apoA-I. 

The cleavage sites of apoA-I were identified by in-source decay matrix-assisted laser 

ionization mass spectrometry (ISD-MALDI-MS). As a control, the intact apoA-I was also 

analyzed by ISD-MALDI-MS. 

 

4.2.7 Radiolabeling of LDL (II, III) 

Isolated LDL was acetylated in the presence of acetic anhydride (Goldstein et al. 1979) and 

sterile filtered. Thereafter, acetyl-LDL (acLDL) was radiolabeled by incubating it with 

[1α,2α(n)3H]cholesteryl oleate (PerkinElmer, Waltham, MA) dissolved in dimethyl 

sulfoxide. 

 

4.2.8 Cell culture and loading with acetylated LDL (II, III) 

Human THP-1 monocytes were obtained from the American Type Culture Collection 

(ATCC). The cells were maintained in complete RPMI 1640 medium supplemented with 

10% (v/v) FBS, 25 mM HEPES, 100 U/ml penicillin, and 100 μg/ml streptomycin at +37 

°C in a humidified atmosphere of 5% CO2. To differentiate the cells into macrophages, they 

were incubated with 100 nM phorbol 12-myristate 13-acetate (PMA) in the growth medium 

at a density of 500,000 cells/ml for 72 h. To transform the differentiated macrophages into 

foam cells, they were washed twice with phosphate buffered saline (PBS) and loaded with 

[1α,2α(n)-3H]cholesteryl oleate–acLDL (10 μg of protein/ml) in RPMI 1640 medium 

containing 5% LPDS, 25 mM HEPES, 100 U/ml penicillin, and 100 μg/ml streptomycin for 

48 h. Before the efflux experiments, the cells were washed twice with PBS and the medium 

was changed to DMEM supplemented with 25 mM HEPES and the antibiotics. 

 

 

 



 

55 
 

4.2.9 Cholesterol efflux to MMP-8 treated acceptor particles (II) 

Lipid free apoA-I, apoA-I-lipid discs, HDL2, and HDL3 were incubated with activated 

MMP-8 in the absence and presence of MMP inhibitors for 12 h. Proteolysis was stopped 

by 10 mM EDTA and the samples were dialyzed against PBS before the efflux experiments. 

The acceptor particles were applied to the cholesterol-loaded macrophages (10 μg of apoA-

I or 25 μg of HDL protein / ml) and incubated for 16 h. Control cells were incubated in the 

absence of acceptor particles to measure spontaneous cholesterol efflux to the medium. 

After incubations, the medium was collected and the cells were lyzed with 0.2 M NaOH. 

The radioactivity in the medium and the cells were analyzed by liquid scintillation counting. 

The cholesterol efflux to the medium was calculated as the proportion of cholesterol 

released into the medium of the total cholesterol in the medium and the cells. Efflux to the 

incubation medium in the absence of acceptor particles accounting for spontaneous efflux 

was subtracted. 

 

4.2.10 Cholesterol efflux to patients’ serum (III) 

Serum (1% v/v) from patients receiving either SDD or placebo was applied to triplicate 

wells containing acLDL-loaded macrophages and incubated for 16 h. Radioactivity in the 

medium and the cells was analyzed and the cholesterol efflux to the medium was calculated 

as in study II.  

 

4.2.11 MMP-8 knockout mice (II) 

MMP8-/- mice were a kind gift from Prof. Carlos López-Otín, Oviedo, Spain (Balbín et al. 

2003). MMP8-/- mice were backcrossed to the C57BL/6 background. Wild type (WT) 

C57BL/6 mice were used as controls. Mice (8 MMP8-/- females, 5 MMP8-/- males, 7 WT 

females, and 8 WT males) were sacrificed at the age of 8 weeks and their fasting blood 

samples were collected. The experimental protocols were approved by the National Animal 

Care and Use Committee of Finland. 

Serum was analyzed for the concentrations of apoA-I by an ELISA-based assay, and 

cholesterol and TG levels were determined by enzymatic colorimetric assays. The activity 

of PLTP was determined by a radiometric assay and the activity of PON1 by a chromogenic 
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method using paraoxon as a substrate. Serum was depleted of apoB-containing lipoproteins 

by precipitation with 2 M MgCl2 and 4% sodium phosphotungstic acid (Burstein et al. 

1970). Cholesterol efflux from acLDL-loaded THP-1 macrophages to serum (1% v/v) and 

β-lipoprotein depleted serum (1% v/v) was measured as described in previous paragraphs. 

Efflux to a control serum was measured on each cell culture plate. The CV% between the 

plates was 2.2%. 

 

4.2.12 Serum lipoprotein profiles (II) 

To obtain lipoprotein profiles of mice, sera from each group of mice (MMP8-/- females, 

MMP8-/- males, WT females, and WT males) were pooled and aliquots were applied onto a 

Superose 6HR size exclusion chromatography column previously equilibrated with PBS at 

a flow rate of 0.5 ml/min. Fractions were collected and analyzed for apoA-I, cholesterol, 

TG, and phospholipid concentrations.  

 

4.2.13 Measurement of serum apoA-I, apoA-II, and SAA (III) 

ApoA-I, apoA-II, and SAA were quantified from the serum samples of subjects receiving 

SDD or placebo by ELISA-based methods. The concentrations of total cholesterol, HDL 

cholesterol, TGs, MMP-8, MMP-9, TIMP-1, IL-6, TNF-α, and hsCRP had been analyzed 

previously (Payne et al. 2011). 

 

4.2.14 Periodontal examination (IV) 

The Parogene subjects were examined by two calibrated periodontists and the radiographs 

were evaluated by a radiologist. At the beginning of the oral examination, the subjects 

chewed a piece of paraffin for 5 min and at least 2 ml of stimulated whole saliva was 

collected. Probing pocket depths (PPDs) were measured from six sites of each tooth by 

using a WHO manual periodontal probe. Bleeding on probing and suppuration were 

registered from four sites of each tooth. The extent of alveolar bone loss (ABL) was 

evaluated from panoramic radiographs and graded into four categories: (1) no ABL, (2) mild 

ABL in the cervical third of the root; (3) moderate ABL in the middle third of the root; and 
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(4) severe ABL from the apical third of the root to total ABL. In addition to ABL, angular 

bone defects and periapical lesions were recorded. The periodontal inflammatory burden 

index (PIBI) (Lindy et al. 2008) was calculated for each subject by adding the number of 

periodontal pockets with PPD 4–5 mm to the number of periodontal pockets with PPD ≥ 6 

mm multiplied by two. 

Edentulous subjects were excluded from further analyses. The dentate subjects were divided 

into two groups based on their periodontal status: 340 subjects with no or mild periodontitis 

(< 4 sites with PPD of ≥ 4 mm, no ABL or mild ABL) and 123 subjects with moderate to 

severe periodontitis (patients having at least four sites with PPD of ≥ 4 mm and ABL from 

moderate to severe). 

 

4.2.15 Measurement of salivary biomarkers (IV) 

The concentration of IL-1β in the saliva samples was measured by flow cytometry-based 

Luminex technology (Milliplex Map Kit; MPXHCYTO-60k, Millipore, Billerica, MA, 

USA). Quantitative real-time PCR (qPCR) assay for P. gingivalis was performed for the 

saliva samples in an earlier study (Hyvärinen et al. 2012).  

