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Optimized design and analysis of 
preclinical intervention studies  
in vivo
Teemu D. Laajala1,2,3,4, Mikael Jumppanen3,5, Riikka Huhtaniemi3,4,6,7, Vidal Fey3,6,8, 
Amanpreet Kaur5,9,10, Matias Knuuttila3,4,6, Eija Aho7, Riikka Oksala4,7, Jukka Westermarck5,9, 
Sari Mäkelä3,11, Matti Poutanen3,6,12,* & Tero Aittokallio1,2,3,*

Recent reports have called into question the reproducibility, validity and translatability of the preclinical 
animal studies due to limitations in their experimental design and statistical analysis. To this end, 
we implemented a matching-based modelling approach for optimal intervention group allocation, 
randomization and power calculations, which takes full account of the complex animal characteristics at 
baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized 
the confounding baseline variability, and resulted in animal allocations which were supported by 
RNA-seq profiling of the individual tumours. The matching information increased the statistical 
power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate 
cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling 
approach and its open-source and web-based software implementations enable the researchers 
to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to 
accelerate the discovery of new therapeutic interventions.

In vivo animal studies are an essential part of any drug development project. To further increase the reproduci-
bility and translatability of preclinical studies, there is an increasing need to improve their experimental design 
and statistical analysis1–6. Recurrent concerns are especially related to lack of power calculations for sample size 
estimation, inadequate conduction of randomized and blinded intervention group allocations, and limited con-
sideration of individual animal characteristics at baseline prior to interventions2,6–10. It has been argued that 
preclinical animal studies should more closely follow the established practices applied in the human clinical trials, 
where standardized requirements have been enforced for reporting statistical power, randomization procedures 
and stratification factors1,11. Typical sources of variation in the animal baseline characteristics include differences 
in gender, body weight and age, as well as in the genetic differences, cage conditions or the variability in gut 
microbiota7,12–14. Each of these experimental factors may contribute to confounding variability in the intervention 
responses, leading to false positive or negative findings, unless the study is carried out using adequate sample sizes 
or design that normalizes such confounding factors. Although these issues are widely acknowledged among the 
researchers, and guidelines are available for standardizing and reporting preclinical animal research15, the imple-
mentation of the best practices is often neglected2,8,16–19. Accordingly, a recent survey revealed that over 85% of 
published animal studies did not describe any randomization or blinding, and over 95% lacked the estimation of 
sufficient sample size needed for detecting true effects in the intervention studies17.
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In the absence of established practices and procedures for power calculations tailored for preclinical studies, 
the preferred sample size is often decided through historical precedent rather than solid statistics9,20. Similarly, 
the current approaches for allocating animals to separate intervention arms are typically based on manual picking 
and balancing of the animal groups based on only one baseline variable6. However, such simple design procedures 
may easily miss the complex relationships between multiple baseline variables, and the subtle intervention effects. 
Further, it remains a challenging question how to choose among the multiple baseline markers due to inherent 
differences in animal experimentation. Preferably, the intervention groups should be balanced using all the avail-
able baseline factors, including information about the animal characteristics (e.g., gender, age and weight), litter-
mates, housing conditions, and pre-treatments, among others. Otherwise, even minor uncontrolled differences 
between the treatment arms may cause significant variation in the response profiles13. Many of the experimental 
factors lead to complex hierarchical designs, with nested animal, host-tumor, cage, batch and litter relationships 
at multiple levels, thus reaching beyond the capability of the existing randomization and allocation methods 
available for preclinical animal studies21,22. The current methods often assume the independence of the baseline 
variables and experimental units, which may lead to over-optimistic evaluation of the effective sample size, also 
known as pseudo-replication16. This takes place, for instance, when one allocates multiple animals from a single 
batch or cage to a single treatment arm, or when multiple tumours are placed in the same animal.

Results
We developed and implemented a novel methodology to improve the experimental design and statistical analysis 
of preclinical studies carried out with experimental animals. The advances are based on a mathematical optimi-
zation framework for animal matching that improves both the unbiased allocation of the intervention groups, 
as well as the sensitivity and specificity of the post-intervention efficacy evaluations by making the full use of all 
the available baseline characteristics. To support its widespread use in various experimental settings, the mod-
elling framework has been made available both as an open-source R-package (http://cran.r-project.org/pack-
age= hamlet) (Supplementary Note S1), and through a web-based graphical user interface (http://rvivo.tcdm.fi/)  
(Supplementary Note S2). To our knowledge, these implementations are the first that effectively consider the 
nested, hierarchical structures of preclinical animal studies across the different phases of the experiment, starting 
from the power analyses, to allocation of animals to the various treatment arms, and all the way to finally evaluate 
the intervention effects (Fig. 1). In the present work, we demonstrate the benefits of these tools over conven-
tional analysis in two applications of orthotopic xenografts of VCaP prostate cancer cells in immune deficient 
mice as disease models for castration-resistant prostate cancer (CRPC) (Supplementary Fig. S1). The first study 
analysed the efficacy of two androgen receptor antagonists (ARN-509 and MDV3100) to suppress the growth of 
castration-resistant VCaP tumors23, while the second study investigated the effect of surgical and pharmaceutic 
therapies on orchiectomized mice (for details; see Supplementary Methods and Supplementary Note S3).

