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Abstract

There is a need for methods that are able to identify rare variants that cause low or moderate penetrance disease
susceptibility. To answer this need, we introduce a rule-based haplotype comparison method, Haplous, which
identifies haplotypes within multiple samples from phased genotype data and compares them within and between
sample groups. We demonstrate that Haplous is able to accurately identify haplotypes that are identical by
descent, exclude common haplotypes in the studied population and select rare haplotypes from the data. Our
analysis of three families with multiple individuals affected by lymphoma identified several interesting haplotypes
shared by distantly related patients.

Background
One of the most important goals in biomedical research
is to identify genes that predispose humans to diseases,
such as cancer. To facilitate the identification of these
genes, a number of genome-wide approaches have been
suggested, such as genetic linkage and genome-wide
association (GWA) methods [1]. The linkage methods
have revealed several high penetrance disease suscept-
ibility loci [1], whereas GWA studies have been useful
in the ‘common disease - common allele’ model [2].
However, neither approach is well suited to tackle mod-
erate penetrance susceptibility because such a condition
rarely results in large pedigrees, with few or no pheno-
copies, convenient for linkage analysis. As the GWA
approaches cannot detect these presumably rare alleles,
there is clearly a need for methods that are able to iden-
tify loci where such variants could be located. Evolutio-
narily recent, and thus rare, mutations are usually
conveyed in a pedigree by a shared haplotype. There-
fore, detection of such haplotypes can lead to the

identification of rare or moderate penetrance variants
behind disease susceptibility.
We introduce here Haplous, a novel computational

approach that uses phased genotype data, such as gen-
ome-wide SNPs, to identify and prioritize genomic
regions likely to be inherited from a common ancestor.
The central idea of our approach is to use haplotypes,
instead of single alleles, and rank them based on expert-
defined rules that determine the haplotypes shared in
heterozygous and homozygous forms. As the identifica-
tion of haplotypes has been recognized as useful for
revealing disease predisposing genes, several haplotype
association methods have been developed [3-10]. These
methods include detection of haplotype diversity and sta-
tistical association tests. Haplotypes can be detected with
fixed or variable length sliding window [7,11,12], haplo-
type blocks [13], haplotype clustering [9], a cladistic
approach [10] or considering non-contiguous haplotypes
[5,8]. Some haplotype analysis methods are feasible in
genome-wide settings [9,11,13], although several are
intended only for smaller datasets [6,12]. Many haplo-
type-based approaches essentially aim to identify identi-
cal by descent (IBD) regions between samples [14-16].
To our knowledge, Haplous is the first method that

uses a rule-based approach to identify rare haplotypes
shared by multiple individuals from genome-wide data.
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To identify a rare disease-associated haplotype with a
statistical test would require thousands of samples,
which in general is not feasible. The rule-based induc-
tion takes advantage of prior knowledge and research
hypothesis to rank the identified regions, which allows
analysis of small cohorts. The main objective of Haplous
is to allow analysis and comparison of phased haplo-
types; it thus goes further than simply identifying IBD
regions from pairs of individuals. Haplous is freely avail-
able with a user guide [17].
We used here three synthetic case studies to demon-

strate the ability of Haplous to identify rare shared hap-
lotypes. First, we used the HapMap database [18] to
assess the true positive (TP) and false positive (FP) rates
when haplotype estimation has introduced uncertainty
to the haplotype data. We chose individuals from the
HapMap database whose haplotype phases were deter-
ministically estimated using pedigree (phase-known)
data, and compared those data to a setting in which
their haplotype phases were estimated using a popula-
tion based method (phase-predicted). Second, we simu-
lated datasets from an extended pedigree with a
mutation inherited from a common ancestor and a data-
set for a healthy non- related population, and identified
the mutation locus from the data. We also compared
Haplous with an existing method [14]. Third, we studied
the robustness of Haplous in settings where the para-
meters or sample grouping are incorrect.
In order to show that Haplous is applicable to an

experimental setting where the aim is to identify predis-
position loci for a complex disease using familial infor-
mation, we analyzed three Finnish lymphoma families
with putative genetic lymphoma predisposition, as several
individuals in these families have been affected by Hodg-
kin lymphomas (HLs) and non-Hodgkin lymphomas
(NHLs). The incidence of HL is about 3 in 100,000 per
year, and most cases are sporadic. However, many famil-
ial clusters of HL have been reported, and large epide-
miological studies have confirmed the increased familial
risk associated with HL [19]. Recently, KLHDC8B and
NPAT have emerged as candidate HL predisposition
genes [20,21], but these preliminary results have not yet
been confirmed. Thus, familial HL is an example of a dis-
ease in which a hereditary component is apparent but lit-
tle is known about its molecular background. In our
analysis, Haplous suggested several loci that may contain
lymphoma-associated genes, and the genes located in the
best-scoring regions were further prioritized with the
SNPs3D text mining method [22].

Materials and methods
Haplous
Haplous is designed to detect haplotypes inherited by
individuals who have the same familial disease

predisposition and a distantly related common ancestor.
It can also be used to compare haplotypes shared by a
particular group of affected individuals to haplotypes of
unaffected non-related controls. The same haplotype is
found from several samples due to a common ancestor
or a random event. That is, the haplotype is IBD (com-
mon ancestor) or identical by state (IBS; random event).
The IBD haplotypes can be identified by filtering against
the IBS haplotypes in matched controls and focusing on
long haplotypes.
Haplous searches for a shared haplotype (SH) between

individuals by using a sliding window and compares the
SHs among sample sets, such as cases and controls. The
comparison is based on rules, which formulate homozy-
gous and heterozygous haplotype composition within
and between sample groups. Each SH is assigned a
score that allows ranking and prioritization. The score is
based on the length of the SH and its abundance in
cases and controls. The input to Haplous is phased gen-
otypes and outcome is ranked lists of SHs and corre-
sponding chromosomal regions.
Haplous is implemented in Java, and it is freely avail-

able as an independent Java library. In addition, it is
included as a pipeline in the Anduril bioinformatics
workflow engine [23]. Anduril compliance allows
straightforward integration of Haplous analysis and
results to other studies. The Haplous Java library,
Anduril components and the user guide are freely avail-
able [17].