 

4.2.16 Cumulative risk score (IV) 

A cumulative risk score (CRS) was calculated for each Parogene study subject by combining 

the salivary concentrations of MMP-8, IL-1β, and P. gingivalis  as described by Gursoy et 

al. 2011. The concentrations of the three biomarkers were divided into tertiles 1–3. Since 

there was a high number of samples with P. gingivalis concentration below the detection 

limit, the concentration of P. gingivalis was divided into tertiles as follows: tertile 1: below 

the detection limit; tertile 2: above the detection limit but below median concentration (12–

23303 GE/ml); tertile 3: above the median concentration (>23303 GE/ml). A cumulative 

subscore was calculated for each subject by multiplying the corresponding tertile values of 

MMP-8, IL-1β, and P. gingivalis concentrations.Three risk groups were formed based on 

the cumulative subscores: CRS I (Low risk of having periodontitis): subscores 1 and 2; CRS 

II (Medium risk): subscores 3, 4, 6, and 8; and CRS III (High risk): subscores 9, 12, 18, and 

27. 
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4.2.17 Statistical analyses (I, II, III, IV) 

In study I, associations between serum MMP-8 and genetic polymorphisms were analyzed 

with linear regression adjusted for age, gender, CAD status (for the Corogene study 

subjects), a regional indicator based on the five geographical study areas (for FINRISK 

subjects), and ten first dimensions of the multidimensional scaling on the matrix of the 

identity-by-state. The genotypes of the SNPs were used as the main explanatory variable 

and the analyses were conducted for one SNP at a time. For imputed SNPs, estimated allele 

dosages were used. The dependent variable was log-transformed concentration of serum 

MMP-8. The analyses were performed with the ProbABEL package, PLINK software, and 

R software package. The pre-defined threshold for statistical significance was p < 5*10-8. 

The Corogene and FINRISK 1997 cohorts were first analyzed separately. Subsequently, the 

results were combined by a fixed-effect meta-analysis based on effect size and standard 

error using METAL software package (release 2011-03-25, 

http://csg.sph.umich.edu//abecasis/Metal/) (Willer et al. 2010). The meta-analysis included 

genomic control correction. The heterogeneity between the samples was investigated with 

I2 statistics. Quantile-Quantile (QQ) plots were generated to compare the distribution of 

observed associations to that expected under the null hypothesis. The genomic control 

parameters were 1.012 for the Corogene study and 0.999 for the FINRISK 1997 study 

implying minimal inflation. Conditional regression analysis was performed for the SNPs 

with strongest associations to identify independent genetic markers.  

The associations between plasma MMP-8 concentrations (log-transformed) and the 

genotypes of rs800292 and rs1560833 were analyzed in subjects matched for age, gender, 

and CAD status by linear regression assuming an additive model for the minor allele. 

The association between the genotypes of rs1560833, rs800292, and rs1061170, and 

prevalent and incident CHD and CVD events, AMI, stroke, and mortality were analyzed 

separately in men and women in the FINRISK 1992 (n = 4294), 1997 (n = 5796), 2002 (n 

= 5974), and 2007 (n = 4549) populations. Logistic regression was adjusted for study cohort, 

baseline age, and the regional indicator based on the geographical study areas. Time to event 

analyses were performed by Cox regression adjusted for study cohort and the regional 

indicator. The time at risk was defined as the age at the time of the event, death, or end of 
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follow-up. An additive effect for the minor allele of the SNPs was assumed in all models. 

The analyses were performed by IBM® SPSS® Statistics software (version 22.0). 

In study II, the non-parametric Mann-Whitney test was used to analyze the difference 

between cholesterol efflux levels in the cell experiments and between the apoA-I, 

cholesterol, and TG concentrations and PON1 and PLTP activities between MMP8-/- mice 

and WT mice. The threshold for statistical significance was p < 0.05. The analyses were 

performed by IBM® SPSS® Statistics software (version 22.0). 

In study III, the distributions of demographic and clinical parameters and medication use 

were compared between SDD and placebo groups using a 2-sample t-test for continuous 

variables and the χ2 test for categorical variables. Changes in the cholesterol efflux capacity 

of serum relative to the baseline were modeled by linear regression as a function of the study 

drug using an intent-to-treat analysis with adjustment for the baseline efflux capacity, study 

visit, and baseline smoking status (a randomization stratification factor) as independent 

variables. Changes in serum LDL cholesterol, HDL cholesterol, apoA-I, TG, MMP-8, 

MMP-9, TIMP-1, and hsCRP concentrations were analyzed using a similar model. TG and 

MMP-8 concentrations were log-transformed as they were not normally distributed. The 

distribution of 1- and 2-year changes in the outcome variables relative to baseline was 

compared to 0 using a one-sample t test for within-group analyses. 

Pre-specified subgroup analyses were performed based on time since the menopause (within 

or beyond 5 years) and statin use, using tests of interactions in the regression models. Linear 

regression models were created to analyze the associations between serum cholesterol efflux 

capacity (outcome variable) and other serum parameters, which included lipids (cholesterol, 

TGs), proteolytic enzymes (MMP-8, MMP-9, TIMP-1), inflammation markers (TNF-a, IL-

6, hsCRP), and HDL-associated proteins (apoA-I, apoA-II, SAA). The threshold for 

statistical significance was p < 0.05. The analyses were performed with SAS software (SAS 

Institute Inc., Cary, NC, USA, version 9.1.3). 

In study IV, the differences between the characteristics and the periodontal parameters of 

the study groups (none to mild periodontitis vs. moderate to severe periodontitis) were 

analyzed by the χ2 test (categorical variables), the t-test (continuous variables with normal 

distributions), and the Mann-Whitney test (continuous variables with skewed distributions). 

Levels of salivary MMP-8, IL-1β, and P. gingivalis were expressed as medians with 
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interquartile range (IQR). The associations of salivary MMP-8, IL-1β, and P. gingivalis and 

the CRS index as tertiles with periodontal parameters and moderate to severe periodontitis 

were analyzed using a logistic regression model. The models were adjusted for the number 

of teeth and implants, age, gender, diabetes, CAD status, and smoking. The threshold for 

statistical significance was p < 0.05. The analyses were performed by IBM® SPSS® 

Statistics software (version 22.0). 
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5. RESULTS 

 

5.1 Genome-wide association study on serum MMP-8 (I) 

5.1.1 Genetic polymorphisms associated with serum MMP-8 

The genome-wide association analysis revealed that polymorphisms in two genomic loci 

were significantly associated with serum MMP-8 concentration (Figure 7). Both loci are 

located in chromosome 1. The statistically most significant association was observed in 

1q31.1, which contains the gene for complement factor H (CFH) and CFH-related proteins. 

The SNP with the strongest association, rs800292, is located in the second exon of CFH. It 

causes a non-synonymous G>A substitution, which results in a change of amino acid 

Val62>Ile in the CFH protein. The minor allele A of rs800292 was inversely associated with 

serum MMP-8 (p = 2.4 * 10-35). (Table 5) 

 

Figure 7. Manhattan plot and QQ-plot of the results from the GWAS of serum MMP-8 

concentrations. The results are based on the meta-analysis including 6049 individuals. Two loci 

with statistically significant associations (p < 5 * 10-8) were detected in chromosome 1. The QQ plot 

indicates small inflation. 

 

The other significant locus was found in 1q21.3, which contains the genes for S100 calcium-

binding proteins (S100) A8, A9, and A12. The SNP with the strongest association, 

rs1560833, is located near the 3′ end of S100A9. The minor allele A of rs1560833 was 

inversely associated with serum MMP-8 (p = 5.3 * 10-15) (Table 5). Even though rs1560833 
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is not located in a gene, it is significantly associated with the expressions of S100A12 (p = 

7.6 * 10-104), S100A8 (p = 1.7 * 10-20), and S100A9 (p = 6.7 * 10-11) in whole blood according 

to the eQTL search.  

 

Table 5. Selected SNPs associated with serum MMP-8. Results of the meta-analysis that 

combined data from the Corogene and the FINRISK 1997 studies. 

