
Exploring factors that affect performance on introductory
programming courses

Krista Longi

Master’s Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, September 26, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/78562457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Krista Longi

Exploring factors that affect performance on introductory programming courses

Computer Science

Master’s Thesis September 26, 2016 70

Computer science education, CS1, Bayesian networks

Researchers have long tried to identify factors that could explain why programming is easier
for some than the others or that can be used to predict programming performance. The
motivation behind most studies has been identifying students who are at risk to fail and
improving passing rates on introductory courses as these have a direct impact on retention
rates. Various potential factors have been identified, and these include factors related to
students’ background, programming behavior or psychological and cognitive characteristics.
However, the results have been inconsistent.

This thesis replicates some of these previous studies in a new context, and pairwise
analyses of various factors and performance are performed. We have data collected from 3
different cohorts of an introductory Java programming course that contains a large number
of exercises and where personal assistance is available. In addition, this thesis contributes
to the topic by modeling the dependencies between several of these factors. This is done by
learning a Bayesian network from the data. We will then evaluate these networks by trying
to predict whether students will pass or fail the course. The focus is on factors related to
students’ background and psychological and cognitive characteristics.

No clear predictors were identified in this study. We were able to find weak correlations
between some of the factors and programming performance. However, in general, the
correlations we found were smaller than in previous studies or nonexistent. In addition,
finding just one optimal network that describes the domain is not straight-forward, and the
classification rates obtained were poor. Thus, the results suggest that factors related to
students’ background and psychological and cognitive characteristics that were included in
this study are not good predictors of programming performance in our context.

ACM Computing Classification System (CCS):
Social and professional topics ∼ Computer science education
Computing methodologies ∼ Bayesian network models

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents

1 Introduction 1

2 Performance on introductory programming courses 4
2.1 Student’s background . 5
2.2 Psychological and cognitive factors 7
2.3 Data-driven variables . 9
2.4 Methods used for modeling effect on performance 12

3 Bayesian networks 13
3.1 Basics . 15
3.2 Learning Bayesian networks 17
3.3 Inference in Bayesian networks 20
3.4 Bayesian networks in modeling student performance 21

4 Research design and methodology 24
4.1 Context . 26
4.2 Factors included in the study 27
4.3 Data preprocessing . 33
4.4 Learning the network structure and parameters 34
4.5 Inference algorithm and classification 37

5 Experiments and results 40
5.1 Replication of previous studies 41
5.2 Modeling relationships between factors that affect performance 45
5.3 Predicting performance on the course 48

6 Discussion 51

7 Conclusions and suggestions for future work 54

References 56

ii

1 Introduction

Researchers have long attempted to identify factors that could explain why
learning to program is easier for some than the others. That is, the goal
has been to determine what contributes to the ability to learn to program,
programming aptitude. Also, being able to predict students’ performance
on programming courses provides an opportunity for early interventions.
Several factors that potentially affect programming aptitude or performance
have been identified in many previous studies. These include factors that are
related to students’ background, programming behavior and psychological
and cognitive characteristics. However, there is little consensus on these
factors as the results have often been inconsistent, and many studies need
further verification of the results in different contexts. This thesis focuses
on both background and psychological and cognitive factors and takes steps
towards understanding their relationship with programming aptitude and
performance.

The research on predicting performance on introductory programming
courses dates back over 40 years [21]. It initially started with the need to
recognize good employees [14], but the focus has since shifted to predicting
student’s performance when studying programming [2, 21,112,113,115,119].
Special interest has been put into studying the introductory programming
course at universities, often referred to as CS1. This course is especially
important as success in the beginning can determine whether the student
continues with the major or not. Many Computer Science programs have
reported poor retention rates [7], and it can be possible to improve these
rates through the introductory courses.

Introductory programming courses have struggled with high failing rates
with estimated one-third of the students failing on average worldwide [10,114].
Being able to recognize students who struggle with their studies allows us to
offer additional help and support to these students. Introductory courses often
have a lot of participants, and thus it is not always possible for the lecturer
to know how the class is doing before the final exam. Early interventions
can be beneficial for many students, so having a method to recognize the
need for help early on is important. When recognizing the students at risk,

1

interventions can also be targeted only to this particular group.
Identifying the factors that contribute to programming aptitude can also

help us to understand how students learn to program, which in turn can help
to plan the needed intervention. This knowledge can also be used to improve
teaching in general. Same teaching methods do not work for everyone and
identifying students individual needs can be very beneficial. For example,
the same teaching techniques that help inexperienced students might not
work for experienced learners [55].

In addition, many countries have recently introduced or are planning
to bring programming as a part of the curriculum in primary or secondary
school [9, 39]. This creates additional challenges as the students are even
younger, and on the other hand, the teachers might not have any previous
experience in teaching programming. Thus, a better understanding of the
learning process is especially important when planning these new curriculums.

However, in many countries programming is not a part of the curriculum
even in secondary school yet [39]. This can be a problem when considering
admissions to programming related degrees. As the students have no previous
knowledge of the field, the admission criteria need to be based on success
in other fields and other factors. Knowing what kind of background and
characteristics help students to succeed in their programming courses helps
to plan these admission criteria.

Previous studies have been able to identify numerous potential predictors
of performance, including variables related to students’ background, psy-
chological and cognitive characteristics and programming behavior. This
thesis focuses on factors that do not change or change slowly; that is the
demographic factors as well as different psychological and cognitive factors.
Most previous studies have only focused on one or few factors, and thus
many of them have only been studied in one or two contexts, and further
replication of these results is needed. As variables related to programming
behavior model students’ current knowledge and skills, these variables have
been excluded. Factors related to programming behavior have already been
found to be good predictors in different contexts [2, 22, 80, 113]. The results
with other variables are less clear, but better knowledge could help to improve
introductory programming courses.

2

Most of the studies to date have been studying simple correlations between
different predictors and the performance measure [11–13,18,113,118], but
other methods such as t-test [11, 113] or linear regression [88] have also
been used. However, the studies also have many limitations, and the results
between different studies have been inconsistent and varied depending on
the context. Thus replication of the previous studies in different contexts is
needed, and computing the correlations for several different variables also in
our context is one of the contributions of this thesis.

The method of using simple correlations has many limitations. For ex-
ample, correlation does not always imply causality but the two correlating
variables can be coincident effects of a common cause. Correlations can also
only find linear relationships. In addition, these predictors are most likely
not independent of each other, so understanding the relationships between
the predictors can also bring valuable information. Modeling the domain as
a whole allows us to flexibly solve different questions from classification to
prediction. Speculating about causalities is also possible using the dependen-
cies. Constructing a causal network that describes the domain can help in
answering questions like what will happen, if we can, for example, improve
the learning strategies of the students. Ideally, including more predictors can
also improve the prediction accuracy. Thus, another contribution of this the-
sis is to simultaneously study several different variables, their relationships,
and effect on performance.

We have chosen to use Bayesian networks [78] to model the domain.
Bayesian networks are graphical models that describe a joint probability
distribution for the whole domain in an intuitive and compact way. They
have been widely used in different fields such as medicine, finance, and
industry [84]. They are a tempting tool for studying student performance,
as they are able to model uncertainty, and the graphical model is intuitive
to read. Also, as Bayesian networks have gained a lot of interest in recent
years, several tools and tutorials for practical applications exist [4, 71, 98].
Bayesian networks have already been applied in the context of predicting
educational performance [8, 48,99], just not in the context of programming.

This thesis is organized as follows. In Sec. 2 we explore the factors that
have been used to predict success previously in the literature. Section 3

3

provides an introduction to the method used in this study, Bayesian networks.
The methodology and research questions are presented in Sec. 4 and the
results in Sec. 5. Finally, the results are discussed in Sec. 6, and Sec. 7
provides conclusions as well as some suggestions for future work.

2 Performance on introductory programming courses

Predicting performance on introductory programming courses is a widely
studied problem, and the motivation behind these studies is usually the high
failing rates [10,114]. Ideally, we want to be able to recognize the students
who are struggling early on during the course, so that those students can
then be offered additional help and support. On the other hand, successful
students could be offered additional challenges to also improve their learning
experience. Understanding the reasons behind failing or succeeding can help
to plan these interventions and teaching methods in general.

The work started with the need to recognize good employees and to predict
their success in training [14]. Since then, the main focus of research has shifted
towards studying programming courses, especially introductory programming
courses. Programmer Aptitude tests (PAT) were a common tool at the
beginning for companies to find employees, but often the test results did not
strongly relate to performance on the job [70]. Later, studies have proposed
various predictors. These include factors related to students’ background,
such as previous academic success [11,93,113,119] and previous programming
experience [11, 45, 49, 93, 107, 113, 117, 119] as well as psychological and
cognitive factors, such as self-efficacy [85,116,119] and self-esteem [12,113].
Some studies have also included demographics like gender, age and major [11,
93].

More recently, as it has become more and more common to collect log
data on introductory programming courses [51,89], newer studies have also
included variables based on this data [22,52,112,113]. These variables try to
capture students’ behavior while they are solving exercises, for example by
taking into account how much time they spend dealing with errors.

When predicting performance, and important thing to consider is of course
how to measure it. As most studies have focused on predicting performance

4

on introductory programming courses, the final grade [12,13,85,93,116] or
midterm grade [80, 118,119] is a natural choice. Often this means a number
between 0 and 100 [12, 13, 18, 119] or on a smaller scale such as 1 to 5 or
similar [93,117]. In most cases, the grade consists of performance in exercises
and the final exam, though final exam usually makes up for most of the
grade [12, 13, 116, 118]. Exam and lab performance have also been examined
separately [107], and other more specific performance measures have also
been used [2, 62].

This chapter introduces some of the most common predictors used in
literature collecting results from several different studies. These can roughly
be divided into three categories: student’s background, psychological and
cognitive factors and data-driven factors. All these three categories are
discussed below. Section 2.4 then describes the methods used in these
studies. Most of the studies to date have examined correlations between
these factors and a performance measure, but there are also some studies
that have aimed to examine the dependencies between different predictors.

2.1 Student’s background

Different factors related to students’ backgrounds are attractive as predictors
as they are usually easy to collect, or they might be already available. For
example, grades from secondary school have often already been collected
during the admission process. Also, variables related to students’ backgrounds
are usually used as admission criteria to universities. If we can better
understand which of these characteristics allow students to succeed in their
studies in computer science, we can perhaps improve the admission processes.
However, some information, like previous programming experience, can often
be only obtained through questionnaires and therefore requires more effort
to collect.

The effect of especially programming experience on programming per-
formance has been studied by many researchers [45, 49, 113, 117–119]. Ac-
cording to many studies, previous programming experience does seem to
have an impact on the success of the students on introductory programming
courses [45,49,113,118,119], but some studies did not find any significant

5

relationships between these two variables [11, 107]. Watson et al. discovered
that while previous programming experience can predict the success of stu-
dents, specific variables such as the number of languages known had only
weak correlations with the performance [113]. In addition, while Holden and
Weeden found a difference in the results of experienced and non-experienced
students on the first introductory course, this difference disappeared in the
later courses [49].

Some studies have found that also non-programming related computer
experience can be related to programming performance [118,119], but this
has been studied much less than previous programming experience. For
example, playing computer games has been shown to have a negative effect
on the course grade [118,119].

In addition to previous experience, researchers have studied the effect of
previous academic success. Researchers have been especially interested in
the influence of mathematics background on success in programming, and
it has been found to be a significant predictor in many studies [11,18,118,
119]. Wilson et al. even found mathematics background to be a stronger
predictor than previous programming experience [119]. However, as with
previous programming experience, there are also studies that did not find
any link between previous math background and success on the introductory
programming course [107,113].

Though mathematics background has been most extensively studied,
some studies have included success in other subjects. Bergin and Reilly
found that previous physics and biology grades have moderate but significant
correlations with performance in the final exam, but surprisingly there was
no relationship between chemistry grade and the final exam score [11]. Byrne
and Lyons also explored the predictive power of grade achieved in the native
language or second language, but they found no significant correlations [18].
Watson et al. found no significant correlations between college grade point
average (GPA) and success on an introductory programming course, but
high school GPA was a moderate predictor [113].

Many computer science programs also suffer from having only a small
minority of women as students [32,87]. This is perhaps one reason why many
researchers have also been interested in the effect of gender in success in

6

introductory programming courses. Perhaps males have better programming
aptitude or females are discouraged by the male-oriented study environment.
However, most studies have found that gender has no effect on programming
performance [18, 81, 107, 113,115,118], though different results also exist [63].

2.2 Psychological and cognitive factors

There has been a lot of interest in using different psychological and cognitive
factors extracted from questionnaire data to predict students’ performance
on a programming course. These are known to affect success, as good
performance is not only dependent on skills, but also individuals ability to
use those skills effectively. For example, self-efficacy affects many aspects of
learning like persistence and use of cognitive strategies [5]. Weak self-efficacy
can be improved with positive personal experiences [5], and this can, in turn,
be a way to improve students’ performance.

Studying psychological factors as predictors can be helpful in under-
standing the process that students go through when learning. Thus, the
information can be useful when designing the teaching methods. However,
the problem with psychological and cognitive factors is that they often require
questionnaires or tests, that can sometimes be lengthy and require time to
process. Therefore, these factors might not be helpful predictors if the goal
is to intervene early on during the course. However, the variables can still
bring valuable information about what kind of students are at risk to fail.
This section presents the most common psychological and cognitive factors
used in computer education studies. Most of these have been applied in
other fields as well as in computer science.

Different students have different ways to approach new material and
learning tasks as well as to process information, and these traits are called
students’ learning styles. Several theories of learning styles exist, but two of
the most common ones are Kolb’s Learning Style Inventory (LSI) [57] and
Gregorc style delineator (GSD) [44]. LSI has a standardized questionnaire,
where individuals rank potential endings for 12 sentences on a scale of 1 to
4. The result is a score for the individual’s predisposition toward concrete
experience, reflective observation, abstract conceptualization, and active

7

experimentation. However, the correlations between the four dimensions and
performance in programming courses were found to be either not significant
or weak [19,23,30,113]. GSD uses four dimensions similarly to LSI: concrete
random, concrete sequential, abstract random, and abstract sequential [44].
The dimensions have shown to have weak or moderate correlations with
programming performance [62,63,113].