Haplous parameters
Haplous uses phased haplotypes and predicts the SHs by
comparing consecutive SNP alleles with each other
using a fixed-sized sliding window with user-adjustable
parameters for window size (w), mismatches (m), and
length of identical regions (l). Each sample has the
phased SNPs for maternal and paternal chromosomes,
which are effectively two allele vectors for each sample.
Each allele vector in turn is used as a reference to
which all other allele vectors are compared. The window
of w markers is slid over the reference vector and com-
pared to an allele vector, and windows having at most
m differences are identified as SHs. Shorter identical
regions of l markers are identified as SHs as well.
For each reference vector, this produces a pair-wise

map of SHs between all other allele vectors, and all the
pairs are collapsed into a single data structure that iden-
tifies the vectors that have the same SH and the location
of this SH. This process is illustrated in Figure 1. This
structure enables an easy lookup of all samples in each
SH. The SHs are always defined against the reference
vector. Haplous allows mismatches in SHs, meaning
that if an allele vector A has a SH with an allele vector
B (A = B) and if B = C, it still might be that A ≠ C.
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Thus, having multiple pair-wise SHs in a region does
not mean that all the allele vectors are the same. Miss-
ing markers are treated as matches. The maternal and
paternal vectors in each sample are also compared with
each other, which reveals the location of homozygous
regions.
The running time and the memory requirements of

Haplous grow quadratically with the number of samples
and linearly with the number of markers. Therefore, Hap-
lous is applicable in genome-wide studies in rare diseases,
where the number of samples is less than 500. For larger
sample sizes, Haplous allows the user to define those sam-
ples that are used as a reference in the comparison, and
the rest of the samples are skipped. This is a useful option
in the case-control settings, since Haplous can be used to
compare cases to controls but skip the control-case and
the control-control comparisons. Additionally, each sam-
ple can be analyzed independently from each other, which
enables parallelization of each run. Haplous is also imple-
mented on an Anduril [23] bioinformatics workflow
engine that automatically parallelizes the execution. Thus
far, Haplous has been used to analyze datasets of 930
cases and 960 controls (data not shown).
Haplous gives an estimate for informativeness of each

SH. This informativeness describes how rare a given SH
is. Informativeness is defined as a joint probability of
the alleles in SH estimated from the allele frequencies
by multiplying allele frequencies ai from the first marker
of SH (i) to the last marker (n), that is,

∏n
i P(ai). The

user may set a threshold (t) for informativeness. In this
case, only those SHs that have informativeness below t

are included in the results. The value of informativeness
is between zero and one. Zero denotes that the alleles of
SH could never be seen in the population, while one
means that alleles of SH are always observed in that
region and thus the region is completely uninformative.
Simply scanning all SHs that meet the criteria would pro-

duce a huge list of SHs that are abundant in the population
but not particularly interesting regarding the phenotype in
question. To find the interesting SHs, we make use of the
expert knowledge of the user: the user defines the rules that
determine which SHs are interesting. The rules were used
to define the features that an interesting SH needs to have,
and these features are defined for cases and controls sepa-
rately. If a SH has these features, it is considered interesting.
The rules are set as thresholds for the number of cases or
controls that share the SH.
These rules can be better understood through an ana-

logy with basic parametric linkage analysis. The main
differences are that in Haplous the ‘parameters’ are pre-
sented as counts instead of percentages, and IBD shar-
ing expectations between families can be controlled at
the same time. We need to find the IBD haplotype car-
rying a predisposing mutation that segregates with the
disease trait. These rules include the inheritance model
(dominant and recessive model - that is, heterozygotes
and homozygotes), assumed penetrance (proportion of
mutation-carrying individuals who have the disease in
question - that is, the number of cases and controls
sharing the same haplotype), phenocopies (the number
of cases that do not share the same haplotype) and
mutation frequency (the total number of cases and con-
trols that share the same haplotype). Using the rules,
the user can tune the parameters to correspond to the
hypothesis of the current analysis.
The pseudo-code of this inference is given in Figure 2.

Briefly, the inference algorithm takes the thresholds and
list of cases and controls as an input, calculates the
number of cases and controls sharing each SH, and
evaluates whether a SH has the features of an interesting
SH taking into account both the cases and controls.
These evaluations for cases and controls are produced
with the same function but the return value is negated
for the control rule. The rules follow a natural deduc-
tion, an example of which could be: ‘the SH is interest-
ing if it is shared by one or more homozygous case
samples and not shared by any control samples’.
After filtering the most interesting SHs, the result set

may still include many regions that are almost equally
promising for further studies. Haplous gives scores for
SHs, which are stored in a file with information about
the range, score and samples sharing the particular hap-
lotype. This allows straightforward identification and
post-processing of the most interesting homozygous and
heterozygous chromosomal regions.

Figure 1 Haplous identifies the shared haplotypes between the
reference vector and all other allele vectors. This figure shows
an example of data rows (nucleotides) that are the phased maternal
and paternal chromosomes of two samples, and which are treated
as allele vectors. Haplous identifies shared haplotypes (SHs) between
these allele vectors and collapses a list of regions and allele vectors
that have a SH in that region.
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The score calculated by Haplous emphasizes the num-
ber of cases and controls that share the haplotype as
well as the length of the SH. The score is calculated
according to the formula M(Ca - Co), where M is the
number of markers in the chromosomal region of a SH,
Ca is the number of times cases share the SH and Co is
the number of times controls share the SH. Note that in
the case of homozygous loci, each homozygous sample
shares the SH twice, which increases either Ca or Co.
Instead of a specific haplotype, we assign a score for the
chromosomal region carrying the different haplotypes.
This score is assigned similarly Mr(Car - Cor), where Car

is the number of cases and Cor the number of controls
having any SH in a given marker. Mr is the number of
markers in the chromosomal region that receives the
same score from (Car - Cor). The upper or lower limits
of the scores depend on the parameter values.

HapMap data
We used the HapMap phase 3 European population
(CEU) chromosome 12 [18] phase-known dataset that
has been created for each family trio in the database.
Computational methods are needed to estimate haplo-
type phases from high-throughput SNP data. In many
cases, genotypes of the family members are not available
but instead population data are used as a reference [24].
However, estimates based on family genotypes are more
accurate since inheritance of most of the SNPs can be
estimated based on the pedigree. The HapMap database
provides unphased genotypes and corresponding haplo-
types inferred from the families [18]. In HapMap, the
phases of 94% of SNPs are known through the family
information in the parents-child trios [25]. On average,
28% of the SNPs are heterozygous, and the trios reveal
the phase for 80% of the heterozygous SNPs. We treat

Figure 2 Pseudo-code for interesting shared haplotype inference. The interesting shared haplotypes (SHs) are inferred based on the user
input, which defines the names for cases and controls as well as the thresholds for the number of homozygous and heterozygous samples in
the interesting SH. Each SH is evaluated using the evaluate function, which takes the user parameters as an input. The evaluation is done for
case and control thresholds separately, but the Boolean result value is negated for controls. The evaluate function calculates how many times
the named samples (cases or controls) share the SH, and if the thresholds are exceeded, it returns a true value, otherwise it returns a false value.
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the more accurate family-based haplotypes as phase-
known haplotypes, and use Haplous to compare them
with the estimated phase-predicted haplotypes of the
same HapMap samples, using Haplous.
Here we used only data from parents, as children con-

vey redundant information. To create a population of
unrelated individuals for the haplotype phase estimation,
we randomly picked one individual from each family
and used their unphased genotypes. Next, we selected
SNPs that were present in the phase- known and
unphased datasets. These formed a dataset of 60,704
SNPs for a population of 41 unrelated individuals. The
phase-predicted haplotypes were estimated with the
HaploRec software [24] based on the 41 population
samples. The 29 samples present in the phase-known
and the phase-predicted datasets were selected to test
Haplous performance, and from these samples we cre-
ated two datasets, one having phase-known and the
other phase-predicted haplotypes.