SNP Location Minor allele MAF β* SD p 

rs1560833 1q21.3, downstream of 

S100A9 

A 0.28 -0.16 0.02 5.31*10-15 

rs800292 1q31.1, exon of  CFH A 0.30 -0.24 0.02 2.42*10-35 

rs1061170 1q31.1, exon of CFH C 0.43 0.16 0.02 1.04*10-19 

* Effect size for log-transformed MMP-8. Models adjusted for age, gender, CAD status (in 
Corogene), regional factor (in FINRISK), and ten first dimensions of multidimensional scaling. 
S100A9, S100 calcium binding protein A9; CFH, complement factor H; MAF, minor allele 
frequency; SD, standard deviation  

 

In addition to serum, rs1560833 was also associated with plasma MMP-8 (p = 0.02), 

whereas rs800292 was not associated with plasma MMP-8 (Table 6). The polymorphisms 

of MMP8 promoter (rs11225395, rs1320632, and rs2155052) were not associated with 

serum MMP-8 concentration.  
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Table 6. Plasma MMP-8 concentrations in carriers of different rs800292 and 
rs1560833 genotypes. The concentration of MMP-8 was measured by IFMA. 

SNP Genotype Plasma MMP-8, ng/ml, median (IQR) p* 

rs800292 GG 20.64 (29.24) 

0.61  GA 23.89 (36.10) 

 AA 22.11 (28.66) 

rs1560833 GG 19.93 (43.36) 

0.02  GA 18.20 (23.80) 

 AA 16.06 (25.97) 

* p-value from linear regression model assuming an additive effect for the minor allele of SNP.  

SNP, single nucleotide polymorphism; IQR, interquartile range 

 

5.1.2 Complement activation and MMP-8 

The carriage of rs800292 minor allele A (Ile62 variant of CFH) resulted in attenuated release 

of MMP-8 from neutrophils in response to complement activation (p = 0.040) (Table 7). 

The A allele of rs800292 (Ile62 variant of CFH) was associated with stronger activation of 

the alternative pathway of complement (p = 0.002). No differences were found in the 

activities of the classical or lectin pathways between rs800292 genotypes. (Figure 8) 

 

Table 7. MMP-8 released from neutrophils in response to complement activation. The 

alternative pathway of the complement was activated in the serum by inulin. The release of MMP-

8 from isolated human neutrophils in response to complement activation was measured by ELISA. 

  
MMP-8 released from 

neutrophils,ng/ml, mean (SD) 

 

rs800292 GG 446.0 (71.1)  

 GA 409.4 (50.8) p = 0.040* 

 AA 397.3 (42.7)  

* p from linear regression assuming an additive effect for the minor allele A. SD, standard deviation 



 

64 
 

 

Figure 8. Activation of the complement pathways in serum in the carriers of different 

genotypes of rs800292. Complement activation was measured in serum samples by the WIESLAB® 

kit. The only statistically significant difference between the genotypes was seen in the activity of 

the alternative pathway (black bars). 

 

5.1.3 The association of rs1560833, rs800292, and rs1061170 with cardiovascular disease 

Genetic variations of rs800292 or rs1061170 (CFH) were not associated with CVDs in 

FINRISK 1992, 1997, 2002, and 2007 populations. The minor allele of rs1061170 was 

inversely associated with death (p = 0.047) in women. The minor allele of rs1560833 (in 

the S100 region) was inversely associated with prevalent and incident CVD (p = 0.032) and 

the time of the CVD event (p = 0.032) in men, but not in women. (I, Table 4)  

 

5.2 The effect of MMP-8 on apoA-I and HDL structure and function (II) 

5.2.1 Cleavage of apoA-I and HDL 

Incubation of isolated apoA-I, apoA-I-lipid discs, HDL2, and HDL3 with activated MMP-8 

revealed that MMP-8 cleaves isolated apoA-I and apoA-I within apoA-I-lipid discs. The 

cleavage occurred in two steps, initially generating a double band of apoA-I, and with higher 

enzyme concentrations and prolonged incubation time, a single band. Western blotting with 

monoclonal apoA-I antibodies indicated that the cleavage occurred at the C-terminal end of 

apoA-I (II, Figure 2). 
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The MALDI-ISD-MS analysis confirmed that MMP-8 cleaves apoA-I from its C-terminal 

end. The cleavage occurred between amino acids Val221-Leu222 and Glu191-Tyr192 (Figure 

9), resulting in two fragments with molecular weights of 25.5 kDa and 22.2 kDa. 

 

Figure 9. Cleavage of apoA-I by MMP-8. The cleavage sites were determined by MALDI-ISD-

MS. The N-terminus of apoA-I remained intact. 

 

ApoA-I-lipid discs with apoA-I:PC:cholesterol molar ratios of 1:50:0 and 1:50:7 were 

cleaved more efficiently than the discs with the ratio 1:200:12. The cleavage of apoA-I in 

HDL2 and HDL3 by MMP-8 was not detected in SDS PAGE.  

 

5.2.2 Cleavage of apoA-II 

Incubation of isolated apoA-II with activated MMP-8 resulted in the cleavage of apoA-II 

(Figure 10). The apoA-II band disappeared also when HDL2 and HDL3 were incubated with 

MMP-8 (II, Figure 4). 

 

Figure 10. Cleavage of apoA-II by MMP-8. Isolated apoA-II was incubated with activated MMP-

8 and the samples were visualized by SDS PAGE followed by silver staining. 
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5.2.3 The effect of MMP-8 on the cholesterol efflux capacity of apoA-I 

Pretreatment of lipid-free apoA-I with various MMP-8 concentrations resulted in a 

significant reduction in its cholesterol efflux capacity from acLDL-loaded THP-1 

macrophages (p < 0.05 with all MMP-8 concentrations) (Figure 11). 

 

Figure 11. The effect of preincubation with MMP-8 on the cholesterol efflux capacity of apoA-

I. The cholesterol efflux capacity of apoA-I from cholesterol-loaded THP-1 macrophages was 

measured. Three different concentrations of MMP-8 were used in the experiments. 

 

MMP-8 significantly reduced the cholesterol efflux capacities of apoA-I-lipid discs with 

apoA-I:PC:cholesterol molar ratios of 1:50:0 and 1:50:7. In addition, the cholesterol efflux 

capacities of HDL2 and HDL3 were reduced when treated with MMP-8. However, 

incubation with MMP-8 did not affect the cholesterol efflux capacity of the discs with apoA-

I:PC:cholesterol ratio 1:200:12. (II, Figure 7) 

 

5.2.4 The effects of Ilomastat and doxycycline 

Doxycycline inhibited the cleavage of apoA-I by MMP-8 in a dose-dependent manner. The 

cleavage was also partially inhibited by 25 μM Ilomastat. The MMP-8-induced reduction 

in the cholesterol efflux capacity of apoA-I was also inhibited by doxycycline and Ilomastat 

(Figure 12). 
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Figure 12. The effect of MMP inhibitors on the cholesterol efflux capacity of MMP-8-treated 

apoA-I. ApoA-I was incubated with MMP-8 in the presence and absence of doxycycline (at four 

different concentrations) and Ilomastat. The cholesterol efflux capacity of apoA-I from cholesterol-

loaded THP-1 macrophages was measured. 

 

5.2.5 The MMP-8 knockout mouse model 

The MMP8-/- mice had lower serum TG concentrations compared to WT mice (p = 0.003 

for males and p = 0.002 for females). The serum cholesterol efflux capacities did not differ 

between the mouse groups. (Table 8) 

In MMP8-/- mice, the elution positions of major cholesterol and phospholipid peaks in serum 

fractions were shifted towards larger particle size when compared to controls. In female 

MMP8-/- mice, also the apoA-I profile shifted towards larger HDL particle size. (II, Figure 

8) 
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Table 8. Serum markers of lipid metabolism in MMP-8 deficient and wild-type mice. 