Motivated Strategies for Learning Questionnaire (MSLQ) [82, 83] is a
questionnaire designed to assess students’ motivations and learning strategies.
It consists of two parts, a motivation section, and a learning strategies sec-
tion, that can be administered individually. The learning strategies section
measures nine different scales regarding students’ cognitive, meta-cognitive,
and resource management strategies [83]. The motivation section consists
of six scales that can be divided into three categories: value, expectancy,
and affect [83]. Not many studies have applied MSLQ in the context of
programming yet. For the motivation section, two studies have found signifi-
cant correlations between success and total score for MSLQ, intrinsic goal
orientation, and self-efficacy for learning and performance. [12, 113]. One of
these studies also found correlations with task value and control of learning
beliefs [12]. The results with learning strategies have been more inconsistent.
While Bergin et al. found significant, strong correlations for seven out of
nine scales [13], Watson and Godwin found significant, moderate correlations
only for critical thinking and effort regulation [113].

Self-efficacy is a person’s judgment of their ability perform tasks and
reach goals [5]. Self-efficacy is related to certain domains, which means that
person’s self-efficacy can vary depending on the task. Self-efficacy for learn-
ing and performance is also one of the subcategories ins MSLQ motivation
questionnaire. As mentioned above, it has been found to correlate with suc-
cess [12,113]. Self-efficacy has also been studied with other questionnaires, for
example by using the Computer Programming Self-Efficacy Scale developed
by Ramalingam and Wiedenbeck [86]. It has been shown to correlate with
success in introductory programming courses [107]. However, Wiedenbeck
et al. found no significant correlations between pre-self-efficacy, that is the
self-efficacy measured at the beginning of the course, and performance [117].
Self-efficacy measured at the end of the course, post-self-efficacy, correlated

8

with the performance also in their study [117]. On the other hand, pre-self-
efficacy has been shown to even have a negative correlation with performance
among non-majors [116].

Another factor that has been studied is the explanations that students
give to their success, attribution of success. The students were asked to
rank four reasons for their success: attribution to ability, attribution to
task difficulty, attribution to luck, and attribution to effort. Again, the
results have been somewhat inconsistent. Attribution of success to luck has
been shown to correlate with performance on introductory programming
courses by three studies [107,113,119], but only two studies found correlations
with attribution to task difficulty and efforts [112,119] and one study with
attribution to ability [119].

Self-esteem is a person’s evaluation of their worth. Rosenberg’s self-
esteem scale (RSE) [92] has been widely used as a measure for self-esteem.
It contains ten statements that the students evaluate on a four-point scale.
Though several studies have linked self-esteem to achievement at school [50]
and RSE is a widely used measure in general, only two studies have measured
RSE in the context of programming. These studies had questions that were
modified to relate them to programming, and while Bergin et al. found a
moderate correlation between the score and performance [11], Watson et al.
found no significant correlation [113].

The variables mentioned above are perhaps the most studied ones, but
researchers have also been interested in predictors like mental models [85,117],
comfort level [118] and achievement goals [124]. For example, Wilson found
that comfort level was the strongest predictor out of 12 variables in their
context [118].

2.3 Data-driven variables

As the amount of data collected on introductory programming courses
constantly increases, there has been more and more interest in using this data
to predict success in introductory programming courses. Several systems that
collect data while students solve their exercises have been developed [17,109].
These systems collect data with different granularities: on submission level,

9

snapshot level or keystroke level [110].
Data-driven variables can offer information fast without requiring any

extra effort from the students. Many traditional predictors presented in
Sec. 2.1 and Sec. 2.2 require the students to complete questionnaires or tests
that can sometimes be lengthy. Also, processing these tests may require a lot
of time and make early interventions difficult. With data-driven variables,
the collection of the data is continuous, and thus it can also reflect the
progress that students make during the course. Tests taken once during the
course do not offer this possibility.

Data-driven variables aim to model students’ programming behavior, and
even variables that seem simple can predict student’s success. Watson and
Godwin extracted ten measures that were based on analyzing event pair-
ings [113]. As they had previously discovered, that just counts of events were
not good predictors [112], they measured the percentage of analyzed pairings
out of all pairings. Nine of the tested measures had significant and strong
or moderate correlations with performance [113]. Good prediction accuracy
was also achieved by using features based on total amount of time spent and
the correctness of the solution achieved on specific exercises [2]. Piech et al.
constructed a graphical model that describes students’ programming process,
and this model was used to predict whether the student will struggle later
on during the course [80].

There are also measures that have aimed to quantify students’ overall
programming behavior. The Error Quotient (EQ) was first introduced by
Jadud to quantify students’ struggle with syntax errors [52]. It examines
consecutive pairs of compilation events, adds to the score if both compilation
events in the pair end to an error, and adds extra points if the events end to
the same type of error [52]. Jadud himself observed only weak correlations
between the EQ and performance on the course, but his data only included
programming data from times that students were working in computer labs,
and therefore he was missing an unknown amount of data [52]. Other studies
have found that EQ explains about 10 – 30% of the variance in students
performance when using Java programming language [103, 112, 113] and
about 3% when using C++ [22].

Watson et al. sought to improve the work started by Jadud [52] and

10

introduced their own measure, the Watwin score [112]. The Watwin score,
like the EQ, is also formed by examining pairs of compilation events, but
it introduces several new qualities. The method that Watson et al. use for
pairing the events is different, and they also account the time that student’s
take between these events into the scores [112]. The idea of the measure is
to give a bigger score to students who spend more time to resolve a specific
type of error than their peers. The results with Watwin score have in general
been better than with EQ [22,112,113], but still inconsistent. Watson et al.
themselves found that Watwin score accounts for about 36–42% [112, 113] of
the variance in students performance when using Java as the programming
language on the course. However, according to another study, Watwin score
accounts only for 12% of the variance in final grades, though the language
used in this study was C++ and the course studied CS2 instead of CS1 [22].

While EQ and Watwin score focus on the compilation behavior of the
students, Carter et al. [22] wanted a measure that also considers other aspects
of programming behavior, like debugging and eliminating semantic errors.
They introduced a new measure, a Normalized Programming State Model
(NPSM), that aims to measure the syntactical and semantical correctness of
students’ programs. The NPSM is based on the time that a student spends in
each of 11 possible states while programming relative to the total time spent
programming [22]. Carter et al. themselves found that NPSM accounted for
36% of the variance in students’ final grades [22]. The language that the
students used in their study was C++ and the data was collected on a CS 2
course instead of a CS 1 course.

Also, different kinds of data-driven variables that are not based on
programming data have been used. For example, students’ web usage and
participation in online discussions on a Moodle course have been used to
predict performance [90,91].

Using data-driven variables in predicting students’ success in introductory
programming courses is still relatively new, and fewer studies have focused
on them than on background or psychological and cognitive factors. However,
the results have been promising. Watson et al. found that data-driven
variables, in general, are stronger predictors of performance than traditional
variables [113]. They tested 50 different variables, and all the strongest

11

predictors were based on programming data, except for self-efficacy [113].
However, there are still issues. For example, these measures seem to yield
somewhat inconsistent results depending on the context [79], for example
when using different programming languages [22,79,112,113].

2.4 Methods used for modeling effect on performance

Several studies have attempted to identify factors that affect success in intro-
ductory programming courses. The methods in most studies are very similar
focusing on pairwise analyses between the variables and the performance
measure. However, some studies have also used multiple variables to predict
performance.

Most studies that have tried to identify good predictors have focused
on studying the relationships between one predictor and the and course
or exam grade independently by using either correlations [11, 12, 18, 107,
113,115,119] or simple linear regression [22,88]. For example, Watson and
Godwin analyzed the correlations between 50 different variables and course
performance [113]. However, computing this may correlations raises the risk
of obtaining statistically significant results by chance. This is known as
the multiple comparisons problem. Many researchers have also performed
t-tests to compare the mean scores of students grouped by some of the
variables [11,18,81,107,118].

In addition, some studies have also attempted to model several factors at
the same time. Wilson et al. utilized a general linear model to examine the
effect of multiple variables. Rountree at al. used decision trees in predicting
whether a student will fail or pass a CS1 course [93]. The data was collected
with a questionnaire including questions about the students’ background,
working status and expectations. They were able to identify some features
that put the students at risk of failing rather than explicitly identifying
the students who will fail. Their results indicated that students who are
likely to fail had similar answers to questions on academic background, math
experience, year of study, age, and expectation of a grade [93].

Some studies have constructed a graphical model based on previous
research and then used path analysis to test the model. For example, the

12

relationships between previous programming experience, pre self-efficacy,
post self-efficacy, mental models and the final grade of the course have been
studied this way [85,117]. The unexpected finding here was that previous
programming experience does not seem to have on effect on students’ mental
models unlike the researchers expected [85,117]

Lau and Yu used Partial Least Squares (PLS) modeling to study rela-
tionships between six different variables: gender, learning styles, mental
models, Band, MOI, and programming performance [63]. PLS modeling
can be used to explore relationships between variables. It combines the
previously mentioned multiple regression and path analysis among other
similar methods, and again, in this case, the hypothesis of relationships was
based on previous studies. All the studied variables were found to relate to
performance except for gender, which only was related to mental models [63].

More recently, some studies have compared various machine learning
methods in predicting performance [2, 80,91]. For example, Ahadi et al. [2]
tested the performance of different machine learning methods in predicting
students’ performance. They aimed to recognize whether the student would
be in the high- or low-performing half of the class, and the variables used in the
study were based on students’ background and key log data. They achieved
classifier accuracies as high as 93%, and the best results were obtained by
using random forests [2]. Random forests learn multiple decisions trees and
use averaging to get better results and to reduce over-fitting. Also Romero et
al. experimented with different classification methods to predict performance
based on participation in online discussions [91]. Piech et al. used Hidden
Markov Models to learn a high-level representation of students’ progress
when programming, and then k-means clustering to find patterns in these
representations [80].

3 Bayesian networks

The method we have chosen here to model the relationships between fac-
tors affecting programming performance is Bayesian networks. Bayesian
networks [78] are probabilistic graphical models that can be used to represent
uncertain domains. They can represent probabilistic dependencies in a set of

13

variables efficiently and naturally, and also help us to understand the domain
as well as to predict future events based on collected data.

Bayesian networks have many features that make them useful for real-life
situations such as student modeling. Because of the wide applicability, the
interest in Bayesian networks has grown in different fields, and the methods
have advanced rapidly. As a result, several commercial and open source
packages are now available for researchers to use and apply in their context [4,
71,98]. Fields, where Bayesian networks have been applied, are numerous,
including finding relationships between genes, environment, and disease [102],
analyzing gene expression data [43], environmental modeling [106] and much
more [84]. Bayesian networks have also already been utilized in student
modeling and cognitive assessment in general [8, 99].

One of the advantages of Bayesian networks is that they represent the
joint distribution of all the variables, and thus allow modeling the domain as
a whole instead of just focusing on one variable. Therefore Bayesian networks
can flexibly be used for any inference task. Moreover, they represent the
joint distribution in a compact and interpretable way. In addition, Bayesian
networks can model uncertainty, which is inevitably present in student
modeling. Bayesian networks can also be used to model relationships that
are not linear. Many traditional models, such as regression, are not sufficient
when the dependencies in the data are non-linear. Also, handling missing
data can be naturally incorporated into the analysis, and when it comes to
real-life data, especially data collected with questionnaires, missing values
can be common. Bayesian networks can also make good predictions even
when trained with a limited amount of data [58], and with student analysis
the number of students can sometimes be small.

In addition, Bayesian networks can be learned just from the data without
defining any initial structure. That means there is no need for initial model
constructed by humans, which removes a certain risk to errors. Previous
studies that have examined the relationships between variables that affect
success on introductory programming courses have tested networks that have
been solely defined by humans [85]. However, it is still possible to incorporate
previous knowledge in the structure when it is available.

Finally, Bayesian networks are a tempting solution when we want to

14

visualize cause-effect relationships in a natural way. As the networks are
directed, the direction of the causation can be seen intuitively from the
structure. However, the edges between variables do not always indicate
causality, and certain assumptions need to be made before cause-effect
relationships can be examined. Causalities can provide valuable information
about the domain, but the directions of the arrows are not relevant when
it comes to probabilistic inference. Even without assuming any causal
relationships, it is still possible to get meaningful information from the
structure.

This section introduces Bayesian networks and the notation used in this
thesis. It starts with describing the needed background information and
important definitions in Sec. 3.1. An important part is learning the model,
which is presented in Sec. 3.2. Section 3.3 then describes how to extract
information from the model. Finally, Sec. 3.4 presents some of the previous
work that has used Bayesian networks to model student performance.

3.1 Basics

Bayesian networks define a joint distribution for a set of variables in an
intuitive and compact way. They are graphical models and consist of two com-
ponents: a directed acyclic graph (DAG) and a set of conditional probability
distributions. In the DAG, the nodes represent a set of random variables, and
the directed arcs represent the conditional dependencies between these vari-
ables. Each variable also has a conditional probability distribution associated
with it. An example of a Bayesian network can be seen in Figure 1.

More formally, a Bayesian network defines a joint distribution for a set of
n random variables X = {X1, ..., Xn}. As it contains two components, it is
formally defined as a pair (G, θG), where G is the graphical representation,
a directed acyclic graph (DAG), and θG the parameters associated with it.
The DAG G is also defined as a pair (N,A), where N = {1, ..., n} is a set
of nodes, where each node v corresponds to one random variable Xv in the
data, and A is a set of arcs between the nodes N . The arcs in G are directed,
and by definition, the graph cannot contain any directed cycles. This means,
that when starting from any node v there is no way to loop back to that

15

Figure 1: Example of a Bayesian network for variables X =
{X1, X2, X3, X4, X5} that each can take two possible values. The tables
represent the conditional probability distributions P (Xi|Gi, θ).

same node again by following the directed edges.
In the DAG, a node u is defined as the parent of a node v if there is an

arc from u to v in the graph. Then, the node v is a child of the node u. For
example, in Figure 1 node X1 is a parent of node X2. Bayesian network
structure can be expressed as a vector G = {G1, ..., Gn}, where Gi is the
parents of variable Xi. For example, the network structure in Figure 1 can
be represented as G = ({}, {}, {X1, X2}, {X2}, {X3}). Similarly, u is defined
as an ancestor of v if there is a directed path from u to v, and v is then a
descendant of u.