Data simulation
We used the simulation software GENOME [26] to gen-
erate 6,000 SNP haplotypes from a single chromosome
spanning 78 cM. The population had an effective popu-
lation size of 100,000 with a mutation rate of 10-8 per
generation. From this population, we chose 4,068 SNPs
that matched best to the Illumina SNP map of human
chromosome 22 and had a minimum allele frequency of
0.05 or more. Randomly chosen 1,500 haplotypes were
used as the founder haplotypes for the affected pedigree,
and 500 other randomly chosen haplotypes were paired
as 250 healthy controls.

We created the pedigree by selecting random mem-
bers A and B from both lymphoma families 2 and 3.
Both A and B had at most one direct ancestor, and their
alleles could be inherited by at least 20% of the youngest
generations. The new family members in this pedigree
were added so that A and B had a common ancestor 10
to 27 generations away from the youngest members.
The mutated allele was inserted into the common

ancestor and the rest of the founders were non-carriers.
For both families, we chose ten random paths from the
youngest individuals to the common ancestor and
forced the mutation to be passed through generations in
these paths. Then we used our own simulator to simu-
late the inheritance of non-founder alleles from the old-
est generation to the youngest based on the genetic map
of chromosome 22.
The individuals from the youngest generation who had

the mutation were inserted into the case dataset. The
mutation allele was set to the same allele in all the final
samples. This simulation was repeated 100 times, each
time varying the position of the mutation.

Lymphoma data
Blood-derived DNA was collected from nine lymphoma
patients, of whom six had nodular lymphocyte predomi-
nant Hodgkin lymphoma (NLPHL) and three had either
T-cell/histiocyte rich B-cell lymphoma (TCRBCL), NHL
or classical Hodgin lymphoma (cHL). When possible,
samples were also collected from the children or parents
of these patients for phase determination (Figure 3).
Samples were also collected from the children and sib-
lings of four deceased lymphoma patients, one of whom

Family 1

Family 3

Family 2

Nodular lymphocyte predominant Hodgkin lymphoma
T-cell/histiocyte rich B-cell lymphoma
Other non-Hodgkin lymphoma
Classical Hodgkin lymphoma
Multiple myeloma
Genome-wide SNP data was available

Figure 3 The Finnish lymphoma families in the lymphoma study. Family 1: the previously reported Finnish family where four cousins have
had the rare subtype of Hodgin lymphoma (HL), nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), in their early twenties. Family 2
and family 3: the lymphoma families from northern Finland that have a common ancestor. The patients and unaffected family members from
whom genome-wide SNP data were available for haplotype determination and Haplous analysis are depicted. Numbers within diamonds
indicate numbers of children. Circles, females; squares, males; slashes through symbols, deceased. Pedigrees have been slightly modified for
confidentiality.
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had had NLPHL, one TCRBCL and two NHL (Figure 3).
Altogether, 29 samples were available, of which 20 were
from unaffected family members. The slightly modified
pedigrees and sample information are shown in Figure
3. The samples and patient information were obtained
with approval from the Ethics committees of the Hel-
sinki University Central Hospital and Hospital District
of Helsinki and Uusimaa (Dnro 408/13/03/03/2009). All
blood samples were derived after a signed informed con-
sent in accordance with the Declaration of Helsinki.
Genotypes from 250 unaffected Finnish control indivi-
duals were also available from the Nordic Center of
Excellence in Disease Genetics control database [27].

Lymphoma data processing
Genome-wide SNP data were available from four lym-
phoma patients in family 1, two in family 2, and three
in family 3, as well as from 20 unaffected family mem-
bers (Figure 3). In the cases of four lymphoma patients
whose DNA was not available, SNP data from their chil-
dren and siblings were used to define their haplotypes.
This created uninformative gaps in the haplotype data
of the deceased individuals. In this study, however, we
decided to consider all the uninformative regions as SHs
in the haplotype screening in order not to lose any
information.
Genomic DNA extracted from 29 blood samples was

used for SNP genotyping with the Illumina’s
HumanCNV370 -Duo DNA Analysis BeadChip using
Infinium Assay (Illumina Inc., San Diego, CA, USA).
Genotyping was performed according to the manufac-
turer’s standard protocol in the Institute for Molecular
Medicine Finland (FIMM) Genome and Technology
Centre (Finland). Genotype calling was carried out with
BeadStudio software (Illumina Inc.) using the default
GenCall score cutoff of 0.15. All samples passed the
quality filtering. SNP genotypes were exported from
BeadStudio to the Progeny database (Progeny Software
LLC, South Bend, IN, USA), in which pedigree, pheno-
type, sample and SNP data were integrated. Mendelian
error checking was performed on the genotype data
using tools integrated in Progeny. The markers with
Mendelian errors were removed from further analysis.
Pedigree-based haplotypes were constructed using Mer-
lin [28] with the ‘–best’ mode, which estimates the most
likely haplotype vector. For the haplotype estimation,
the large pedigree of family 3 was first split into smaller
overlapping sub-pedigrees. Unlikely genotypes that
cause double recombinants were predicted with the
Merlin error detection tool and subsequently excluded
from the final analysis. The haplotypes for controls were
estimated using HaploRec [24] with default parameters
and the chromosome split into regions 500 markers
long that overlapped by 10 markers and had an extra 20

markers at the tails of each split. In the phase- known
family-based haplotypes the uninformative loci were
transformed into missing markers.

Analysis of simulated data
From each 100 simulated datasets, we selected the first 11
cases for the analysis and used all controls from each simu-
lated dataset. The Haplous SH scan was executed using
parameters ‘m = 0, w = {20,30,50,100,150,180,200}’. The
rules for controls were (USER INPUT = {controlHet =
4, controlHom = 1, controlOperator = OR}) and
for cases it was varied from (USER INPUT = {caseHet =
{1,2,3, caseHom = {1,2,3}, caseOperator =
AND}) to (USER INPUT = {caseHet = {1,2,3,
4,5,6,7,8,9,10,11}, caseHom = {1,2,3,4,5,
6,7,8,9,10,11}, caseOperator = AND}). The
rules (USER INPUT = {caseHet = {1,2,3,4,5,6},
caseHom = {1,2,3,4,5,6}, caseOperator =
AND}) are comparable with the lymphoma analysis, and
they were used for the analysis of Haplous robustness
(Tables 1 and 2). BEAGLE was executed using the para-
meter ‘fastibd = true’.