 
Males   Females  

 
WT MMP8-/- 

 
 WT MMP8-/- 

 

 
median p*  median p* 

n 8 5   7 8  

body weight, g 22.2 24.3 0.002  17.4 18.1 0.13 

cholesterol efflux to serum, % 28.4 28.4 1  25.7 23.1 0.05 

cholesterol efflux to β-lipoprotein 

depleted serum, % 
26.3 25.1 0.83 

 
24.5 24.4 1 

apoA-I, mg/ml 1.87 1.74 0.62  1.32 1.02 0.05 

cholesterol, mmol/l 3.07 2.97 0.64  2.30 2.10 0.38 

triglycerides, mmol/l 1.12 0.77 0.003  0.92 0.66 0.002 

PON1, μmol/min 89.5 74.0 0.05  96.0 62.5 0.43 

PLTP, nmol/ml/h 23145 21705 0.06  23190 21998 0.13 

*p-values obtained by the Mann-Whitney test 

apoA-I, apolipoprotein A-I; PON1, paraoxonase 1; PLTP, phospholipid transfer protein; WT, wild-

type; MMP-8, matrix metalloproteinase 8 

 

5.3 Placebo-controlled randomized clinical trial with subantimicrobial-dose 

doxycycline (III) 

5.3.1 SDD treatment and the cholesterol efflux capacity of serum 

There was a significant increase in serum cholesterol efflux capacity in SDD-treated 

subjects when compared to the baseline at both 1- and 2-year time points (p < 0.04 for each) 

(Table 9). There were no significant changes in the cholesterol efflux capacity of serum in 

the placebo group. Mean cholesterol efflux levels at the first year time point of follow-up 

were 3.0 percentage points higher among the SDD subjects compared to the placebo 

subjects (95% CI: 0.7-5.3 percentage points, p = 0.01) after adjustment for baseline 

cholesterol efflux levels and smoking status, while there was no significant difference in 2-

year changes (0.7 percentage point increase associated with SDD, 95% CI:  1.8 decrease to 

3.1 increase, p = 0.61). 
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Table 9. Changes in serum cholesterol efflux capacity during the 2-year trial. 

   Cholesterol efflux (%) 

 Time point n Mean (SD) p * 

Placebo     

 
12-month  

Change from Baseline 
26 -0.14 (5.91) 0.90 

 
24-month 

Change from Baseline 
26 1.64 (4.62) 0.08 

SDD     

 
12-month 

Change from Baseline 
19 2.83 (5.37) 0.03 

 
24-month 

Change from Baseline 
19 2.66 (4.20) 0.01 

* comparing mean change to 0 (t-test).  

SDD, subantimicrobial-dose doxycycline; SD, standard deviation 

 

5.3.2 SDD and serum concentrations of lipids, lipoproteins, and inflammatory markers 

The changes of apoA-I, apoA-II, or SAA levels over the follow-up period did not differ 

between the SDD and placebo groups. Furthermore, HDL cholesterol, total cholesterol, TG, 

or MMP-8 concentrations did not differ between the groups. (III, Table 2) 

Serum apoA-I levels and serum cholesterol efflux capacity were positively associated (p < 

0.001). In addition, serum cholesterol efflux capacity was significantly associated with total 

cholesterol, and inversely associated with IL-6 (among placebo subjects). (III, Table 4) 

 

5.4 Salivary biomarkers of periodontitis in patients with cardiovascular disorders (IV) 

5.4.1 Periodontitis and salivary levels of MMP-8, IL-1β, and P. gingivalis 

The median concentrations of saliva MMP-8, IL-1β, and P. gingivalis were significantly 

higher in the subjects with moderate to severe periodontitis (p < 0.001 for each) when 

compared to the subjects with no to mild periodontitis. 
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The median salivary concentrations of MMP-8, IL-1β, and P. gingivalis were highest in the 

subgroups of subjects with severe alveolar bone loss, in subjects with ≥ 7 sites with PPD of 

4–5 mm, and in subjects with ≥ 7 sites with PPD ≥ 6 mm. The median salivary 

concentrations of MMP-8 and IL-1β were highest in subjects with a high percentage of 

bleeding on probing (BOP). A high salivary concentration of MMP-8 was most strongly 

associated with BOP and the number of sites with PPD ≥ 6 mm, while a high salivary 

concentration of IL-1β was most strongly associated with the number of sites with PPD 4–

5 mm, the number of sites with PPD ≥ 6 mm, and the PIBI index (Table 10). A high salivary 

level of P. gingivalis was most strongly associated with moderate to severe alveolar bone 

loss (Table 10).  

Table 10. Odds ratios for the associations between salivary biomarkers and 

periodontal parameters.  

Dependent 

parameter 
MMP-8 IL-1β Pg-qPCR 

  OR 
(95% CI) 

p* OR 
(95% CI) 

p* OR 
(95% CI) 

p* 

moderate-total ABL 
3.16 

(1.72–5.81) <0.001 
2.37 

(1.30–4.32) 0.01 
2.99 

(1.63–5.51) <0.001 

≥ 17 sites with PPD 
4-5mm 

3.29 
(1.84–5.88) <0.001 

6.12 
(3.21–11.65) <0.001 

2.66 
(1.44–4.91) <0.001 

≥ 7 sites with PPD  
≥ 6mm 

4.88 
(2.23–10.65) <0.001 

10.83 
(4.02–29.18) <0.001 

2.20 
(1.10–4.41) 0.03 

PIBI ≥ 20 
3.57 

(2.05–6.23) <0.001 
6.79 

(3.73–12.37) <0.001 
2.86 

(1.59–5.14) <0.001 

BOP ≥ 40% 
5.80 

(3.20–10.53) <0.001 
2.87 

(1.66–4.96) <0.001 
1.16 

(0.66–2.03) 
0.60 

moderate – severe 
periodontitis 

4.24 
(2.26–7.96) <0.001 

3.54 
(1.89–6.63) <0.001 

2.86 
(1.57–5.19) <0.001 

*Logistic regression adjusted for the number of teeth and implants, age, gender, smoking, diabetes, 

and CAD status. ABL, alveolar bone loss; PPD, pocket probing depth; PIBI, periodontal 

inflammatory burden index; BOP, bleeding on probing; OR, odds ratio; IQR, interquartile range 
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5.4.2 The Cumulative risk score 

The CRS index was strongly associated with all periodontal parameters investigated when 

adjusted for age, gender, smoking, diabetes, CAD status, and the number of teeth. The CRS 

index had a stronger association with moderate to advanced periodontitis than any of the 

three salivary biomarkers alone (OR 6.13, 95% CI 3.11 – 12.09, p < 0.001). The prevalence 

of CRS index value III was highest in subjects with a high amount of BOP, several sites 

with deepened periodontal pockets, and advanced alveolar bone loss (Table 11). The CRS 

index did not correlate with CAD status (Table 11). 

 

Table 11. The number of subjects with CRS index I, II, or III in subgroups defined 

according to CAD diagnosis, smoking or periodontal parameters. 

