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1 Introduction

1.1 Background

Cloud computing has become an indispensable part of today’s software
ecosystem. Cloud computing enables companies of all size and industries
as well as individual software developers and entrepreneurs an access to a
large selection of global infrastructure, platform and application services
without the need for skills or capital to operate or invest in the required
infrastructure themselves. The scalability and resiliency of cloud computing
services has many potential benefits for companies by for example allowing
them to adapt to optimize operational costs by growing and shrinking their
computing resource use to adapt to daily and monthly changes. Even small
and young companies have now the possibility to meet rapid changes to
their computing needs — Animoto for example was able to meet fast-paced
viral growth of their user base by scaling up their cloud computing usage
over fifty-fold within a few days [Bar08]. In another case NASA delivered
a live video stream for over 120 000 simultaneous viewers without the need
to put down long-term investment in the required computing and network
capacity [Geo+13]. Companies such as Netflix are practical examples how
cloud computing can be used as the platform to build networked consumer
services with global reach.

The rapid growth of the cloud computing market [Loul4] has also high-
lighted many relevant concerns about its security, safety and reliability.
While it relatively easy for an interested party to determine performance
metrics of cloud resources such as CPUs, memory, disk and network, it
is much more difficult to objectively evaluate the more qualitative metrics
such as security and reliability. Some of the concerns can be be addressed
by the vendor through gaining trusted security and process quality certifi-
cations (such as SOC 1, ISO 9001 and ISO 27017). While security incidents
on major cloud services have been rare, on the side of service reliability
there have been several high-profile outages [Cocl12; Bill12; Mik12; Amal2d;
Amal2al that have raised awareness and questions on the reliability of cloud
computing.

While anecdotes and media reports of cloud service outages make a good
reading, we should be careful of putting too much trust on them. It is
known that human perceptions of probabilities can be biased. For exam-
ple, the availability heuristic causes humans to rely more on easily recalled
events when estimating risks [SV02] — and in case of cloud computing it
is likely to be easier to remember outages than situations where everything
worked. Secondly even if media reports are examined methodically to avoid
perception biases, one must realize that media itself is biased towards pub-
lishing large-scale outages — they make better headlines — which can lead
to under-reporting of smaller problems. It is likely that any estimate of



cloud computing reliability based solely on human perceptions or media re-
porting is going to at worst be gross over- or underestimates and at best to
have a large variation in their estimates.

Well-known reliability engineering techniques allow the creation of highly
reliable systems from unreliable components using techniques such as re-
dundancy, these techniques come at a cost of time, money or both. It is
possible that a highly reliable commercial service built using cloud comput-
ing service components — while meetings its reliability target — is actually
over-engineered due to the use of conservative estimates on the reliability of
the underlying components. Similarly it is possible that a system designed
with redundancy is not as reliable in reality as has been assumed when
too optimistic component reliability estimates are depended on. Thus while
for most day-to-day problems the exact value of reliability metrics of cloud
services are not relevant — as long as they are “good enough”, in some situ-
ations a more accurate estimate of the reliability metrics would allow better
resource planning and utilization of cloud computing resources.

While there are several industries which report service quality metrics
(for example, power utilities in many countries are legally required to post
information on reliability of power plants and electricity transmission grids),
most cloud computing vendors do not publish reliability metrics. Thus there
is very little concrete information a system designer, reliability analyst or a
business decision-maker could use on cloud service reliability for analysis or
evaluation. At the moment they would most likely rely on ad hoc estimates
or use a proxy value such as availability goal specified in a service level
agreement.

1.2 Problem Statement

This thesis sets out to produce statistically robust reliability estimates for
the services of a major cloud computing vendor (Amazon Web Services).
This work bases the analysis on public incident information published by
Amazon Web Services, collected over a period of one year during years 2013
and 2014. The primary goal of this thesis is to provide useful metrics for
reliability analysis and to evaluate whether AWS meets its own availability
goals as set in its service level agreements, and to perform the analysis using
methods and information in a way that it could be reproduced indepen-
dently.

Since the work is based on external and public observations (e.g. pub-
lished incident information and other reliable sources) it is subject to several
limitations. For example, it is not possible to analyze root causes of the re-
ported incidents as there is no visibility to the internal operational processes
nor knowledge of the software or hardware that can contribute to the causes
of observed outages. Neither it is not possible to determine prorated relia-
bility metrics, as the proportion of affected customers is not known. Since



there are only a few works looking into cloud service reliability from a prac-
tical (empirical) viewpoint, this work purposefully has set its target on a few
simple metrics and purposefully avoids any deeper analysis such as looking
into the causes and consequences of the underlying incidents.

1.3 Related Work

An infrastructure cloud service is a complex combination of hardware and
software and thus research from many different fields is relevant when con-
sidering the reliability of such a composite system. There has been a lot
of research into reliability of computers on different levels, starting from
low-level analysis of failure behaviors of discrete computer hardware com-
ponents such as DRAM memories and hard disks leading up to complex
fault-tolerant server systems. There has also been research into the relia-
bility of even larger computing systems comprising of hundreds of servers
as well as reliability of whole data centers and its major non-computing
components such as power, HVAC systems and external network cabling.

Schroeder et al [SPWO09] have characterized reliability of ECC DRAM
memoryH in a large number of servers at Google and report that annually
a third of the machines experienced at least one correctable memory error
and 1.3% of experienced an uncorrectable memory error. Nightingale et
al [NDO11] found that for consumer PCs the failure rate for CPU alone was
1 in 190 over a period of 8 months. Vishwanath et al [VN10] have analyzed
server failures at a large cloud data center and came up with an annual
failure rate of 8% for server machines with the largest portion caused by hard
disk failures. Schroeder and Gibson [SG10] looked into failures in a high-
performance computing environment. They found out that hardware could
be attributed as the root cause for 53-64% of failures, with the software
being the root cause for 18-22% of failures. While many of the previous
authors note the lack of consensus on absolute values for hardware reliability
— there are large variations even on relatively narrowly defined component
failure rates — the overall result should be clear: computer hardware, while
mostly very reliable, is subject to random failures.

Computer hardware is not the only cause of failures in cloud services.
A cloud service is, by definition, accessed via a network making the net-
work’s reliability also a factor in overall cloud service reliability. Datacenter
networks are designed to be reliable and fault-tolerant [BH09], yet despite
this Bailis and Kingsbury [BK14] list in their overview paper several failures
of data center networks — networks that have been designed to be redun-
dant and fault-tolerant! Other layers in a cloud service such as operating
system, virtualization software, management and monitoring systems, hu-
man operators etc. also have potential to cause failures — see [BA12] for a

'ECC stands for error-correcting memory, a type of memory that can detect and repair
certain types of memory errors.



comprehensive review of potential failure points of cloud services. Thus it
is clear that a cloud service is not immune to failures and may experience
them on a wide scale, starting from minimal effect on a single cloud resource
(virtual machine, for example) to large-scale correlated failures of a whole
datacenter.

Existing research on reliability and availability of cloud services can be
roughly divided taking either a theoretical or an empirical approach. Theo-
retically oriented research can be further subdivided into multiple categories,
of which relevant for this paper are those that 1) analyze contractual require-
ments and mechanisms between a customer and a cloud vendor and those
that 2) define analytical models of cloud services, either from the vendor’s
or customer’s point of view, and aim to provide either estimates for service
reliability or availability based on given assumptions, or try to determine
what prerequisite assumptions need to hold for a given target availability to
be met.

Research on contractual requirements such as the work done by Xiaoy-
ong et al look at existing cloud vendors’ service level agreements (SLA) and
their penalty clauses [Xia+15]. Xiaoyong et al note that there is “variability
of availability commitment and penalty in SLA offered by different cloud
providers”. This view is shared by Hogben and Pannetrat who note that
availability as defined by different cloud SLAs could result simultaneously
in both 0% and 100% availability with the same system state (failure) his-
tory [HP13]. This shows that definition of “availability” is ambiguous and
its interpretation varies between different cloud vendor SLAs, making direct
comparison from one vendor to another difficult. There also exists work on
dynamic SLA negotiation and brokerage between vendor and customer and
subsequent service quality monitoring such as work by Son and Jun and by
Son et al [SJ13; SKK14]. It should be noted that no cloud vendor at this
moment supports any kind of SLA negotiation nor provides their SLA in any
other form other than a legal agreement (e.g. human-readable text). Thus
it seems that both having a coherent and shared definition of “availability”
between SLAs and capability of customers to compare different vendors’
SLAs will not be likely in the near future. Caveat emptor.

Given that the availability targets of SLAs are going to be dictated by
cloud vendors perhaps a more fruitful approach is to consider what will be
availability of a cloud-based service with given component availabilities. Pre-
dicting availability of a system can be made by defining a model of the sys-
tem which can then be analyzed either analytically or through simulations.
This reliability analysis can be driven by the needs of cloud customers or by
those of the cloud vendor — for example Faragardi et al [Far+13] and Beau-
mont et al [BEL13] look into provisioning and resource allocation in cloud
services with the goal of meeting customer SLAs. Khazaei et al [Kha+12]
look into how a vendor can utilize tools such as admission control to ensure
that their service offering meets given reliability targets. Model-based ap-



proaches usually assume that component failure characteristics are known a
priori, making these models most accurate for cloud vendors themselves who
have access to the underlying hardware and software component reliability
history. Currently consumers doing availability modeling for their systems
have usually to rely on using availability targets directly from vendor SLAs
(this applies also to most published papers).

In contrast, work by Fiondella et al [FGM13], Bermudez et al [Ber+13]
and Naldi [Nall3] are empirical in their approach and focus on observations
of cloud services and on the inferences that can be drawn from these ob-
servations. Fiondella et al analyzed Cloutaged dataset and estimated avail-
abilities for multiple cloud vendors and different types of services. Naldi
used multiple sources of outage information, including the same Cloutage
data used by Fiondella et al in addition to IWGCR data, and looked into
number of outages and inter-outage interval for major cloud vendors. They
found out variations in service availability between different types of cloud
services and different vendors. Instead of using public datasets, Bermudez
et al used passive measurements by recording network traces at multiple
ISPs [Ber+13]. The network traces were used to characterize traffic to and
from Amazon’s data centers. Although their paper does not discuss service
availability or reliability, it could have potentially been used to detect at
least some forms of network outages in AWS.