Each variable Xi has also table of parameters θi associated with it. θi de-
fines the conditional probability distribution P (Xi|Gi, θ). The paths between
the nodes in the graph express the probabilistic dependencies between the
variables. An important feature, the Markov condition, states that each ran-
dom variable is conditionally independent of all of its non-descendants given
its parents. Thus, as the topology of the graph already holds information
about the dependencies, the Markov condition allows storing joint probability

16

distributions of even large amount of random variables efficiently if there
are many independences. The joint probability distribution for the set of
variables X = (X1, ..., Xn) represented by a Bayesian network M = (G, θG)
is given by

PM (X1, ..., Xn) =
n∏

i=1
P (Xi|Gi, θi) (1)

For example, by taking advantage of the conditional independence relation-
ships seen in the network presented in Figure 1, the conditional probability
of the five variables can be written according to Equation 1 as:

PM (X1, ..., X5) = P (X1)× P (X2)× P (X3|X1, X2)× P (X4|X2)× P (X5|X3)

3.2 Learning Bayesian networks

This section gives a short introduction to learning Bayesian networks. When
constructing a Bayesian network, we need to determine its’ structure and
the parameters. Out of these two, structure learning is often the harder case,
and in this description, more emphasis is put on learning the structure.

Learning the structure can be done from prior knowledge, data, or from
a combination of these two. One way to construct a network is to design it
based on what we know about the domain. However, most of the time this
is not possible as we might not have enough information about the domain,
or the task would just be too time-consuming for a human. Therefore,
several methods for learning the network from data exists. If available,
prior knowledge can also be incorporated into this process. There are two
main strategies for learning a network structure from data: constraint-based
approaches and score-based approaches. Some hybrid algorithms that combine
both of the approaches also exist.

The constraint-based approaches are based on conditional independence
tests between the variables, and they aim to find a network structure that
best explains the found dependencies [100, 108]. From the results of these
independence tests, it is possible to, for example, decide the existence of
an arc. Several different algorithms are based on this principle but use
various methods, such as different kinds of tests and ways to interpret the

17

results. Examples of these algorithms are IC [108] and PC [100]. Even
though constraint-based algorithms are generally fast and can be used even
with larger networks [60], score-based approaches tend to produce better
results with small data sets or when the independences are weak [122].

In score-based approaches, a set of potential DAGs is defined, and each
of them is assigned a score that describes how well the graph represents
the dataset. The best DAG is the one with the highest score, so, in the
end, the goal is to solve an optimization problem. Most of the scoring
criteria are based on either the maximum log-likelihood of the structure or
on the posterior probability of the network. Bayesian Information Criterion
(BIC) [95] and Akaike Information Criterion (AIC) [3] are both based on
the maximum log-likelihood of the structure, to which they add a different
penalty term to penalize models that are too complex to avoid over-fitting.
Score functions that compute the posterior probability of the network are
often referred to as Bayesian scores, and they are defined using the Bayes
rule. Examples of Bayesian scores are K2 [29] and BD [47].

There are a couple of important properties that a score should fulfill.
Most efficient learning algorithms advantage of decomposable scores [47]. The
score is said to be decomposable if it can be calculated as a sum of scores
for individual variables, and the score for each variable is only dependent on
the variable itself and its parents. Also, the score should be the same for all
equivalent networks. Two Bayesian networks are said to be equivalent if they
define the same probability distribution.

However, the amount of different possible networks grows quickly when
the number of variables grows, and finding an optimal network is an NP-hard
problem [24, 26]. For moderate-sized data, it is still possible to use exact
algorithms. Exact algorithms, unlike heuristic algorithms, always find the
optimal solution. As using exact algorithms removes certain uncertainty
from the results, there has been interest in developing exact algorithms, even
though they run in exponential time. Many of these algorithms are based on
dynamic programming [56,76,104], but others also exist [20,38,95].

In practice, heuristic algorithms are often used for structure learning.
Examples of such algorithms are greedy search based algorithms, best-first
search [59] and Monte-Carlo methods [42, 68]. Many heuristic algorithms

18

use decomposable scores to reduce the number of needed computations. As
most of the algorithms add, remove or reverse existing arcs in the network,
having a decomposable score means that it is possible to just calculate the
change in the score. For example, greedy search uses this principle, and in
each iteration, it calculates the change in the score for each possible change
in the arcs, and chooses the change that maximizes the score [25]. However,
like other local search algorithms, it can get stuck on a local maximum, but
for example simulated annealing [27] have been used in attempts to solve
this problem.

Most practical data contain missing values, and many structure learning
algorithms described above cannot handle these situations as described. One
approach to addressing the problem is to preprocess the data by either
removing all entries with missing data or by filling in the missing values.
Removing all observations with missing data can be used if only a relatively
small portion of the observations include missing values. However, this is not
always the case, and then it is better to impute the missing data. For filling
in, some good guesses can be used, and the simplest solution is to us the
mean or median of the observations. Better results can often be obtained by
estimating a predictive model based on the other variables. For categorical
variables, it is possible just to handle the missing values as legitimate by
adding an additional category for them.

Some structure learning algorithms also work with missing values. One
of the best-known ones is the Structural Expectation Maximization (SEM)
algorithm [40]. It is based on the EM principle [34], and many different
algorithms based on this principle have since been developed [16,66]. However,
in many cases, these algorithms can get stuck on a local maximum. One
solution to this is to use random restarts. Another popular group of methods
that can handle missing values is based on the Monte Carlo techniques [31,
72,77].

There are also other challenges to consider. The data might contain
additional factors that are just not recorded in the data. This can be seen
as a problem of missing data, where all the observations for one variable
are missing. Thus, most approaches that are listed above to handle missing
values can also be applied in this case. In addition, when the number of

19

variables grows, the number of possible data vectors increases exponentially
with it. This means that we have usually only observed a small fraction of
all the data vectors that could be possible to be observed. Also, it might be
that the data cannot be naturally described with just one Bayesian network.

3.3 Inference in Bayesian networks

Once the Bayesian network model has been constructed, there is usually
interest in extracting information from that model. This is called probabilistic
inference or reasoning in the network. Typically, we are given the values for
some subset of the variables, and we then want to determine the probability
of some other variables being in a certain state. More formally, the aim
is to determine a probability P (S1|S2, G, θ), where S1 is the subset of the
variables for which we want to determine the probability distribution when
we are given the values of the variables in subset S2 as well as the network
G and its’ parameters θ. For example, we could be interested in finding the
probability that a patient has a certain disease given his symptoms.

As Bayesian networks define a joint probability distribution over all
the variables, any inference problem can be solved with marginalization.
Marginalization refers to summing out over all the irrelevant variables. How-
ever, this takes exponential time with respect to the number of nodes in the
graph. Like structure learning, probabilistic inference in multi-connected
networks has been shown to be NP-hard [28], and the inference algorithms
can be divided to exact and approximate algorithms. Sometimes, especially
in cases with discrete variables, using exact algorithms is possible, but often
computing an exact solution takes too long and different heuristic approaches
need to be used.

Exact inference means analytically calculating the conditional probability
distribution over the variable or variables of interest. A common method for
this is the variable elimination algorithm [33,123], which is based on doing
the marginalization more efficiently by utilizing a factored representation
of the joint probability distribution. The idea behind it is to exploit the
chain-rule decomposition of the joint distribution and to avoid repeating
calculations by storing the already calculated results. However, the query

20

variables need to be specified in advance, and thus the algorithms needs to
be rerun for every new query. The junction tree algorithms [6, 78] avoid this
problem by generalizing the variable elimination algorithm. The network is
transformed into a tree structure called a junction tree, where a message
passing algorithm [54,64] is then applied. The message passing algorithms
are based on nodes passing messages to their neighbors and updating their
conditional probability distributions based on the message.

Using exact algorithms is not always possible, and thus several approxi-
mate algorithms for inference in Bayesian networks have also been developed.
There are many algorithms based on sampling or Monte Carlo methods, and
for example Gibbs sampling and the Metropolis-Hasting algorithm can be
utilized for approximate inferences [31,72,77]. Another group of algorithms
is based on variational inference, for example, the mean field methods [74]
and loopy belief propagation [121].

3.4 Bayesian networks in modeling student performance

Using Bayesian networks in educational data mining and especially in predict-
ing students’ performance has been studied in different contexts. Bayesian
networks have been used for predicting performance also in the context of
programming, but mainly with variables based on programming behavior and
students’ background [2, 91, 109]. Mostly these studies have experimented
with several different classifiers, and Bayesian networks have just been one
of the classifiers. The results below are reported as in the studies and can
not be directly compared. The amount of classes in the tasks varies, and in
imbalanced datasets, accuracy can be misleading.

Ahadi et al. used several different classifiers and variables based on
students’ background as well as key log data to predict whether the student
would be in the high or low performing half of the class [2]. They achieved
classification accuracies of 72%–86% depending on the performance measure
when using Bayesian networks, but for example, random forests performed
better in general. Similarly, Vihavainen used Bayesian networks and key
log data to classify students into three groups: fail, pass and excellent [109].
After two weeks of collecting data, he was able to classify 64% of the students

21

correctly, and at the end of the course 78% of the students.
Romero at al. [91] also used Bayesian networks to predict performance

on an introductory computer science course. A Moodle discussion forum
was used on the course, and the dataset was constructed from the messages
posted on this forum. They compared several different classification and
clustering methods, including Bayesian networks, in predicting whether the
student will pass or fail. They were able to achieve accuracies as high as
90%.

More examples of using Bayesian networks to predict success in edu-
cational contexts can be found in other fields. Bekele and Menzel applied
Bayesian networks in predicting students performance on a mathematics
course in a senior high school in Ethiopia [8]. Their study and the purpose
of the study is very similar to the one presented in this thesis. However, the
context and used variables are different. The model included eight variables
including math performance, gender, group work attitude, interest for math,
achievement motivation, self-confidence, shyness and English performance.
They were able to predict correctly in about 64% of the cases whether the
student would have below satisfactory, satisfactory or above satisfactory
performance [8]. They had 514 samples after removing samples that had
positive answers for included lie detector questions, and the most relevant
attributes were previous English and math performance.

Also Sharabiani et al. [99] used Bayesian networks when aiming to predict
the grade (A, B, C or D/F) of students’ on three core course of an engineering
program. They used different demographic and academic factors including
gender, age, race, citizenship status and grades achieved on some prerequisite
courses. In addition, their proposed model included variables that described
the student’s capacity each semester and the level of difficulty of each course
for each student. They had included 300 students in the analysis, and their
model achieved an accuracy of only 36% on the CS course but 70% and
73% on the physics and mathematics course [99]. They also compared the
proposed model with other traditional machine learning methods, and in
general produced the best results. Only in the CS course random forests
method achieved a better accuracy with 46% [99].

There are also studies that try to predict students’ performance at the

22

university in general, not just on one course. Hien and Haddaway [48] aimed
to predict students’ graduating cumulative Grade Point Average based on
applicant background at the time of admission using a Naïve Bayes model, as
that yielded best results out of all tested network structures. The motivation
behind the study was to find a better way to recognize good applicants. The
data set consisted of 1386 master’s students and 212 doctoral students. The
prediction accuracy of the master student model was 60% and the doctoral
student model 88% when having five categories for the grade. The most
important predictors were previous institution and previous cumulative grade
point average. The biggest problem they faced with the study was that the
model tended to overestimate the performance of students with lower grades
due to the imbalance of data: most students accepted to the university have
good grades, and thus they have very little data on students with low grade
point averages (GPA) [48].

Thai-Nghe et al. [105] performed a similar study where they compared
the performance of decision trees and Bayesian networks when trying to
predict academic performance. The study was conducted at two different
institutions in Asia and included 20492 and 936 students. The attributes in
both studies were slightly different but included factors related to previous
academic performance and demographics. Attributes such as previous GPA
or entry GPA, English performance, institution rank and home country were
the most informative ones. They achieved a success rate of 61% when trying
to classify the students in one of four classes and a success rate of 66% and
79% when trying to classify the students in one of two classes when using
Bayesian Networks [105]. Decision trees performed slightly better.

Misiunas et al. had collected records from 1024 students including vari-
ables related to demographics, high school performance, college performance,
financial situation and working status. They used pre-college information
to predict college performance and achieved an accuracy of 47% with GPA
and 55% with degree completion. Using ongoing college attributes yielded
in a 75% accuracy in predicting degree completion and 76% accuracy in
predicting high school GPA.

Nokelainen et al. [73] studied the relationship of self-attribution theory
and mathematical giftedness. The data included 86 students participating

23

in Mathematics Olympians, 52 students participating in secondary school
national mathematics competition and 74 students taking an advanced math-
ematics course in a polytechnic that all completed a given Self-Confidence
Attitude Attribute Scales (SaaS) questionnaire. Using the 18 variables they
were able to reach a classification accuracy of 65% when classifying the
students into Olympians, national competition participants, and polytech-
nics [73].

Bayesian networks have been used in student modeling in general. In
addition to predicting success, they have been applied for modeling item-item
relationships [35], students’ behavior within a tutoring system [75] and future
group performance in face-to-face collaborative learning [101].

4 Research design and methodology

The aim of this study is to explore variables that affect performance on
introductory programming courses. The motivation behind it is to understand
reasons or risk factors behind failing a programming course, and at the same
time, to understand reasons why some students perform better than others.
On the other hand, one goal is to be able to recognize students who are at
risk to fail in order to provide assistance and/or individually designed study
material for them. The research question can be divided into two parts:

1. Do factors relating to students background and psychological and cogni-
tive characteristics affect how well students perform in an introductory
programming course, and how do these features depend on each other?

2. Is it possible to predict students’ performance on an introductory
programming course using these factors?

The first question aims to study different factors that affect how students
learn to program, and how these factors depend on each other. Most studies
to date that have studied traditional, questionnaire-based factors have focused
on only one or few of them at a time. Here, we are interested in finding a
bigger picture of the domain and not to just study individual predictors, but
to also see how the predictors relate to each other. Different psychological
and cognitive variables can be expected to be dependent on each other,

24

and understanding these relationships can help to understand how or why
certain variables seem to be related to performance. Modeling the domain
as a whole allows us to answer flexibly different kinds of questions, such as
predicting how different interventions would affect the performance or how a
student would perform on the course. As correlations do not imply causation,
studying simple correlations does not yet allow us to make conclusions about
for example how improving or changing the learning strategies would change
the performance.

The data-driven variables described in Sec. 2.3 measure more the current
knowledge and skills of the students rather than characteristics that lead to
or relate to these skills, and these variables have been excluded. Data-driven
variables have already been studied and found to be good predictors in
many contexts [2, 22, 80, 113], though there is still a lot to be improved even
with these variables. The effect of psychological and cognitive variables as
well as students’ background on programming performance have also been
studied, but the results have been inconsistent, and only very few studies
have included several variables. Thus, there is still perhaps more to achieve
in understanding how these factors relate to the learning process and the
performance or whether they relate to it at all. Therefore, the focus of this
thesis is on psychological and cognitive factors as well as student’s background
information. These factors can also be used to predict students’ success
before the course has even started, and the information can be used to for
example plan admission criteria, or to plan the course structure according to
the participants’ needs.