  CRS index 

  I II III 

  n (%) 

CAD status No CAD 35 (34.3%) 39 (38.2%) 28 (27.5%) 

 Stable CAD 39 (24.5%) 60 (37.7%) 60 (37.7%) 

 ACS 41 (28.3%) 52 (35.9%) 52 (35.9%) 

 ACS-like, no CAD 7 (29.2%) 10 (41.7%) 7 (29.2%) 

  p = 0.60 

   

     

Smoking No 72 (32.4%) 71 (32.0%) 79 (35.6%) 

 Ex 46 (24.7%) 71 (38.2%) 69 (37.1%) 

 Current 13 (23.6%) 21 (38.2%) 21 (38.2%) 

  p = 0.41 

     

BOP tertiles 0 – 25 % 51 (37.0%) 53 (38.4%) 34 (24.6%) 

 26 – 44 % 43 (29.5%) 55 (37.7%) 48 (32.9%) 

 45 – 100 % 28 (18.9%) 54 (36.5%) 66 (44.6%) 

  p = 0.002 
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Sites with PPD 4-5 mm 0 27 (61.4%) 14 (31.8%) 3 (6.8%) 

 1 – 6 49 (40.5%) 49 (40.5%) 23 (19.0%) 

 7 – 16 34 (24.6%) 52 (37.7%) 52 (37.7%) 

 17 – 12 (9.3%) 47 (36.4%) 70 (54.3%) 

  p < 0.001 

     

Sites with PPD ≥ 6 mm 0 88 (38.3%) 86 (37.4%) 56 (24.3%) 

 1 – 3 23 (23.2%) 43 (43.4%) 33 (33.3%) 

 4 – 6 6 (15.4%) 17 (43.6%) 16 (41.0%) 

 7 – 5 (7.8%) 16 (25.0%) 43 (67.2%) 

  p < 0.001 

     

Alveolar bone loss none 36 (34.6%) 43 (41.3%) 25 (24.9%) 

 mild 61 (31.3%) 74 (37.9%) 60 (30.8%) 

 moderate 23 (21.3%) 40 (37.0%) 45 (41.7%) 

 severe – total 2 (8.0%) 5 (20.0%) 18 (72.0%) 

  p < 0.001 

p-values were obtained by the χ2 test. CAD, coronary artery disease; BOP, bleeding on probing; 

PPD, pocket probing depth; CRS, cumulative risk score 
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6. DISCUSSION 

 

6.1 Genetics of serum MMP-8 

6.1.1 The genome-wide association study 

Genome-wide association studies are a hypothesis-free method for studying the genetic 

basis of diseases and quantitative traits, such as the concentrations of biomarkers in blood. 

The benefit of these studies is that there is no need for selection of candidate genes, and 

therefore novel and even unexpected variants that contribute to diseases and biological 

processes can be found. We performed a GWAS on serum MMP-8 concentration in two 

independent populations. The results revealed that, surprisingly, the genetic variation in the 

gene of complement factor H is strongly associated with the concentration of serum MMP-

8. The SNP with the strongest association, rs800292, causes a Val62Ile substitution in the 

CFH protein. The frequency of the minor allele of rs800292 was 30%, making it a relatively 

common variant. Interestingly, genetic polymorphism in the locus that contains genes for 

S100 calcium binding proteins A8, A9, and A12 is also associated with serum MMP-8 

levels. 

 

6.1.2 Complement activation and the effect of sample preparation 

Our results show that the Ile62 variant of CFH is associated with a lower MMP-8 

concentration in serum. CFH is an important inhibitory regulator of the alternative pathway 

of complement. According to a previous study, the CFH Ile62 variant increases the binding 

of CFH to C3b, which therefore leads to decreased complement activation compared to the 

Val62 variant (Tortajada et al. 2009). The carriers of the CFH Ile62 variant also have lower 

serum levels of C3a desArg, indicating less complement activation compared to the carriers 

of the Val62 variant (Reiner et al. 2013). We hypothesized that the attenuation of 

complement activity that results from the Ile62 variation of CFH leads to decreased 

neutrophil activation and degranulation, and thereby decreases the release of MMP-8 from 

neutrophils in response to complement activation. Indeed, in functional experiments with 

isolated human neutrophils, we found that less MMP-8 was released from neutrophils in 
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response to the activation of the alternative pathway of complement in the carriers of the 

CFH Ile62 variant. 

We also found that genetic variation of CFH did not have an effect on MMP-8 concentration 

in plasma. Therefore, the activation of complement might occur during the preparation of 

serum samples, which results in degranulation of neutrophils. The association between CFH 

polymorphism and MMP-8 concentration was not observed in the plasma samples, probably 

because anticoagulants used in the preparation of plasma inhibit the complement activation 

(Mollnes et al. 1988). It is also possible that anticoagulants in plasma samples enhance the 

degradation of MMPs in the absence of calcium (Makowski and Ramsby 2003). 

 

6.1.3 The origin and regulation of circulating MMP-8 

In addition to CFH polymorphism, genetic variation in the locus containing genes for S100 

calcium binding proteins A8, A9, and A12 was associated with serum MMP-8 levels. The 

minor allele of the SNP rs1560833, which is located downstream of S100A9, was associated 

with a lower concentration of MMP-8 in both serum and plasma. According to the eQTL 

analysis, the minor allele of rs1560833 has an inverse association with the expression of 

S100A8, S100A9, and S100A12. S100A8, S100A9, and S100A12 are proinflammatory 

mediators expressed mainly by the neutrophils. They activate Toll-like receptors, induce 

cytokine secretion, and enhance particularly the innate immune response (Sunahori et al. 

2006, Foell et al. 2007, Vogl et al. 2007, Riva et al. 2012). In the presence of calcium, 

S100A8 and S100A9 form a S100A8/S100A9 complex known as calprotectin. S100A8, 

S100A9, S100A8/A9, and S100A12 can induce neutrophil recruitment, chemotaxis, and 

adhesion (Newton and Hogg 1998, Ryckman et al. 2003, Vandal et al. 2003, Pruenster et al. 

2015). In addition, S100A9 has been reported to stimulate the degranulation of neutrophils 

(Simard et al. 2010). Therefore, genetic polymorphisms that affect the expression of the 

S100A proteins may influence circulating MMP-8 concentrations by regulating neutrophil 

activity and degranulation.  

A previous study that used a relatively small study population suggested that a SNP in the 

promoter region of MMP8, rs11225395, was associated with serum MMP-8 concentration 

(Pradhan-Palikhe et al. 2012). In our study, the SNPs in the MMP8 gene had no association 

with MMP-8 levels in serum. As the major polymorphisms that affected serum MMP-8 



 

75 
 

were located in the loci for CFH and S100A8/A9/A12, it seems that the main mechanism 

that controls the concentration of MMP-8 is the regulation of neutrophil degranulation, 

rather than the gene expression of MMP8 per se. 

Even though the polymorphism of CFH was not associated with plasma MMP-8, the carriers 

of the CFH Ile62 variant are likely to have less “activation potential” for the alternative 

pathway of complement. Therefore, the Ile62 variant is likely to protect from diseases that 

are characterized by excess activation of the complement system. In previous studies, the 

CFH Ile62 variant has been associated with a decreased risk for age-related macular 

degeneration, which is a disease characterized by dysregulation of local inflammatory 

response (Hageman et al. 2005). As complement activation seems to be an important inducer 

of neutrophil degranulation and MMP-8 release, the Ile62 variant may also reduce 

susceptibility to diseases characterized by excess MMP-8 activity, such as periodontitis or 

rheumatoid arthritis. 

 

6.1.4 MMP-8-associated genetic polymorphisms and the risk of cardiovascular diseases 

The analysis of FINRISK cohort studies and follow-up data revealed that the minor allele 

of rs1560833 was associated with a lower risk of prevalent and incident CVD events in men, 

but not in women. Since the association was relatively weak and seen only in men, a 

replication of this finding in other populations is needed to verify the result. CFH 

polymorphisms were not associated with CVDs in our population. As S100A8, S100A9, 

and S100A12 are proinflammatory mediators, their role in the pathogenesis of CVDs and 

their value as biomarkers of CVDs has been investigated in several studies. S100A8/A9 is 

expressed by neutrophils and macrophages in atherosclerotic lesions, and it is regarded as a 

marker of plaque instability (Miyamoto et al. 2008, Ionita et al. 2009). Elevated serum 

concentration of S100A8/A9 is associated with ACS and AMI (Altwegg et al. 2007, Schaub 

et al. 2012, Vora et al. 2012), as well as with the risk of a first cardiovascular event in the 

general population, and also with a recurrent cardiovascular event in ACS patients 

independently of traditional risk factors (Healy et al. 2006, Morrow et al. 2008, Cotoi et al. 