While there has been plenty of papers about monitoring cloud QoS pa-
rameters — including availability — there has not been any substantial
efforts to actually collect availability measurements on public cloud infras-
tructures. This may be caused by the difficulty and cost of active monitoring
efforts, or the fact that results from such monitoring effort would become
useful and result in publishable papers only after a certain, probably quite
long time. There are some companies performing cloud service monitoring
and offering availability metrics for public consumption [Clo16], but these
may be limited and detailed information or analyses are available for paying
customers.

The importance of including correlated failures into availability analysis
has been noted by Gonzales and Helvik [GH12] and Ford et al [For+10], and
correlations between failures in separate systems have been found by Ford
et al and Sahoo et al [Sah+04]. This leads to the conclusion that it is also
important to study correlated failures in cloud services, especially given that
most availability modeling approaches make the assumption of uncorrelated
failures. While it is known that the underlying cloud infrastructure is just
as susceptible to correlated failures as any service in a data center (see
[Amal2d]), many of the potential correlations and cascade effects have not
been studied.

2The cloutage.org site appears to be currently inaccessible.



1.4 Outline

The next section () provides more information on what cloud com-
puting is, how cloud offerings are provided for customers, background on
reliability and availability and an overview of how cloud services may fail
and have failed in the past. Then covers potential sources of data
that can be used to determine cloud service reliability and reviews differences
in applicability and accuracy of these sources. describes methods
used for data collection and analysis and results of the data analysis is pre-
sented in . The analysis results are discussed in . Finally
some of the shortcominis in this work and potential targets for future work

are discussed in pection 7.

2 Theory

2.1 What is Cloud Computing?

It is not possible to give a single, clear definition for the the term “cloud
computing”. Cloud computing is not any specific set of technologies and it
is not a new business model either — regardless something that is referred
to as “cloud computing” has had a large effect on the IT industry within
the last decade. The impact of cloud computing on existing institutions
and ways of working has been described for example by Simon Wardley as
“lcloud computing is] a generic term used to describe the disruptive trans-
formation in I.T. towards a service based economy driven by a set of eco-
nomic, cultural and technological conditions” [Sim09]. It is possible to view
cloud computing as a business model (for providing networked services), as
a technological change (of wide-spread adoption of networked services), as
a change in business models (shift from computer products to computing
products, e.g. utility computing) — and many others. The fact that people
often describe cloud computing from their viewpoint may give an illusion as
if cloud computing was something tangible. In this context Wardley’s view
of cloud computing as a transformative process captures the impact of cloud
computing wide impact quite well.

Yet while the broad definition of cloud computing is useful in provid-
ing a broad framework for understanding cloud computing’s impact for the
purposes of this thesis its definition is too generic. A definition of cloud
computing provided by Mell and Grance that focuses more on the use of
cloud computing as a technology is more appropriate in this context:

“Cloud computing is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released



with minimal management effort or service provider interac-
tion” [MGOY].

This thesis specifically views cloud computing as the delivery of comput-
ing services over the Internet. This is a stance focused on the technology
where cloud computing is viewed as a convenient mechanism to acquire and
use computing resources. This viewpoints ignores the “why” and “how” of
cloud computing and just makes the assumption that 1) there is a need,
or a decision to use cloud computing for business purposes, and 2) there
are vendors providing cloud computing services. There are customers and
vendors. Vendors provide cloud computing resources, and customers use
them. Customers are interested in qualities such as cost, performance and
reliability of the services they are purchasing.

Different cloud services are often categorized as “something-as-a-service”
such as TaaS (infrastructure as a service), PaaS (platform ..) or SaaS (soft-
ware ...) [[SO14]. While this categorization can be useful in understanding
the conceptual placement of a particular cloud service in a broader context,
the categorization is not meaningful when — as in this thesis — we look
at the service as a whole and are not interested in how we would actually
use the service. There are aspects of cloud services that are relevant on
evaluating a service’s reliability, but they depend on how the service oper-
ates instead of how it is categorized. These include for example how the
geographic distribution is presented to customers and what are the types of
failure modes that are visible to customers. These aspects are discussed in
detail in following subsections.

2.2 Delivery Models of Cloud Services

While cloud services may be consumed anywhere as long as a working in-
ternet connection is available, the underlying computing capacity used to
produce cloud services is bound to a physical location — a server is located
in a rack which in turn is in a datacenter that is in a city, county, country
and a continent. In the end the physical distance between a cloud resource
and its consumer is the most important factor that determines the network
latency and bandwidth between cloud vendors and their services and the
consumer of those cloud services.

Different cloud services take different approaches to managing service’s
geographical locality. It is possible to provide services that attempt to hide
geographic locality of the underlying cloud computing resources by replicat-
ing the service in multiple physical locations and routing the consumer to
the nearest one. While this kind of global distribution offers location trans-
parency, it may also impose limitations on the functionality of the service
or increase costs to a level that customers may not find acceptable for their
use cases.



The cloud vendor may as well have decided to offer a service only as
a location-bound service, for which there may be multiple reasons. For
example when providing virtual machines the actual definition of the service
may directly lock it to a specific server machine. For other services the
cost overhead of providing location transparency could push its cost higher
than customers would accept. Operating a location-transparent service in
multiple geographical areas could also put the vendor into legal risk due to
conflicting legislation at different countries.

There are many reasons why a customer might prefer services that do
not provide location transparency but are bound to a given geographical
area. Statutory or contractual requirements may require customer to be
physically limited to be operating from a certain region or country, end-
user requirements may require a low network latency or the customer wants
to ensure adequate physical separation of redundant service components to
avoid correlated failures due to natural or man-made disasters.

Cloud vendors offer their services in different categories to meet poten-
tially conflicting technical and business challenges and customer require-
ments. These categories are defined by the kind of location transparency
they offer and service reliability guarantees they provide: 1) global services
that offer location transparency globally, 2) regional services with location
transparency for services within a geographical region, 3) zone-based ser-
vices that are bound to a given geographic location. These categories are
usually layered as shown in so that zones are placed in a region.
This placement is visible to a customer for example by pricing, latency or
bandwidth differing between inter-zone and inter-region connectivity®.

Global services offer the highest level of location transparency. Cus-
tomers of global services are usually not offered any choice on where
the service is delivered from or where related data is stored. Most of-
ten consumer-oriented services offer a global service model to simplify
service interface to end users. Typically the majority a vendor’s global
services are supporting services such as identity management, access
control and cost tracking.

Regional services operate out of a broad geographic region chosen by
the customer. Regional services differ from zone-based services in that
they are provided as highly available, redundant services that will stay
operational even in a situation where zone-based services may fail. The
cloud vendor takes the responsibility of operating these services in a
fault-tolerant and highly available configuration and is able to provide
high guarantees of service availability.

3Different cloud vendors may use different terms to describe their geographic locality
abstraction. The use of terms region and zone match those used by Amazon Web Services
and Google.
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There are many different types of regional services. These may include
for example messaging services, distributed load balancing, distributed
databases or distributed content delivery.

The location of a regional service is either a broad region such as
Germany (country) or Virginia (U.S. state) or a specific city such as
Dublin (Ireland) or Mumbai (India).

Zone-bound services provide a fine-grained abstraction of their physical
location for customers to choose fromH. Cloud vendors do not usually
guarantee availability of services in any specific zone.

Given the fine-grained location abstraction it is possible for a single
natural or man-made disaster to reduce all cloud resources within a
single zone unreachable or inoperable. If a customer wants better
availability than a single zone alone can provide they have themselves
use reliability engineering techniques to run the service in multiple
zones in a fault-tolerant manner.

Several zones are typically grouped together within a region. Usually
this zones-in-a-region grouping for geographic location is the same as
used for regional services. The physical separation and network la-
tency between grouped zones is low — in reality this is likely to map
to multiple closely located but distinct data centers. Note that a single
zone may be composed of multiple data centers — a “zone” is a geo-
graphic abstraction defined by cloud vendors and may map to multiple
physical data centers [Amal2b].

Reliability of global and regional services is expected to be higher than for
zone-based services. The reliability of zone-based services is limited by the
reliability of the underlying hardware whereas global and regional services
can use reliability engineering techniques (redundancy, fail-over etc.) to
reduce or eliminate the effect of a single hardware failure or even a failure
of a whole zone.

While failures in zone-based services may be more common, their ob-
served reliability, oddly enough, is easier to analyze than for global and
regional services. The reason is simple: there are more zones than regions
— there is only a single “global” service region. Any failure in a global
service thus has a potential to impact more customers than a failure in a
single zone. For example Amazon Web Services at the end of the study
period had 23 distinct zones in 8 regionst. For any percentage value chosen

4Sometimes it is possible to specify need for close affinity between zone-based service
resources in which case the vendor either guarantees or tries to place them physically close
— in the same physical server, the same rack in the datacenter, or within a single routing
region within a datacenter. The specific physical location of resources is still controlled
by the vendor and the customer may still only choose the zone used.

SExcluding GovCloud.

10



to quantify “some customers” the absolute number of impacted customers
will be 1 in 23 for a failure of a zone-based services than for a global service.
Finally as will be later discussed, the outage information that this thesis is
based on does not adequately quantify the customer impact of individual
outages. The source data often uses vague terms such as “some customers
were affected.”

2.3 Reliability and Availability

Reliability and availability are closely related concepts and are often used
interchangeably. Reliability can be defined as the probability a system per-
forms a required function, under specified conditions [Smill] whereas avail-
ability is defined as a system’s ability to be in an operating state, ready
for use [Eus+08]. Avizienis et al highlight the difference between reliability
and availability so that availability is readiness for correct service whereas
reliability is continuity of correct service [Avi+04].

As a clarification on this difference consider a situation as shown in
where a service is not responding to requests e.g. is unavailable
periodically for one second after 99 seconds of being available. This is by
definition a 99% available system. Next consider two different users, each
using the system over a long period of time at random times with one user
5 seconds at a time and the other for 100 seconds at a time. Each of the
users needs the system to be available without interruption for the time they
are using the system to complete their work. While the system is available
99% of the time, its reliability is lower and is either 95% or 0% reliable. The
first user is able to complete their work 95% of the time whereas the second
user will never complete their work successfully.

This example should show that reliability is highly dependent on how
a system is used and thus is often more difficult to compare between dif-
ferent use cases. A system operating according to its specifications and
being highly available may still be considered unreliable by its users when
requests are not served correctly from their perspective [BA12]. Thus it is
often easier to refer only to availability and its related metrics such as mean
time between failures and mean time to repair and other metrics that are
useful in reliability modeling and analysis. A further consideration is that
cloud services have several different independent failure modes that make
the system unavailable in different ways (more on this later).