In a given pool of animals, the matching solution provides an optimal intervention group allocation of animals 
(or tumors) based on several baseline characteristics (Fig. 2). Rather than considering only the optimal pairing 
of individual animals, the solution can be used also to identify optimal matches among a number of features, 
animals or tumors, e.g., triplets, quadruplets, or more (see Methods for the mathematical formulation of the 
matching problem). Such optimal combinations, referred here to as submatches, are constructed by minimizing 
the sum of all the pairwise distances between the members of each submatch, illustrated here by pairwise con-
necting edges (Fig. 2). Since the non-bipartite matching procedure does not require pre-defined group labels, the 
control group can be selected without any guidance from the experimenters (Supplementary Fig. S7b). Instead, 
the animal allocation is performed objectively within each submatch by distributing its members randomly to 
separate treatment arms, hence enabling fully-blinded intervention group allocation through separate matching 
and randomization phases (Figs 1 and 2c,d). In the present study, we demonstrate how the matching information 
does not only improve the pre-intervention design, such as baseline animal group balancing and allocation, but it 
also improves the post-intervention statistical power to detect true treatment effects.

Matching normalizes baseline variability in confounding variables. The first VCaP xenograft case 
study was originally conducted based on the matching procedure23, where it showed its added value in complex 

Figure 1. Benefits of the modelling framework over the course of the study period. The animal baseline 
matching improves the statistical analysis and design of preclinical animal studies in terms of power 
calculations, balanced allocations, and intervention blinding (pre-intervention period), as well as through the 
use of matching information in the statistical testing of the intervention effects (post-intervention period).

http://cran.r-project.org/package=hamlet
http://cran.r-project.org/package=hamlet
http://rvivo.tcdm.fi/
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designs with batch/cage effects and multiple treatment groups (n =  15 animals per group). While the full match-
ing included four baseline variables, we illustrate the methodology first using two key animal characteristics (PSA 
and body weight at baseline; Fig. 2a–c). The optimal submatches were subsequently randomized and blinded 
for the experimenters to enable unbiased analysis across three intervention groups (ARN-509, MDV3100 and 
Vehicle) (Fig. 2d). The confounding variability from the two castration batches was normalized by treating these 
as two separate optimal matching problems (Supplementary Fig. S3a), which guaranteed that the two batches 
were allocated uniformly to the intervention groups through the use of submatches (Supplementary Fig. S3b). 
Notably, the matching distance matrices at baseline were also significantly correlated with the post-intervention 
RNA-seq profiling of a randomly chosen subset of individual tumours (p =  0.039, Mantel’s test, n =  4 animals per 
group; Supplementary Fig. S8c), suggesting that major trends in the characteristic baseline differences used in the 
animal allocation were still captured by their genome-wide transcriptional responses even after the interventions 
(Supplementary Fig. S8a,b).

To more systematically study the degree of confounding variability and its effects on the animal allocation, 
we tested the frequency of statistically significant differences in all the available baseline variables between the 
randomized treatment groups. A total of n =  100,000 animal allocations were simulated either totally at random 
(unmatched randomization) or using the matching information from the optimal submatch allocations (matched 
randomization). The baseline variables considered in the optimal matching were body weight and PSA at baseline, 
as well as PSA fold-change from previous week prior to allocation. With the unmatched randomization, 13.8% 
of the treatment groups represented significant differences with respect to at least one of the baseline variables 
(p <  0.05, one-way ANOVA). In contrast, only 0.018% of the treatment groups in the matched randomizations 
showed any baseline differences. This indicates that matching effectively eliminates baseline differences in the 

Figure 2. Optimal matching of animals in the case of orthotopic VCaP mouse xenografts. The original 
task was to randomly assign 75 animals into five balanced intervention groups (one control and four treatment 
groups, each consisting of 15 animals), but here we focus on two of the treatments only (ARN-509 and 
MDV3100), using a sub-sample of the complete data matrix (see Supporting Fig. S3). (a) Bivariate observations 
sampled from the VCaP study, illustrating the two selected baseline variables (body weight and PSA).  
(b) 15 ×  15 dimensional distance matrix D calculated based on the baseline variables was used as an input to 
the matching procedure, which solves the optimal animal matching matrix X. (c) The optimal submatches 
from the branch and bound algorithm, which guarantees a globally optimal solution (see Supporting Fig. S7). 
(d) The optimally matched animals were randomized into the intervention groups via blinded treatment label 
assignments (coloured points). The baseline matching information was used in the statistical testing of the 
treatment effects, mainly through paired comparisons between the treated and control animals (solid lines). 
Alternatively, the model also allows for direct comparisons between the two treatments (dotted lines).
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Figure 3. Statistical testing of the treatment effects using pairwise matched inference. (a) The matched 
inference makes use of the baseline matching information when testing the intervention effects by pairing the 
observed responses according to the optimal submatches at equal time points. (b) An example of the submatch-
based pairing in the MDV3100 vs vehicle comparison, where the example trajectory was previously shown as a 
single estimate value in the original study23. Complex response differences are better captured when additional 
baseline information is incorporated into the statistical inference. The paired differences from the longitudinal 
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confounding variables, which unless carefully controlled during the allocation process, may contribute to the 
poor reproducibility of preclinical research findings24.