2014). The plasma concentration of S100A8/A9 is also positively associated with neutrophil 

counts (Cotoi et al. 2014). Like S100A8/A9, MMP-8 is also associated with plaque 

vulnerability and the prevalence and incidence of CVDs. However, the actual relationship 
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between these two markers and CVD remains unclear. The genetic variation of 

S100A8/A9/A12 might be related to CVD via MMP-8, or, alternatively, S100A proteins 

and MMP-8 may each have an independent role in the inflammatory processes contributing 

to CVDs.  

 

6.2. Processing of apoA-I by MMP-8 

6.2.1 MMP-8 cleaves apoA-I and reduces the cholesterol efflux capacity of HDL 

The most commonly known function of MMP-8 is to process and remodel the ECM, its 

main substrate being collagen type I. In addition to ECM components, MMP-8 has 

numerous other bioactive substrates, e.g. cytokines, chemokines, receptors, and signaling 

molecules. The cleavage of these substrates may have a substantial influence on a wide 

range of physiological processes, such as the inflammation response, signaling pathways, 

and metabolic pathways. We discovered that MMP-8 degrades human apoA-I and apoA-II 

molecules. The cleavage of apoA-I occurred at the C-terminus of the protein, which is, 

according to several previous studies, especially susceptible to proteolysis (Kunitake et al. 

1990, Dalton and Swaney 1993, Ji and Jonas 1995, Lindstedt et al. 1999). The C-terminal 

domain of apoA-I is essential for the ability of the protein to promote cholesterol and 

phospholipid efflux from cells (Sviridov et al. 1996, Favari et al. 2002, Chroni et al. 2003). 

Our results show that MMP-8 significantly decreased the capacity of apoA-I and HDL to 

facilitate cholesterol efflux from cholesterol-loaded human THP-1 macrophages, which 

were used as a model of foam cells in atherosclerotic lesions.  

The conformation and properties of apoA-I vary significantly between different HDL 

subpopulations (Jonas et al. 1990, Huang et al. 2011). ApoA-I in lipid-free state or within 

pre-β HDL is proteolyzed more easily than apoA-I in HDL with α-mobility (Kunitake et al. 

1990, Lindstedt et al. 1999, Lindstedt et al. 2003). In our experiments, we did not see 

proteolysis of apoA-I within HDL2 or HDL3 fractions when they were analyzed by SDS 

PAGE. However, MMP-8 significantly decreased the cholesterol efflux capacity of both 

HDL2 and HDL3. We did not analyze the amino acid sequence of HDL-associated apoA-I 

after treatment with MMP-8. Even very small changes in the structure and subclass 

distribution of HDL particles may cause a significant decrease in their ability to facilitate 

cholesterol efflux from foam cells (Lindstedt et al. 2003). Such changes may not be 
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detectable in SDS PAGE. Lipid-poor apoA-I, pre-β HDL, and very small HDL particles are 

the first and most efficient acceptors of cholesterol from cells (Du et al. 2015), and their 

degradation could have significant effects on HDL metabolism and reverse cholesterol 

transport. 

 

6.2.2 The role of MMP-8 in atherosclerosis 

The most studied role of MMP-8 in atherosclerosis arises from the degradation of the fibrous 

cap in atherosclerotic lesions, and consequent changes in plaque stability. However, our 

results indicate that MMP-8 may also contribute to atherosclerosis by processing non-

collagenous substrates. Proteolytic modification of apoA-I and apoA-II, and potentially 

other HDL proteins, by MMP-8 and the resulting reduction in the cholesterol efflux capacity 

of HDL may impair the first steps of reverse cholesterol transport, which could lead to the 

increased accumulation of foam cells in the vessel wall. These modifications may result in 

accelerated atherogenesis. 

The major source of MMP-8 in tissues is degranulating neutrophils. The role of neutrophils 

in the pathogenesis of atherosclerosis has not been as widely studied as that of e.g. 

monocytes/macrophages. Analysis of lesions in coronary arteries has shown that ruptured 

plaques contain significant numbers of neutrophils, suggesting that neutrophil infiltration is 

associated with acute coronary syndrome (Dinerman et al. 1990, Naruko et al. 2002). High 

neutrophil counts are also found in rupture-prone carotid artery plaques (Ionita et al. 2010). 

An in vitro study found that LDL accumulation stimulates the adherence, transmigration, 

and local infiltration of PMN cells into the intima (Dorweiler et al. 2008). The infiltrating 

PMN released MMP-8 in response to LDL (Dorweiler et al. 2008). In addition to 

neutrophils, other cell types are also capable of producing MMP-8. At least macrophages, 

endothelial cells, and smooth muscle cells express MMP-8 within atherosclerotic lesions, 

whereas MMP-8 was not recovered from normal arteries (Herman et al. 2001b, Molloy et 

al. 2004). The concentration of MMP-8 in relation to apoA-I might be high in vulnerable 

plaques and especially near the surface of the cells expressing MMP-8. The levels of MMP-

8 in the circulation have a wide range of variation and also show significant variation 

between individuals. Patients with cardiovascular disorders tend to have higher 
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concentrations of MMP-8 and lower concentrations of HDL. These higher MMP-8:apoA-I 

ratios may accelerate the proteolysis of apoA-I in the circulation. 

We found that MMP8-/- mice had lower serum TG concentrations and larger HDL particle 

size compared to WT mice. However, the serum cholesterol efflux capacities or apoA-I 

levels did not differ between the mouse groups. It should be noted that healthy young mice 

fed on a normal diet do not develop significant atherosclerosis or high blood concentrations 

of MMP-8. The cleavage of apoA-I by MMP-8 within the atherosclerotic plaques or in 

individuals with significantly high circulating MMP-8 levels, such as patients with 

cardiovascular diseases, cannot be detected in this mouse model. The observed shift of HDL 

size towards larger particles in MMP8-/- mice and the difference in serum TG levels between 

the mouse groups indicate that MMP-8 might participate in HDL modification and also in 

overall lipoprotein metabolism. The MMP-8 knockout mouse model offers numerous 

opportunities for future research on the mechanisms by which MMPs contribute to 

atherosclerosis. However, direct conclusions concerning humans cannot be made on the 

basis of the mouse study because of the fundamental differences in lipoprotein metabolism 

between mice and humans; mice do not have CETP, and therefore the major carrier of 

cholesterol in mice is HDL.  

 

6.3 Potential effects of doxycycline therapy on lipoprotein metabolism 

6.3.1 Doxycycline as MMP inhibitor in atherosclerosis 

Tetracyclines have, in addition to their well-known antimicrobial activity, also inhibitory 

effects against MMPs. Therefore, the members of the tetracycline family could stabilize 

unstable, inflamed atherosclerotic plaques and prevent acute coronary events by inhibiting 

the action of MMPs (Bench et al. 2011). A placebo-controlled randomized clinical trial with 

doxycycline before carotid endarterectomy showed that doxycycline significantly reduced 

the concentration of MMP-1 in carotid plaques of patients (Axisa et al. 2002). Doxycycline 

given to rats reduced the activities of MMPs 2 and 9 in the arterial wall after arterial injury, 

and it also inhibited the migration of smooth muscle cells from media to intima (Bendeck 

et al. 2002). The concentration of MMP-8 was not measured in those two studies, but it is 

plausible that doxycycline treatment also affects MMP-8 activity within the atherosclerotic 
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plaques. Our study suggests that doxycycline could increase the cholesterol efflux potential 

of apoA-I by inhibiting the proteolytic modification by MMP-8.  