From now on this thesis will focus solely on availability. Availability can
be further divided into instantaneous, interval and steady state availabili-
ties [MM11):

Instantaneous availability Instantaneous availability is probability that

the service or business process is in the correct state and ready to
perform its function at a specified time instant.

11
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Figure 2: Availability and reliability example where a system goes through
periodic cycles of being operational and in failed state. Availability, mean
time to failure and mean time to repair in this system are absolute values,
but a percentage reliability value is dependent on how the service is used.

Interval availability Interval availability is probability that the service or
business process is operating correctly during a period of time.

Steady state availability Steady state availability is the fraction of life-
time that the system is operational.

While availability is often given as a simple metric, it must be noted that
in real-world environments a single metric is a simplification. For example
the instantaneous availability for many systems is a function that depends
on the past history of the system — if the system is currently down then
the likelihood of it being available in the near future is low! Interval avail-
ability can vary for similar time intervals from day to day for example for
environmental reasons (such as dry vs. flood season). Finally a system may

12



not even have a defined steady state availability if it is in development as
many software-based services often are.

Looking at the past it is simple to produce observed availability metric.
It is important to realize that an observed availability metric is a summary
statistic that is not a probability value but a proportion value. For example,
given availability observations of a system in a given time period we can
unambiguously determine whether the system was operational at a given
time or not — this is a fact. It is not however meaningful to discuss about
the probability of the observed system being available at some time in the
past — probability there is not, facts alone. The observed availability can of
course be assumed to be representative of the system’s long-term or steady
state availability. If this assumption is valid then the observed availability
can be extrapolated as an probability for the system being available in the
future.

Giving a definition for observed availability is straightforward:

Ap=F="r"=1-~ (1)

O T-1 1
T T T

Here Ap is the proportion of time the system was in operational state
O compared to total service time T (I =T — O is the time the system was
in inoperable state). In simpler terms the observed availability Ao is the
proportion of time the system was operational over the observation period
and is between values 0% and 100%.

While the equation is simple, in practice values of I and T are not
always immediately obvious and can lead to subtle interpretation problems
(consider the difference between reliability and availability as noted earlier).
Consider a situation shown in with one global service, one regional
service operating in two regions and one zone-based service operating in
two different zones in the same region. Calculating A for any service at
its smallest boundary (global, per region for regional service, per zone per
zone-based service) is simple. The global service alone was available for
A, = 13/15 and the individual zones for A, = 12/15and A, = 15/15. How
one should then answer questions “what was the overall service availability?”
For overall service availability we could use (for simplicity this example uses
discrete observation and time units):

Oy
Al _ Z:{:Eall (2)
ZmeallTx

which is 65/75 (here = € all iterates over the set of all observed atomic
services). Yet it could be possible to interpret the question equally well as
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| Observation period = 15 units |
Single global service

Global @ - | | | | | | | | | | | | | Regional service

in two regions
Regon 1+ [

zonet 2 [

Zone2 Zp | | | | | | | | | | | | | | | Zone-based service

in a single region and
Region2 % [ I T T T T

two zones

Figure 3: Example of three services, one global, one regional and one zone-
based available in two zones. The total observation period is 15 time units.
Red signifies an outage and green that the service (in the particular region
or zone) was normally available.

4, Zelall e O4(0)
Z:{;EallTx

where O (t) = 1 if the service x was operational at time ¢ and 0 otherwise
and |all| is the number of elements (cardinality) of set all. This specifically
is the proportion of time that all services under consideration were simul-
taneously available. In this case A = 35/75, significantly worse availability
than with which is an unweighted average of the availability of
all services, regions and zones.

This example tries to illustrate how easy it is to start considering a
system’s reliability with an implicitly assumed use case. In the previous
example only A; was a “true” availability value while Ao assumed an use
case where all services under observation were required to be operational at
the same time and in reality is a reliability metric.

(3)

2.4 Cloud Failure Modes

At some level cloud computing services are running on unreliable hardware.
While individual cloud resources may stochastically fail in ways that are ex-
ternally visible (virtual servers crash or freeze, disks produce read and write
errors, networks drop packets etc.), these are normally transient, recover-
able and affect only very limited number of customers. While these need
to be taken into account there is no reason to assume these failure modes
are any different for cloud resources than for similar resources in a managed
(non-cloud) data center. Also as later discussed in Lsubsubsection 3.1.51 cloud
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service vendors do not make small-scale failure information available (e.g. it
does not cross reporting threshold). Externally detecting small-scale failures
below the reporting threshold would thus require active use of the resource
by the monitoring entity.

Cloud vendors also may use selective resource placement to decrease the
likelihood of a single physical failure causing multiple simultaneous failures
for the same customer. As an example at least in 2009 AWS avoided plac-
ing multiple virtual machines from a single customer into the same physical
server [Ris+09], thus failure of a physical server would not by default cause
correlated failures for a single customer. While this or similar techniques
does not increase actual service reliability, it can spread a single failure over
multiple customers in a way that turns these correlated failures into appar-
ently (at least from a single customer’s point of view) to an uncorrelated
event.

Failure that occur on larger scale e.g. that can cause failures on many
resources or for multiple customers can be roughly categorized into core re-
source failures, network connectivity failures and control plane failures. For
example a failure of the core resource would mean that it is not operational
— a virtual server is down or an attached disk drive is returning read errors.
Another failure model is where the core resource is operational, but it is un-
reachable due to a failure of (internal or external) network. In a network
connectivity failure a virtual server could be fully operational but not reach-
able by end-users. Finally both the actual core cloud resource may be both
operational and reachable over the network but the mechanism used to con-
figure, provision and de-provision the cloud resource may not be operating
correctly. In such situation for example a cluster of virtual servers working
as a web service front-end would be successfully servicing end-user requests,
but the customer would not be able to increase the number of front-end
servers if the number of customers increased thus potentially leading to a
degraded end-user service overall. Note that different usage patterns may
lead to different perception of the system reliability when considering dif-
ferent failure modes — a system running fluid mechanics simulation for
several days might not even notice temporary losses of network connectivity
or control plane failures during its long computation phase!

These correlated failures affecting either core resources, network connec-
tivity or control plane can have a wide variety of root causes. Large-scale
cloud failures are known to have been caused for example by power sys-
tem failures [Amal2a], network configuration errors [Mik12], control system
software bugs [Bill2] and operational failures [Jas14].
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3 Data

3.1 Potential Data Sources

To determine availability of a cloud service, the first step is to collect data
for analysis. Naturally the cloud vendors themselves are best positioned
to collect this data as it is reasonable to assume they have comprehensive
monitoring data of their own systems. They do not, however, make this data
available for the general public or external researchers. While some services
publish their own summary statistics these are of limited use. The choices
for collecting service status information are more limited to customers, for
example. The generally available sources of availability information for a
cloud service customer are:

e Monitoring of a cloud service using active or passive techniques,

e Media and customer reports such as newspapers, trade journals, blogs,
twitter messages etc., and

e Vendor-published information such as post-mortem analyses, service
status updates on public web sites such as service status dashboards
and on other media such as social media feeds.

Each of these are discussed in detail below discussing the benefits and
downsides of different methods.

3.1.1 Monitoring

Monitoring a cloud service for its whether a service is available or not allows
the party doing the monitoring to set their own definition for “availability”
and recording granularity. This allows the monitoring party to tailor the
measuring system to their own needs and business goals. While this makes
interpretation of the data more straightforward in that context, it may have
a downside of making it more difficult to compare results with other sources.

Most monitoring systems consist of active probes or agents deployed in a
target system. Typically their primary use is not availability monitoring. A
monitoring system that is already deployed to monitor the state of a service
deployed using cloud computing can be used also to collect information
about the availability of the underlying cloud resources. While this type of
availability monitoring is active in nature, it is not exclusively targeted for
availability monitoring — in a way availability information collection can be
cost-effectively piggy-backed on a monitoring system deployed primarily for
other reasons.

While it is possible to deploy a system to explicitly monitor cloud service
availability, this could become prohibitively expensive. The reason for high
costs of monitoring is simple: you have to use cloud computing services

16



to monitor them. When a monitoring system is deployed to monitor a
system using cloud resources for a business purpose this cost is implicitly
included in the operational costs of the system. If no such piggy-backing
is possible then all costs are directly attributed to the monitoring effort.
These costs are a function of the monitoring coverage wanted but could
even for relatively small monitoring effort raise to thousands of dollarst.
The underlying problem is a sampling problem — there is a finite number
of failures of which monitoring needs to have a good enough number of
samples to get statistically meaningful results.

Note that the approach taken by Bermudez et al to measure performance
metrics of AWS’s data centers [Ber+13] can be considered a monitoring
approach that piggy-backed as implicit data on top of network traces that
were collected by a system that was not specifically designed for cloud service
quality monitoring. While possible for researchers this type of network trace
data is not readily available to other parties.

Using monitoring to evaluate a cloud service availability also has an
inherent chicken-and-egg problem. If there is need for cloud availability
data before deploying a system using cloud resources, does it actually make
any sense to deploy a monitoring system for the sole purpose of getting
availability information for a system, which, when deployed, is going to
have a monitoring system that will record information that is readily usable
for determining the actual availability of the whole system and the cloud
resources it uses?

Companies that make use of cloud computing do undoubtedly already
have a good record of monitoring data and detailed availability statistics
— or at least the possibility to have them calculated from existing moni-
toring data. This information — again — is generally not available. Thus
while monitoring is useful for gathering information suitable for availability
calculations it is not an approach that can be used to gather availability
information beforehand or with a limited budget.