Lymphoma analysis by Haplous
A schematic of the six-staged lymphoma data analysis is
presented in Figure 4. In stage 1, genotypes were imported
to the analysis. In stage 2, the haplotypes were estimated
from the genotypes. In stage 3, haplotypes of the cases and
controls were combined and all SHs were extracted from
the data using the following parameters: window size 100,
no more than one mismatch within a window and identi-
cal haplotype length 80 (w = 100, m = 1 and l = 80). Infor-
mativeness was not considered (t = 1). In stage 4, SHs
present in the controls were excluded by filtering, allowing
the maximum of three SHs as heterozygous or none in
homozygous form (USER INPUT = {controlHet = 4,
controlHom = 1, controlOperator = OR}). At this
stage we did not set any threshold for lymphoma cases. In
stage 5, we applied in parallel six different rules to identify

Table 1 Summary of the results from the simulated
dataset using different numbers of controls

Number of controls

10 60 110 160 210

Percentage of results that included the
mutation (%)

100 100 100 100 100

Percentage of mutation loci in the top hit (%) 46 43 37 38 37

Mean length of haplotypes (number of SNPs) 629 546 441 410 383

The number of controls was varied from 10 to 210, and the number of cases
was kept at 11. We analyzed the data using a 100 SNP window and a
threshold of six for cases and three for controls. The precision suffered with
the decrease in the number of controls. The percentages of datasets that
included the mutation, the percentage of mutated haplotypes as the top hit
and mean length of haplotypes were calculated from the 100 simulated
datasets.
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five SHs in cases in all conformations. As the identified
families do not provide a clear clue to the mode of inheri-
tance, we varied the number of required heterozygous SHs
(hetSHs) and homozygous SHs (homSHs) in cases (USER
INPUT = {caseHet = {0,1,2,3,4,5}, caseHom =
{0,1,2,3,4,5}, caseOperator = AND}). In stage 6,
we selected the ten highest scoring SHs that are more
than 30 markers long.
The filtering breaks the SHs into shorter segments

based on samples that share the SHs. Therefore, SHs
encompassing at least 30 SNPs were considered to be
sufficiently long to be genetically interesting, that is, to
represent potential IBD haplotypes. The SHs were fil-
tered six times, and the ten highest scoring hits from
each run were examined in more detail. Region bound-
aries were retrieved using SNP identifiers and a list of
genes located in these regions was collected from the
Ensembl database (release 59) [29]. A downstream ana-
lysis of these genes was performed. Genes that had a
UniProt identifier were considered as protein coding. In
order to find candidate genes that could be interesting
considering what is known about their function in the
literature, we performed a SNPs3D [22] search for lym-
phoma-related features. The search terms were ‘nodular
lymphocyte predominant Hodgkin lymphoma’, ‘T-cell
rich B-cell lymphoma’, ‘histiocyte rich B-cell lymphoma’,
‘non-Hodgkin lymphoma’, ‘Hodgkin lymphoma’ and ‘B-
cell’. We also used three known NHL or NLPHL related

genes (BCL6 [30,31], A20 [32] and SOCS1 [33]) as
search words as well as ‘NFkB’, a pathway that appears
to be activated in both NLPHL and non-Hodgkin lym-
phomas [31,33,34].

Results
True positive and false positive rates of Haplous using
HapMap data
The haplotype phase is not seen directly from the SNP
data, and haplotype estimation procedures may produce
switch errors, which are loci where consecutive hetero-
zygous SNPs are phased incorrectly. These errors may
have a dramatic effect on downstream analyses. In order
to characterize the sensitiveness of Haplous to such
switch errors, we compared haplotypes from individuals
in the HapMap database [18] whose haplotype phase
was deterministically estimated by using pedigree
(phase-known) data to a setting in which the haplotype
phase was estimated using a population based method
(phase-predicted). The phase-predicted dataset has
switch errors from population-based phase estimation,
whereas the phase-known dataset can be considered as
a dataset without phasing errors.
We compared SHs between non-related individuals in

phase-known and phase-predicted datasets. This com-
parison gives an estimate of the trade-off between find-
ing correct SHs and including false markers in the SHs.
Figure 5 shows the ratio of estimated TP and FP rates.

Table 2 Summary of the results from the simulated dataset mixing cases and controls

Number of cases/number of controls in case dataset

1/10 2/9 3/8 4/7 5/6 6/5 7/4 8/3 9/2 10/1

Percentage of datasets that had haplotypes (%) 0 0 0 0 12 97 99 99 99 100

Percentage of results that included the mutation (%) 0 0 0 0 8 99 98 98 100 99

Percentage of mutation loci in the top hit (%) 0 0 0 0 100 67 53 43 35 32

Mean length of haplotypes (number of SNPs) 0 0 0 0 163 443 428 397 377 355

The controls and cases were mixed into the same case-dataset at different ratios, and then analyzed using a 100 marker window and requiring six cases and
three controls to share the shared haplotype (SH). When the number of controls was seven or more, no haplotypes were found. If the dataset had more cases,
mutated haplotypes were identified with high frequency. For the borderline case of five cases and six controls, Haplous discovered SHs from 12% of datasets,
and one of these had the mutation, which was, however, the top hit in that dataset. The percentages of datasets that included any haplotypes or the mutated
haplotypes and the percentage of mutated haplotypes as the top hit were calculated from the 100 simulated datasets. The mean length of haplotypes in
number of SNPs was also calculated from the 100 simulated datasets.

Figure 4 Shared haplotype extraction pipeline. The shared haplotype (SH) extraction workflow comprised six stages. Stage 1: the genotype
calls were produced using the Illumina SNP bead arrays and transformed into data matrices. Stage 2: the haplotypes were estimated for the
cases with Merlin by using the family information, and for the population controls by using the HaploRec software. Stage 3: all SHs were
extracted from cases and controls. Stage 4: SHs were filtered to exclude SHs shared by at least four heterozygous or one homozygous control.
Stage 5: pre-filtered SHs were then filtered further in six parallel analyses with thresholds that discover SHs present in at least five lymphoma
cases. Stage 6: the ten highest scoring hits more than 30 markers long were combined from each filtering in stage 5.
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The TP rate was quantified by comparing the number of
markers where the SHs were captured similarly in the
phase-known and phase-predicted datasets. The FP rate
is the number of SNPs falsely included in SHs compared
to all SNPs that differ between two samples. The same
SHs in both datasets were interpreted as TPs, and the
SHs only in the phase-known dataset were considered
as false negatives (FNs).
We executed Haplous by varying the window size w

from 2,000 to 1 and allowing one mismatch in the win-
dow. Window size w = 2,000 did not find any SHs and
with w = 1 Haplous included all the markers in SHs.

