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Abstract
It has been suggested that above-ground biomass (AGB) inventories should include tree

height (H), in addition to diameter (D). As H is a difficult variable to measure, H-Dmodels

are commonly used to predict H. We tested a number of approaches for H-Dmodelling,

including additive terms which increased the complexity of the model, and observed how

differences in tree-level predictions of H propagated to plot-level AGB estimations. We were

especially interested in detecting whether the choice of method can lead to bias. The com-

pared approaches listed in the order of increasing complexity were: (B0) AGB estimations

from D-only; (B1) involving also H obtained from a fixed-effects H-Dmodel; (B2) involving

also species; (B3) including also between-plot variability as random effects; and (B4) involv-

ing multilevel nested random effects for grouping plots in clusters. In light of the results, the

modelling approach affected the AGB estimation significantly in some cases, although dif-

ferences were negligible for some of the alternatives. The most important differences were

found between including H or not in the AGB estimation. We observed that AGB predictions

without H information were very sensitive to the environmental stress parameter (E), which
can induce a critical bias. Regarding the H-Dmodelling, the most relevant effect was found

when species was included as an additive term. We presented a two-step methodology,

which succeeded in identifying the species for which the general H-D relation was relevant

to modify. Based on the results, our final choice was the single-level mixed-effects model

(B3), which accounts for the species but also for the plot random effects reflecting site-spe-

cific factors such as soil properties and degree of disturbance.

Introduction
Forest is the main terrestrial biotic reservoir for above-ground carbon stock [1]. For this reason,
accurate estimates of forest above-ground biomass (AGB) are required to understand the global
carbon cycle, thereby to implement climate change mitigation policies [2], and support project
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activities such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation in
developing countries + conservation of forest carbon stocks, sustainable management of forest
and enhancement of forest carbon stocks) [3]. Globally, substantial effort has been made to
develop robust and cost-effective above-ground biomass estimation methods, including field
measurements and remote sensing [4]. However, the accuracy in the estimation of AGB still
lags behind the required level, and uncertainties in the terrestrial carbon storage are particu-
larly large in the tropical areas [5]. In comparison to other regions of the world, the AGB esti-
mates of the African forests and woodlands, however, remain scarce [6,7]. In terms of REDD+,
large areas of savanna woodlands, shrublands and agroforestry parklands qualify as forests
(e.g. [8]). Biomass typically constitutes the largest fraction of the primary energy consumption
in these areas [7], and hence AGB estimates are important part of fuelwood resource assess-
ments [9].

Although destructive sampling of above-ground biomass estimation is an accurate method
(e.g., [9–17]), its implementation for carbon inventories is rarely practical and hence allometric
models are commonly used instead (e.g., [1,4,6,18]). Since allometric models might be an
important source of estimation uncertainty [19–22], the selection of the most suitable model
from the literature requires special attention. Furthermore, using species-specific models is an
unfeasible option in species-rich tropical countries [23] and therefore mixed species models for
groups of similar species have to be used. In the pan-tropical models, species are often taken
partly into account by including wood density (ρ) in the allometry [24], which can be either
measured or extracted from the literature or online databases (e.g., [25]).

The most typical tree parameter used as predictor in AGBmodels is the diameter at breast
height (D), because it is easy to measure with high accuracy in the field and, accordingly, it is
usually available in the forest inventory databases. Other typically used parameters are total
tree height (H), ρ and crown diameter. Allometric models based on D only are commonly
used, but the importance of including tree height in biomass estimation has been emphasized
by several authors [24,26–29]. The relationships between biomass and tree attributes depend
on factors such as site, successional status, ecological zone, forest type and management, but
H-D allometry can explain most of this variation [17]. Therefore, inclusion ofH could improve
model applicability to different sites [26]. Recently, Chave et al. [24] suggested that a single
AGBmodel based on D, H and ρ holds across tropical vegetation types, regions and environ-
mental factors.