The features included in this study are presented in Sec. 4.2. As most
previous studies that have aimed to find factors that affect success on
introductory programming courses have calculated correlations between
these variables and a selected performance measure, We will also present the
correlations measured in this context. The goal, however, is to use Bayesian
networks to visualize how these variables depend on each other and on the
performance on an introductory course. The methods used for learning the
network are explained in Sec. 4.4.

With the second question, we intend to study if it is possible to predict
whether a student will fail or pass an introductory programming course.

25

This is done by using the models constructed in answering the first research
question, as well as by experimenting with simpler classifiers. Classification
is a common way to evaluate the performance of a model. The two simple
classifiers have been added here to see whether the more complicated model
can perform any better than these two. The classification methods used in
this thesis are described in Sec. 4.5.

4.1 Context

The data for the study comes from three different cohorts of an introductory
programming course organized in spring and fall semester in 2015 and
in spring semester 2016 at University of Helsinki. The course lasts for
seven weeks, and it covers the basics of object oriented programming. The
programming language on the course is Java. All course material is available
online, and the material for each week includes a comprehensive introduction
to the topic or topics of the week, as well as the exercises that are incorporated
in the material.

The course focuses more on actual programming than traditional lectures,
and thus includes a large amount of practical exercises. A new exercise set is
introduced every week, and it typically consists of many small problems that
combine into larger programs. The students can work on the exercises either
in the computer labs, where they may ask for help from teaching assistants,
or they can work on the exercises independently at home. Teaching assistants
are available in compute classrooms several hours a week, and they are mostly
students that have recently completed the course themselves. A more detailed
description of the course organization is found for example in [61,111].

The course grade consists of three parts: programming exercises (70%),
computer exam (15%) and a traditional pen and paper exam (15%). Thus,
the course includes a lot of exercises, and each week a new exercise set, that
is worth ten points, is published. Unlike the normal paper and pen exam,
the computer exam can be done on students’ own time wherever they choose
at the end of the course. The students can use the internet and all material
during this exam, but asking for help is not allowed. The grade is given on a
scale pass/fail, where to pass the course the students needed to collect 70%

26

(spring 2015) or 75% (fall 2015, spring 2016) of the total course points and
to achieve at least half of the points in both of the exams. Spring 2016 also
introduced the possibility to achieve a grade 5, which is the best possible
grade. To reach this grade instead of just passing, you had to obtain at least
90% of the exercise points and 90% of the exam points.

During the course, there are one or two short questionnaires each week
that measure for example students’ learning strategies, motivation, and
self-esteem. Answering these questionnaires is voluntary, but students can
earn a small amount of extra course points if they decided to fill the forms.
The questionnaires are part of the online material, and are always included
in the beginning of the topic of the week. This data has not been collected
specifically for this study, and the included questionnaires have not been
planned specifically for this purpose.

The participants include both computer science majors and other majors.
Especially the courses organized during spring semester have a lot of minor
students, but the information of students’ majors was not available at this
time. There are generally more male students than female students, and
the students come from very varying age groups. Table 1 introduces more
statistics about the participants and their backgrounds.

4.2 Factors included in the study

The aim of this study is to model factors that affect success in introduc-
tory programming courses. The focus is specifically on students attitudes,
motivations, learning strategies and background rather than their current
skills. Thus, the variables included here are mostly either based on students’
background like presented in Sec. 2.1 or psychological and cognitive variables
like presented in Sec. 2.2. All background variables are listed in Table 1 and
other variables including the abbreviations used in this thesis as well as some
descriptive statistics are listed in Table 2. The variables were chosen from
existing data collected previously. More detailed descriptions of these factors
are given below.

The most important decision to make is the performance measure. The
most common measure used in previous studies is the midterm or final grade

27

Variable and abbreviation Possible values # of students
Grade (grade) pass 213

fail 87
Gender (gen) female 94

male 155
unknown 51

Age 22 or younger 132
23 or older 123
unknown 45

Programming experience (PE) no experience 195
experience 105

Working status (WS) not working 184
working 69
unknown 47

Table 1: Course participants’ background information for discretized variables

that is as a continuous variable representing a number between 0 and 100
(e.g. [11,113,117,119]). A similar measure in this context is the course points,
and that is used as the performance measure when computing correlations.
This is a value between 0 and 110, where 100 points are considered to
be full points, but as some extra points can be collected by answering the
questionnaire or completing additional exercises, some students have collected
more than 100 points. As discrete variables are needed for learning a structure
for Bayesian network, the grade is used as the performance measure there.
However, the course points, and thus also the grade, is heavily affected by
the practical exercises, whereas in many other contexts the grade is mostly
affected by the exam or exams [11,113]. Therefore, we have chosen to use the
points achieved in the pen and paper exam as another performance measure.
This was chosen instead of the computer exam to have more comparable
results with previous studies. Also, most students who took the computer
exam got full points the mean being 14.04/15 and median 15. Most likely
due to the large amount of exercises, the students who make it to the final

28

Variable Abb. Values Mean s. d. # of answers

Pe
rf
or
m
an

ce Exercise Points Exer 0–80 54.87 15.11 300
Exam Points Exam 0–15 12.47 2.58 260
Computer Exam Points CoExam 0–15 14.04 1.82 261
Course Points Point 0–110 77.90 23.38 300

M
SL

Q
Le

ar
ni
ng

St
ra
te
gi
es

Critical Thinking CT [0,1] 0.64 0.09 232
Effort Regulation ER [0,1] 0.56 0.14 232
Elaboration Ela [0,1] 0.65 0.11 232
Help Seeking HS [0,1] 0.61 0.14 232
Self Regulation SR [0,1] 0.53 0.19 232
Organization Org [0,1] 0.62 0.10 232
Peer Learning PL [0,1] 0.51 0.18 232
Rehearsal Reh [0,1] 0.44 0.18 232
Time and Environment TE [0,1] 0.48 0.16 232

M
SL

Q
M
ot
iv
at
io
n Extrinsic Goal Orientation EGO [0,1] 0.51 0.16 217

Intrinsic Goal Orientation IGO [0,1] 0.74 0.14 217
Self-Efficacy SE [0,1] 0.74 0.16 217
Task Value TV [0,1] 0.84 0.13 217
Test Anxiety TA [0,1] 0.46 0.17 217
Learning Beliefs LB [0,1] 0.83 0.13 217

B
ig

Fi
ve

Extroversion Ext [0,1] 0.60 0.16 227
Agreeableness Agr [0,1] 0.75 0.11 227
Conscientiousness Con [0,1] 0.64 0.13 227
Emotional Stability ES [0,1] 0.71 0.12 227
Openness Ope [0,1] 0.70 0.09 227

Se
lf
B
el
ie
fs

Debugging Self Efficacy DSE [0,1] 0.74 0.15 97
Prog. Anxiety PA [0,1] 0.51 0.20 97
Prog. Aptitude Mindset PAM [0,1] 0.29 0.13 97
Prog, Interest PI [0,1] 0.78 0.14 97
Prog. Self Concept SC [0,1] 0.78 0.14 97
General Self Efficacy GSE [0,1] 0.72 0.14 223
Self Esteem RSE [0,1] 0.50 0.17 217

Table 2: Psychological and cognitive variables and the performance measures
included in this study. The table also lists the abbreviations used throughout
the figures in this thesis as well as the range of possible values, means,
standard deviations and the number of answers for each variable.

29

weeks also do well on the computer exam. As all students did not participate
in the exam, the amount of students included in the analysis in this case is
smaller.

As described in Sec. 2, there are several different variables that have
been associated with students’ performance in introductory programming
courses. However, the results with all of these variables have been incon-
sistent. This is understandable, as with student modeling and educational
questionnaires there is always a lot of uncertainty present. The courses in
different universities vary, including the context, teaching, exercises, pro-
gramming languages, etc. Also students’ attitudes towards studying and
the course can vary depending on for example the culture or the university.
Therefore, it is not easy to pick only some variables that clearly relate to
performance on programming courses, but the aim is to examine a wide range
of different kind of features. The variables were chosen based on previous
studies in predicting success on introductory programming courses and the
data available in our context. Most variables chosen have been shown to
correlate with programming performance by at least one study.

During the first week of the course, the student’s are asked to answer a
questionnaire about their background. The variables extracted from that
questionnaire are presented in Table 1. Especially previous programming
experience has been extensively studied as a predictor, and many studies
have found correlations between it and success on introductory programming
courses [45,49,113,118,119]. Gender, on the other hand, has not been shown
to correlate with programming performance [18,81, 107,113,118], but it can
have an effect on other variables used here. Age has been studied less in
this context, and where it has been included, the population did not include
many older students [11]. In this case, as shown in Table 1, we have students
from different age groups. Working status of the students can reflect for
example on the time and effort they are able to put on the course.

To asses the learning strategies and motivational orientations of the
students, we used the Motivated Strategies for Learning Questionnaire
(MSLQ) [83]. The instrument was developed to assess these two aspects of
college students and is always related to a certain situation. Thus, the results
can vary depending on the class or subject. The questionnaire is divided

30

into two parts. The learning strategies questionnaire is incorporated in the
material for week 1, and the section measures nine different variables [83]:

• Critical Thinking: Describes the degree in which the students apply
previous knowledge in new situations.

• Metacognitive Self Regulation: Describes the use of these strategies
that involve techniques like planning, monitoring and regulating.

• Organization: Describes the use of organization strategies. They
involve techniques like outlining and finding main ideas, and they help
in constructing connections and in selecting appropriate information.

• Elaboration: Describes the use of elaboration strategies that involve
techniques like summarizing, paraphrasing and creating analogies, and
thus these strategies help with storing information into long-term
memory.

• Rehearsal: Describes the students use of rehearsal strategies. The
strategies do not generally help in acquisition of new information, and
involve techniques like reciting items that need to be learned from a
list.

• Time and Study Environment: Describes students’ ability to manage
their time and study environments.

• Effort Regulation: Describes how well the students can control their
effort and attention with uninteresting tasks or with distractions.

• Peer learning: Describes the level of collaboration with peers.

• Help Seeking: Describes the ability of the students’ to recognize when
they need assistance, and to identify where they can get the needed
help.

The motivation section questionnaire is incorporated in the material for Week
2, and it measures six different variables [83]:

• Control Of Learning Beliefs: Describes whether the student believes
that his efforts on the task will lead to a positive result.

31

• Extrinsic Goal Orientation: Describes the student’s perceptions of
the reasons for performing the task. Students with high extrinsic
goal orientation engage in the task for reasons like grades, rewards,
performance, and competition.

• Intrinsic Goal Orientation: Describes the student’s perceptions of the
reasons for performing the task. Students with high intrinsic goal
orientation engage in the task for reasons like challenge, curiosity, and
learning.

• Self-Efficacy For Learning and Performance: Describes person’s judge-
ment of their ability to perform a task and reach goals. Self-efficacy is
always related to a certain domain, and this aims to measure student’s
self-efficacy for learning and performance.

• Task Value: Describes how important, interesting or useful the student
sees the task.

• Test Anxiety: Describes the level of worry and anxiety test cause for a
student.

Though self-efficacy for learning and performance is already included
in MSLQ, we have also included the General Self-Efficacy scale (GSE) [96]
as a variable in this study. GSE measures students beliefs whether they
are able to complete tasks and whether their own actions are responsible
for the outcome in general, not only related to learning as in MSLQ. The
questionnaire was introduced in the material for week 4.

Self-esteem has been linked to success at school by several studies [50],
and even though the link with success in programming is less clear, we have
decided to also include it in this study. Rosenberg’s self-esteem scale (RSE)
is a widely used measure for self-esteem, and it has also been studied in
the context of programming. The results have been inconsistent with some
studies finding moderate correlations [11], but other studies failing to find
any significant correlation [113]. The questionnaire was introduced on Week
4 of the course.

To examine the effect of personality on success in introductory program-
ming courses we have included the so called Big Five personality dimensions.

32

The five dimensions are: extroversion, agreeableness, conscientiousness, emo-
tional stability and openness to experience. It is a widely used and studied
theory, and several questionnaires that measure these traits exist. Here,
the dimensions were measured during Week 4 using the Mini-Markers ques-
tionnaire [94]. Though the Big Five theory has not been directly used in
performance prediction for programming courses, their impact on for example
pair programming performance has been examined. However, their predictive
value was found to be very modest [46].

Scott and Ghinea have also developed an instrument that measures
student’s self-beliefs specifically in introductory programming courses [97].
Very few instruments to study specifically computing education exists, and the
other instruments also used in this study are designed for education research
or personality research in general. Scott’s and Ghinea’s work aims to fill
this gap, though the work is relatively recent and has not yet been validated
in different contexts. The instrument contains five variables: debugging
self-efficacy, programming self-concept, programming interest, programming
anxiety and programming aptitude mindset [97].

4.3 Data preprocessing

Before performing the analyses, the data needs to be preprocessed. From the
original data, we need to collect students who have actually participated in
the course and also agreed to provide some information about them. Once
we have the processed data set, the continuous variables are still discretized
for structure learning and classification. This chapter describes how the
preprocessing was done.

First, we have removed the observations, that have collected less than
ten course points, that means the students who have signed up for the course
but completed less than one week’s exercises. Many students sign up for
the course but for some reason do not show up in the beginning. Also the
students who have answered less than two of the questionnaires were excluded
from the study. After this, 300 students were left in the data.

Continuous variables were discretized for practical reasons. The chosen
methods for learning a Bayesian network here were only feasible with discrete

33

variables with networks this big. Discretizing variables and treating them as
categorical removes the need to make assumptions about the distributions,
and can help in finding more complex, non-linear relationships. Discretiza-
tion has been shown to increase the performance of at least naive Bayes
classifiers [37]. However, with discretization, some information is always lost,
and especially linear relationships can be harder to find afterward. Thus,
discretization method should be considered carefully.

The students on the course are graded on a scale pass / fail, and the
achieved grade is directly used as the performance measure. The exam points
were categorized into two equal sized bins. Programming experience was
categorized into two classes: no experience or experience, which covers all
experience from taking a course or studying on your own to several years
of work experience. Similarly, workload outside of school was categorized
into two classes: no work and a part-time job or full-time employment. The
students were also divided into two approximately equal-sized categories
based on their age at the time of the course.

The rest, that is MSLQ variables, Rosenberg’s self-esteem, GSE, the Big
Five variables and programming self-beliefs were discretized by using equal
frequency interval binning (EF). That is, the data was divided into four bins
of equal frequency. Supervised discretization methods tend to lead in slightly
better results [37], but the discretization is then optimized for a certain
class label. Here, the main goal is not classification but to find a network
that describes the relationships between the variables and could be used to
also predict other features than just performance. Thus, we have chosen
an unsupervised discretization method, and EF tends to lead to consistent
results.