Figure 5 shows the ratio of TP and FP rates. When the
window size was between 100 and 30, the TP rate was
high and the FP rate low. When a very large window
size (w > 200) was used, SHs seemed to correspond to
the real SHs quite poorly, which is shown as a rapid
decline in the TP rate. Also, when the window size was
smaller (w < 30), which means higher tolerance for mis-
matches, Haplous considers almost all markers as SHs.

Mutated haplotype in the simulated data
We applied Haplous to 100 simulated datasets each hav-
ing 11 cases from an extended pedigree and 250 healthy

Figure 5 The ratio of true positive and false positive rates in the HapMap data which include phasing errors. This graph shows the
trade-off between including correct shared haplotypes (SHs) and mismatching markers in the results. The true positive (TP) rate was quantified
by the number of markers that were included in SHs similarly in phase-known and phase-predicted datasets, and the false positive (FP) rate was
calculated from the mismatching markers that were included in the SHs. We varied the window size w from 1 to 2,000, m was set to 1.
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non-related controls. We extracted different sizes of
identical SHs from each of the simulated datasets. The
SHs that were left in the dataset after filtering were con-
sidered interesting. These interesting SHs were found
from each of the simulations, and the mutation was
included in most of these results (rows in bold in
Table 3). The largest window sizes performed the best;
they identified the mutation in every run and the
mutated haplotype was the top hit in the SHs of highest
frequency. The performance declined with smaller win-
dow sizes. The length of interesting SHs increased with
the window size. Figure 6 shows the distribution of the
scaled scores found with different window sizes. The
longest windows created the highest scoring SHs, and
the mutation SHs found with a window size of 20
received evenly low and high scores. The longest win-
dows probably find the most specific haplotypes, which
also can be seen in the scores.

For comparison, we used BEAGLE [14] to identify IBD
regions from the data set. The mean length of all signifi-
cant BEAGLE IBD regions (score < 10-13) was 282 mar-
kers, and the mutation was included in 9% of the
significant IBD regions. Next we took the 50 highest
scoring IBD regions from each of the result sets to
examine the most interesting IBD regions, resulting in
5,000 best IBD regions. The mean length of these IBD
pairs was 1,303 markers. The mutation was found in
46% of the best IBD regions. The mean length of these
regions was 1,618 markers. This shows that BEAGLE
detected many very long IBD regions between the sam-
ples. Long regions, however, are not well suited for loca-
lizing the mutations.

Robustness of Haplous
In order to demonstrate the performance of Haplous in
situations where the assumptions in terms of parameter

Table 3 Summary of the results from the simulated dataset using different thresholds

Window sizes

Threshold 20 30 50 100 120 150 180 200

Percentage of results that included the 3 36 80 96 100 100 100 100 100

mutation (%) 4 23 68 91 100 100 100 100 100

5 20 62 88 100 100 100 100 100

6 19 62 88 100 100 100 100 100

7 19 62 88 100 100 100 100 100

8 19 62 88 100 100 100 100 100

9 19 62 88 100 100 100 100 100

10 19 62 88 100 100 100 100 99

11 18 62 87 99 99 99 98 99

Percentage of mutation loci in the top hit 3 8 3 18 29 30 37 39 42

(%) 4 13 3 19 28 30 35 37 38

5 15 3 19 29 31 34 38 41

6 21 3 19 31 35 39 43 45

7 21 3 23 33 39 43 48 51

8 21 5 27 37 43 45 50 54

9 26 11 31 45 49 54 60 64

10 26 13 39 55 58 65 68 70

11 33 26 52 74 80 85 87 87

Mean length of haplotypes (number of 3 18 49 166 470 603 788 849 912

SNPs) 4 18 39 138 375 485 581 634 676

5 18 37 129 350 416 479 532 572

6 19 37 129 344 408 467 520 559

7 19 37 128 344 408 467 520 559

8 19 37 128 345 411 470 524 561

9 19 37 128 344 405 458 508 544

10 19 37 128 344 403 455 500 538

11 20 37 125 334 383 430 468 491

The threshold for the number of cases was varied in all window sizes. The results where six cases were required to share the haplotype (rows in bold), which
corresponds to the lymphoma study, were compared with the BEAGLE results. The percentages of datasets that included the mutation and the percentage of
mutated haplotypes being the top hit were calculated from the 100 simulated datasets. The mean length of haplotypes was also calculated from the 100
simulated datasets.
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choices or sample groupings are incorrect, we designed
three cases that show: 1) the effect of loose and strin-
gent assumptions; 2) the effect of insufficient numbers
of controls; and 3) the effect of mixing controls to cases,
which corresponds to unrelated phenocopies that are
falsely assumed to be distantly related cases.
We studied the effect of loose and stringent parameter

values by running the simulation with varying thresholds
for cases from 3 to 11. Sensitivity is reduced with

increased stringency and the FN rate, as expected (Table
3). With the increased FN rate, we see also increased
specificity, since up to 87% of the top hits carried the
mutation. Also, the mean length of the haplotypes
decreased, which localizes the mutation with higher
precision.
In order to evaluate the effect of insufficient numbers

of controls, we used 11 cases and reduced the number
of controls from 210 to 10 with an interval of 50
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Figure 6 The distribution of the scores of mutated haplotypes in the simulated data. A simulated dataset of 11 cases and 250 controls
was analyzed using a 100 marker window and requiring 6 cases and 3 controls to share the SH. Scores are scaled between 0 and 1. The
mutated shared haplotypes (SHs) from the largest windows received mainly the highest scores, while the window of size 20 received evenly low
and high scores.
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controls at a time. We performed the analysis using a
100 marker window and required 6 cases and 3 controls
to share the SH. Table 1 shows that the mutated haplo-
type was identified from all the simulations, and it
received the highest ranking more often with low num-
bers of controls. However, the number of controls had a
large effect on precision, which improved with a higher
number of controls. This can be seen by the increased
length of SHs with the smaller number of controls.
In order to study how often we would get similar

results by random, we mixed controls and cases. We
used 11 case datasets, each having 11 samples, of which
1 to 10 samples were controls. Corresponding controls
were removed from the control data set. We did the
analysis using a 100 marker window and required 6
cases and 3 controls to share the SH. Table 2 shows
that Haplous does not find FP haplotypes if the data are
far from the assumptions in the research setting. In this
case the user can clearly see that the assumptions were
false since Haplous, instead of FP results, did not return
anything. When there were six controls and five cases,
Haplous discovered SHs only from 12% of the datasets.
Only one of these datasets (8%) included the mutation,
which was, however, the top hit in that simulation.