Feldpausch et al. [27] showed that mean AGB of plots located across the tropics was 13%
lower when including H, which implies that carbon storage estimate may be prone to bias ifH
is ignored. Also the mean error in tree-level biomass estimates was halved when accounting for
H. Marshall et al. (2012) found that aboveground carbon was overestimated by 55 Mg ha–1 ifH
was not included in the allometric model in Tanzania, which would cause an overestimation of
carbon resource by about 24%. Furthermore, simulations by Molto et al. [20] showed that a “2
−5% bias in H predictions can propagate to AGB estimations off their own confidence inter-
vals“. On the other hand, sometimes AGBmodel based on D only is recommended because
such model is more parsimonious and applicable to inventory data that has only Dmeasure-
ments (e.g., [14]). Many authors have also found that inclusion ofH to biomass model might
only lead to negligible changes in biomass prediction [10,12,15,30,31]. Therefore, it is still an
open question whether the inclusion ofH in the allometry actually matters in terms of AGB
estimation, under what circumstances or conditions, and what are the factors that can lead to
relevant changes in the estimation.

Measuring H is difficult and expensive, especially in the tropics [13]. Therefore, to increase
the cost-efficiency of the field work, it is a common procedure to measure D and identify spe-
cies from every tree, but measure H just for a subset of trees, called sample trees [32]. The
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objective would then be to generalize the sample treeH to the rest of the trees, called tally trees. The
H-Dmodel is used for this purpose. There are numerous studies comparing the functional forms for
theH-D relationship. According toMehtätalo [33] the most frequently used function forms are the
power function [34], Meyer’s equation [35] and the Korf curve [36]. A plethora of basic functional
forms have been tested [37–39], but none of them has been found to be superior. TheH-D relation-
ships vary by tree species and thereforeH-D curves should be fitted by species [40–42]. However, if
the number of tree species is high, species-specific modeling is not a viable option. In that case, infor-
mation accounting for species variation should be incorporated to the model itself [43,44].

Chave et al. [24] advised that for reliable AGB estimations it is required to develop local H-
D allometry, by measuring totalH on a subsample of the trees stratified by forest type and cov-
ering the range of diameters in full. The reason for this is grounded on the fact that theH-D
relationship varies considerably between plots, stands and regions [37,45–47]. This variation in
H-D curves is often taken into account by adjusting plot/stand/region-specific H-D curve
parameters. There are, however, many alternatives to do the localization. A simple approach is
to use either existing H-Dmodel or to fit a local H-Dmodel and then re-scale it so that the
measured mean height at wanted level is obtained when the D equals to the measured mean
diameter. Alternatively, more complex models can be adjusted by adding covariates known to
modify theH-D relationship, such as site index [35], stem density [48], or other stand-level
characteristics such as basal area or dominant height [49].

A more advanced statistical approach is to use a linear or non-linear mixed-effects modeling
(NLME) [50]. NLME suits well for the generalization of sample tree information to tally trees
because plot based inventory data is collected in a hierarchical manner (e.g. tree-plot-cluster)
and random (e.g. plot-cluster) effects are available while predicting [45]. For this reason,
mixed-effects modeling was suggested by Lappi and Bailey [51] as a method to predict stand
development. The random effects allow taking into account the effect of multiple causal rela-
tions in the model [49,52] or the influence of unknown covariates [53] affecting theH-D rela-
tionship. They allow for developing models accounting for spatial variability in large-scale
modelling [43,46,54]. For these reasons, mixed-effects modelling has become a widespread
approach toH-Dmodelling [39,49,52,55,56].

In this study, our objective was to examine how sensitive AGB estimation in woodlands of
the Sudanian savanna in Burkina Faso are to the use of allometry either omitting or including
H, and the approach employed for H-Dmodelling. More specifically, first, we studied how
accuratelyH can be predicted in a species-rich study site, using a small subset of trees measured
for H and several options for non-linear fixed and mixed-effects models. Then, we examined
the propagation of theH differences into the AGB predictions. With this research we wished to
shed some light on whether the H-Dmodelling approach actually matters with regards to the
target outcome: the AGB prediction. We also compared those AGB predictions with allometry
not including H as predictor, and reflected on plausible alternatives toH-Dmodelling.