4.4 Learning the network structure and parameters

Several different algorithms for learning a structure of a Bayesian network
exist, and the algorithms are based on different principles and metrics.
The data at hand here contains missing values, as many students have not
answered all questionnaires. Removing rows with missing information would
eliminate two-thirds of the data. Thus, ignoring rows that contain missing

34

values is not an option. We have chosen to compare two approaches: using
an algorithm that incorporates the learning of the structure and learning the
missing values and to impute the missing data and use a traditional structure
learning method. We have chosen to use score-based methods as they tend
to produce better results with small data sets or when the independences
are weak [122]. In both cases the learning algorithm is similar and based on
greedy search where a locally optimal decision is made in every iteration.
Thus, the algorithms can get stuck on a local maximum.

Score based algorithms need a scoring function to determine the best net-
work. The algorithms here use the expected Bayesian Information Criterion
(BIC) scoring function [41,95] that can be written as:

BIC = log(P (X|θ̂, G))− d(M)
2 logN (2)

Here (p(X|θ̂, G)) is the likelihood of the data given the estimated parameters
and the structure of the network, N is the amount of observations in the
data X and d(M) is the amount of parameters in the model. As the scoring
functions in general, BIC aims to find a balance between maximizing the
likelihood but avoiding over-fitting, so the term −d(M)

2 logN is added to
penalize complex models with many edges.

Imputation means replacing the missing values in the data with some
good guess of the real value. Here we have chosen to use the median for that
particular feature. After imputation, the network structure is learned using
a K2 algorithm [29]. The algorithm does not require an initial network, but
it requires an ordering of the nodes. It reduces the search space of different
DAGs by considering only networks where a node can be considered to be the
parent of lower-ordered nodes. The algorithm starts with an empty network,
and in each iteration it tests parent insertions and chooses the one that leads
to the best total score of the network. The algorithms stops when adding
single parent can no longer increase the score. The parents can be added
independently as the order guarantees that we can not have any cycles.

The EM-algorithm is a general technique for finding the maximum-
likelihood estimate for the parameters from data in the presence of missing
values. Hence, it can also be used to learn Bayesian networks, and it was
first adapted to learn the parameters of a Bayesian network with a known

35

structure [65]. It is an iterative algorithm that alternates between two steps,
the E-step and the M-step, until the parameter values converge. First, the
parameters are initialized by ignoring the missing values. Then, in the E-step,
the expected values of the unobserved variables are calculated by using the
current parameter values. In M-step, the parameter values are recalculated
to maximize the probability of the data. These two steps are then repeated
until the algorithm converges. Like this, the EM can be used to learn the
parameters when we already know the structure.

Structure learning with missing data is a harder problem than just
parameter learning. Friedman’s Structural EM (SEM) algorithm incorporates
the structure search step inside the EM algorithm [40]. In practice, the
structure learning part can be performed using different procedures. The
algorithm chosen here, the SEM algorithm included in the structure learning
package (SLP) package [67], combines the EM principle with a greedy search
(GS) like algorithm.

Similarly to K2, the algorithm here is greedy, and in each iteration, it
finds the neighboring network that maximizes the score. It starts with an
initial network structure and estimates the probability distribution of the
variables. Then, it defines all the neighboring structures, i.e the structures
that differ from the current structure by one insertion, deletion or reversion
of an arc and calculates the expected score for each DAG. The DAG that
maximizes the expectation of the score is chosen for the next iteration. This
is repeated until the score cannot be significantly improved anymore. The
algorithm is also known as hill climbing.

With structure learning algorithms, another important thing to consider
is the initialization. Structural EM algorithm requires an initial network
and parameters, the prior, that it starts editing to find an optimal network.
The algorithm can be started with an empty network that does not contain
any edges. Alternatively, it can be initialized with a network designed
by an expert, or with a network that is constructed randomly or by a
different, simpler algorithm. It is difficult to determine one best strategy
for initialization [15]. A popular strategy is to initialize the algorithm is
with a random structure, but it might not lead to an optimal solution. SEM
can get stuck on a local maximum, and the final network can highly depend

36

on the initial structure. Thus, we used 100 short runs of the algorithm
starting with a random structure and finding the initial structure that leads
to highest log-likelihood on two iterations. That structure was then used
to initialize the algorithm that was allowed to run for 100 iterations. This
strategy was similar to the one that was presented by Biernackia et al. [15].
The parameters were created randomly using a Dirichlet prior.

Similarly, K2 requires an ordering of the nodes as an input. Again, this
can be determined for example based on previous knowledge, or it can be
chosen randomly. As the ordering affect the final results, we again used 100
random starts and chose the network with the highest score.

For the implementations, we used Matlab and the Bayes Net Toolbox
(BNT) [71] as well as the Structure Learning Package (SLP) [67] developed
on top of it. SLP includes an algorithm learn_struct_EM, that takes an
initial Bayesian network and the data as input, and calculates an output
network. Similarly, learn_struct_k2 learns a locally optimal structure from
the data given the initial ordering.

4.5 Inference algorithm and classification

Classification performance is one of the most popular evaluation methods
for Bayesian networks. Thus, the learned structures are also evaluated based
on how well they can classify students as passing or failing or high or low
performing half of the class. To answer the second research question, that
is whether it is possible to predict the performance of students’ with the
variables included in this study, we have also included two simpler classifiers:
Naive Bayes (NB) classifier and tree augmented Naive Bayes (TAN) classifier.

Naïve Bayes is simple but well known and widely used classifier. The
structure of the network contains an arc from the class node to each of the
other variable nodes. This simplifies the joint distribution to:

P (C,X1, ..., Xn) = P (C)P (X1|C)...P (Xn|C) (3)

where C is the class variable (the variable to be predicted) and X1, ...Xn are
the predictor variables. Thus, NB assumes conditional independence between
all variables given the class node. Even though this independence assumption

37

Figure 2: Example of a) Naïve Bayes (NB) classifier and b) Tree Augmented
Naïve Bayes (TAN) classifier.

is often unrealistic and actual probability estimations are mostly not accurate,
NB classifiers can still usually achieve good classification results [36]. An
example of a Naïve Bayes classifier can be seen in Figure 2a.

TAN relaxes the independence condition of NB by allowing arcs between
the attributes so that each predictor can have at most one other predictor as
a parent. An example of a TAN classifier can also be seen in Figure 2b.

The classification is also performed using the BNT package [71] in Matlab,
and the inference is performed using the jtree engine, i.e. the junction tree
algorithm. Junction tree algorithm refers to an exact inference algorithm
that is based on transforming the network into a tree structured network, a
junction tree, where a message-passing procedure is carried out. Probabilistic
reasoning in multi-connected networks is NP-hard [28], but it is possible to
transform a multi-connected network to a singly connected network, where
reasoning can be performed in linear time. However, finding an optimal
junction tree is also an NP-hard problem [120], and the newly formed network
can have much more parameters than the original one. Thus, even though
efficient linear time algorithms can be used, in the worst case the amount of
parameters can be exponentially higher than in the original network. Still,
in practice, junction tree algorithms often perform well and they are widely
used.

Junction tree algorithm transforms the network with three steps:

1. Moralization: Nodes with a common child are connected, and all edges
are made undirected.

38

2. Triangulation: Undirected edges are added until every induced cycle
in the graph have at most three vertices.

3. Constructing a junction tree: The triangulated graph can be trans-
formed into a junction tree by connecting nodes in the maximal cliques
as one variable.

The junction tree is equivalent to the original network. This means that
the tree describes the same probability distribution as the original multi-
connected network. A message passing algorithm [54,64] can then be applied
in the transformed network. A detailed description of junction tree algorithms
can be found for example in [53,78].

The classification was performed by dividing the data set into two parts:
70% for training and 30% for testing. The network structure and parameters
were learned using the training data, and the performance was evaluated
by computing the classification accuracy on the test set. All values for all
performance measures were removed from the test set in all cases. The
simpler classifiers, Naïve Bayes and Tree augmented Naïve Bayes were also
evaluated in the same way to be able to compare the results. EM principle
was used to learn the parameters.

In addition, NB was used to study whether these factors can be used to
predict performance within one course. This was estimated using 10-fold
cross-validation. This means, that the data was randomly divided into ten
equal sized sets. Then, the network parameters were learned using nine of
the sets while one set was used for testing. This was repeated so that each
of the ten sets was used for testing once.

The performance of these classifiers is evaluated with two different mea-
sures. The classified test cases can be divided into one of the four categories:
true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). The measures below can be calculated using these values.
Classification accuracy is a widely used measure, and it has been reported in
most of the previous studies presented in this thesis. However, the value de-
pends on the prevalence of the classes and can be misleading with imbalanced
data sets. It is calculated as follows:

ACC = TP + TN
P +N

(4)

39

Figure 3: An illustration of accuracy and precision.

As accuracy itself is not enough to describe how well the classifier performs,
F1 score is also calculated. It is the harmonic mean of precision and recall.
Figure 3 describes the difference between accuracy and precision.

precision = TP

TP + FP
(5)

recall = TP

TP + FN
(6)

F1 = 2TP
2TP + FP + FN = 2× precision× recall

precision+ recall
(7)

5 Experiments and results

In this section, we present the results obtained for the two research questions
defined in Sec. 4. First, Sec. 5.1 describes the replication of some previous
studies in our context. For this, we have calculated Pearson correlation coef-
ficients between factors included in this study and two different performance

40

measures. We also compare the results with previous work. Section 5.2
presents the network structures found for these factors. Section 5.3 presents
the classification results achieved with the constructed networks and two
simple Bayesian classifiers.

5.1 Replication of previous studies

Many previous studies exploring factors that affect performance on introduc-
tory programming courses have focused on studying the effects of individual
factors on performance separately. The results have been inconsistent and
varied depending on the context. Moreover, only a small number of studies
have been performed, and further verification of the results is needed. Thus,
we have also studied the factors individually. The performance measures
used in these tests are the course points and the exam points.

In addition to studying the whole, combined dataset, we have considered
all the three course instances separately. Though the materials and exercises
on all of these courses were mostly the same, there are always small differences.
For example, the teaching assistants are mostly different each year, and the
participants vary. The courses during fall periods are usually bigger. For
example, here there were 151 students in the fall 2015 course and only 78
and 76 students int the spring courses. Moreover, the courses organized in
fall include a lot of major students, whereas the spring courses are mostly
for minor students.

T-tests and Wilcoxon rank sum tests for independent samples based on
the background variables were performed to study the differences in the
performance of each group. Performance, in this case, was measured only
with combined course points. T-tests have been the most popular test in
previous studies, and thus we chose also to use it. However, the assumption
of normality was violated here, and even though the sample size is quite
big, we also performed a Wilcoxon rank sum test. The descriptive statistics
of performance for the combined data set for each group are presented in
Table 3. The tests found no significant differences in performance between
any of the groups at significance level 0.01, but Wilcoxon rank sum test found
a significant difference for the samples grouped by programming experience

41

n Mean S.D Median
Gender female 94 75.3 26.3 84.8

male 155 79.6 22.1 86.8
Age 22 or younger 132 79.7 22.6 87.4

23 or older 123 76.7 24.7 84.8
Programming experience no experience 195 77.5 21.9 83.3

experience 105 78.7 25.9 88.5
Working not working 184 78.0 24.0 86.4

working 69 78.5 23.0 85.7

Table 3: Comparison of the mean, standard deviation and median for course
points grouped by different variables.

at significance level 0.05. No significant differences at level 0.01 were found
on the individual courses either, but in fall 2016 both t-test and Wilcoxon
test found a significant difference in performance at level 0.05 when the
students were grouped by gender or by programming experience.

The results are mostly in line with previous studies. Most previous
studies have found no statistically significant differences between samples
grouped by gender [11, 18, 81, 107, 118], programming experience [11, 107],
age [11] or working status [11]. However, also some other studies have found
significant differences between the samples that were grouped by previous
programming experience [18,45,113,116].

We have also calculated the Pearson correlations between the continuous
variables chosen in this study and two selected performance measures: course
points and exam points. The results are shown for the combined data set as
well as separately for each course instance. As the correlations with both the
course points and exam points were similar, we only present the correlations
with course points for individual courses to make the presentation clearer.
These results can be seen in Table 4. In addition, we have collected results
achieved in some previous studies, and these are presented in the same table.

We can see that the correlations in our context are smaller than in many
of the previous studies. Self-efficacy for learning and performance has been

42

Spring 15 Fall 15 Spring 16 All students Previous research
r/course r/course r/course r/exam r/course

M
SL

Q
LS

CT 0.26* 0.23*** 0.17 0.15** 0.23*** 0.28* [113], 0.58*** [13]
ER 0.02 0.14 0.18 0.11* 0.13** 0.28* [113], 0.62*** [13]
Ela 0.05 0.23*** 0.16 0.09 0.17*** no [13]
HS 0.01 0.05 0.15 0.01 0.07 no [13]
SR 0.23* 0.08 -0.05 -0.05 0.05 0.46*** [13]
Org 0.19 0.12 0.08 0.16** 0.15** no [13]
PL 0.10 -0.07 -0.03 -0.04 0.00 -0.06 [113], 0.37** [13]
Reh 0.22 0.08 -0.07 -0.09 0.05 no [13]
T&E 0.06 0.05 -0.05 -0.03 0.05 0.37** [13]

M
SL

Q
M
ot
iv
at
io
n EGO -0.14 0.06 0.09 0.05 0.00 no [12]

IGO 0.02 0.19** 0.07 0.25*** 0.12* 0.33* [113], 0.51*** [12]
SE -0.04 0.34*** 0.20 0.29 0.20*** 0.54*** [113], 0.57*** [12]
TV 0.00 0.00 0.22 0.04 0.08 0.06 [113], 0.54 [13], 0.44*** [12]
TA 0.08 -0.23** 0.07 0.02 -0.06 no [12]
LB -0.08 0.16* 0.13 0.12* 0.08 0.30** [12]

B
ig

Fi
ve

Ext -0.03 -0.21* -0.05 -0.19*** -0.12*
Agr -0.21* -0.13 -0.01 -0.16** -0.11*
Con 0.29** 0.11 0.14 0.03 0.19***
ES -0.19 -0.07 -0.05 -0.07 -0.10
Ope 0.01 -0.04 -0.02 0.03 -0.02

Se
lf
B
el
ie
fs

DSE 0.21 0.36* 0.19 0.38*** 0.31***
PA 0.06 -0.27 -0.15 -0.12 -0.04
PAM 0.06 -0.21 0.22 -0.19* 0.02
PI 0.29* 0.21 0.18 0.27*** 0.30***
PSC 0.28* 0.42** 0.09 0.38*** 0.31**
GSE 0.17 0.00 -0.11 0.11 0.06
RSE -0.05 0.13 0.10 0.06 0.04 0.13 [113],0.36*** [11]

Table 4: Pearson Correlation coefficients (r) measured for two different performance measures: course
points and exam points (* p < .10, ** p < .05, *** p < .01). The term "no" means that no statistically
significant correlation was found, but the exact numbers were not reported.