Lymphoma case study
We applied Haplous analysis to three Finnish families
with a possible lymphoma predisposing gene. HL is a B-
cell-derived hematopoietic neoplasm that is classified
into cHL and NLPHL. Approximately, cHL accounts for
95% and NLPHL for 5% of new cases [35]. Based on
recent gene expression studies on tumor cells in both
HL subtypes, it seems that cHL and NLPHL are sepa-
rate, but closely related, disease entities [34]. In addition,
the expression pattern of the neoplastic cells in NLPHL
is close to that of the cancer cells in TCRBCL [34],
which is a subtype of NHL.
We have previously reported a family where four cou-

sins (family 1 in Figure 3) have had the rare subtype of
HL, NLPHL, in their early twenties [36]. In the current
study, we identified a new NLPHL family with three
affected siblings from northern Finland (family 2 in
Figure 3) by using a systematic search for related
NLPHL patients from the Finnish Cancer Registry and
genealogy studies. Interestingly, we were able to connect
this family to another family with seven individuals with
lymphomas, including two with TCRBCL (family 3 in
Figure 3). Both families originated from the same geo-
graphical region. The common ancestor of these families
was born in the 1670s. Since NLPHL is very rare, and
NLPHL and TCRBCL are closely related lymphoma sub-
types, it is possible that common genetic factors contri-
bute to lymphoma susceptibility in these three families.

Conventional linkage analysis was not applicable (data
not shown) in the combined pedigree of the two families
(families 2 and 3 in Figure 3) due to the complex and
looped structure and large size of the pedigree together
with low DNA sample rate on the affected individuals.
Therefore, to detect the putative IBD haplotypes in lym-
phoma patients from these families we used Haplous.
We compared long SHs in lymphoma patients to SHs in
unaffected controls to separate the IBD haplotypes from
IBS haplotypes and to exclude haploblocks with high
linkage disequilibrium (LD) in order to identify interest-
ing regions for further studies.

Shared chromosomal regions in lymphoma families
We assumed the genetic defect behind lymphoma pre-
disposition is the same in at least two of the families.
Thus, considering the number of available samples, we
decided to look for overlapping SHs that are present in
at least five lymphoma patients, but are not frequently
found in unaffected controls. These criteria enabled us
to exclude haplotypes that are shared by patients of
either family 1 or family 2 only, but allowed the possibi-
lity that some patients are phenocopies and do not
necessarily share a haplotype with others. To avoid IBS
haplotypes, we allowed SHs to exist only in three con-
trols as heterozygous, and did not allow any SHs as
homozygous in controls. The pedigrees do not clearly
represent a certain mode of inheritance; therefore, six
independent analyses were performed where the mini-
mum number of required hetSHs and homSHs in cases
was varied to cover all possible combinations of hetSHs
and homSHs. A SH with a length of 30 or more SNPs
was found in 1,288 different regions. Each SH was given
a score based on the number of markers in the SH and
on the number of times the cases share a SH. The high-
est scoring regions found in each analysis using different
parameters are shown in Additional file 1.
The SH with the highest score in Additional file 1 was

found in the analysis where at least five affected indivi-
duals were required to have a hetSH. This region is in
chromosome 18, spanning approximately 3 Mbs, and
includes 15 genes. The individuals sharing the haplotype
are from families 2 and 3. The largest region with the
highest number of genes, encompassing 5.6 Mbs and
including 137 genes, was found in chromosome 15
using the same parameters. The haplotype in this region
is shared by five individuals from family 3. An interest-
ing and high scoring region was also found in chromo-
some 12, where five individuals have a hetSH and three
a homSH. This region is 1.8 Mbs long and contains 37
genes. This region was one of the ten highest scoring
regions in three separate analyses, as shown in Addi-
tional file 1.
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The highest scoring regions in Additional file 1 con-
tain 684 genes, from which we focused on protein-cod-
ing genes. Out of the set of 684 genes, 273 had a
UniProt code and were considered as protein coding.
We analyzed these genes using the SNPs3D [22] text
mining method to search for lymphoma-related features.
This analysis highlighted seven potentially interesting
genes as shown in Additional file 1. BCL10 (B-cell CLL/
lymphoma 10) is involved in a translocation found in B-
cell lymphomas of mucosa-associated lymphoid tissue
(MALT lymphomas) [37]. BCL10 has also been reported
to activate NF-kB [37]. MBP (myelin basic protein) is
expressed in all hematopoietic cells, including B cells
[38]. SIAH1 (seven in absentia homolog 1) is known to
be down-regulated in diffuse large B-cell lymphoma as
the result of Epstein-Barr virus infection [39]. ST8SIA1
(ST8 alpha-N-acetyl-neuramide alpha-2,8- sialyltransfer-
ase 1) contributes to the formation of GD3 ganglioside
[40], which is a cell surface molecule involved in various
functions of the cell, such as apoptosis, cell growth and
adhesion. It is expressed in various tissues, including
activated germinal center B cells [41]. SNRPN (small
nucleolar polypeptide) is an imprinted gene that is
methylated in leukemias [42]. CACNA1H (calcium chan-
nel, voltage-dependent, T type, alpha 1H subunit)
encodes a voltage-dependent calcium channel and is
located in a region that appears to be hypomethylated in
T-cell leukemias [43]. SPSB3 (splA/ryanodine receptor
domain and SOCS box containing 3) encodes a protein
that belongs to a family of socs proteins that contain a
SPRY domain, but its gene function is so far unknown.

Shared haplotypes in the lymphoma dataset
Using results from previous research where significance
of SHs has been studied [44], the probability of all cases
sharing at least one IBD haplotype, regardless of the dis-
ease status, is:

1 − e−(dλ+k)2a−d ≤ (dλ + k)2a−d (1)

where d is the number of meioses between cases and
their common ancestor, a is the number of common
ancestors (1 or 2), k is the number of chromosomes,
and l is the expected number of recombinations over
these chromosomes. For human data, k = 22 and l ≈ 35
[45]. Below we also assume that a = 2.
Next we generalize Equation 1 to access significance

of the high scoring regions of the lymphoma data. The
probability that c cases out of n shared an IBD haplo-
type, regardless of the disease status, is

≤
(
n
c

)
(dcλ + k)2a−dc , where at least dc meioses sepa-

rates any subset of c cases from their common ancestor.
The significance that at least C cases shares some IBD

haplotype is:

p ≤ ∑n
c=C

(
n
c

)
(dcλ + k)2a−dc

As dc <dc + 1 we can write:

p ≤ (dC + k)2a−dC
∑n

c=C

(
n
c

)
(c − C + 1) 2C−c (2)