Material and Methods

Study area
The study site is located in the southern Burkina Faso in the Ziro province (approx. 11°44'N 1°
56'W) (Fig 1A). The area belongs to the West Sudanian savanna ecoregion [57]. According to
the WorldClim dataset [58], the mean annual precipitation is 827 mm in 1950–2000 and the
mean annual temperature is 27.5°C. The most of the precipitation falls between May and Sep-
tember, the wettest month being August. The driest months are December, January and Febru-
ary. Mean minimum and maximum temperatures were 24.7°C and 38.3°C in the warmest
month (April) and 16.1°C and 33.6°C in the coldest month (December). In the Köppen-Geiger
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climate classification, the area lies in the transition of Arid steppe (BSh) and tropical savanna
climate types (Aw) [59]. Topographically, the study area is relatively flat with a mean elevation
of 350 m above sea level. Plinthosols with subsurface accumulation of ironoxides, kaolinitic
clay and quartz (plinthite) are the dominant soil type [60].

The land cover in the study area consists of savanna woodlands with variable densities of
tree crown cover, surrounded by settlements and agroforestry parklands, which are typically
dominated by single species, like Vitellaria paradoxa [63]. Majority of the forest area is under
community forest management and protection (Chantiers d'Aménagement Forestier, CAF), a
1986’s participatory program aiming at providing sustainable fuelwood production for the cap-
ital Ouagadougou which involves the local communities in the practical management of forests
[64]. Furthermore, forests and woodlands are also partly used for livestock grazing [64]. Fires
due to anthropogenic and natural causes take place regularly in the study area and influence
the ecology of the vegetation (e.g., [65]).

Field data collection
Field data consisted of 160 sample plots measured between December 2013 and February 2014
in the framework of Building Biocarbon and Rural Development in West Africa (BIODEV).
Permissions for field work where given by Institut de l'Environnement et Recherches Agricoles
(INERA). The sampling design was based on the Land Degradation Surveillance Framework
(LDSF) [61,62]. The 10,000 ha (10 km × 10 km) site was stratified into 16 tiles, which were

Fig 1. (a) The location of the study area and (b) the distribution of the sample plots. Different colours signify clusters in a sampling design which
followed the Land Degradation Surveillance Framework (LDSF) [61,62]. The background reference is a map of crown cover predictions, courtesy of Jinxiu
Liu (unpublished; see acknowledgments).

doi:10.1371/journal.pone.0158198.g001
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sampled by 100 ha clusters. Each cluster had ten 0.1 ha circular sample plots (radius 17.84 m).
Cluster and sample plot centre points were randomly placed (Fig 1B). At each of 0.1 ha plots,
diameters were measured at a height of 1.3 m above ground (D; cm) for the stems having
D> 10 cm. Tree height (H; m) was measured for trees of smallest, median and largest diame-
ter. Furthermore, all the stems having D = 4–10 cm were counted at four 0.01 subplots (radius
5.64 m) evenly located within each 0.1-ha plot [62], where also D andH were measured and
species recorded for the median diameter tree. Diameters were measured using a diameter
tape, and heights with a hypsometer (Suunto PM-5/1520, Vantaa, Finland). Tree species were
determined for each stem by a field crew with local expertise.

Out of those 160 plots, 152 plots had living trees.Dwas measured for a total of 2298 stems, and
bothD andH for 403 stems. Descriptive statistics for the sample plots are given in Table 1. A total
of 54 tree species were observed, although the ten most common species accounted for 80% of the
stems (Fig 2).Anogeissus leiocarpus and Vitellaria paradoxawere the most common tree species
(Fig 2). In the trees sampled forHmeasurement, there were in total 36 tree species present.