3.1.2 Media and Customer Reports

Many cloud service outages are reported in media by professional publish-
ers as well as directly by customers in other venues such as blogs or on
social media services such as Twitter. There are also some sites that collect
databases on cloud outages, primarily relying on either direct customer re-
ports or reports from interested third parties. While reports in media may
be triggered either indirectly by highly visible customers reports or from a

5While monitoring a cloud service within a narrowly defined scope can be done on a
low budget, accomplishing monitoring coverage for all cloud services of a vendor is more
expensive. For example covering only virtual machine failures and network failures for
only the cheapest instance type in AWS while covering all regions and availability zones
would at November 2015 prices cost about $3000 per year.
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Variable Effect

Outage size Outages affecting more customers are more
likely to be reported than (even serious) outages
affecting only a few customers

Outage severity Outages with high severity e.g. having effects
that are visible to general public are more likely
to be reported

Vendor size Any news on a large vendor is more interesting
to media outlets

Number of Large number of customers increases the likeli-

customers hood that an outage will affect a vocal customer

Beliefs People with beliefs that cloud services are unre-

liable are more likely to notice and thus redis-
tribute content on cloud service failures

Fault-tolerance Customers with fault-tolerant and redundant
systems are less likely to make notice of a failure

Novelty New and novel technology does receive more me-
dia coverage (for both good and bad news) than
older, less exciting solutions

Table 1: Potential variables that affect media and customer reporting.

journalist following vendor’s own publication channels, customer reports are
primarily triggered by customers experiencing outages directly.

Media and customer primarily report only outages and normal service
operation is not normally noted. This reporting itself is subject to many
biases that affect whether the outage is reported at all, in what detail and
how widespread the reporting is. Some of these biases are described in
. While theoretically all of the data published on the Internet “is out
there”, in practice finding this information itself can be very difficult. Most
media publications can be searched using media-specific search engines and
this is likely to produce a good coverage of relevant articles, but searching
the general internet is much more subject to many biases and selection effects
caused by the search engine and exact search terms used. Even if the used
search engine does not introduce biases the sheer volume of search results
quickly becomes an obstacle.

The detail in individual media and customer reports may not have the
necessary information for reliably characterizing the outage, or other rele-
vant feature such as when the outage occurred, duration of the outage and
what services were affected by the outage. This means that multiple re-
ports about the same outage may be needed to get collect all the necessary
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information for analysis. These biases in combination have potentially the
effect of increasing the relative number of reports on highly visible outages
compared to smaller outages.

While media and reports by customers and individuals are potential
source of information for availability analysis, they are affected by human,
business and personal biases. While specifically customer reports offer a
way to evaluate actual impact of outages, at least the author of this work
considers their practical value for understanding the broad scope to be less
useful than for analyzing specific incidents.

3.1.3 Information Published by the Vendor

Cloud service vendors often publish information about the operational state
of their services. The published information varies widely and includes
examples such as current system status, outage reports and outage post-
mortem analyses. At the moment major cloud vendors do not publish cur-
rent or historical availability statistics for their services.

The most detailed reporting on incidents is found in post-mortem anal-
yses. These are usually published only for major incidents so the number of
post-mortem analyses published by a vendor is low compared to the number
of overall outages and other types of status updates. In contrast to normal
outage reporting the post-mortem reports include more details on the inci-
dent such as accurate outage start and end times, list of affected services
and sometimes an indication of the number or portion of customers affected
by the incident. A major part of a typical post-mortem analysis is the root
cause analysis of the outage followed by a generic boilerplate text where
the vendor assures that adequate steps are taken to prevent the same kind
of major incident from occurring again [Bill2; Amal2d; Amal2a]. Post-
mortem reports provide good insight into how major failures occur and offer
a chance to cross-check the accuracy of information collected from other
channels. The frequency of post-mortem incidents is low with a typical rate
of a few per year by a single vendor. While post-mortem reports usually offer
quite detailed information about an outage, given the small relative number
of them (compared to smaller but not inconsequential incidents) this does
limit their use as they might not be representative of typical outages.

Most vendors offer a web-based view of their cloud service’s operational
status. These status dashboards allow an at-a-glance overview of vendor’s
services showing whether any service is non-operational, degraded or op-
erating normally. Their primary purpose is to let customers to check on
the service status. The main interface for the status dashboard is the web
browser and while dashboards often show historical data the visible time
window is often limited to a few weeks with earlier data not being acces-
sible. For examples of status dashboards see AWS’s Service Health Dash-
board [Amal3d], Azure’s Status [Micl5] and Google’s Cloud Status [Goolj].

19



In their for-human consumption form these status dashboards offer a time-
constrained view to current and past system status. Thus while it is possible
to perform availability analysis based on the information from status dash-
boards it would be limited by the lack of historical data older than a few
weeks.

All status dashboards mentioned above also provide RSS feedsB — a
format more suitable as input to alerting systems, for example. RSS feeds
provide an easy way to automatically retrieve outage information. They
are also limited in size and thus also limit the number of outage report
messages that can be published. These limits are set by the vendor with
for example Google apparently including outages for a full month in their
feed and AWS limiting the number of entries in a single feed to a fixed
number of outages. Since no other public, well-defined and stable access
methods for cloud outage data is available, this work uses RSS feeds to
collect specifically AWS outage information. (The next section covers the
behavior of AWS Service Health Dashboard and its RSS feed contents in
detail.)

The outage information published by vendors themselves is open to sev-
eral potential biases. Some of these biases are discussed in . Most
of these biases stem from vendor’s internal processes and reporting policies
of the vendor. Even a cursory look at any vendor’s status dashboard con-
firms that only failures crossing some (unknown) threshold in severity or size
are reported, especially if correlated with customer reports in social media
about random failures (e.g. showing that there are incidents which are not
reported).

3.2 Outage Reporting by AWS
The AWS Service Health Dashboard and the corresponding RSS feeds con-

tain outage reports in the format of messages. Fach message contains infor-
mation relating to a single service or to a single service and region®. Each
message also contains a unique URL, publication time, subject line and
message text body.

There are limits on how many messages are shown on both the dashboard
page and RSS feeds. The dashboard web page is limited to 30 days of history

"RSS stands for Rich Site Summary. It is a structured data format commonly used
to publish frequently updated information. While mostly used to publish blog and other
social media feeds it has also found use in providing a way to distribute status incident
information.

8The way AWS structures outage reporting is not entirely orthogonal or consistent.
Each outage report is associated with a particular service, but not all services have their
own reporting RSS feed. For example EBS outages are reported as part of other services.
Auto Scaling outages were originally reported as part of other outages but from late 2014
onwards Auto Scaling outages were published in their own RSS feed.
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Variable Effect

Length, size It is likely that there are thresholds in what out-
and severity ages get reported such as outage length, size,
severity etc.

Process adherence There may be regional or other differences in
how well reporting policies are followed

Process changes Changes in reporting policies can introduce un-
known changes in reporting rates

Software changes Changes in monitoring and alerting systems can
change reporting rates

Vendor Reporting policies and processes differ from one
vendor to another

Table 2: Potential variables that can affect decisions on whether an outage
is reported by a cloud service vendor.

and each separate RSS feedE is limited to a maximum of 20 most recent
messages. While both show the same information, messages related to the
same outage are grouped together in the web page version whereas in the
RSS feed they are disconnected as there is no correlation identifier to link
different messages in the RSS feed together.

Messages can_be grouped into a few generic categories (sample messages
can be found in ):

e Initial report messages give an indication that there is or may be
a problem that is being investigated.

e Resolution messages report on a solved incident and usually mark
the end of an outage message chain. It usually includes the start and
end times of the outage and may include some additional information.

e Ongoing investigation messages are often published for longer out-
ages. They do not usually contain new information on the outage.

e Sometimes only a single message is published that reports the end of
an incident and potentially other information on the outage.

e Other of types messages such as information about a scheduled outage,
or reports of investigations that showed no problem are much more
rare.

9There is one RSS feed for each global service and one per service per region for regional
and zone-based services, so a RSS feed may contain messages older than the 30 days they
would be visible at most on the web page.
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Type Subject and Body text

Initial report Informational message: Increased API error rates

We are investigating increased API error rates and latencies
for the EC2 APIs in the EU-WEST-1 Region.

Resolved [RESOLVED] Network connectivity

Between 12:07 PM PDT and 1:15 PM PDT we experienced
impaired Internet connectivity affecting a small number of
instances in a single Availability Zone in the US-EAST-
1 region. Additionally, between 12:07 PM PDT and 1:20
PM PDT we experienced increased error rates for the De-
scribeReservedInstances and DescribeReservedInstancesOf-
ferings APIs in the US-EAST-1 region. Both issues have
been resolved and the service is operating normally.

Ongoing Informational message: Connectivity issues
We are currently investigating connectivity issues to a small
number of RDS database instances in a single Availability
Zone in the AP-NORTHEAST-1 Region.

Single message Informational message: Increased API error rates
Between 3:05 PM PDT and 3:45 PM PDT Elastic MapRe-
duce customers experienced increased API error rates in the
EU-WEST-1 Region. Some customers experienced delays
when starting or terminating their job flows. The service is
now operating normally.

Other Service is operating normally: [Resolved] Increased
API Error Rates
The RDS service was, and is operating normally. Our in-
vestigation has shown that the errors detected were false
positives that did not affect the operation of the service.

Table 3: Samples of the common types of messages in AWS outage reports.
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A feature shared by all AWS outage reports that complicates automated
data processing is that the message text itself is free form text, clearly
written by humans and meant primarily for humans to read and not meant to
be automatically processed by computers. While most outage reports follow
a few common patterns these patterns are not rigidly followed. Messages also
contain errors such as typographic errors (“EU-WEST-2") or logical errors
(text reports times in PST when daylight saving time is in effect and PDT
would have been correct and vice versa). Times provide other complications
as they are written in many different formats such as “14:40 PST”, “2:37 PM
PST”, “12/17 10:32PM” and “2:10 A.M. PST”, often omitting information
such as date or AM/PM distinction that needs to be inferred from context.

While not affecting actual outage analysis, it is also clear that some-
times messages that have already been published are retroactively edited.
This is confirmed by noticing that when messages are periodically collected
sometimes an original and a modified version of it are collected and can be
compared directly. Another way to confirm the retroactive edits is that some
messages refer to events that occur after the apparent message publication
time. The third potential retroactive edit is the addition of “[RESOLVED]”
text to subject lines to all messages of an outage, although this occurs so
regularly that it is likely to be automatically added by the publishing system
instead of being manually changed.

For analyzing the impact of outages there are two important metrics
that are missing from outage reports: number of affected customers and the
severity of the outage. In cases where the report refers to the impact of the
outage it is most often described qualitatively using vague terms such as
“some instances”, “a small number of customers” or “increased error rates.”
Generally there is very little concrete information on the absolute or relative
number of affected customers on any outage. Sometimes more quantitative
numbers are found in outage post-mortem reports or in reports written by
affected customers (for examples, see [Amal2d] and [Cocl2)]).