43

shown to correlate strongly with the performance by previous studies [12,113],
but in this context, the correlation was significant only with course points
but not with exam points, and smaller. No correlations were found for the
courses organized in spring, but a moderate, significant correlation was found
for the course organized in fall.

Similarly, intrinsic goal orientation has been found to correlate with
performance [12,113], and again we found significant but smaller correlations,
and only in the combined and Fall 2015 data sets. Also, the results with
critical thinking [13,113] and intrinsic goal orientation [12,113] were consistent
with previous studies; again the correlations were smaller and not present or
as significant in the spring datasets [13,113].

In general, in the data sets collected on the courses organized in spring the
factors do not seem to have significant correlations with performance. More
statistically significant correlations can be found for the course organized in
fall. This can be due to the larger dataset, or the fact that computer science
major students mostly take the course in autumn whereas the spring courses
include a lot of minor students.

Table 4 also includes variables that have not been studied in this context.
These are the General Self-efficacy scale, Big Five personality features and
programming self-beliefs. As self-efficacy is related to specific tasks, it is
perhaps not surprising that we did not find significant correlations between
GSE and the performance measures. Two of the Big Five measures, extro-
version and agreeableness had significant, small, negative correlations with
the exam score, and conscientiousness had a significant correlation with only
the course points.

Many of the programming self-beliefs variables had moderate, significant
correlations with both performance measures. Especially debugging self-
efficacy, programming interest and programming self concept correlated with
performance. The results for individual courses were mostly not significant,
but this can be due to small amount of answers for this questionnaire.
The questionnaire had fewer answers than any of the other questionnaires,
and both t-test and Wilcoxon rank sum test actually revealed a significant
difference in the performance of the ones that answered the questionnaire
(mean 72.8, median 81.5) and the ones that did not (mean 88.6, median

44

92.3). Thus, a data set with more answers would be needed for more reliable
results.

5.2 Modeling relationships between factors that affect per-
formance

One of the goals of this thesis was to model the relationships between different
background factors, psychological and cognitive factors and programming
performance. This was done by learning a Bayesian network from the data.
Two different algorithms were used for this purpose to compare the achieved
results. As there is a lot of missing values in the data, both algorithms
needed to be able to handle the problem. One of the algorithms is based
on the EM principle and hill climbing (referred to as SEM). In the other
case, we used imputation and replaced all missing values with the median
value of that feature, and the network was learned using a K2 algorithm.
Descriptions of these algorithms can be found in Sec. 4.4.

Both of the algorithms returned one structure with the highest score.
These structures are presented in Figures 4 and 5. The colors in the pictures
refer to the group that particular factor belongs to, and the explanations for
the abbreviations in the nodes can be found in Table 2. Also, the BIC scores
of the networks can be seen in both of the figures.

These two networks are fairly different, and thus interpreting much about
the actual relationships in the domain is hard. Differences can be due to the
different way of handling missing values. It also seems that in both cases
there are several networks with similar scores but different structures. Thus,
choosing only one network does not perhaps make sense in this case. Also
other models with high probability should be considered in reasoning in this
case, but this was not possible when using these algorithms and the BNT
package.

Neither of the networks is fully connected. Especially in Figure 5 we
can see that the nodes are mostly connected based on the group of the
factor. That is, for example, all MSLQ Learning Strategies factors and
programming self-beliefs factors are connected, but separate from all other
factors. Only MSLQ Motivation and background factors are connected with

45

BIC score: -7230

Figure 4: Network structure learned from data using Structural EM algorithm.
The colors of the nodes express the group of the variable. Explanations for
groups and abbreviations can be found in Table 2

46

Figure 5: Network structure learned from data using imputation and K2
algorithm. The colors of the nodes express the group of the variable. Expla-
nations for groups and abbreviations can be found in Table 2.

47

the performance measures. In Figure 4 the division is not that clear, but more
factors from different groups are connected with the performance measures.
The two networks presented here do not have any common edges.

5.3 Predicting performance on the course

Classification performance is one of the most commonly used criteria to
assess the quality of a network. The structures presented in Figure 4 were
also evaluated based on whether they can be used to predict if the students
will pass or fail the course or whether the student will be in the low or high
performing part of the class when it comes to exam points. The data was
divided into two parts: 70% for learning the structure and parameters of the
model and 30% for testing.

The results are presented in the confusion matrices in Figure 6. As we
can see, the classifiers tended to over-estimate the amount of students who
passed the course. This is a common problem with imbalanced data sets.
There are more students in the data that passed than students who failed.
For example, Hien and Haddaway [48] had a similar problem when trying to
predict the cumulative grade point average of international applicants. As
most students accepted to the school performed well, they had very little data
on low-performing students and the classifier overestimated the performance
of students with lower grades. In this case, almost all students are classified
as passing, which is the majority class. Thus, neither of these classifiers is
good at predicting the course outcome of the students.

The classifier here also over-estimated the amount of students who would
be in the better performing half according to exam points, even though in
this case the dataset is balanced. The performance of these classifiers was
not good in this case either, but the performance was near random.

In addition, two simpler classifiers, Naïve Bayes (NB) and Tree Augmented
Naïve Bayes (TAN), were used to compare whether the learned structures
perform better than a simple structure. These classifiers are much faster than
learning a more complicated structure and it’s parameters, but generally
they still produce good results [36]. The same dataset and division as
for evaluating the networks presented in Figures 4 and 5 was used to test

48

Figure 6: Confusion matrices visualizing classification performance of the
learned structures. a) Predicting whether a student will pass or fail using EM.
b) Predicting whether a student will pass or fail by replacing missing values
with the median. c) Predicting whether a student will be in the high or low
performing half in exam points using EM. b) Predicting whether students
will be in the high or low performing half in exam points by replacing missing
values with the median.

49

Figure 7: Confusion matrices visualizing classification performance when
predicting whether student will pass or fail using a) Naïve Bayes classifier b)
Tree augmented Naïve Bayes classifier.

the classification accuracy of NB and TAN classifiers. As the results with
predicting grade as well as performance on the exam were very similar, for
simplicity we are only presenting the results in predicting the grade. These
results are presented in Figure 7. The performance of these classifiers was
similar to the learned structures.

In addition, Naïve Bayes classifier was used to see whether the classifica-
tion accuracy is better within one course than on the whole dataset. Though
materials on these courses were mostly the same, there usually still is many
differences in the practicalities as well as in the participants of different course
instances. With data-driven variables, the classification performance within
one course seems to be better than the classification rates over different
courses [2]. This study was performed using 10-fold cross-validation, and the
results are presented in table 5. The classification rate on the whole dataset
and within one course does not seem to vary much, and we were not able to
achieve better prediction accuracies within one course.

50

Spring 15 Fall 15 Spring 16 Combined
ACC 65.8 62.3 64.9 64.0
F1 76.8 72.4 77.7 75.2

Table 5: Classification accuracies and F1 measures of NB classifier when
predicting whether the student will pass or fail the course. Data sets are
from three different course instances separately, and one data set combines
all three instances.

6 Discussion

None of the factors included in this study seem to be good predictors of
programming performance in our context. The correlations were in general
smaller than in many of the previous studies, and the prediction rates were
poor. One reason for this can be the way the course is organized. The
course is very practical having a lot of exercises and the grade is also heavily
dependent on the number of completed exercises. The exercises get harder
gradually, and they are designed to build students’ confidence slowly. Also,
help is likely more easily available than in many traditional courses, as the
instructors are in the labs to provide guidance several hours a week. A Large
amount of exercises can also lead to good results, and most students who
pass get full or close to full points in the exams. In addition, the grading
system on a scale of pass/fail is different from most other contexts.

The most surprising result was perhaps the results concerning self-efficacy
for learning and performance. The results with most other factors have been
inconsistent depending on the context, but self-efficacy has been shown to
correlate with performance in many studies. However, in this context the
correlation with grade was small, and correlation with exam performance
was not significant. Previous research has shown that self-efficacy can change
during the course and give different predictions depending on at which point
it is measured, post self-efficacy being a better predictor of performance than
pre self-efficacy [117]. In this case, the MSLQ motivation questionnaire was
introduced during week 2, but the students can answer the questionnaires at
any time during the course. Self-efficacy is also always related to a specific
task, and thus it is perhaps not surprising that general self-efficacy does not

51

seem to be related to programming performance.
Programming self-beliefs instrument was only recently introduced by Scott

and Ghinea in 2014. Thus, it has only been tested in their context before.
Out of the instruments used in this study, the programming self-beliefs had
the strongest correlations with performance. However, this questionnaire had
fewer answers than any of the other ones, and the large amount of missing
answers can affect the results. In fact, there was a statistically significant
difference in results between the students that answered the questionnaire
and the ones that did not. One reason for so many missing values can be
that the questionnaire was the last questionnaire introduced on the course.
Programming self-beliefs can potentially be good predictors of performance,
but more answers for the questionnaire are required to determine this.

One limitation related to computing multiple correlation coefficients is
the multiple comparisons problem. When performing several statistical tests,
in some fraction of these tests the null hypothesis might be rejected just
by chance. It is possible that some of the found correlations here are also
false positives. The problem could be tackled with for example using the
Bonferroni correction, but as none of the previous studies had taken this into
account, we decided to use the same significance levels as those studies did.

The network structures constructed with the algorithms were different,
and the classification rates were poor. There can be several reasons for
this. One clear problem is the missing at random assumption made for the
data. As noted earlier, the data in this case is most likely not missing at
random. However, the EM algorithm requires the assumption, and thus
a bias is introduced in the results. For example programming self-beliefs
questionnaire had fewer answers than the other ones, but the reasons for this
are not clear.

Having missing data creates additional challenges also. In these cases it
is often possible to find only a local maximum. Thus, the learning algorithms
used here can also get stuck on a local maximum, and the results are highly
dependent on initialization. We tried to solve the problem by using multiple
random initializations, but because of increased running times, the number
of different initializations was not high. In addition, the structural EM
implementation has been previously tested with some known networks [67].

52

The algorithm was not able to find the structure that is generally considered
as correct even with larger datasets, and with a dataset of size 500, only
couple of dependencies were found. For the data sets of similar sizes as the
one here, the classification rates were 52–68% [67], but the results got better
when the size of the dataset was increased. If the dependencies in the data
are weak, 300 students might not be enough to find them, especially when
the data contains as many missing values as it does now.

The data was also imbalanced so that more students passed (213) than
failed (87) the course, and when using the learned structures for classification
most students were classified as passing students. Lack of data from students
who perform poorly has caused problems in classifying also in other cases [48,
69]. In their study with high-school performance, Marquez-Vera et al. were
able to get better true negative rates with some algorithms when using
cost-sensitive classification [69], though in most cases there were no clear
improvements.

Other studies have been successful in predicting student performance
using Bayesian networks [2, 8], but these studies have always included either
data-driven variables or variables based on previous academic performance.
Other differences can also be found.

Ahadi et al. achieved better classification accuracies when predicting
programming performance also with Bayesian networks in their study [1].
However, the factors used in that study were mostly different including data-
driven variables and some variables based on previous academic performance.
Thus, Bayesian networks can be used for predicting success on a programming
course with different factors than the ones included here.

Bekele and Menzel [8] were able to classify students performance as below
satisfactory, satisfactory or above satisfactory correctly in 64% of the cases
on a mathematics course also using Bayesian networks. These results are
better than the ones achieved here as the students were classified into one of
three categories. However, there are several differences. They had a bigger
sample size with no missing values. The questionnaire included lie detector
questions that permitted excluding students who did not answer seriously
to the questions. In addition, the analysis included variables on previous
English and math performance, which were found to be the most relevant

53

predictors [8]. It is probably no surprise that previous math performance is a
good predictor of performance on a mathematics course, and these previous
academic performance measures have been shown to be good predictors also
in programming [2, 113,118].

Lack of variables related to academic performance can thus be one reason
for poor classification results. compared to other studies We also have no way
to verify whether the students have answered the questionnaires seriously. It
is possible that some students have for example just randomly responded
something to collect extra points quickly. Thus, a verification method like
Bekele and Menzel [8] used could improve the results. They discarded about
10% of the answers because of answers to these lie detector questions.

On the other hand, Sharabiani et al. [99] achieved good classification
accuracies on physics and mathematics courses, but not on a computer
science course. This could imply that the same methods and predictors that
work on other subjects do not apply on CS courses and that performance
prediction on CS courses is perhaps a more demanding problem.

However, even though there are several limitations in this study, it is
possible that these factors just are not related to programming performance
at least in this context. The small or nonexistent correlations support this, as
do the poor classification rates. Similar methods have successfully been used
to predict student performance using different factors. Inconsistent results in
previous literature can also be a result of missing strong relationships. This
result is not a total surprise, and actually, it can be seen as a positive result.
Perhaps not being able to predict performance based on questionnaires
and background information is a good thing, and means that at least in
well-organized courses everybody has an equal chance to succeed.

7 Conclusions and suggestions for future work

In this study we have examined factors that can affect performance in
introductory programming courses. The focus has been on factors related to
students’ background and psychological and cognitive characteristics.

We have performed a replication of many previous studies that have
examined the effect of individual variables on performance. This was done

54

by performing t-tests and computing Pearson correlation coefficients. We
have also used two different methods to learn a Bayesian network from data
collected from three instances of an introductory programming course. The
constructed networks were evaluated by measuring the classification rate on
performance. Moreover, the predictive power of these variables was examined
with two simple classifiers: Naïve Bayes and Tree Augmented Naïve Bayes.

The variables chosen for this study do not seem to be good predictors
of performance in our context. Some small or moderate correlations were
found, but the models were able to achieve classification rates were poor or
near random.

If the goal is just to predict performance, we recommend using data-
driven variables. It has already been demonstrated that these factors can be
quite good predictors [2, 113], and as the research on these is relatively new,
the results will most likely still get better. In addition, using data-driven
variables as predictors is also more convenient as they do not require any
extra effort from the students, but the data is naturally collected while
they solve exercises. Data-driven variables can also reflect learning and the
changes in students’ skills. If data-driven variables cannot be used, factors
based on previous academic performance could then be the best choice.