The interesting haplotypes were shared by five to eight
samples (Additional file 1). Using the right-hand side of
Equation 2, we discovered that finding five IBD SHs is
significant at the 5% level if d5 ≥ 27.
Similarly, finding eight SHs is significant if d8 ≥ 24.
If the common ancestor is, on average, at least x gen-

erations away from all subsets of C cases, then dC must
be at least 2x + C - 2. This is because there must be
two cases that are connected by at least 2x meioses, and
the remaining cases must each contribute at least 1 to
dC . This simple reasoning shows that when d5 ≥ 27 for
five significantly shared haplotypes, the common ances-
tor is, on average, at least 12 generations away from the
samples. For eight SHs the common ancestor must then
be, on average, at least 9 generations away. In the lym-
phoma data, both of these significant (within 95% confi-
dence interval) distances from the common ancestor
seem probable by inspecting the partial pedigree of the
lymphoma families (Figure 3).
Following the original analysis [44], the length of an

IBD region (in Morgans) right and left from the disease
loci is exponentially distributed with parameter d, if the
cases (or their subset) are connected by d meioses. So
the total length of the IBD region is the sum of these
two exponentially distributed random variables. Thus,

the expected length of such a region is
2
d
. When d

increases, the IBD region becomes narrower, but at the
same time becomes more significant as well. All of the
analysis above has concerned IBD. However, IBS values
can only be obtained from the lymphoma data. The
separate control data allow filtering out of some IBS
regions that are not IBD. Moreover, if the IBS region
found is long enough, then it is likely to also be IBD. In
light of the analysis above, this depends on the number
of meioses d connecting the cases. When d is suffi-
ciently large, but not too large, the above analysis works
also with IBS values.
To evaluate haplotype differences between the lym-

phoma families and unaffected controls, we compared
the length of SHs in the whole dataset, in five or more
controls, and only in interesting SHs (five or more cases).
Figure 7 shows the number of SHs on a logarithmic scale
and their lengths from the six independent analyses
(black) compared with the SHs that are shared five times
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only in controls (red). Since we had 250 controls and
only 13 cases, SHs in controls are shared in much higher
numbers than SHs in cases. Nevertheless, the length of
SHs declines more rapidly in controls than in cases. This
was expected, since controls should not have close ances-
try and their SHs are from shorter IBS haplotypes.
Despite long SHs in cases, we did not pick the most

interesting SHs based solely on the length, but per-
formed six analyses on cases to cover all combinations
of homozygous and heterozygous haplotypes, and dis-
covered five affected individuals with the same SH.
Figure 8 shows the distribution of SH length and num-
ber from these analyses, giving the count in normal and
logarithmic scales. The distributions of all of the ana-
lyses have tails of rarely occurring long SHs, but the
tails are in different positions in the x-axis. This is
because homozygous samples actually share the

haplotype twice and the length of SHs decreases when
the number of SHs in the dataset increases. For exam-
ple, the logarithmic scale shows that SHs shared by five
heterozygous samples have the longest SHs, but are also
shared the lowest number of times. Furthermore, SHs
shared by five homozygous samples (black) are found
only in short regions.

Discussion
We have developed Haplous for haplotype-based analy-
sis and comparison. Haplous enables the search of IBD
haplotypes in a group of affected individuals determined
by the user in a rule-based manner. The rules and para-
meters can be adjusted flexibly. Our approach is applic-
able to studies aiming to identify rare or moderate
penetrance genetic determinants that cannot be found
by traditional linkage and GWA analyses.
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Figure 7 Distribution of shared haplotype lengths and numbers of shared haplotypes. The figure shows the distribution of shared
haplotypes (SHs) in at least five controls (heterozygous shared haplotype (hetSH) or homozygous shared haplotype (homSH)) in red, and the
distribution of the SHs in the lymphoma dataset. SHs from the lymphoma dataset are longer than those in the five controls. These SHs are also
rare, as expected.
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The TP and FP ratio of the SHs identified from the
HapMap data indicates that even though accuracy of
haplotype estimation has raised some concerns [13],
Haplous is able to compensate for possible incorrect
switches from the haplotype phasing (Figure 5). In the
HapMap test, Haplous achieved a high TP rate in a very
limited number of samples. The TP rate declines espe-
cially with long window sizes, the most likely cause of
which is that HaploRec, similar to many other haplotype
phase estimation software, tends to favor common hap-
lotypes in the dataset, which cannot be adapted for.
Therefore, haplotype phase should be estimated for
cases and controls separately to ensure that haplotypes
in the controls do not hide the typical haplotypes in the
cases. Haplous uses the number of markers to define
the SH length, which is an adaptation to the LD struc-
ture in the population, since SNPs in many genotyping
arrays are designed accordingly. If the marker density
does not take into account the LD structure in the

study population, we suggest cleaning the data from
markers in LD blocks before running Haplous. If
matched population controls are included in the analy-
sis, they usually represent the same LD structure, and
the possible bias can be corrected with proper filtering.
Haplous identified the mutated region from the simu-

lated data with high frequency. The simulation followed
the setting in the lymphoma study, which shows that
our approach is applicable to real-life genome-wide
genetic data. The longest windows created the highest
scoring SHs, probably because long SHs are more speci-
fic for the cases. On the other hand, a small window of
20 markers performed the worst, probably because it
finds frequent SHs in both cases and controls. In gen-
eral, a SH of 20 markers cannot be considered to harbor
an IBD region most of the time.
Haplous identified the mutation more efficiently than

BEAGLE when we applied the same assumptions that
were used in the lymphoma study. BEAGLE’s sensitivity
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Figure 8 Distribution of shared haplotype length and numbers in different lymphoma analyses in normal and in logarithmic scales. Each
lymphoma analysis has a different distribution, which is proportional to the number of times the shared haplotype (SH) is shared in the data.
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in all IBD regions was much lower than the regions
returned by Haplous (Table 3); the 50 highest scoring
IBD regions of BEAGLE were comparable with the per-
formance of Haplous when using 20 to 30 marker win-
dows. In addition, Haplous had better precision in terms
of haplotype length (Table 3). Furthermore, BEAGLE is
designed for discovering pair-wise IBD regions, and in
the extended pedigree they are usually very long. There-
fore, the BEAGLE analysis would require the tedious
work of combining multiple IBD regions.
We have shown how the results are affected if the