The mean concentration of doxycycline within carotid plaques was 6.0 μg/g wet weight in 

patients treated with doxycycline (Axisa et al. 2002).,Doxycycline levels in the circulation 

of patients ranged from 1.3 to 14.4 μg/ml after three months of doxycycline treatment 

(Baxter et al. 2002). The concentration of 10 μg/ml corresponds to approx. 22.5 μM 

doxycycline. In order to achieve 50% inhibition of MMP-8 activity, a concentration of 15-

30 μM of doxycycline is required (Suomalainen et al. 1992). Therefore, the clinically 

attainable concentrations of doxycycline and the concentrations used in our experiments are 

relevant for the inhibition of MMP-8.  

 

6.3.2 Systemic effects of SDD treatment 

Doxycycline at low doses has no antimicrobial property, but maintains its inhibitory effect 

against MMPs. Treatment with SDD therefore does not result in the development of 

antibiotic resistance, and therefore the treatment can be continued for relatively long time 

periods. Earlier studies report that SDD has beneficial effects on inflammatory markers in 

blood.A six-month SDD therapy in patients with symptomatic CAD lowered the plasma 

levels of hsCRP by 46% (Brown et al. 2004). In addition, IL-6 concentration and MMP-9 

activity decreased in the treatment group (Brown et al. 2004). Two years of treatment with 

SDD decreased serum hsCRP and MMP-9 levels also in a group of postmenopausal women 

that had periodontitis (Payne et al. 2011). In our placebo-controlled clinical trial, mean 

change in the cholesterol efflux capacity of serum was significantly higher among the SDD 

treated group compared to placebo group after adjustment for baseline cholesterol efflux 

levels and smoking.The cholesterol efflux levels in SDD subjects were significantly 

increased at the 1-year and 2-year time points relative to baseline. However, there was also 

an increase in mean cholesterol efflux levels in the placebo group at the 2-year time point, 

although this was not statistically significant. The increased cholesterol efflux observed 

among placebo patients may be due to statin medication: three of the placebo patients either 

started statin medication or increased the dose during the trial compared to none of the SDD 

patients, which may affect the results in this relatively small sample. Studies with larger 

populations and with both genders are needed to confirm our results. 
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Inflammation causes significant changes in the composition and metabolism of lipoproteins. 

The antiatherogenic potency of HDL is diminished, and the levels of HDL cholesterol and 

apoA-I are decreased during both acute and chronic inflammations (Khovidhunkit et al. 

2000, Khovidhunkit et al. 2004, Pussinen et al. 2004c). We did not observe changes in the 

concentrations of apoA-I or HDL cholesterol during SDD treatment. However, we did not 

analyze the detailed composition or subclass distribution of HDL. SDD therapy attenuates 

systemic inflammation, and, according to our results, improves the ability of serum to act 

as a cholesterol acceptor. In addition, doxycycline protects apoA-I from MMP-induced 

degradation. Therefore, doxycycline at both regular and low doses might reduce the risk of 

cardiovascular disease.  

 

6.4 Salivary diagnostics of periodontitis 

6.4.1 Biomarkers of periodontitis 

Biomarkers of periodontitis include host-derived markers, such as cytokines, MMPs, 

antibodies, or byproducts of tissue breakdown, and pathogen-derived markers, such as 

bacterial DNA or LPS. We measured the concentrations of three biomarkers, each of which 

represented a distinct component of the pathogenesis of periodontitis: MMP-8 as a marker 

of the host response, IL-1β as a marker of systemic inflammation, and P. gingivalis as a 

representative of the pathogen burden and a keystone pathogen. 

Increased levels of MMP-8 have been found in the saliva, GCF, and mouthrinse of 

periodontitis patients in a large number of studies (Gangbar et al. 1990, Miller et al. 2006, 

Mäntylä et al. 2006, Christodoulides et al. 2007, Gursoy et al. 2010, Leppilahti et al. 2011, 

Ebersole et al. 2013, Rathnayake et al. 2013). It is widely accepted that MMP-8 has a major 

role in the tissue destruction associated with periodontitis. In addition, MMP-8 may 

modulate the host immune response by cleaving cytokines and chemokines. In our study, 

the concentration of MMP-8 in salivawas associated with ABL and the number of deepened 

periodontal pockets. In addition, MMP-8 had the strongest association with BOP among the 

markers we examined. BOP is considered as a sign of active inflammation. Therefore, 

MMP-8 seems to be associated with current, active periodontitis. 

IL-1β is a key mediator of APR and chronic inflammation. Previous studies indicate that it 

is a sensitive and specific biomarker of periodontal disease (Sánchez et al. 2013). In our 
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study, the salivary concentration of IL-1β was strongly associated with the number of 

deepened periodontal pockets (PPD 4-5 mm or ≥ 6 mm) and a high PIBI index, which 

reflects the periodontal inflammatory burden. The association with ABL was not as strong. 

Concordantly, Zhong et al. showed in a large American study that the concentration of IL-

1β in GCF was associated with deep periodontal pockets and BOP, but not with attachment 

loss (Zhong et al. 2007). Loss of bone and attachment might reflect the total history of 

periodontitis instead of current, active disease, which could explain the weaker association 

with IL-1β, a marker of current inflammatory activity. 

Higher numbers of P. gingivalis have been detected in the saliva of periodontitis patients 

compared to controls previously (Hyvärinen et al. 2009, Saygun et al. 2011). Our study 

indicates that the salivary number of P. gingivalis was associated with the number of 

deepened periodontal pockets and the extent of ABL, but not with BOP. However, as a 

keystone pathogen, P. gingivalis can significantly contribute to the pathogenesis of 

periodontitis even at low abundance, and therefore its concentration might give slightly 

inconclusive results. 

We used stimulated saliva samples for biomarker analyses in our study. Saliva can be 

obtained without stimulation or after stimulation of secretion by chewing. According to 

Golatowski et al., the saliva collection techniques of drooling, use of cotton swabs 

(Salivette) or stimulation by chewing of paraffin gum resulted in similar protein 

concentrations and numbers of identified proteins in saliva, whereas minor differences were 

observed only in the volume of saliva samples obtained (Golatowski et al. 2013). In 

addition, the microbial profiles of unstimulated and stimulated saliva samples are similar 

(Belstrøm et al. 2016). Therefore, it is unlikely that the method of obtaining the saliva 

sample has significant effects on the diagnostic value of our biomarkers. 

The European Federation of Periodontology has stated that attachment loss should be the 

primary measure when defining periodontitis in epidemiological studies (Tonetti et al. 

2005). In addition, markers of current disease activity, such as BOP or PPD, should be 

recorded. Similarly, the American Academy of Periodontology recommends that 

periodontitis should be defined based on attachment loss and PPD (Eke et al. 2012).We 

defined periodontitis in the Parogene study basing it on ABL and PPD. As the location of 

the cementoenamel junction or the extent of gingival recession was not recorded in our 

clinical examination, we were not able to determine clinical attach loss for each tooth. It 
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should be noted that a strict definition of “periodontitis case” is not important in clinical 

practice because the aim is to identify the individuals who need treatment or are at risk of 

developing the disease. The studies on periodontal biomarkers are often case-control 

investigations, with patients having established periodontitis as cases and totally healthy 

individuals as controls. The “borderline” cases or cases with mild periodontitis are often 

excluded, even though they are likely to complicate the diagnostics in reality. The 

population of our study was not selected on the basis of periodontal status. Our study 

participants represented all stages of periodontal conditions from periodontally healthy 

subjects to severe periodontitis patients.  