Matching improves the statistical inference of treatment responses. In the post-intervention 
analysis, we studied the benefits of using the matching information in the mixed-effects modelling of the treat-
ment effects (see Methods for the model formulation), focusing first on the ARN-509 and MDV3100 treat-
ments (Fig. 3a). The matched inference approach models the paired longitudinal differences in the intervention 
responses (PSA in the VCaP xenografts; Fig. 3b), based on the optimal submatches of the animals at baseline 
(Fig. 2c; Supplementary Fig. S3). The benefits gained by such matching-based paired testing became more evident 
with the MDV3100 case, where we observed that the animal body weight at baseline was inversely associated 
with the final PSA level (correlation coefficient ρ =  − 0.607, p =  0.021, Supplementary Fig. S2d). Such multivari-
ate, longitudinal relationship between the baseline variables and treatment responses cannot be captured by the 
conventional, unmatched model, leading to reduced statistical sensitivity (Fig. 3c, left). The MDV3100 treatment 
effect became clearly significant when the baseline matching information was incorporated into the mixed-effects 
modelling (Fig. 3c, right). The more apparent ARN-509 intervention effect was detected both with the matched 
and unmatched statistical models (Table 1). Of note, the non-matched approach also benefitted here from the 
matched randomization of the original study23.

As another case study, we randomly allocated 100 VCaP mice using the matching algorithm into six inter-
vention groups (Supplementary Fig. S4), out of which three are further investigated here (Control, orchiecto-
mized (ORX) and ORX+ Tx). As was expected, when compared to the intact control animals, both the matched 
and unmatched statistical models were able to detect the significant intervention effect from the ORX surgery 
(Table 1). However, the unmatched approach totally missed the additional effect from an undisclosed pharmaceu-
tic treatment (Tx), while the ORX+ Tx combination effect was found significant after using the baseline matching 
information in paired testing of the longitudinal intervention responses. In the combination case, the standard, 
non-paired analysis lacked the power to distinguish the complex response patterns between the intervention 
groups, in part due to the non-linear responses in the early time points (Supplementary Fig. S6). In contrast, the 
paired inference, enabled by the matching information, was able to capture these pairwise response differences, 
leading to subtle yet significant intervention-specific effect sizes (Table 1). These results support the improved 
statistical sensitivity gained by the baseline matching information in the detection of true treatment effects, espe-
cially when studying more complex and subtle intervention effects.

Matching increases statistical power to detect true treatment effects. Since the intervention 
effects in the preclinical studies are often relatively subtle, statistical power calculations are critical for estimating 
the sufficient number of animals needed to detect a true effect. However, preclinical experiments pose specific 
requirements for the power calculations, due to the complex nature of longitudinal responses, relatively high fre-
quency of missing values originating from animal health or other exclusion criteria, complex hierarchical designs, 
as well as multivariate baseline characteristics, which are beyond the capacity of any standard sample size estima-
tion procedures. We addressed the above mentioned challenges by implementing a model-based power analysis 
calculation. The method first samples animals with replacement from an estimated mixed-effects model, and then 
uses these bootstrap datasets to re-estimate the specified statistical model (see Methods for the modelling details).

When applied to the two VCaP xenograft studies, the model-based calculation enables one to estimate the 
study power as a function of tumors per treatment group. Although the power calculation can be done with respect 
to each of the terms in the mixed-effects model, we focused here on the intervention-specific term βintervention  
(Fig. 3c). With the more prominent intervention effects from ARN-509 and ORX, the power calculation led to 
similar sample size estimates between matched and unmatched models (n <  10; Fig. 4, left panel). However, there 
were notable differences in the number of animals needed when more complex or subtle interventions effects 
were studied; with MDV3100, the matched analysis reached the conventional power level of 0.8 at much smaller 
sample size compared to the unmatched model (n =  17 vs. n =  26; Fig. 4a, right panel), whereas for the interven-
tion effect from ORX+ Tx combination, the unmatched analysis remained below the sufficient power level with 
any practically feasible number of animals (Fig. 4b, right panel).

Although the power simulations were performed here retrospectively, these results already demonstrate that 
statistical inference of the intervention effects is highly dependent on the expected effect size and within-group 
variation, suggesting that future experimental designs should be tailored for each case individually, using e.g. data 
from a pilot experiment, so that the power calculations will meet the expected response patterns. Given the rela-
tively large difference in the number of animals needed to reach sufficient power using an unmatched or matched 
approach, especially with the less evident cases (MDV3100 and ORX+ Tx interventions), it is recommended that 

observations (left panel) construct a single treatment curve for the pairwise matched mixed-effects modelling 
(right panel). (c) Comparison of the matched and unmatched statistical inference approaches in the MDV3100 
vs vehicle comparison. Even if both inference approaches yield rather similar conclusion about the possible 
intervention effects, the matched approach improves the sensitivity of the detection (right panel). Different 
aspects of the mixed-effects modelling are visualized based on the observed data (top panel): the full model fit 
combining both the random and fixed effects (middle panel), and the population inference depicting only the 
fixed effects along with their interpretation (bottom panel). In the matched inference, the population of paired 
differences in the intervention effects (βintervention) is tested against a null hypothesis of no paired differences 
(y =  0 line). The statistical inference results of the intervention effects are summarized in Table 1, and the full 
model fits for the four treatment cases are shown in Supplementary Figs S5 and S6.
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post-intervention statistical procedures should be defined already before the initiation of the study using tools 
such as proposed here25. However, a more fair comparison point for the matched approach would require a new 
study, conducted without using the baseline matching information, but this was not carried out within our pre-
clinical studies because of ethical reasons.