However, with planning the teaching or choosing what materials to
show to each student, information about personality traits and learning
strategies could be helpful. Even though it seems that these traits do not
strongly correlate with success or are not good predictors of performance,
understanding how these affect the learning process can still bring valuable
information. Further studies using different methods or perhaps larger data
sets are still needed to verify whether the relationships are just weak or
nonexistent, or whether the poor results here were due to limitations of
the methodology. Also, studies in different contexts are needed before any
conclusions can be generalized.

There are several improvements and different approaches that could be
used. The data set used could be bigger, and some lie detector questions
could be incorporated in the questionnaires. A different set of cognitive
and psychological variables could also be used. Promising results have been
achieved with achievement goals [124], attributions of success [107,113,119]

55

and comfort level [118]. More sophisticated imputation method could also
be used, and experimenting with different classification algorithms can be
beneficial. For example, decision trees or random forests have been found to
perform better than Bayesian networks when predicting performance [2,105].

In another context, some factors that characterize students who are at
risk of failing were identified using decision trees, but they did not recommend
the method for prediction [93]. Thus, perhaps the variables used here are
not suitable for prediction, but can rather be used to recognize some “danger
zones” [93]. One way to approach the problem could be combining these
factors with the programming data to see if certain programming strategies
relate to certain psychological or cognitive factors. Even though these
strategies or factors might not directly relate to performance, finding such
connections can bring valuable information about the learning processes and
for example help to provide individually targeted material.

References

[1] Ahadi, Alireza and Lister, Raymond: Geek genes, prior knowledge,
stumbling points and learning edge momentum. In Proceedings of the
ninth annual international ACM conference on International computing
education research - ICER ’13, page 123, New York, New York, USA,
2013. ACM Press.

[2] Ahadi, Alireza, Raymond, Lister, Haapala, Heikki, and Vihavainen,
Arto: Exploring Machine Learning Methods to Automatically Identify
Students in Need of Assistance. In ICER ’15 Proceedings of the eleventh
annual International Conference on International, pages 121–130, 2015.

[3] Akaike, Hirotogu: Information theory and an extension of the maximum
likelihood principle. In Breakthroughs in statistics, pages 610–624.
Springer, 1992.

[4] Andersen, Stig K, Olesen, Kristian G, Jensen, Finn Verner, and Jensen,
Frank: Hugin-a shell for building bayesian belief universes for expert
systems. pages 1080–1085, 1989.

56

[5] Bandura, Albert: Social foundations of thought and action: A social
cognitive theory. Prentice-Hall, Inc, 1986.

[6] Barber, David: Probabilistic modelling and reasoning: The junction
tree algorithm. Course notes, 2004, 2003.

[7] Beaubouef, Theresa and Mason, John: Why the high attrition rate
for computer science students. ACM SIGCSE Bulletin, 37(2):103, jun
2005.

[8] Bekele, Rahel and Menzel, Wolfgang: A Bayesian approach to predict
performance of a student (BAPPS): A Case with Ethiopian Students.
algorithms, 22(23):24, 2005.

[9] Bell, Tim: Establishing a nationwide CS curriculum in New Zealand
high schools. Communications of the ACM, 57(2):28–30, feb 2014.

[10] Bennedsen, Jens and Caspersen, Michael E: Failure rates in introduc-
tory programming. SIGCSE Bull., 39(2):32–36, 2007.

[11] Bergin, Susan and Reilly, Ronan: Programming: factors that influence
success. SIGCSE Bull., 37(1):411–415, 2005.

[12] Bergin, Susan and Reilly, Ronan: The influence of motivation and
comfort-level on learning to program. In Proceedings of the PPIG,
volume 17, pages 293–304, 2005.

[13] Bergin, Susan, Reilly, Ronan, and Traynor, Desmond: Examining the
role of self-regulated learning on introductory programming performance.
First International Workshop on Computing Education Research, pages
81–86, 2005.

[14] Biamonte, A. J.: Predicting success in programmer training. In Proceed-
ings of the second SIGCPR conference on Computer personnel research
- SIGCPR ’64, pages 9–12, New York, New York, USA, jul 1964. ACM
Press.

[15] Biernackia, Christophe, Celeuxb, Gilles, and Govaertc, Gérard: Choos-
ing starting values for the EM algorithm for getting the highest likelihood

57

in multivariate Gaussian mixture models. Computational Statistics &
Data Analysis, 41(3-4):56–575, 2003.

[16] Borchani, Hanen, Amor, Nahla Ben, and Mellouli, Khaled: Learning
Bayesian Network Equivalence Classes from Incomplete Data. In Todor-
ovski, Ljupčo, Lavrač, Nada, and Jantke, Klaus P. (editors): Discovery
Science, volume 4265 of Lecture Notes in Computer Science, pages
291–295. Springer, Berlin, Heidelberg, 2006.

[17] Brown, Neil Christopher Charles, Kölling, Michael, McCall, Davin, and
Utting, Ian: Blackbox: A Large Scale Repository of Novice Program-
mers’ Activity. In Proceedings of the 45th ACM technical symposium
on Computer science education - SIGCSE ’14, pages 223–228, New
York, New York, USA, mar 2014. ACM Press.

[18] Byrne, Pat and Lyons, Gerry: The effect of student attributes on success
in programming. ACM SIGCSE Bulletin, 33(3):49–52, sep 2001.

[19] Campbell, Vivian and Johnstone, Michael: The Significance of Learning
Style with Respect to Achievement in First Year Programming Students.
In 2010 21st Australian Software Engineering Conference, pages 165–
170. IEEE, 2010.

[20] Campos, Cassio P. de and Ji, Qiang: Efficient Structure Learning of
Bayesian Networks using Constraints. The Journal of Machine Learning
Research, 12:663–689, feb 2011.

[21] Capstick, C. K., Gordon, J. D., and Salvadori, A.: Predicting perfor-
mance by university students in introductory computing courses. ACM
SIGCSE Bulletin, 7(3):21–29, sep 1975.

[22] Carter, Adam S., Hundhausen, Christopher D., and Adesope, Olusola:
The Normalized Programming State Model. In Proceedings of the
eleventh annual International Conference on International Computing
Education Research - ICER ’15, pages 141–150, New York, New York,
USA, jul 2015. ACM Press.

58

[23] Chamillard, A T and Karolick, Dolores: Using learning style data in
an introductory computer science course. In The proceedings of the
thirtieth SIGCSE technical symposium on Computer science education,
pages 291–295, New Orleans, Louisiana, USA, 1999. ACM.

[24] Chickering, David Maxwell: Learning Bayesian networks is NP-
Complete. In Fisher, D. and Lenz, H. (editors): Learning from Data:
Artificial In- telligence and Statistics V, pages 121–130. Springer-Verlag,
1996.

[25] Chickering, David Maxwell: Optimal structure identification with greedy
search. Journal of machine learning research, 3(Nov):507–554, 2002.

[26] Chickering, David Maxwell, Heckerman, David, and Meek, Christopher:
Large-Sample Learning of Bayesian Networks is NP-Hard. The Journal
of Machine Learning Research, 5:1287–1330, dec 2004.

[27] Chickering, Do, Geiger, Dan, and Heckerman, David: Learning bayesian
networks: Search methods and experimental results. In proceedings of
fifth conference on artificial intelligence and statistics, pages 112–128,
1995.

[28] Cooper, Gregory F.: The computational complexity of probabilistic
inference using bayesian belief networks. Artificial Intelligence, 42(2-
3):393–405, mar 1990.

[29] Cooper, Gregory F and Herskovits, Edward: A bayesian method for
the induction of probabilistic networks from data. Machine learning,
9(4):309–347, 1992.

[30] Corman, Larry S: Cognitive style, personality type, and learning ability
as factors in predicting the success of the beginning programming student.
SIGCSE Bull., 18(4):80–89, 1986.

[31] Cousins, S B, Chen, W, and Frisse, M E: A tutorial introduction to
stochastic simulation algorithms for belief networks. Artificial intelli-
gence in medicine, 5(4):315–40, aug 1993.

59

[32] Cuny, Janice and Aspray, William: Recruitment and retention of
women graduate students in computer science and engineering. ACM
SIGCSE Bulletin, 34(2):168, jun 2002.

[33] Dechter, R.: Bucket Elimination: A Unifying Framework for Probabilis-
tic Inference. In Learning in Graphical Models, pages 75–104. Springer
Netherlands, Dordrecht, 1996.

[34] Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum Likelihood
from Incomplete Data via the EM Algorithm on JSTOR. Journal of
the Royal Statistical Society, 39(1):1–38, 1977.

[35] Desmarais, Michel C. and Gagnon, Michel: Innovative Approaches for
Learning and Knowledge Sharing, volume 4227 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, oct
2006.

[36] Domingos, Pedro and Pazzani, Michael: On the Optimality of the
Simple Bayesian Classifier under Zero-One Loss. Machine Learning,
29(2/3):103–130, 1997.

[37] Dougherty, James, Kohavi, Ron, and Sahami, Mehran: Supervised and
unsupervised discretization of continuous features. In Machine learning:
proceedings of the twelfth international conference, pages 194–202, 1995.

[38] Etminani, Kobra, Naghibzadeh, Mahmoud, and Razavi, Amir Reza:
Globally Optimal Structure Learning of Bayesian Networks from Data.
In Diamantaras, Konstantinos, Duch, Wlodek, and Iliadis, Lazaros S.
(editors): Artificial Neural Networks - ICANN, volume 6352 of Lecture
Notes in Computer Science, pages 101–106, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[39] European Schoolnet: Computing our future – Priorities, school curric-
ula and initiatives across Europe Publisher DTP and design. Technical
report, 2014.

60

[40] Friedman, Nir: The Bayesian structural EM algorithm. In UAI’98
Proceedings of the Fourteenth conference on Uncertainty in artificial
intelligence, pages 129–138, 1998.

[41] Friedman, Nir et al.: Learning belief networks in the presence of missing
values and hidden variables. In ICML, volume 97, pages 125–133, 1997.

[42] Friedman, Nir and Koller, Daphne: Being Bayesian About Network
Structure. A Bayesian Approach to Structure Discovery in Bayesian
Networks. Machine Learning, 50(1/2):95–125, 2003.

[43] Friedman, Nir, Linial, Michal, Nachman, Iftach, and Pe’er, Dana: Using
bayesian networks to analyze expression data. Journal of computational
biology, 7(3-4):601–620, 2000.

[44] Gregorc, A.: Gregorc style delineator: Development, technical and
administration manual, 1982.

[45] Hagan, Dianne and Markham, Selby: Does it help to have some pro-
gramming experience before beginning a computing degree program?
SIGCSE Bull., 32(3):25–28, 2000.

[46] Hannay, Jo E., Arisholm, Erik, Engvik, Harald, and Sjøberg, Dag I.K.:
Effects of Personality on Pair Programming. IEEE Transaction on
software engineering, 36(1), 2010.

[47] Heckerman, David, Geiger, Dan, and Chickering, David M: Learning
Bayesian Networks: The Combination of Knowledge and Statistical
Data. Machine Learning, 20(3):197–243, 1995.

[48] Hien, Nguyen Thi Ngoc and Haddawy, Peter: A decision support
system for evaluating international student applications. In 2007 37th
annual frontiers in education conference - global engineering: knowledge
without borders, opportunities without passports, pages F2A–1–F2A–6.
IEEE, oct 2007.

[49] Holden, Edward and Weeden, Elissa: The impact of prior experience in
an information technology programming course sequence. In Proceedings

61

of the 4th conference on Information technology curriculum, pages 41–
46, Lafayette, Indiana, USA, 2003. ACM.

[50] Holly, W.: Self-esteem: Does it contribute to student’s academic success.
Oregon. School of Study Council: University of Oregon, Eugene, OR,
1987.

[51] Ihantola, Petri, Vihavainen, Arto, Ahadi, Alireza, Butler, Matthew,
Börstler, Jürgen, Edwards, Stephen H., Isohanni, Essi, Korhonen,
Ari, Petersen, Andrew, Rivers, Kelly, Rubio, Miguel Ángel, Sheard,
Judy, Skupas, Bronius, Spacco, Jaime, Szabo, Claudia, and Toll,
Daniel: Educational data mining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE
on Working Group Reports, ITICSE-WGR ’15, pages 41–63, New York,
NY, USA, 2015. ACM.

[52] Jadud, Matthew C: Methods and tools for exploring novice compila-
tion behaviour. In Proceedings of the second international workshop
on Computing education research, pages 73–84, Canterbury, United
Kingdom, 2006. ACM.

[53] Jensen, Finn V and Jensen, Frank: Optimal junction trees. In Proceed-
ings of the Tenth international conference on Uncertainty in artificial
intelligence, pages 360–366. Morgan Kaufmann Publishers Inc., 1994.

[54] Jensen, Finn Verner, Olesen, Kristian G., and Andersen, Stig Kjaer:
An algebra of bayesian belief universes for knowledge-based systems.
Networks, 20(5):637–659, aug 1990.

[55] Kalyuga, Slava, Ayres, Paul, Chandler, Paul, and Sweller, John: The
expertise reversal effect. Educational psychologist, 38(1):23–31, 2003.

[56] Koivisto, Mikko and Sood, Kismat: Exact Bayesian Structure Discovery
in Bayesian Networks. The Journal of Machine Learning Research,
5:549–573, dec 2004.

[57] Kolb, David A: Management and the learning process. California
Management Review, 18(3):21–31, 1976.

62

[58] Kontkanen, Petri, Myllymäki, Petri, Silander, Tomi, Tirri, Henry, and
Grunwald, Peter: Comparing predictive inference methods for discrete
domains. In In Proceedings of the sixth international workshop on
artificial intelligence and statistics. Citeseer, 1997.

[59] Korf, Richard E: Linear-space best-first search. Artificial Intelligence,
62(1):41–78, 1993.

[60] Koski, T. J. T. and Noble, J. M.: A review of Bayesian networks and
structure learning. Mathematica Applicanda, (Vol. 40, No. 1):53–103,
2012.

[61] Kurhila, Jaakko and Vihavainen, Arto: Management, structures and
tools to scale up personal advising in large programming courses. In
Proceedings of the 2011 conference on Information technology education,
pages 3–8. ACM, 2011.

[62] Lau, Wilfred W. F. and Yuen, Allan H. K.: Exploring the effects of
gender and learning styles on computer programming performance:
implications for programming pedagogy. British Journal of Educational
Technology, 40(4):696–712, jul 2009.