In summary, while AWS outage information can be retrieved automat-
ically via RSS feeds, the data itself is in unstructured free text format and
requires substantial manual and automated processing before being usable
for analysis.

4 Methods

4.1 Overview

The processing path from raw data to final analysis consists of three pri-
mary steps: 1) data collection, 2) message processing (collation, categoriza-
tion and outage clustering), and 3) analysis. These data processing steps
are described more in detail below followed by description of the statis-
tical methods used and how other needed information was collected and
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processed.

4.2 Data Collection

The data collection process is very simple: a program runs periodically and
connects to the AWS Service Health Dashboard page, retrieves the list of
available RSS feeds, downloads and stores all of the feeds on disk. The data
collection process is run redundantly on multiple computers several times
a day. The collection process was designed to be robust and ensure safe
storage of the collected data as it had to remain working correctly for the
data analysis period (from mid-2013 to mid-2014) with limited supervision.

4.3 Message Processing

Message processing is broken into multiple discrete steps. These steps are
1) combining the separate RSS feeds, 2) extracting and parsing outer mes-
sage structure, 3) parsing the textual message and extracting time intervals
from them, 4) clustering parsed messages into events and separating events
with outages from non-outage events, and 5) writing out results in a format
usable for analysis.

While first two steps and the last step are straightforward data process-
ing, in contrast third and fourth steps are more complex. As noted earlier
in the status dashboard information is written in human-
readable english and contains many features which makes it difficult to
parse mechanically. The third step — the parsing step does two impor-
tant tasks: it identifies distinguishing features from the message (such as
mentions about regions and services, or language that implies a network
failure, for example), and parses any valid timestamps and time intervals
mentioned in the text.

Identifying relevant textual features and extracting time interval uses a
custom regular language parser working on a tokenized message text aug-
mented by a context-aware time value parser. For example the time interval
regular language expression used in the parser can handle over a hundred dif-
ferently worded expressions of the form “from <time> to <time>." Time
values are parsed by context-aware regular expression parser — context
awareness is required since individual time values may be lacking AM/PM
indicators, time zone information etc. which must be inferred from other
surrounding time values and message publication time.

Extracted features and time intervals are used to cluster messages into
events. An event is thus a group of messages that the clustering algorithms
considers to be related to each other. The clustering algorithm is an ad hoc
connectivity-based algorithm operating in eight metric dimensions. These
metric dimensions are calculated from message features and time intervals=.

10These map roughly to region similarity, service similarity, point time equality, closeness
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The parameters for the different metric functions have been determined us-
ing genetic algorithm using a training data with the fitness based on com-
paring resulting clusters to a manually determined clustering target.

While the above steps may appear straightforward, it must be noted
that there are also semi-manual “fixes” on the data stream. These include
non-semantic changes in original message text to work around limitations
in message parsing as well as fixing problematic semantic and typographic
errors, manipulating the feature list (for example, adding data to sched-
uled maintenance messages that helps identifying non-outage events during
analysis) and adding or removing time intervals for messages with multiple
distinct time intervals which the parser does not handle correctly.

4.4 Analysis

Analysis is performed using the statistical computing program R. The analy-
sis includes reading output files from the message processing phase, filtering
out data outside the selected analysis period, and annotatirﬁ different pro-
jections of the data with AWS infrastrutucture information=.

4.5 Statistical Methods

The main statistical methods used for descriptive statistics and error analysis
are:

e Sample mean and sample error are usable for straightforward sample
statistics such as the average outage length as shown in . It
is important to note that these statistic are sample statistics and thus
describe statistics of the collected sample.

e The bootstrap method is used for generating statistics for different
metrics with unknown distributions [Hal88; DH99]. The bootstrap
method is a Monte Carlo method based on re-sampling of known (sam-
ple) distribution. This method makes it possible to generate meaning-
ful statistics without the need to make assumptions of the actual model
distribution. The bootstrap method also allows to generate error esti-
mates for the statistics as well as a range where 95% of the distribution
based on resampling lies.

of publication time, exact time matches, generic feature similarity, Levenshtein distance
and temporal overlap. Although anecdotal, it is interesting to note the genetic algorithm
placed a lot of weight on temporal closeness of messages but a negative weight on textual
similarity! This may be due to messages often using similar phrases, making textual
similarity a bad metric for clustering — although why it did not receive a zero weight
instead of a negative one is puzzling.

1The service time over a period of time for example depends on the number of regions,
availability zones and the availability of services for general public and commercial use.

25



The bootstrap method thus generates distribution statistics that are
based on re-sampling of the collected sample. They are thus valid only
with the assumption that the collected sample is representative.

e Some incidents do not have explicitly written start and end times.
During bootstrap analysis the length of these incidents is adjusted by
sampling with replacement from the sample of all known start and end
time difference values (Ats and At, values in )

This work makes a conscious effort to present all values with error esti-
mates to allow anyone using these values for example in availability modeling
to have an understanding of the “goodness” of the values.

4.6 Infrastructure Data

Calculating availability as a fraction of the total availability to total service
time requires knowledge of the service time. Cloud services are not static
and neither is AWS’s infrastructure either. To accurately calculate the total
services time information about changes in the service offering and number of
availability zones in regions is required. This data was collected by reading
AWS’s news announcement archives, AWS support forums and reviewiég
old versions of AWS’s service web pages using The Wayback Machine®4.
The data allows analysis to accurately calculate how many services, in what
regions, and how many availability zones were available for any time interval
within the analysis period.

5 Analysis

5.1 Overview

The raw data is analyzed in multiple stages. First, individual messages
are analysed without considering their textual content. This is followed by
analysis of events and incidents, and finally actual outages and availability.

The data for analysis was collected for a year from June 5th 2013 to
June 4th 2014, e.g. 365 days — a full year. Within this period data was
actually collected at least once on 360 distinct daysE. The AWS dashboard
contents were successfully retrieved 1313 times resulting in a total data set
of 700 megabytes of RSS feeds in XML format.

2https://archive.org/web/

13Total of 5 days data over the study period was not collected due to both collecting
computers being unavailable at the time to collect data. These days are non-sequential
and analysis of the collected data shows that there are no gaps in the collected messages
during these days.
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5.2 Messages

There are 662 unique messages incidents for 25 different services. The first
message was published on 9 July 2013 and the last message on 26 June 2014,
thus the time period covered by incident messages was slightly shorter than
the full study interval. On average 1.8 messages were published per day,
although at least one message was published only on 121 days. The number
of messages has a high variance so on days with at least one message the
average is significantly higher at 5.5 messages per day.

There are differences in the number of messages attributed to different
services and regions as can be seen in . Over half of the messages
are for EC2, ELB and RDS services or for the us-east-1 region. A likely
explanation for the large portion of messages for these services and the US
East region is simply that they simply account for a significant portion of
the services used during the study period. This is however a hypothesis
only since no reliable information on the relative weight of these services or
the US East region compared to other services and regions is not available.
Thus it is not possible to rule out the possibility these services or the US
East region might not have other reasons to have more published messages
(such as lower reliability or different reporting practices.)

Most messages are short with all messages containing between 37 and
2670 characters with the median length of 176 characters and 95% percent
of messages being 423 characters or shorter. While the majority of mes-
sages are short, there is a significant tail of longer messages as shown in
. Longer messages are associated primarily with either complex or
long incidents and are either retroactively edited messages (with multiple
concatenated updates) or otherwise longer explanations of an incident. In
contrast the very shortest messages usually follow the pattern of “we are
investigating «a visible problem» in the «region affecteds region.”

Many services had no incident messages published during the study pe-
riod. Out of the 37 services listed in almost a third of the service (12)
had no published incident messages. None of the services with no incident
messages were zone-based services, and some of them were relatively new
services possibly with also (comparatively) low usage. While it is possible
that there are differences between the set of services with no incident mes-
sages and other services such as differences in software component quality,
differences in operating procedures between services, differences in report-
ing thresholds or more resilient service architectures it is also possible that
through pure chance alone these services did not encounter any publicly
visible incidents during the study period.

The messages themselves contain several anomalies. Some of the mes-
sages are retroactively edited which can be confirmed by noticing that some

"The us-east-1 region is the very first AWS region, and it is plausible that newer
regions have different designs.
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messages have more than one version of their contents, showing up when
a message has been collected multiple times with edits occurring at some
time between the collection times.kd. These retroactive edits occur primarily
for longer incidents, but even then only irregularly. It seems there are two
different approaches at AWS on how to report long-lasting incidents: either
publish new messages with updates, or keep updating a single message with
new information. It is possible this might show differences in preferences
between regions or operations teams.

Another anomaly is a skew in message publication times. The seconds
value of each message’s publication time is zero seconds (e.g. timestamp
value is HH:MM:00) in over 30% of all messages when by pure chance zero
second values should be only a few percent of the total. All of other sec-
ond values (1..59) have more uniform distribution as do hour and minute
values. A possible explanation is that when a human enters the time value
manually they do not usually enter a second value, and without an explicit
second value the system might default it to zero. As such this anomaly does
not affect incident or outage analysis but offers an interesting view into
the normally hidden mechanics of incident response within Amazon Web
Services.

5.3 Incidents

Running the clustering algorithm on the messages yields 142 clusters of
messages e.g. events. The number of messages per event ranges from one
message per event up to 50 messages, although most events have only a
few events with the the median being 3 messages per event (see )
This number of events includes 3 events that are not outages with them
being either reports of issues that turned out to not be incidents or that
were reports of a scheduled maintenance. Omitting these non-outage events
leaves 139 outage events e.g. incidents.

Note that a single incident may affect multiple services and regions. Most
incidents are restricted to affecting only a single global service, or a single
regional service within a single region (see ) Less than one quarter
of all incidents affect more than one service or more than one region. Very
few incidents affected more than one region or more than a single global
service, with only less than 5% of incidents affecting more than one regional
service. This means that most AWS incidents for region-based services are
geographically constrained and do not cross regional boundaries.

A single incident may affect different services and regions and each of
these may be affected for a different period. Thus a single incident consists
of intervals of non-operational time e.g. outages. It is possible possible

15The incident subject line is changed for resolved messages to include the text
[RESOLVED] but this change is consistent and regular and is likely to be caused by the
incident report publishing system itself.
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Figure 6: Different time intervals associated with an incident. The incident
is usually reported in multiple messages. A single incident can consist of
multiple outages affecting different services over multiple time spans and
potentially in multiple regions. Finally availability depends on how it is
defined.

for an incident to last several hours but to have only a few minutes of
actual outages during that time. It is important to keep this difference
in minds since incident length and service outage time are not the
same. Incident length, among other incident time metrics, may be useful
for incident response planning. It can not be used for evaluating service
availability, though.