Discussion
The importance of controlling for individual variation is well-acknowledged in human clinical studies, with the 
aim to increase the study validity and reproducibility26. Similarly, in preclinical studies, reproducibility of the 
findings is associated with transparent reporting and paying careful attention to the experimental issues, includ-
ing balancing, randomization and blinding2,3. Even though preclinical experimental designs differ from the truly 
randomized treatment group testing applied in clinical trials, the preclinical studies should benefit from the best 
practices of human clinical trials to improve their translatability11,15. We demonstrated here that a more detailed 
animal matching and statistical modeling offers many benefits across the different phases of the preclinical inter-
vention experiment (Fig. 1). Prior to the interventions, the baseline balancing makes the experimental and con-
trol groups as similar as possible, while the matching-based randomization ensures that all the animal groups 
are sufficiently representative of the underlying population. This should reduce confounding variability and false 
positives in the subsequent testing of the intervention effects. During interventions, blinding promotes compa-
rable handling and treatment of the animals by experimenters, while the estimated model parameters can detect 
outliers and provide insights into dynamic changes in individual animals in response to the interventions, such 
as non-linear treatment effects in the intervention groups. This makes the outcome measurements more uniform 
and reduces bias when reporting the results. After the intervention period, the paired longitudinal analysis of the 
individuals or tumours that were similar at baseline can be utilized in more sensitive detection of treatment effects 
(analogous to the paired t-testing). This may reduce false negative detections, especially when testing more subtle 
or complex treatment relationships, such as the MDV3100 and ORX+ Tx treatment responses considered in the 
present study. While demonstrated here in the context of orthotopic xenograft studies, the statistical analysis and 
design issues are widely applicable also to genetically-modified mouse models (GEMMs), and should be even 
more important with the use of patient-derived xenografts (PDX), where the tumor material is limited and unique 
to each patient case20.

Power calculations in preclinical animal studies. Power calculations are routinely demanded in human 
clinical studies, and recent reports have called for more rigorous sample size estimation also in preclinical animal 
studies9,20. Our model-based simulations enable the full use of response data from a pilot study or similar studies 
in the literature when estimating the sufficient sample size, rather than guessing or predicting the key model 
parameters and their variance. Furthermore, sampling of observations from a pre-fitted mixed-effects model 
offers a possibility to also incorporate indirect intervention effects, such as censoring due to death or animal 
exclusion, which may be difficult or even impossible to infer otherwise when determining the model parameters. 
Finally, the mixed-effects model requires the experimenter to specify the tested population hypotheses and the 
particular model structure already in the study design phase, which effectively discourages exploratory cherry 
picking and fishing for the ‘optimal’ results, a practice which severely reduces the reproducibility of the findings27. 
We note that the power simulations carried out in the present study were performed retrospectively, and hence, 
are applicable to designing future studies only28. When testing for more subtle or complex treatment effects, 
such as the + Tx effects in the ORX mice, sufficiently large sample sizes were required to provide statistically 
robust results. Even if this may lead to unexpectedly high number of test animals, it is widely acknowledged that 
underpowered or otherwise poorly designed studies are not only unethical but also contribute to both delays and 
increased costs of drug development process4,9.

Exploratory and confirmatory study design issues. Table 2 summarizes the experimental design 
issues that we feel are essential to consider while performing statistically robust preclinical intervention studies. 

Model

Fixed effects (p-value) Random effects (SD)

β intercept β slope β intervention γ intercept γ slope ε error

ARN-509 vs Control
Unmatched 14.311 (< 0.001)* * * 10.062 (< 0.001)* * * − 7.627 (< 0.001)* * * 8.234 5.163 5.749

Matched 0 (− ) 0 (− ) − 7.962 (0.0047)* * 7.053 8.894 8.399

MDV3100 vs Control
Unmatched 13.536 (< 0.001)* * * 10.188 (< 0.001)* * * − 4.940 (0.0494)* 7.635 6.259 6.395

Matched 0 (− ) 0 (− ) − 5.729 (0.0160)* 7.013 7.401 11.247

ORX vs Intact
Unmatched 14.548 (< 0.001)* * * 1.336 (< 0.001)* * * − 1.265 (0.0034)* * 14.578 0.997 8.518

Matched 0 (− ) 0 (− ) − 1.931 (0.0063)* * 4.251 2.157 9.522

ORX+ Tx vs ORX
Unmatched 9.998 (< 0.001)* * * 0.122 (0.0675)N.S. − 0.101 (0.2704)N.S. 10.476 0.167 9.977

Matched 0 (− ) 0 (− ) − 0.112 (0.0457)* 2.381 0.155 4.618

Table 1.  Mixed-effects model fits for the fixed effects (population inference) and random effects 
(individual effects and the random error term). Model estimates and their significance levels using the 
conventional unmatched and matching-based pairwise models are presented for each intervention comparison 
separately. The model term that explicitly tests for an intervention effect is highlighted in bold. N.S., not 
significant; * p <  0.05; * * p <  0.01; * * * p <  0.001.
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These issues are important both for exploratory and confirmatory preclinical studies, in order to improve their 
generalizability and translatability toward human diseases29. Exploratory studies involve preclinical screening and 
pathophysiological hypothesis testing, placing therefore more focus on detection sensitivity, whereas confirma-
tory studies are geared more toward efficacy estimation and clinical translation, where specificity of the findings 
is often more important. These two study classes serve as examples of the various inferential aims of the preclin-
ical studies, and we hope our considerations will complement the current ARRIVE guidelines15, in terms of the 
statistical design and analysis of intervention effects. However, there remain several other factors that are outside 
the scope of the statistical methods introduced here, which may have much bigger role in the generalizability and 
translatability of the preclinical findings. For instance, although the internal variation in the treatment response 
can be controlled to a large extent using the matching and randomization methodology, these cannot normalize 
the effects of external factors, such as the representativeness of the animal model of the actual human disease, its 
target population and heterogeneity3,30. Additionally, although the animal matching can be performed based on 
multiple prognostic preclinical variables, these are unlikely to directly translate into the clinical use due to dif-
ferences in the preclinical and clinical experimentation and physiology. However, the success rate of the human 
clinical trials is likely to benefit from a more accurate modelling of the heterogeneous treatment responses already 
during the preclinical phase3.