[63] Lau, Wilfred W.F. and Yuen, Allan H.K.: Modelling programming per-
formance: Beyond the influence of learner characteristics. Computers
& Education, 57(1):1202–1213, aug 2011.

[64] Lauritzen, S L and Spiegelhalter, D J: Local Computations with Proba-
bilities on Graphical Structures and Their Application to Expert Systems.
Source Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 50(2):157–224, 1988.

[65] Lauritzen, Steffen L.: The EM algorithm for graphical association
models with missing data. Computational Statistics & Data Analysis,
19(2):191–201, feb 1995.

[66] Leray, Philippe and François, Olivier: Bayesian network structural
learning and incomplete data. In Proceedings of the International and

63

Interdisciplinary Conference on Adaptive Knowledge Representation
and Reasoning (AKRR) 2005, pages 33—-40, 2005.

[67] Leray, Philippe and Francois, Olivier: BNT Structure Learning Package:
Documentation and Experiments. Laboratoire PSI, Universitè et INSA
de Rouen, Tech. Rep, 2006.

[68] Madigan, David, York, Jeremy, and Allard, Denis: Bayesian Graphical
Models for Discrete Data Bayesian Graphical Models f or Discrete
Data 2Battelle Pacific Northwest Laboratories. Source: International
Statistical Review / Revue Internationale de Statistique International
Statistical Institute (ISI) International Statistical Review, 63(2):215–
232, 1995.

[69] Márquez-Vera, Carlos, Cano, Alberto, Romero, Cristóbal, and Ventura,
Sebastián: Predicting student failure at school using genetic program-
ming and different data mining approaches with high dimensional and
imbalanced data. Applied intelligence, 38(3):315–330, 2013.

[70] Mayer, David B and Stalnaker, Ashford W: Selection and evaluation
of computer personnel-the research history of sig/cpr. In Proceedings
of the 1968 23rd ACM national conference, pages 657–670. ACM, 1968.

[71] Murphy, Kevin P.: The Bayes Net Toolbox for MATLAB. 2001.

[72] Neal, Radford M: Probabilistic Inference Using Markov Chain Monte
Carlo Methods. 1993.

[73] Nokelainen, P., Tirri, K., and Merenti-Valimaki, H. L.: Investigating
the Influence of Attribution Styles on the Development of Mathematical
Talent. Gifted Child Quarterly, 51(1):64–81, jan 2007.

[74] Opper, Manfred. and Saad, David.: Advanced mean field methods:
theory and practice. MIT Press, 2001.

[75] Pardos, Zachary A., Heffernan, Neil T., Anderson, Brigham, and
Heffernan, Cristina L.: The Effect of Model Granularity on Student
Performance Prediction Using Bayesian Networks. In Conati, Cristina,

64

McCoy, Kathleen, and Paliouras, Georgios (editors): Proceedings of
the 11th International Conference on User Modeling, volume 4511 of
Lecture Notes in Computer Science, pages 435–439, Berlin, Heidelberg,
jul 2007. Springer Berlin Heidelberg.

[76] Parviainen, Pekka and Koivisto, Mikko: Exact structure discovery in
Bayesian networks with less space. pages 436–443. AUAI Press, jun
2009.

[77] Paul Dagum, Eric Horvitz: A Bayesian Analysis of Simulation Al-
gorithms for Inference in Belief Networks,. Networks, 23:499—-516,
1993.

[78] Pearl, J: Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, 1988.

[79] Petersen, Andrew, Spacco, Jaime, and Vihavainen, Arto: An exploration
of error quotient in multiple contexts. In Proceedings of the 15th Koli
Calling Conference on Computing Education Research - Koli Calling
’15, pages 77–86, New York, New York, USA, 2015. ACM Press.

[80] Piech, Chris, Sahami, Mehran, Koller, Daphne, Cooper, Steve, and
Blikstein, Paulo: Modeling how students learn to program. In Pro-
ceedings of the 43rd ACM technical symposium on Computer Science
Education - SIGCSE ’12, page 153, New York, New York, USA, feb
2012. ACM Press.

[81] Pillay, Nelishia and Jugoo, Vikash R.: An investigation into stu-
dent characteristics affecting novice programming performance. ACM
SIGCSE Bulletin, 37(4):107, dec 2005.

[82] Pintrich, P. R., Smith, D. A. F., Garcia, T., and Mckeachie, W. J.: Re-
liability and Predictive Validity of the Motivated Strategies for Learning
Questionnaire (Mslq). Educational and Psychological Measurement,
53(3):801–813, sep 1993.

[83] Pintrich, Paul R. and Others, And: A Manual for the Use of the
Motivated Strategies for Learning Questionnaire (MSLQ). nov 1990.

65

[84] Pourret, Olivier, Naïm, Patrick, and Marcot, Bruce: Bayesian Networks:
A Practical Guide to Applications. John Wiley & Sons, 2008.

[85] Ramalingam, Vennila, LaBelle, Deborah, and Wiedenbeck, Susan: Self-
efficacy and mental models in learning to program. ACM SIGCSE
Bulletin, 36(3):171, sep 2004.

[86] Ramalingam, Vennila and Wiedenbeck, Susan: Development and Vali-
dation of Scores on a Computer Programming Self-Efficacy Scale and
Group Analyses of Novice Programmer Self-Efficacy. Journal of Educa-
tional Computing Research, 19(4):367–81, 1998.

[87] Roberts, Eric S., Kassianidou, Marina, and Irani, Lilly: Encouraging
women in computer science. ACM SIGCSE Bulletin, 34(2):84, jun
2002.

[88] Rodrigo, Ma. Mercedes T., Tabanao, Emily S., Baker, Ryan S., Jadud,
Matthew C., Amarra, Anna Christine M., Dy, Thomas, Espejo-Lahoz,
Maria Beatriz V., Lim, Sheryl Ann L., Pascua, Sheila A.M.S., and
Sugay, Jessica O.: Affective and behavioral predictors of novice pro-
grammer achievement. ACM SIGCSE Bulletin, 41(3):156, aug 2009.

[89] Romero, Christobal and Ventura, Sebastian: Educational data mining:
a review of the state of the art. Trans. Sys. Man Cyber Part C,
40(6):601–618, 2010.

[90] Romero, Cristobal, Espejo, Pedro G, Zafra, Amelia, Romero, Jose
Raul, and Ventura, Sebastian: Web usage mining for predicting final
marks of students that use moodle courses. Computer Applications in
Engineering Education, 21(1):135–146, 2013.

[91] Romero, Cristóbal, López, Manuel Ignacio, Luna, Jose María, and Ven-
tura, Sebastián: Predicting students’ final performance from participa-
tion in on-line discussion forums. Computers & Education, 68:458–472,
2013.

[92] Rosenberg, M.: Society and the adolescent self-image. Princeton Uni-
versity Press, 1965.

66

[93] Rountree, Nathan, Rountree, Janet, Robins, Anthony, and Hannah,
Robert: Interacting factors that predict success and failure in a CS1
course. In Working group reports from ITiCSE on Innovation and
technology in computer science education, pages 101–104, Leeds, United
Kingdom, 2004. ACM.

[94] Saucier, Gerard: Mini-Markers: A Brief Version of Goldberg’s Unipolar
Big-Five Markers. Journal of Personality Assessment, 63(3):506–516,
1994.

[95] Schwarz, Gideon: Estimating the Dimension of a Model. The Annals
of Statistics, 6(2):461–464, mar 1978.

[96] Schwarzer, Ralf and Jerusalem, Matthias: Generalized Self-Efficacy
scale. Measures in health psychology: A user’s portfolio. Causal and
control beliefs, 1995.

[97] Scott, Michael James and Ghinea, Gheorghita: Measuring Enrichment:
The Assembly and Validation of an Instrument to Assess Student Self-
Beliefs in CS1. In Proceedings of the 10th ACM International Workshop
on Computing Education Research, 2014.

[98] Scutari, Marco: Learning Bayesian Networks with the bnlearn R Pack-
age. Journal of Statistical Software, 35(3):1–22, 2010.

[99] Sharabiani, Ashkan, Karim, Fazle, Sharabiani, Anooshiravan,
Atanasov, Mariya, and Darabi, Houshang: An enhanced bayesian
network model for prediction of students’ academic performance in
engineering programs. In 2014 IEEE Global Engineering Education
Conference (EDUCON), pages 832–837. IEEE, apr 2014.

[100] Spirtes, Peter, Glymour, Clark, and Scheines, Richard: Causation, Pre-
diction, and Search, volume 81 of Lecture Notes in Statistics. Springer
New York, New York, NY, 1993.

[101] Stevens, R., Soller, A., Giordani, A., Gerosa, L., Cooper, M., and Cox,
C.: Developing a Framework for Integrating Prior Problem Solving
and Knowledge Sharing Histories of a Group to Predict Future Group

67

Performance. In 2005 International Conference on Collaborative Com-
puting: Networking, Applications and Worksharing, pages 1–9. IEEE,
2005.

[102] Su, Chengwei, Andrew, Angeline, Karagas, Margaret R, and Borsuk,
Mark E: Using Bayesian networks to discover relations between genes,
environment, and disease. BioData mining, 6(1):6, jan 2013.

[103] Tabanao, Emily S., Rodrigo, Ma. Mercedes T., and Jadud, Matthew
C.: Predicting at-risk novice Java programmers through the analysis of
online protocols. In Proceedings of the seventh international workshop
on Computing education research - ICER ’11, page 85, New York, New
York, USA, aug 2011. ACM Press.

[104] Tamada, Yoshinori, Imoto, Seiya, and Miyano, Satoru: Parallel Algo-
rithm for Learning Optimal Bayesian Network Structure. The Journal
of Machine Learning Research, 12:2437–2459, feb 2011.

[105] Thai-Nghe, Nguyen, Janecek, Paul, and Haddawy, Peter: A comparative
analysis of techniques for predicting academic performance. In 2007 37th
annual frontiers in education conference - global engineering: knowledge
without borders, opportunities without passports, pages T2G–7–T2G–12.
IEEE, oct 2007.

[106] Uusitalo, Laura: Advantages and challenges of Bayesian networks in
environmental modelling. Ecological Modelling, 203(3):312–318, 2007.

[107] Ventura, Philip R.: Identifying predictors of success for an objects-first
CS1. Computer Science Education, 15(3):223–243, sep 2005.

[108] Verma, Thomas and Pearl, Judea: Equivalence and synthesis of causal
models. pages 255–270, 1990.

[109] Vihavainen, Arto: Predicting students’ performance in an introduc-
tory programming course using data from students’ own programming
process. In 2013 IEEE 13th International Conference on Advanced
Learning Technologies, pages 498–499. IEEE, 2013.

68

[110] Vihavainen, Arto, Luukkainen, Matti, and Ihantola, Petri: Analysis
of source code snapshot granularity levels. In Proceedings of the 15th
Annual Conference on Information technology education, pages 21–26,
Atlanta, Georgia, USA, 2014. ACM.

[111] Vihavainen, Arto, Paksula, Matti, and Luukkainen, Matti: Extreme
apprenticeship method in teaching programming for beginners. In Pro-
ceedings of the 42nd ACM technical symposium on Computer science
education, pages 93–98. ACM, 2011.

[112] Watson, C, Li, F W B, and Godwin, J L: Predicting Performance in an
Introductory Programming Course by Logging and Analyzing Student
Programming Behavior. In Advanced Learning Technologies (ICALT),
2013 IEEE 13th International Conference on, pages 319–323, 2013.

[113] Watson, Christopher, Li, Frederick W B, and Godwin, Jamie L: No tests
required: comparing traditional and dynamic predictors of programming
success. In Proceedings of the 45th ACM technical symposium on
Computer science education, pages 469–474, Atlanta, Georgia, USA,
2014. ACM.

[114] Watson, Christopher and Li, Frederick W.B.: Failure rates in introduc-
tory programming revisited. In Proceedings of the 2014 conference on
Innovation & technology in computer science education - ITiCSE ’14,
pages 39–44, New York, New York, USA, 2014. ACM Press.

[115] Werth, Laurie Honour: Predicting student performance in a beginning
computer science class. In SIGCSE ’86 Proceedings of the seventeenth
SIGCSE technical symposium on Computer science education, pages
138–143, 1986.

[116] Wiedenbeck, Susan: Factors affecting the success of non-majors in
learning to program. In Proceedings of the 2005 international workshop
on Computing education research - ICER ’05, pages 13–24, New York,
New York, USA, oct 2005. ACM Press.

[117] Wiedenbeck, Susan, Labelle, Deborah, and Kain, Vennila N R: Factors
affecting course outcomes in introductory programming. In 16th Annual

69

Workshop of the Psychology of Programming Interest Group, pages
97–109, 2004.

[118] Wilson, Brenda Cantwell: A Study of Factors Promoting Success in
Computer Science Including Gender Differences. Computer Science
Education, 12(1-2):141–164, aug 2010.

[119] Wilson, Brenda Cantwell and Shrock, Sharon: Contributing to success
in an introductory computer science course: A Study of Twelve Factors.
ACM SIGCSE Bulletin, 33(1):184–188, mar 2001.

[120] Yannakakis, Mihalis: Computing the Minimum Fill-In is NP-Complete.
SIAM Journal on Algebraic Discrete Methods, 2(1):77–79, mar 1981.

[121] Yedidia, Jonathan S, Freeman, William T, and Weiss, Yair: Generalized
Belief Propagation. Advances in Neural Information Processing Systems
13, 2001.

[122] Yuan, Changhe and Malone, Brandon: Learning Optimal Bayesian
Networks: A Shortest Path Perspective. Journal of Artificial Intelligence
Research, 48:23–65, 2013.

[123] Zhang, Nevin Lianwen and Poole, David: Exploiting causal indepen-
dence in Bayesian network inference. Journal of Artificial Intelligence
Research, 5(1):301–328, 1996.

[124] Zingaro, Daniel and Porter, Leo: Impact of Student Achievement Goals
on CS1 Outcomes. SIGCSE ’16 Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, pages 279–296, 2016.

70

	Introduction
	Performance on introductory programming courses
	Student's background
	Psychological and cognitive factors
	Data-driven variables
	Methods used for modeling effect on performance

	Bayesian networks
	Basics
	Learning Bayesian networks
	Inference in Bayesian networks
	Bayesian networks in modeling student performance

	Research design and methodology
	Context
	Factors included in the study
	Data preprocessing
	Learning the network structure and parameters
	Inference algorithm and classification

	Experiments and results
	Replication of previous studies
	Modeling relationships between factors that affect performance
	Predicting performance on the course

	Discussion
	Conclusions and suggestions for future work
	References