There are several relevant time metrics for an incident as shown in
. These correspond to message publication times and the outage inter-
vals during the incident:

Incident length At can be determined accurately from incidents that con-
tain messages explicitly specifying incident start and end times. For
incidents without such messages the incident length needs to be esti-
mated based on the interval between first and last message instead.
The majority of incidents (91%) have explicitly specified incident start
and end times.

Time to first message At is the delay between an actual incident start,
and the time when the first message about the incident is published
by AWS.

30



Interval value

>0 =0 <O

Incident start to first message Ats, 126 @

0
Incident end to last message  At. 126 0 @
First message to incident end At; 93 @ @

First message to last message Ate 111

Table 4: Number of incidents with accurately known start and end times by
their different delta values with respect to incident start, end, first published
message and last published message. Circled values are discussed in detail
in the main text.

Time from incident end to last message At. is the time taken from

actual incident end to when a message reporting it as resolved is pub-
lished.

Time to incident end after first message At; is the time an incident
can be expected to go on from the first time it is publicly acknowledged
by AWS.

Time from first message to resolved Ats is conversely the time from
first report to the incident being publicly stated as resolved.

Note that the last four values can be determined only for incidents that
contain explicitly reported incident start and end times. For incidents with-
out accurate start and end times only the time between first and last incident
message can be determined, and it needs to be statistically adjusted to take
account the distribution of Aty and At..

A relatively large number of incidents of 27% do not conform to a “canon-
ical” incident with all of At;, At., At; and Aty being positive. These
anomalies are circled in . Some incidents are reported when the
actual problem has already gone away (At; < 0) and some incidents have
only a single message confirming a resolved incident (Aty = 0). A closer
inspection of “non-canonical” incidents shows that

e The single incident with At = 0 has multiple messages, with the first
one following common “we are investigating” template and a later
message confirming the incident start time as the time of the first
message. It seems unlikely that the true incident start time was the
time of the first message suggesting that the time was selected because
true incident start time was not known or otherwise due to a human
error.
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e The single incident with At, < 0 has had its first message retroac-
tively edited to include information about the ongoing event. Since
the publication timestamp of the edited message is not updated this
causes an anomalous negative At, value. (Taken at face value this
would mean the end of the incident has been predicted and reported
in advance.)

e The single incident with At; = 0 has the incident end time either
erroneously marked as the time of the first published message or it just
happens that the problem really ended just as it was being reported.

The previous three incidents are excluded from time interval analysis.
The other two categories of interval anomalies that are included in analysis
have natural explanations:

e All of 33 incidents with Aty < 0 have their first message published after
the problem has actually ended. These all follow the template of first
message being “we are investigating” with a later message confirming
that the problem was already solved by the time the first incident
message was published.

e Finally 16 incidents with Ats = 0 have only a single message per
incident informing of the incident start and end times. These messages
are reporting of an incident that has already ended.

Without going deeply into analyzing distributions of the interval values
it is possible to note that they may match several logarithmic distributions,
with log-normal distribution being a possible candidate. Instead of modeling
the distribution, the mean value and the confidence interval (e.g. estimation
error) are calculated using the studentized boostrap method with the results

There is significant uncertainty about both the incident mean length
(At = 130+ 20) and its range, especially since the upper bound for incident
length covering 95% of all incidents is high at 600 minutes. If these values
are used for incident response planning the following needs to be considered:

o The mean time for AWS to acknowledge an outage (Ats) is 73 minutes
with the upper likelihood bound being over five times that (400 min-
utes). This means that if a problem in AWS is suspected it may take
an hour or more for the incident to be confirmed by AWS.

e The time from incident start to last published message for the inci-
dent (which usually is a message reporting the incident as resolved)

1%Incidents with only one message and negative At; values are excluded.
"Tncidents with only one message are excluded.
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Mean 95%

(minutes)
Incident length At 130+20 11-600
Incident start to first message Aty T3+14 7-400
Incident end to last message At, 43+10 5-300

First message to incident endE Aty 90+20 3-400
First message to last messaugeE Aty 110+£20 9-460
Incident start to last message Aty 170+£20  38-800

Table 5: For all regions and services, incident length and its standard error,
and the range of values containing 95% of incident times determined by the
studentized bootstrap method.
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Figure 7: Distribution of messages per event.

is almost three hours at 170 minutes. The upper likelihood bound is
again much higher (800 minutes). This means that it may take quite
some time that even after the incident appears to be over to receive
confirmation on the incident’s end.

A somewhat tongue-in-cheek suggestion for incident response is that if
AWS is suspected of being the root cause then one should be prepared for
a long wait. Order in.

5.4 QOutages

The previous section looked at incidents and their statistics. An incident, as
shown in , can consist of multiple distinct outages affecting one or
more services in the same or in other regions. This difference is significant.
For example incidents with explicitly given start and end times the total
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. Services
Regions

1 2 3 4 5 6 8 Total
0 15 (15) 6 (6) O 0 0 0 0 21 (21) 15.1%
1 88 13(3) 3 3(1) 2 2 2(1) 113 (5) 81.3%
2 1 3 0 0 1(1) 0 0 5(1) 3.6%
Total 104 (15) 22 (9) 3 3(1) 3(1) 2 2 (1) 139 (27)

748%  15.8% 2.2% 22% 22% 14% 1.4%

Table 6: Number of incidents by the number of regions and services affected.
Number of parenthesis shows how many of the affected incidents affected also
global services, for example at the table cell at one region and four services
has “3 (1)” meaning there were three outages affecting one region and four
services, and one of these outages also included at least one global service
that was affected.

length of incidents was 262 hours during the study period while the same
total for outages (not incidents) is much larger at 377 hours. This implies
that many incidents affect multiple services. As shown in over a
quarter of incidents affect more than one service, with an average of 1.5 af-
fected services per incident. The number of incidents that affect multiple
regions or a global service and a region is much lower at less than 4% of all
incidents. This means that 1) majority of all incidents affect only a single
service in a single region or only a global service, and 2) an incident with
wider impact is more likely to affect multiple services than multiple regions.

The average length of a single outage affecting a single service in a single
region is 126 + 11 minutes. This is practically the same as the average
incident length of 130 4+ 20 minutes. There are differences between regions
and services in the average length of outages (see ) The most
pronounced difference occurs between the ap-northeast-1 (average outage
length and 37 + 9 minutes) sa-east-1 regions (230 & 60 minutes) and the
Route 53 service (5949 minutes) and CloudFront service (250+130 minutes).
Some regions and services also have a larger number of outliers than others

as shown in .

5.5 Availability

Counting incidents and outages is straightforward and the average length
of incidents and outages can be estimated with confidence intervals. While
the historical availability is simply the proportion of operational time to the
total service time the resulting number is not always useful. This is because
there are large uncertainties in both outages and the total service time.
First, if a service had few or zero outages was this really because the service
was reliable? Also consider a service with one large outage, or a service with
many outages but both with the same total outage time. While both would
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Figure 8: Box-and-whiskers of outage lengths by service and region. Regions
and services with less than five outages and total outages less than one hour
are omitted. Services are grouped so that first are global services, then
regional services and last are zone-based services.
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have the same availability metric it would be more accurate (e.g. with less
uncertainty) for the latter service. For this reason availability analysis omits
services with five or less outages.

Secondly we do almost never know the scope of an outage — how many
customers or cloud resources were actually affected by the outage? Do dif-
ferent types of root causes have different impacts? Does service degradation
count as an outage? While AWS does provide some qualitative descriptions
of outage impact, this thesis makes the simplifying assumption that a ser-
vice outage or degradation of any kind affected 100% of all customers or
resources of that service (e.g. all customers for global services, the whole
region for regional services and an availability zone for zone-based services).
This means that from customer’s point of view all availability estimates are
under-estimates — it is likely that the service in question is more reliable.

Thirdly the total service time can be estimated only as a wall-clock time
meaning that differences in capacity between different regions cannot be
taken into account. For example it is reasonable to assume that Singapore
region would have had more server and storage capacity than the Sao Paolo
region simply because it had been operation for a longer time. In this
analysis both regions have the same size of two availability zones.

When neither the relative customer impact nor capacity differences be-
tween services and regions is known this leads a disadvantage of global and
regional services over zone-based services. During the study period there
was a total of 23 availability zones. Thus an outage in any zone-based ser-
vice will have an impact of just 1/23 of a global service when the total outage
time is calculated. This does have an effect of underestimating the availabil-
ity of global compared to regional and zone-based services and of regional
services compared to zone-based services.

With these limitations in mind this thesis looks at outages at the smallest
externally measurable unit level (whole service, a region or an availability
zone). This unfortunately means that what here is considered “unavailable”
is the time some unknown portion of customers is affected by an outage
and not the pro-rata (per customer or per resource) availability. Without
knowing the portion of customers or resources affected in an outage it is
possible to define availability only at the unit level.

Regardless it is now possible to define specific questions as measured by
grouping the operational and service time on different axis;

1. What is the general availability of AWS’s services?

Ag=> "0/ T =99.983%

Ay is thus simply the proportion of sum of operational time over all

8For simplicity O and T are taken to apply to whatever is relevant in context. In strict
notation the sum over O would actually need to be > __ O(u).

ueEa
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measurable units a (services, or services and regions, or services, regions
and zones). It is a general metric and given the biases listed above is an
underestimate.

2. What is availability by region, where global services are counted to
being in a pseudo-region “global”?

A4,=>"0/>"T

a(r)  a(r)

Here A, is the availability for region r and a(r) is the set of measurable
units in that region. The results are shown in . Given the biases
listed above, this is likely to be a significant underestimate for global ser-
vices, for which Agiohal = 99.830% whereas all real (physical) regions have
availability of Aphysical = 99.964% or better (e.g. “three nines”) There is
also a difference between all physical regions attaining 99.990% or better
except for Auseast-1 = 99.967% and Agaeast-1 = 99.964%. The lower avail-
ability for US East could be explained by its age — being the very first
region publicly available it might have more resources and capacity (more
servers, more disks) meaning that the relative impact of its outages might be
actually lower than in other regions. Since this work does not try to adjust
for the relative impact of an outage this would give more weight to outages
in the US East region. An alternative explanation is that with the US East
being the “oldest” region it might actually have structural problems (legacy)
that have been addressed in newer regions. The Sao Paolo region’s low avail-
ability might be partly because it was relatively recent (second youngest),
although it being a reflection of true lower reliability cannot be dismissed
either.