Additional simulations of the model performance. An important practical question is how many and 
what type of baseline covariates should be used for animal matching. To address this question, we performed 

Figure 4. Model-based power calculations for sufficient sample size estimation. Statistical power (the 
likelihood that a true treatment effect is detected) as a function of the sample size (animals per treatment 
arm). Power calculations were computed by bootstrap re-sampling, either without the matching information 
(unmatched) or using the information from the optimal pairs of matched samples (matched). The estimated 
sample sizes (N) are defined based on the conventional threshold of 0.8 power. (a) ARN-509 and MDV3100 
intervention effects in the VCaP mouse xenografts. (b) ORX and ORX+ Tx intervention effects in the 
orchiectomized (ORX) VCaP mouse xenografts.
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extensive simulation study (see Supplementary Methods), which confirmed and extended the results from our 
real case studies, showing that the matching information and paired analysis improves the statistical inference 
beyond the conventional approaches; this improvement was systematically observed across the number and type 
of covariates in terms of both detection sensitive and specificity (Supplementary Fig. S9). The largest benefits of 
the matching was gained with a selected panel of predictive baseline markers (e.g. 3–10 most informative covar-
iates), in relatively small-sized studies (N =  5 to 10), but even if performed using non-informative markers and 
in larger studies, matching did not lead to reduced sensitivity or specificity. We therefore recommend preclinical 
researches to use several expert-curated baseline variables to improve the animal allocation and statistical testing, 
with a focus on the most relevant markers for the particular inference task (Table 2).

We further performed simulation studies to assess the relative advantages of the matched regression modelling 
in comparison to a more standard adjusted regression modelling, where the baseline confounders are incor-
porated as covariates in the post-intervention testing phase (Supplementary Material). Such post-intervention 
adjustments in the regression modeling may suffer from confounders interacting with the intervention effect, 
which may be difficult to track down and control for retrospectively in the intervention effect testing, as well as 
from an uncertainty about which confounders should be incorporated as the regression coefficients. We noticed 
that a matched-based animal allocation systematically improved over the adjusted regression, while the use of 
the pairwise matching information in the regression modeling led to the overall best sensitivity and specificity 
(Supplementary Fig. S10). Taken together, these simulation results show that the matching-based design and sta-
tistical analysis generally outperforms the more conventional approaches that do not use the baseline matching 
information.

Current limitations and future perspectives. The presented methodology has certain limitations and 
potential caveats that should be understood. First of all, our specific focus here was on preclinical in vivo animal 
models, while the other forms of preclinical research are beyond the scope of this work. However, similar meth-
ods could be used also for in vitro experiments, where genetic and chemical perturbations and interventions are 
extensively modeled using dissimilarity-based methods analogous to the matching-procedure presented here31,32. 
Further, our methodology is implemented in the context of conventional preclinical study period, where ani-
mals are first selected for study inclusion, then baseline variables are measured based on which all the animals 
are randomly allocated into intervention groups (Fig. 1). Although the mixed-effect statistical model effectively 
captures the dynamic changes in the intervention responses, the baseline-based dissimilarity metrics do not typ-
ically consider time-dependent covariates; however, one can carry out also a longitudinal randomization proce-
dure using, for instance, dynamic allocation methods that take into account dynamic cohort additions, covariate 
structures and intervention responses33. Finally, although both of our example cases were longitudinal interven-
tion analyses of the tumor growth as a function of time modeled using linear mixed-effects models, the exper-
imental design approach is also applicable to single end-point comparisons as a special case. We demonstrated 
this through the use of multivariate extension of the standard t-test (so-called Hotelling’s T 2 test) in the VCaP 

Design issue Exploratory study Confirmatory study Aims and benefits

Study objective (focus on 
sensitivity/precision or 
specificity/generalizability)

Preclinical screening and 
pathophysiological hypothesis testing 
(sensitivity)

Estimating effect size and 
ensuring clinical translation 
(specificity)

Sensitivity allows effective search for 
intervention candidates, while specificity 
emphasizes translational aspects. Notably, 
mere statistical significance in preclinical 
testing does not yet guarantee clinical 
relevance

Example animal models19 Traditional cost-efficient models, e.g. 
subcutaneous xenografts

Translational models, e.g. 
orthotopic xenografts, PDX, 
GEMM

Seeking a balance between cost-efficiency and 
translatability 

Number of intervention groups 
(Parameter G)

High number of candidate intervention 
groups (Prefer G over N)

Carefully selected interventions to 
be validated (Prefer N over G)

High G allows effective exploration of novel 
candidates for downstream confirmatory 
studies

Number of animals in each 
intervention arm (Parameter N)

Focus on testing multiple candidate 
intervention groups at sufficient sample 
size (medium N)

High confidence required for true 
positive effects as well as for effect 
size estimate (high N)