 

6.4.2 The cumulative approach 

Periodontitis is a complex disease with a multifactorial aetiology. The fluctuation in the 

progression and activity of the disease may influence the diagnostic power of the salivary 

biomarker selected (Gursoy et al. 2011). For example, a certain biomarker may be present 

at a low concentration during the remission period of the disease. It is unlikely that a single 

biomarker could be used for the optimal detection and risk assessment of periodontitis. Two 

previous studies have indicated that a combination of plaque pathogens and salivary 

biomarkers is more strongly associated with concurrent periodontitis and the progression of 

the disease than individual markers (Ramseier et al. 2009, Kinney et al. 2011). In our study, 

we tested the validity of a novel diagnostic tool, the cumulative risk score for detection of 

periodontitis. The CRS index, a combination of the three biomarkers that represent the 

pathogen / tissue destruction / systemic inflammation cascade of periodontitis, had a 

stronger association with periodontitis than any of the markers individually. Therefore, it 

offers a tool for detection of periodontitis in a non-invasive way. 

 

6.4.3 Systemic diseases and salivary diagnostics 

Saliva has gained wide interest as a diagnostic fluid of periodontitis because saliva samples 

can be easily, non-invasively, and repeatedly obtained. Saliva has potential especially for 

large-scale studies, health care promotion, home testing, and screening for high-risk 

individuals in the general population. Various systemic factors, such as smoking, 

rheumatoid arthritis, or diabetes, may affect the concentrations of biomarkers in saliva 
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(Liede et al. 1999, Furuholm et al. 2006, Costa et al. 2010, Mirrielees et al. 2010, 

Rathnayake et al. 2013, Sorsa et al. 2016), which complicates the use of saliva in periodontal 

diagnostics. A good diagnostic marker should be able to differentiate periodontitis patients 

from healthy individuals and to evaluate disease activity and progression regardless of 

systemic factors, as periodontitis patients are often smokers and elderly people with 

additional diseases. The salivary concentration of IL-1β in our study was higher in 

individuals with stable CAD or ACS compared to those with no CAD. However, the 

concentrations of MMP-8 and P. gingivalis or the CRS index scores did not differ between 

the CAD subgroups. A Swedish study of 200 patients with myocardial infarction and 200 

controls consistently found that saliva MMP-8 was significantly associated with periodontal 

status, but could not differentiate individuals with or without myocardial infarction 

(Rathnayake et al. 2015). It seems therefore that salivary MMP-8 mostly reflects the health 

of the oral cavity, whereas the concentrations of MMP-8 in the circulation are associated 

with the CAD status of the individuals. 
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7. CONCLUSIONS 

 

This thesis examined the following topics: (1) genetic variants and regulatory mechanisms 

that affect serum MMP-8 concentrations, (2) the effect of MMP-8 on the structure and 

function of apoA-I and HDL, (3) the potential of doxycycline in inhibiting the MMP-8-

mediated cleavage of apoA-I, (4) the effect of SDD treatment on the cholesterol efflux 

capacity of serum, and (5) salivary biomarkers in diagnostics of periodontitis in patients 

with cardiovascular disorders. 

The results of our genome-wide association study and functional experiments indicate that 

the activation of the complement system, especially its alternative pathway with 

amplification potential, strongly contributes to serum MMP-8 concentrations. The 

association between genetic polymorphism of complement factor H and serum MMP-8 was 

discovered in two independent populations and in the meta-analysis that combined them. In 

addition to the genetic variation of complement factor H, polymorphism in the genetic locus 

of S100A8/A9/A12 affects circulating MMP-8 concentrations, possibly via neutrophil 

activation and degranulation. These results suggest that the main regulatory mechanism of 

circulating MMP-8 levels is neutrophil degranulation, rather than the regulation of MMP8 

gene expression, since MMP8 promoter polymorphisms that affect its mRNA expression 

were not associated with circulating MMP-8 levels. In large population-based cohorts, 

genetic polymorphism in the S100A8/A9/A12 region was associated with a decreased risk 

for CVD in men. The complement system is an integral part of innate immunity and S100A8, 

S100A9, and S100A12 are inflammatory mediators. Our results therefore emphasize the 

importance of inflammation and the innate immune system in cardiovascular disorders. 

Incubation of apoA-I with MMP-8 resulted in a two-step cleavage of the C-terminus of 

apoA-I. In addition, the ability of apoA-I and HDL to promote cholesterol efflux from 

cholesterol-loaded macrophages was significantly diminished after pre-treatment with 

MMP-8. When we used an MMP-8 knockout mouse model, we found that MMP-8 

knockouts displayed lower concentrations of TGs in serum and larger HDL particles 

compared to wild-type mice. Our findings suggest that proteolytic modification of apoA-I 

by MMP-8 and the reduction in the cholesterol efflux capacity of HDL may impair the first 

steps of reverse cholesterol transport. As a result, increased accumulation of cholesterol in 

the vessel wall may lead to accelerated atherosclerosis. Our results introduce a new substrate 
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for MMP-8 and suggest that MMP-8 may affect the metabolism of lipids and lipoproteins. 

The study indicates that the role of MMPs in atherosclerosis may not be limited to the 

processing of the ECM.  

Degradation of apoA-I by MMP-8 was inhibited by doxycycline at clinically attainable 

doses. Doxycycline was also able to restore the cholesterol efflux capacity of apoA-I after 

treatment with MMP-8. According to our findings, MMPs are a potential target for 

medication in cardiovascular disorders. 

In the placebo-controlled clinical trial with SDD medication, the cholesterol efflux capacity 

of serum increased 8.1% over the first study year in the SDD treatment group. Such an 

increase may have relevant beneficial effects on the development and progression of 

atherosclerosis as cholesterol efflux from cells is the first and rate-limiting step of reverse 

cholesterol transport.. SDD medication increased the cholesterol efflux capacity of serum 

particularly in the subgroup of women who were more than five years postmenopausal. 

Periodontitis patients display lower levels of apoA-I and HDL cholesterol, and periodontitis 

causes proatherogenic changes in the composition of HDL particles. SDD therapy may 

reduce the risk of cardiovascular disease especially in vulnerable groups of individuals, such 

as periodontitis patients with “dysfunctional” HDL, or postmenopausal women, who have 

reduced levels of protective estrogen. 

Our study of patients who had angiographically verified cardiac diagnosis showed that 

salivary concentrations of MMP-8, IL-1β, and P. gingivalis are associated with periodontitis 

and various clinical and radiographic periodontal parameters. The cumulative risk score, 

combining the three salivary biomarkers that reflect the distinct stages of the disease, had a 

stronger association with moderate to severe periodontitis than any of its constituent 

markers alone. Salivary biomarkers detected periodontal conditions regardless of the 

systemic disease of the patients. Salivary diagnostics of periodontitis therefore has potential 

especially in large population studies in which detailed clinical examinations are not 

feasible. 

To summarize, we found new mechanisms that contribute to the concentrations of MMP-8 

in serum and plasma, and a suggestive association between a novel genetic polymorphism 

and CVD. We identified a new substrate for MMP-8, and thereby revealed a new 

mechanism by which MMP-8 may be linked to cardiovascular disorders. We also confirmed 
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that MMP-8 is a potential target of medication in cardiovascular disorders. In addition, we 

found that salivary MMP-8 and the cumulative risk score reflect the periodontal conditions, 

but not CAD status of the patients, whereas serum MMP-8 is associated with the CAD 

status. Our results suggest that MMP-8 functions as a link between inflammatory disorders, 

such as periodontitis, and cardiovascular disorders. 
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