3. What is availability by service, so that regional and zone-based ser-
vices are aggregated over all regions and zones?

As=>0/>T

a(s)  a(s)

Here A, is the availability for service s and a(s) is the set of measurable
units for that service globally. The results are shown in and again as
noted before, the global and regional services are relatively underestimated
more than zone-based services. For this reason all comparisons should be
made only within the same class of services and especially the availability
values for global services need to be taken with a pinch of salt. For example
neither Agoudfront = 99.671% or Aroutess = 99.944% apparently meet their

19The author has anecdotally heard that operating in Brazil was at least initially more
difficult than in other regions due to difficulties and delays in sourcing hardware, for
example.
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specified SLA availability targets (99.9% and 99.988%@ correspondingly).
CloudFront suffers from one particular bias more, as its service is actually
delivered from edge locations which there are more than fifty in total. Thus
an outage in a single edge location will in this statistics cause it to appear
as a failure of all edge locations. Unfortunately CloudFront’s edge locations
cannot be counted in the same manner as availability zones, for example,
because a customer has only very limited control over the use of edge loca-
tions. This leaves a conundrum — count failures by edge locations, or as a
single global service? For simplicity this work makes the latter choice.

Route 53 has another problem in that its SLA actually talks about not
the general service availability, but that it responds correctly to DNS queries.
Inspecting actual Route 53 outage messages shows that there were no prob-
lems reported of actual DNS query problems — the problems either affected
Route 53 API (which is not covered by SLA) or there were delays in propa-
gation of changes (but old data was still served correctly). This makes the
simplifying assumption that any report of any kind of real incident affects
the measured availability of the service. This means that availability as de-
fined in this paper does no necessarily match that of SLA’s, although for a
user of Route 53 its API problems or slow propagation times may be relevant
and for that use the availability result from this work may be useful.

There may be other reasons for low availability, as for example with
SES at Ages = 99.871%. The SES service was made available for customers
during the study period, initially in one region only and later expanded to
three regions. This means that SES had only Tg.s = 690 days. This means
that a single incident has a larger relative weight than for a service that
was operational for the whole year. It is also possible that AWS’s reporting
threshold is lower (e.g. reporting practices still in state of change) for new
services. Of course it is possible that a new service suffers from “teething
problems” and was actually performing worse during the study period than
later.

Apart from CloudFront and Route 53 the only services that had a defined
SLA during the study period were EC2 and RDS services. While both of
these have published SLA targets of 99.95% these are not comparable to
availabilities reported in . EC2 and RDS define “non-availability” of
the service as when it is not available in a region in two zones simultaneously.
Thus the single-zone availability needs to be adjusted (see ) to
a two-zone availability value that actually is comparable to the SLA avail-
ablity target. The original observed single-zone availability, the calculated
two-zone equivalent availability and the SLA target are shown in .
Making this apples-to-apples comparison shows that EC2 and RDS services

29Route 53’s SLA sets out an availability target of 100%, but if the total monthly outage
time is less than 5 minutes no credits are paid back — 5 minutes a month corresponds to
a target of 99.988%.
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Observed SLA

Service Single-zone Two-zone Availability
Availability Availability Target

ec2 99.9510000% 99.9999760% 99.9500000%

rds 99.9750000% 99.9999938% 99.9500000%

Table 7: Comparison of observed EC2 and RDS services single-zone avail-
ability and the calculated two-zone availability to service level agreement
availability targets.

meet the SLA target with a substantial margin — the SLA-equivalent avail-
ability for both is more than 99.9999%.

6 Discussion

This work uses a viewpoint of external passive observer to infer availabil-
ity of several AWS services. This offers both benefits such as low cost of
data acquisition but has disadvantages such as coarse spatial granularity
(a single availability zone level) and has numerous potential biases such as
unknown reporting thresholds. It is also important to realize that the “avail-
ability questions” that can be answered based on this are limited to those
working on higher system abstractions such as availability zones, regions
or services and not on individual servers — the incident information used
for this work apparently omits most “everyday” failures such as individual
server failures (reboots), transient and small-scale errors within network,
regional and global services and so on.

The value of 99.95% is often cited (incorrectly) as an availability target
of many cloud services [Gog; Amal3a; Micl4]. Even against this incorrectly
interpreted metric of global service availability AWS exceeds it at 99.983%
availability over all services and regions as measured in this work. When
the observed single-zone availability from this work is converted to SLA-
equivalent simultaneous failures of two or more zones both EC2 and RDS
meet the 99.95% target with a significant margin with EC2’s SLA-equivalent
availability £ 99.9999760% and RDS’s of 99.9999938%. The fact that AWS’s
services achieve a high level of externally measured availability should not
be a surprise — after all AWS has been commercially successful and it would
be implausible to assume that such success could be achieved with a poor
level of service availability.

Naldi used a similar method to analyze public outage data, although
using a different data sources than this work [Nall3]. Naldi provides results

21The SLA availability target considers a service unavailable if it is not available in
at least two availability zones simultaneously. Thus the SLA target is value should be
compared to the two-zone availability value.
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for the number of outages and differentiates between outages that have
known length and provides average outage length and inter-outage interval
for those. In Naldi’s analysis for AWS a total 21 outages were included of
which 16 had duration information. This work includes a total of 139 in-
cidents consisting of a total of 225 separate outages. In Naldi’s study the
average outage length is 474 minutes which is significantly larger than this
study’s 130 &£ 20 minutes per incidenttd.

While the intervals from which data was collected in Naldi’s and this
study are hardly equivalent®d the significant difference in both the number
of observed events and the higher average length in Naldi’s study do suggest
that incidents reported by media, customers and other interested parties are
biased towards highly visible events. This means that Naldi’s assertion of
“those that have not been recorded are probably incidents of quite minor
relevance” [Nall3, pp. 284] is not supported in light of this work.

Fiondella et al. use also Cloutage as their data source, but break down
the analysis by category into CloudFront, CloudWatch, EBS, EC2 and
S3 [FGM13]. Fiondella et al. counted the number of outages for AWS,
identifying EC2 as the service with the largest number of outages. In their
study 53% of all AWS outages were attributed to EC2. This is in line with
the results from this study which finds EC2 having more outages than all
other services combined.

This work demonstrated the difficulty of getting factual availability es-
timates for public infrastructure cloud services. First and foremost cloud
vendors themselves do not publish any kind of availability or reliability met-
rics for their services. There are many public services in other B2B and B2C
areas that do provide both real-time and historical service quality informa-
tion publicly, often including measurable metrics such as system availability
or response time. Currently major cloud vendors do not publish measurable
quality metrics of their services.

In the same note Naldi writes that “in the absence of institutional mon-
itoring and assessment activities, we must rely on both the providers’ re-
ports and the news gathered by third party entities, which in turn rely
on customers’ indications.” [Nall3] Fiondella et al note that most inci-
dents do not provide information on the number of affected customers, thus
“some outages may have a significant impact, while others may go unno-
ticed” [FGM13]. Although this study tries to minimize the customers’ bias
of reporting only large outages by using the incident information from AWS
dashboard, it is still hampered by the fact that practically all of the report-
ing processes are opaque — we do not know what are the thresholds at cloud

22Naldi refers to “outages” which I have taken to refer to what are referred to “incidents”
in this paper due to Naldi’s sources focusing on large-scale events and not providing per-
service or per-region separation breakdowns.

23The time period in length is different and the periods do not overlap. Cloud services
and their use has increased over time which would need to be taken into account too.
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service providers for reporting incidents in the dashboard nor whether they
are the same between different regions, services or over time.

Different actors in the cloud computing market have different needs for
availability metrics. A customer is interested in historical and present situa-
tion of the services they are using or planning to use. If these metrics are used
for reliability modeling then more descriptive statistical values are needed.
A customer may also want to compare the service quality between cloud
vendors. Depending on the use case a simple metric may suffice, for other
cases descriptive statistics are required. Doing meaningful comparisons be-
tween different vendors is only possible if definitions of the published metrics
are standardized or the incident data itself can be normalized to conform to
comparable metrics.

At the moment few if any of these requirements are met. Even while
the “big three” cloud vendors (AWS, Azure, Google) do publish incident
information on the web the information and its availability has limitations.
Compared to industries such as telecommunications or power utilities there
are no de facto or de jure requirements for recording or publishing incident
information, and no requirements for cloud vendors to provide accurate or
standardized periodic summaries of their service quality. As an example of
how other markets are regulated, consider legislation of the European Union
that requires energy market participants to conform to a set of reporting
rules [EC11]. The reporting rules regulate how and what to report when, for
example an outage occurs in a power station [Norl4]. Similarly the nuclear
industry, oil and gas industry and several others compile reliability data
either for industry’s internal use, or by the customers of the industry [Unil5;
Wik15].

7 Further Work

This work has taken a frequentist (classical) approach to statistics. This
means all of the availability metrics in this work as they stand are only
applicable to looking at what happened from mid-2013 to mid-2014. These
values can be used in reliability models to analyze future scenarios only if
they are assumed to be valid also now and in the future. In the rapidly
developing cloud services market this may be an invalid assumption. An
alternative Bayesian approach would allow the observer to integrate new
information into the current availability knowledge as it becomes available
and generate more relevant posterior probabilities.

The frequentist approach is also problematic when estimating the like-
lihood of low-probability events from only a few (or none at all!) outages.
For example see Williams and Thorne [WT97] for a comprehensive dis-
cussion on problems and methods related to estimation of failure rates
for low-probability events. This work chose to analyze in detail only ser-

41



vices and regions with at least five outages which means that for example
ap-southeast-1 and ap-southeast-2 regions are excluded from detailed
analysis and for services more than half of all commercially available services
do not meet this threshold. Note that while these services are included in
summary statistics and thus contribute towards aggregate region and overall
service availability the author did considers publishing apparently “perfect”
availability values as something that does not provide useful information
towards potential users of the availability metrics.