Well-characterized animals and sufficient 
N allows better translation to the target 
population and improved generalizability

Number of covariates d in 
matching (Data dimension d)

Many possible confounding covariates, 
with suspected effect on the primary 
response (flexible d)

Ideally only few selected 
confounding covariates, 
which affect the representative 
intervention outcome (low d)

Matched animals in separate treatment arms 
allows more accurate inference both in terms 
of sensitivity and specificity

Estimation of sample size for 
the study and effect sizes for the 
interventions

Often difficult due to lack of pilot 
studies for the candidate interventions

Key ingredient in ensuring 
sufficient statistical power1,9

Sufficient statistical power to identify true 
intervention effects and reject false effects. 
Accurate effect size estimation assists in 
evaluating clinical significance

Maximization of the consistency 
in handling of the individual 
animals and/or tumours

Relevant in all study aims Relevant in all study aims Prevent undesired stratification and false 
detections due to potential batch-effects

Taking into account potential 
dependence structures (e.g. 
tumours within the same 
animal)

Highly dependent on the number of 
G in relation to N. Some degree of 
compromise is acceptable to maximize 
sensitivity

Highly relevant, e.g. cage-effects 
are attributed to high attrition 
rates of preclinical findings 6,12–14

Prevents over-estimation of the required 
sample size due to so-called pseudo-
replication15

Table 2.  Experimental design issues in exploratory and confirmatory preclinical studies. Exploratory and 
confirmatory study aims adopted from Kimmelman et al.29
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xenografts, where we observed that the PSA surrogate marker correlated well with the primary outcome of tumor 
volume. Importantly, it was shown that the detection sensitivity of the subtle treatment effect of MDV3100 was 
increased when the end-point markers were coupled with the matching information through paired T 2-testing 
(Supplementary Fig. S11).

As a future work, it will be important to perform a more systematic review and evaluation of the practices 
and factors that affect treatment assessment in preclinical intervention studies in vivo. These include experi-
mental factors, such as measurement frequency, structured missing information due to both lower censoring at 
response detection limit and right-censoring at death, extent of pseudo-replication and confounding variability 
due to correlated structures (e.g., multiple tumors), as well as dynamic changes in the treatment effects over time. 
In particular, non-random missing values pose challenges to any statistical testing approaches, including our 
matching-based post-intervention testing procedure, which assumes that both of the paired individuals have 
been observed in order to effectively model the pairwise treatment differences. Such procedure creates the caveat 
that highly aggressive tumor groups, which are often being censored due to ethical reasons, may fail to provide 
representative animal/tumor pairs with those individuals with fully-observed longitudinal response profiles. This 
aspect of the pairwise matching procedure may actually provide also an advantage compared to the standard 
statistical methods, which often treat all the missing data as missing-at-random (MAR), as censoring removes 
pairwise differences from both of the animals that have a matched baseline profile; therefore, right-censored 
missingness will not accumulate only to aggressively growing groups. Although it is possible that this allows for 
less-biased estimates, provided that the prognostic matching covariates can accurately predict the response, this 
potential advantage may come at the expense of decreased power to detect the longitudinal intervention differ-
ences as dominant right-censoring may result in insufficiently short pairwise longitudinal trajectories. Due to the 
complex nature of non-random missingness in the post-intervention testing, systematic evaluation of these effects 
warrants a separate future work in various preclinical models and experimental setups.

Methods
Optimal non-bipartite matching problem formulation. Matching was used to allocate individual animals 
into homogeneous subgroups according to a pre-defined dissimilarity criterion34 (Fig. 2; Supplementary Fig. S7a,b).  
Multiple baseline variables that may have either prognostic or confounding contribution to the treatment 
response were simultaneously used for balancing the treatment and control groups through the pre-selected dis-
similarity metric (Supplementary Table 1). By incorporating such baseline information, the experimental design 
allows for more sensitive and specific detection of effects that are due to the interventions alone35. In theory, 
matching should not introduce loss of statistical power even when performed on irrelevant covariates34. Since 
purely deterministic allocation methods have been criticized for the risk of introducing experimental biases due 
to, for instance, the lack of masking36, our constrained randomization procedure incorporated also a stochastic 
component, making it fully compatible with the current clinical recommendations of random allocation and bal-
ancing at baseline. The matching-based randomization approach refines all possible allocations from a single pool 
of individuals, and then randomly picks one of these most feasible allocation solutions. As such, the procedure 
greatly resembles the randomized block design, which is used in the clinical field to adjust for pre-intervention 
randomizations by stratifying for categorical factors (e.g. gender) or bins of numeric values (e.g. adolescent/adult/
elderly), especially in studies with small or moderate sample size37.