initial assumptions used for setting the parameters are
wrong. Table 3 shows how sensitivity and specificity are
affected by the parameter stringency. Too stringent
values will not capture the whole signal and too loose
will include FP regions in the results. The FP results
should not be considered as a problem as the findings
can be verified using other means, such as next genera-
tion sequencing, but a decrease in sensitivity is definitely
a problem. Table 1 shows that the matched controls will
improve the identification of the mutation. Haplous will
find the mutation if the assumptions are close to the
‘true values’, as they were in this test, but its perfor-
mance suffers if the number of controls is insufficient.
Table 2 shows that Haplous does not find FP haplotypes
if the data do not correspond to the research setting.
Accordingly, the user can see from the results that the
assumptions were false since Haplous, instead of giving
FP results, did not return anything. In the borderline
case where the data are almost as assumed (five affected
cases and six non-related controls in Table 2), it may be
difficult to distinguish whether analysis is successful. In
general, Haplous performs well even in suboptimal
situations. However, it is best to vary the parameters in
multiple runs to explore the limitations in the data.
The aggregation of HL in some families has been long

acknowledged, but the causes of this clustering are lar-
gely unknown. NLPHL is a rare subtype of HL and the
presence of several affected family members strongly
suggests a genetic factor contributing to disease predis-
position. Such families, as we have reported here, pro-
vide an excellent opportunity for genetic studies.
However, sporadic lymphomas are common and pheno-
copies further complicate gene identification studies.
Therefore, for the reported families, we used Haplous to
search for haplotypes that are shared by most patients,
but are rare or absent in the control population.
Six different Haplous analyses were run because the

pedigrees do not clearly represent a certain mode of
inheritance. These analyses covered all combinations of
homozygous and heterozygous haplotypes that could
lead to five affected individuals having the same SH.
This way the smaller families, families 1 and 2, could
not produce a hit alone without support from the other

families. As the pedigree of family 3 is complex and
contains several lymphoma patients, such regions that
are shared by five patients from family 3 would also be
of interest. As the genome-wide search produced over
1,000 regions with a SH, we decided to focus on the 10
highest scoring regions from each analysis. These
regions still included 273 known protein coding genes.
In order to further prioritize the gene set, we performed
a SNPs3D search to find the genes with lymphoma-
related features.
Even though the number of generations from last

common ancestor is unknown in the lymphoma dataset,
we have estimated that SHs shared by five cases are true
IBD haplotypes with 95% confidence. Figures 7 and 8
show that, as expected, we found longer SHs in lym-
phoma cases than in the general population. Also, the
number of SHs declines rapidly with the SH length. As
we showed with the simulated data, the mutated haplo-
types in the related samples are longer than those in the
population in general. Therefore, we can conclude that
long rare SHs in lymphoma cases are not seen in the
population and may well carry the disease predisposition
mutation.
With literature mining, we found seven genes that are

frequently associated with hematopoietic cells and
malignancies, lymphomagenesis or lymphoma-related
pathways. The most interesting of these seven genes is
BCL10, which is known to be disrupted in other kinds
of lymphomas [37]. A link between SIAH1 and NHLs
was also found in the literature, when Epstein-Barr virus
infection had been detected in the tumor [39]. Similar
direct links to lymphomas could not be found for the
rest of these genes. One reason for this is that the prin-
cipal phenotypes we study here are NLPHL and
TCRBCL, which are rare lymphoma subtypes and not
much is known about their molecular background. No
gene hits were found when ‘nodular lymphocyte predo-
minant Hodgkin lymphoma’, ‘T-cell rich B-cell lym-
phoma’ or ‘histiocyte rich B-cell lymphoma’ were used
as keywords. This could suggest that the genetics of
these lymphoma types are still largely unknown. Clearly,
the putative gene harboring a predisposing variant can
also be a gene that has not yet been implicated in the
literature to be related to hematological malignancies or
B-cell development, and the SNPs3D search must be
considered only as a supporting method to prioritize
candidate genes for more detailed analyses.
The distantly related families 2 and 3 had the highest

scoring SHs. This could indicate that the genetic defect
underlying the cancer predisposition in family 1 is possi-
bly not of the same ancestral origin as in the other
families. It is also possible, that the genetic locus shared
by all three families is located in a moderately short
genetic region, where the score would be lower, or

Karinen et al. Genome Medicine 2012, 4:21
http://genomemedicine.com/2012/4/3/21

Page 15 of 18



embedded within a haplotype that is relatively common
in the population. Due to the uninformativeness caused
by the missing DNA of some samples, some of the
interesting regions can be false positive hits. In general,
Haplous allows more stringent criteria for handling con-
trols and uninformativeness than what we have used in
our analysis. In the lymphoma study, however, the hap-
lotypes of some of the key individuals have been pre-
dicted using SNP data from their relatives, resulting in a
considerably large number of genetic regions where the
phase-known haplotype cannot be estimated. Thus, we
decided to tolerate FP SHs rather than lose information,
especially as the effect of the FPs can be narrowed down
in the future by combining the results with other plat-
forms, such as gene expression studies and large scale
sequencing efforts. Results from Haplous enable targeted
next generation sequencing of putative disease-asso-
ciated regions, and help focus the analysis of whole gen-
ome or exome sequencing data to particular loci; a key
feature considering the abundance of variants detected
by these methods.
Taken together, Haplous can be used to scrutinize

next generation sequencing results that contain plenty
of irrelevant information and errors, especially when
other SNP array-based methods are not applicable. This
is an important feature in settings where the sample
sizes are small. Even though the number of FPs
increases with small sample numbers, this cannot be
seen as a major obstacle as novel high-throughput
sequencing technologies are able to cover multiple large
regions with relatively low cost. The outcome of Hap-
lous is a ranked set of candidate regions that fulfill the
criteria determined by the user. The results are easy to
interpret, which increases the reproducibility that has
been a challenge in previous haplotype-based tests [4].
The user can also choose whether to emphasize the
haplotype length or the number of cases sharing a hap-
lotype when the score for each region is created. Hap-
lous is flexible and allows various testing of various
inheritance models and datasets such as a recessive
family-based inheritance model, IBD analyses in multiple
pedigrees of any size, homogenous population samples,
or any combination of these.

Conclusions
We have developed a novel computational method,
Haplous, which is a rule-based haplotype comparison
method for flexible analysis of haplotypes with high
accuracy in groups of individuals, enabling these haplo-
types to be further used to locate disease-causing muta-
tions. We used Haplous to identify haplotypes that are
common to patients in three lymphoma families to
which linkage analysis could not be applied. Several

interesting loci were identified, and these results can be
integrated with the patient data produced by other high-
throughput approaches, such as gene expression and
sequence information.

Additional material

Additional file 1: The results of all six different Haplous analyses
performed on lymphoma families. If the analysis produced more than
10 hits longer than 30 SNPs, only the 10 highest scoring shared
haplotypes (SHs) are shown. The number of heterozygous SHs (hetSHs)
and homozygous SHs (homSHs), the region boundaries, and the
individuals who share the haplotype are also shown. Ensembl release 59
was used as the reference build. The codes for individuals in families 1 to
3 are the same as in Figure 3. Separately depicted SHs can partially
overlap as affected individuals can share different parts of the haplotype
within a region.
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