This work also purposefully omits all analyses on probability distribu-
tions (e.g. does the distribution of incident lengths follow gamma distribu-
tion or not and so on). Primarily this is due to the need to keep the scope of
this work manageable, but secondarily because fitting distributions to data
is not meaningful without having a prior hypothesis. It is always possible
to find spurious correlations when a large number of different models and
fitting parameters are tried. Considering a value such as At it would be
more beneficial to first have a model of the underlying processes (in this
case the model would include service monitoring automation, human re-
sponse times etc.) and then seeing how well the models fits the data. The
author looked into the At, distribution and thinks it might be a mixture
distribution, suggesting that there are multi-stage processes with distinctly
different parameters at play when an incident is detected and subsequently
reported.

Although both in this work and in many other analyses of cloud failures
it is assumed that cloud infrastructure failures are not correlated between
availability zones and regions, there are known failures that have affected
services in multiple regionsed. This data also contains incidents that have
affected multiple different services. Since most reliability modeling mecha-
nisms assume an uncorrelated failure model even a slight correlation between
service failures could potentially lead to a large error in the analysis. For
this reason understanding of service failure correlations could be important.

While any kind of reporting of service reliability by cloud vendors would
be useful for customers, for researchers a more serious problem is the lack
of open data sets. While most cloud vendors have their outage information
available over the network, their access methods and formats differ and
there is a retention limit on the data after which it is no longer available.
These both mean that any analysis (such as done in this work) needs to
actively collect the data and keep monitoring for changes in access methods.
Any improvement in this area would potentially have a huge benefit for
researchers in the future.

24Elastic Beanstalk had a performance degradation across all regions on June 25th 2013.
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A Service Level Agreement Availability vs. Zone
Availability

The oft-quoted 99.95% availability target from AWS, Azure and Google
SLAs must be taken with a pinch of salt. These SLAs differ in details,
but share the fact that they refer availability as the complement of the
simultaneous unavailability of two or more zones. Let’s we define A; to be
true if zone i is available and false if it is unavailable at some indeterminate
time. Given this notation the SLA statement becomes an assertion that

holdsiZ:

A:(Vi2Ai)\/(5|i:—\Ai/\\V/j,j7éi:Aj)
P(A is true) > 99.95% (4)

A would be false only when there exist two (or more) simultaneous zone
failures. Assuming all A; failures are independent and that P(A;) = pa,
we can calculate probability for at least two zones in a region with n zones
failing simultaneously:

P(A)=(1—pa)’+-+ (1 —pa)
P(=A) ~ (1 —pa)’ (5)

For an approximation in it is possible to omit higher-order

terms as the probability for three or more zones failing simultaneously is
small for any ps ~ 1. Now we can put P(—A) back into and
calculate the minimum availability for one zone p4:

P(A) > 99.95%
1— P(=A) > 99.95%
1—142p4—p4 >99.95%
—pA + 2pa — 99.95% > 0
pa > 97.7639%

This means that independent zones with availability as low as 97.77%
will meet SLA’s target of 99.95% availability. This looks pretty bad if used
out of context, which is the reason why this paper compares SLA’s values
only with “SLA-equivalent” versions of p4 and discusses per-zone availability
separately from SLA values.

25This is a simplification. The real SLA conditions are more convoluted.
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B AWS Service Level Agreements

The service level agreements (SLAs) of services examined are summarized
below in . In all cases availability is calculated over a monthly
billing cycle. All of the SLAs have exclusions limiting AWS’s liability for
outages out of their own control and force majeure events. Values in the ta-
ble are valid as of November 1st 2015 when Amazon Web Services provided
service level agreements for four of the services included in Cloud-
Front, EC2, RDS and Route 53.

Service Availability Definition of availability
target
CloudFront 99.9% This is a service reliability target — not an avail-

ability target. The metric is counted as a ratio
of erroneous responses to the number of requests
made during each 5 minute period in a month,
with all 5 minute periods averaged to achieve a
monthly uptime percentage [Amal3d].

EC2 99.95% Availability is based on the proportion of time
a region is unavailable. A region is considered
unavailable when all running instances in two or
more availability zones of that region are exter-
nally unreachable simultaneously. [Amal3a]

RDS 99.95% Applies only to Multi-AZ RDS instancesE.
RDS is considered unavailable only when all con-

nection attempts to it fail during a 1 minute pe-
riod. [Amal3h|

Route 53 100% Requires a minimum of 5 minutes of outages
during a month for a customer to be eligible for
credits [Amal5]. The service availability tar-
get refers only to DNS queries performed for
Route 53 hosted DNS zones.

26Multi-AZ RDS has at least two instances configured to mirror each other with AWS
providing transparent fail-over from primary to secondary database instance in case of
primary RDS instance failure.
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C Detailed Summaries of Messages, Incidents and
Outages

June 5th 2013 to June 4th 2014

Region Messages Incidents  Outages
ap-northeast-1 16 2% 7 5% 9 4%
ap-southeast-1 11 2% 4 3% 4 2%
ap-southeast-2 9 1% 2 1% 3 1%
eu-west-1 68 10% 18 12% 25 11%
global 104 16% 27 18% 36 16%
sa-east-1 87 13% 6 4% 21 9%
us-east-1 258  39% 61 41% 91 40%
us-west-1 58 9% 9 6% 17 8%
us-west-2 51 8% 16 11% 19 8%
Total 662 100% 150 100% 225 100%

Table 8: Number of messages, incidents and outages and their proportion
of all by region and service.
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June 5th 2013 to June 4th 2014

Service Messages Incidents Outages
Global
alexa, 0 0.0% 0 0.0% 0 0.0%
cloudfront 16 2.4% 7 3.3% 7 3.1%
fps 23 3.5% 8 3.8% 8 3.6%
iam 0 0.0% 0 0.0% 0 0.0%
management-console 15 2.3% 8 3.8% 9 4.0%
mturk 39 5.9% 7 3.3% 7 3.1%
routed3 11 1.7% 5 2.4% 5 2.2%
Regional
appstream 0 0.0% 0 0.0% 0 0.0%
cloudformation 6 0.9% 4 1.9% 4 1.8%
cloudhsm 9 1.4% 3 1.4% 3 1.3%
cloudsearch 0 0.0% 0 0.0% 0 0.0%
cloudtrail 0 0.0% 0 0.0% 0 0.0%
cloudwatch 32 4.8% 11 5.2% 12 5.3%
datapipeline 0 0.0% 0 0.0% 0 0.0%
directconnect 2 0.3% 1 05% 1 04%
dynamodb 0 0.0% 0 0.0% 0 0.0%
elastictranscoder 0 0.0% 0 0.0% 0 0.0%
elb 78 11.8% 26 12.3% 26 11.6%
glacier 0 0.0% 0 0.0% 0 0.0%
import-export 0 0.0% 0 0.0% 0 0.0%
kinesis 7 1.1% 2 0.9% 2 0.9%
opsworks 10 1.5% 1 0.5% 1 0.4%
redshift 12 1.8% 5 24% 5 2.2%
s3 8 1.2% 3 1.4% 3 1.3%
ses 29 4.4% 9 4.2% 10 4.4%
simpledb 0 0.0% 0 0.0% 0 0.0%
sns 8 1.2% 1 0.5% 1 0.4%
sqs 6 0.9% 2 0.9% 2 0.9%
storagegateway 0 0.0% 0 0.0% 0 0.0%
swi 3 0.5% 2 0.9% 2 0.9%
workspaces 9 1.4% 2 0.9% 3 1.3%
Zone-based
ec2 178  26.9% 60 28.3% 66 29.3%
elasticache 23 3.5% 8 3.8% 8 3.6%
elasticbeanstalk 25 3.8% 8 3.8% 8 3.6%
emr 20 3.0% 6 2.8% 6 2.7%
rds 74 11.2% 16 7.5% 16 7.1%
vpce 19 2.9% 7 3.3% 10 4.4%
Total 662 100% 212 100% 225 100%
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Table 9: Number of messages, incidents and outages and their proportion
of all by service.



Service Count Outage length
Average Total
(minutes) (days)

Global
cloudfront 7 2504130 1.2
fps 8 90 £ 20 0.51
management-console 9 2204+ 100 14
mturk 7 2104£140 1
routeb3 5 59+9 0.2
Regional
cloudwatch 12 69 + 12 0.58
elb 26 130430 2.3
redshift 5 130+£50 0.45
ses 10 130£20 0.89
Zone-based

ec2 66 90 £ 10 4.1
elasticache 8 180+£40 0.99
elasticbeanstalk 8 160+ 50 0.87
emr 6 110£40 0.48
rds 16 190 £ 60 2.1
vpc 10 70 £ 20 0.48
Region Count Outage length

Average Total

(minutes) (days)
ap-northeast-1 9 37+9 0.23
eu-west-1 25 90 £+ 20 1.5
global 36 170+ 40 4.3
sa-east-1 21 230460 3.4
us-east-1 91 111+9 7
us-west-1 17 85+ 15 1
us-west-2 19 90 £+ 20 1.2

Table 10: Number of outages, the sample mean outage length and sample
error and total length of outages in minutes summarized by service and
region. Regions and services with fewer than five or less than one hour of
outages are omitted.
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Service Outages /  Availability

Service

Time

(days)
Global
cloudfront 1.2 365 99.671%
fps 0.51 365 99.861%
management-console 1.4 365 99.616%
mturk 1 365 99.718%
routeb3 0.2 365 99.944%
Regional
cloudwatch 0.58 2920  99.980%
elb 2.3 2920 99.923%
redshift 0.45 2000  99.978%
ses 0.89 693 99.871%
Zone-based

ec2 4.1 8395  99.951%
elasticache 0.99 8395  99.988%
elasticbeanstalk 0.87 8395  99.990%
emr 0.48 8395  99.994%
rds 2.1 8395  99.975%
vpc 0.48 8395  99.994%
Region Outages /  Availability

Service

Time

(days)

ap-northeast-1 0.23 13383 99.998%
eu-west-1 1.5 14660 99.990%
global 4.3 2555  99.830%
sa-east-1 3.4 9598  99.964%
us-east-1 7 21376  99.967%
us-west-1 1 13558 99.993%
us-west-2 1.2 14744 99.992%

atomic service unit.
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Table 11: Total length of outages compared to total service time for each
Note that for zone-based services this value is the
observed availability for a single zone (see on how to interpret
this value in relation to availability targets given in service level agreements).
Regions and services with fewer than five or less than one hour of outages
are omitted.
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