Expanding the previous formulation35 (Supplementary Fig. S7b), the optimal non-bipartite matching problem 
can be formulated as follows. Let us consider binary symmetrical matching matrices X of size N × N where:

∈X {0, 1} (1)i j,

∑ = − ∀ ∈ …X G j N1 {1, 2, , } (2)i i j,

∑ = − ∀ ∈ …X G i N1 {1, 2, , } (3)j i j,

=X X (4)i j j i, ,

=X 0 (5)i i,

The two sum constraints in equations (2 and 3) guarantee that the number of edges originating from a single 
observation equals the number of desired groups minus 1. Here, G denotes the number of desired members per 
each matching structure, and is equal to the number of desired intervention groups. This means that all the rows 
sum to G-1 and columns to G-1 in the binary matching matrix X (Fig. 2b). Dissimilarity matrix D of size N × N 
is defined as:

=D D (6)i j j i, ,

=D 0 (7)i i,

Each element Di,j is computed according to the chosen dissimilarity metric with possible alternatives summarized 
in Supplementary Table S1. The interpretation of the constraints are follows; in equation (1): For each possible 
pairs of individuals i and j, the pair is either matched (value 1, connected with an edge) or not matched (value 0);  
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(2): Each individual j is connected to other G-1 matched individuals; (3): Each individual i has G-1 other indi-
viduals that are matched to the individual i; (4): If individual i is matched to individual j, then individual j is also 
matched to individual i (no single direction relationships allowed); (5): An individual may not be matched to 
itself; (6): The similarity of individual i to individual j is as great as similarity of individual j to individual i (no 
directionality allowed). (7): An individual is always perfectly similar to itself.

The existing optimal non-bipartite matching algorithms, for example, the one presented in the R-package 
‘nbpMatching’35, consider paired non-bipartite matching, where:

∑ = ∀ ∈ …X j N1 {1, 2, , } (8)i i j,

∑ = ∀ ∈ …X i N1 {1, 2, , } (9)j i j,

We expanded upon this problem and developed a global optimization algorithm for solving this general-
ized problem. In order to introduce multigroup matches, we define fully connected structures called submatches. 
Matches are considered as graphs {V, E}, where V is vertex (node) and E is an edge between vertices. If obser-
vations i and j have not been matched, their edge is non-existing (Xi,j =  0). Each submatch Mk is a subgraph of 
V, where the number of vertices belonging to the k:th submatch Mk equals to G, that is, the number of desired 
groups. The matching matrix has to have edges between all of the elements belonging to Mk, that is:

= ∀ ∈X V V M1 , (10)i j i j k,

Furthermore, the submatches are non-overlapping, in the sense that no edges are allowed to exist between 
these substructures:

= ∀ ∈ ∈ ≠X V M V M k l0 , , (11)i j i k j l,

The total number of these substructures is N/G in the matching solution. Supplementary Fig. S3 shows the 
matching problem in the ARN-509/MDV3100-experiment with the desired number of groups G =  5, which illus-
trates the increase in computational complexity as the number of edges within a submatch increases per binomial 
coefficients. The optimal matching problem is:

∑ ∑ X Dmin (12)X i j i j i j, ,

The optimization problem in equation (12) is used to identify the matching matrix X that minimizes the sums 
of distances that fulfill the constraints in equations (1–5) for a given distance matrix D with desired submatch 
size G. These identified submatches may then be used to allocate the intervention groups (Fig. 2), with possible 
additional constraints as described in Supplementary Methods.

Mixed type baseline information in the matching. We used categorical variables alongside numerical 
variables in the matching problem. We divided this into two options: (i) relaxed, where the categorical informa-
tion increments distance at Di,j by a certain amount if the two observations i and j originated from different cate-
gorical labels, and (ii) strict, where observations with separate categorical labels may never be matched by setting 
their relative distance to infinity (Di,j =  ∞ ). Observations of relaxed type may be part of the same submatch even if 
they have different labels, provided that their similarity in the numerical dimensions dominates over the categor-
ical difference. Whether or not this happens, depends on the chosen distance metric (Supplementary Table S1);  
for example, the Gower’s dissimilarity38 is a popular choice for combining mixed type information, but also other 
metrics have been proposed39–41. In the strict approach, two observations with different categorical labels may 
never be part of the same submatch, and therefore this option eliminates a large fraction of possible solutions by 
limiting the search to a smaller solution space due to infinite values in D. This approach also forces each interven-
tion group to contain an equal number of members from each sub-strata.

Branch and bound algorithm (exact optimization). The number of possible X binary matching matrix 
solutions that fulfill the constraints set in equations (1–5) increases exponentially as a function of the number of 
individuals participating in the matching. For detection of the global optimum of equation (12) in the discrete 
optimization task, a branch and bound algorithm relies on implicit exhaustive enumeration of all possible com-
binations in a tree-like structure. Within this structure, however, massive amounts of solutions are omitted based 
on knowledge that the omitted solutions could theoretically not be better than the current best found solution. 
If a branch of solutions may include a solution better than the current best found solution, it has to be searched 
through enumeration. The algorithm itself may be depicted as traversing a tree-like structure using alternating 
steps called the branching step that expands the current search tree, and the bounding steps that omit large 
non-optimal areas of the search tree (Supplementary Fig. S7c,d). These branch and bound steps are described in 
detail in our Supplementary Material, along with an alternative heuristic Genetic Algorithm (GA) that provides a 
faster non-exact optimization alternative for large studies.

Matched mixed-effects modeling of treatment effects. In order to evaluate the effect of interventions 
in a longitudinal study, we assumed that the response variable y (e.g. PSA concentration) for the i:th tumor from 
the intervention group g1 or g2 grows according to the following linear model:
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β β β γ γ= + ⋅ + ⋅ ⋅ + + ⋅ +y x g x x e (13)i g t t t i i t i g t, , 0 1 2 2 ,0 ,1 , ,

Here, variable xt ∈  N0 indicates the t:th time point in the study (e.g. day or week since starting the interventions). 
Fixed effects β0 and β1 correspond to be population based effects, where b0 models the initial average response 
value at baseline (xt =  0), and b1 models the longitudinal expected linear growth pattern of the tumor, while β2 
includes a binary indicator g2 which obtains value 1 if the i:th tumor belongs to the group g2 and 0 otherwise. 
Random effects γ i,0 and γ i,1 model variation of the i:th individual in the initial response levels or in the growth rate 
patterns, respectively, and these are analogous to the fixed effects β0 and β1. We modeled random noise with the 
error term ei,t, and the error and random effects are assumed to be normally distributed:

σ σ σγ γ~ ~ ~e u uN(0, ), N(0, ), N(0, ) (14)i t e i i, ,0 ,0 ,1 ,1

The unmatched model in equation (13) does not incorporate supporting prognostic matching information 
beyond the baseline levels of the main response y, although tailored modeling approaches exist for similarly 
formulated models42,43. Therefore, we propose a matched mixed-effects model, which incorporates the matching 
information obtained from the matching of pairs {i,j} before the interventions:

=–y y y (15)i g t j g t i j t, 1, , 2, { , },

where the submatched individuals i and j have been allocated to different intervention arms g1 and g2 as described 
in (Figs 1 and 2). The resulting time point specific pairwise observations are then modeled longitudinally using 
a mixed-effects model:

β β β γ γ= + ⋅ + ⋅ + + ⋅ +y x x x e (16)i j t intercept slope t intervention t i j i j t i j t{ , }, { , },0 { , },1 { , },

where by default we propose setting βintercept =  0 and βslope =  0 due to their redundancy in the matched curves (see 
Fig. 3c bottom panel for the visual interpretation). While γ 0 effectively models the baseline (xt =  0) individual level 
random intercept for the response variable y, the model term γ 1 allows pairwise variation in the growth slopes. 
This allows prognostic inference for the population effects, especially for the inter-group growth difference in the 
fixed effect βintervention, since additional baseline experimental factors are incorporated through the matching {i,j}.

The mixed-effects model fitting was performed using the lme4-package44 in the R statistical software45. In 
Table 1, the p-values for fixed effects β were computed using Satterthwaite’s approximation for degrees of freedom 
using the lmerTest-package46, while significances of random effects u can be tested using log-likelihood ratio 
tests as proposed in literature47. The concept of matching-based mixed-effects modeling is presented in Fig. 3. 
Example Unmatched equation (13) and Matched equation (16) model fits are shown for the Control vs. MDV3100 
comparison (Single submatch visualized in Fig. 3a of the total 15 pairs). Due to incorporating prognostic 
submatch-information to the modeled curves (Fig. 3a,b), the matched inference resulted in an increase in sensi-
tivity (Table 1, Fig. 4). Complete visualizations of the model fits are given in the Supplementary Figs S5 and S6.  
Interestingly, prognostic accuracy in the intervention testing was most likely allowed by the pairing of similar 
curves in ORX+ Tx vs ORX testing (Supplementary Fig. S6b), where the matched curves retained approximately 
linear trends despite the lack of an early PSA nadir.

Power simulations from experimental datasets. Power analysis is important to ensure statistical 
validity of the experimental findings. So far, reliable resources have not been available for the preclinical studies 
in which the experiments pose a number of specific requirements, namely the complex nature of longitudinal 
responses, right-censoring occurs due to death of animals, limited number of individuals, batch-wise effects, and 
multivariate baseline characteristics. We addressed these challenges by offering a sampling based power analysis 
tool that samples individuals with replacement (bootstrapping) from a pre-fitted mixed-effects model, and then 
re-fits the specified statistical model to the sampled datasets. The method then provides a power curve as a func-
tion of N in respect to each of the tested population hypotheses. We draw inspiration for this simulation approach 
from literature48, although we propose sampling by bootstrapping the data, rather than based on the mixed-effects 
model parameters.

There are a number of advantages in evaluating the power of a study through simulations: (i) Data based 
simulations do not force the experimenter to perform an expert guess on an often non-intuitive model parameter 
and its variance to assess required sample amounts. Instead, the experimenter may provide artificial data, e.g. data 
observed in literature or in pilot studies. This approach is drastically more concrete and expert curated approach 
to the task. (ii) By sampling observations from a pre-fitted mixed-effects model, our approach offers possibility to 
incorporate also indirect effects, such as censoring due to unexpected death of animals during the study, which 
may be otherwise difficult or impossible to infer directly for the model parameters. (iii) The sampling function 
relies on a readily fitted mixed-effects model for data input, automatically identifies a suitable sampling unit, and 
then re-fits the statistical model to the sampled datasets. This feature requires the experimenter to readily specify 
tested population hypotheses and the structure of the mixed-effects model already in the design phase of the 
experiment. By requiring such pre-experiment coordination of the tested hypotheses and pre-specified structure 
of the model, our method encourages well specified á priori hypotheses.

Ethics Statement. All mice were handled in accordance with the institutional animal care policies of 
the University of Turku (Turku, Finland). The animals were specific pathogen-free, fed with complete pel-
leted chow and tap water ad libitum in a room with controlled light (12 h light, 12 h darkness) and tempera-
ture (21 ±  1 °C). The two animal experiments were approved by the Finnish Animal Ethics Committee (licenses 
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ESAVI/1993/04.10.03/2011 and ESAVI/7472/04.10.03/2012). The institutional policies on animal experimen-
tation fully meet the international requirements as defined in the NIH Guide on animal experimentation. 
Supplementary Methods provide further details of the intervention experiments and Supplementary Note the 
ARRIVE guideline checklist for the two animal studies.
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