Height-Diameter (H-D) modelling
H-Dmodelling was carried out in R environment (version 3.1 [66]), using the package “nlme”
(version 3.1–117 [67]), which fits non-linear mixed-effects models by maximum likelihood
(ML). We compared the performance of a large number of model forms available in the litera-
ture [39] using the model comparison tools available in package “lmfor” (version 1.1 [68]).
Two-parameter Curtis’s function [36] showed the best fit while conforming to the assumptions
of normality, homoscedasticity and lack of trend in the residuals:

HðDÞ ¼ 1:3þ aD

ð1þ DÞb ð1Þ

where 1.3m is the breast height at which diameters were measured and α,β are model parame-
ters. Therefore, the general model can be expressed as:

hijk ¼ f ðα; β; xijkÞ þ eijk; i ¼ 1; . . . ; njk; j ¼ 1; . . . ;Mk; k ¼ 1; . . . ;K; ð2Þ

where hijk is theH of a tree imeasured within plot j in cluster k, and eijk the model residuals. f is
the non-linear function, Eq 1 in this case, (α,β) being its parameter vectors. xijk is a vector of
covariates used for predicting H, which was only D in the simplest case. Therefore, the case for
the simple fixed-effectsH-Dmodel (M1) was defined by:

xijk ¼ dijk ð3Þ

α ¼ a0

β ¼ b0

Table 1. Descriptive statistics for the sample plots with trees (n = 152).

Min Max Mean SD

Stem density (stems ha-1) 10 1935 494 401

Mean diameter (cm) 6.4 40.0 15.2 8.5

Quadratic mean diameter (cm) 8.2 48.1 21.6 7.5

Basal area (m2 ha-1) 0.2 16.1 5.6 3.6

doi:10.1371/journal.pone.0158198.t001
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Then, we considered the possibility of accounting variability in these parameters due to the
presence of 36 different species (sp), which may show a differentH-D relation due to physio-
logical differences and interspecific competition within the plant:) no more than plantsaying?
(and e.ves a greater impression of high species mixture. (). a case study)this whole thing can
community. The species of each H-measured tree (spijk) were therefore included in the covari-
ate vector, as well as species-specific parameters (αsp,βsp). An additional term for sp was there-
fore added, obtaining a second fixed-effects H-Dmodel (M2) as:

xijk ¼ ðdijk; spijkÞ ð4Þ

α ¼ a0 þ asp

β ¼ b0 þ bsp

Fig 2. The frequencies of the twenty most common tree species ordered by the proportion of the total basal area. Frequencies
of stems (proportions of total density) for those same species are also shown.

doi:10.1371/journal.pone.0158198.g002

Sensitivity of Biomass Estimates to H-DModels

PLOS ONE | DOI:10.1371/journal.pone.0158198 July 1, 2016 6 / 24



Next, between-plot variability was accounted for by adding plot random effects (aj,bj) as an
additional term in a mixed-effects model (M3) as:

xijk ¼ ðdijk; spijkÞ ð5Þ

α ¼ a0 þ asp þ aj

β ¼ b0 þ bsp þ bj

Finally, the last step was to consider the clustered sampling design followed after LDSF [62]
(Fig 1B), by using nested levels of grouping for these random effects. The final mixed-effects
model (M4) therefore included two random effects: a first (outer) level of grouping for clusters
(b0k), and a second (inner) level for the plots contained within each cluster (bjk):

xijk ¼ ðdijk; spijkÞ ð6Þ

α ¼ a0 þ asp þ ajk þ a0k

β ¼ b0 þ bsp þ bjk þ b0k

To summarize, as a result of H-Dmodelling, we obtained the followingH estimations for
each tree:

• M1:H predicted from model based on D fixed effects (Eqs 2 and 3);

• M2:H predicted from model including D and species as fixed effects (Eqs 2 and 4);

• M3:H predicted from mixed-effects model including D and species as fixed effects and
between-plot random effects (Eqs 2 and 5); and

• M4:H predicted from mixed-effects model including D and species as fixed effects and mul-
tilevel nested between-cluster and between-plot random effects (Eqs 2 and 6).

Accuracy of each model was assessed by computing the bias (mean difference of predicted
and observed values) and root mean square error (RMSE) of model residuals, and expressing
them in both absolute (m) and relative (%) units. Since effects were included as nested additive
terms, increasing model complexity, whether the additions incorporated significant portions of
explained variance was determined with likelihood ratio (LR) tests of their ML fits, using
“lmtest” package [69]. Therefore, in LR tests a χ2 distribution was used to test the null hypothe-
sis, which was the goodness of fit without the additional term (i.e., minus log-likelihood of the
model of immediately decreasing complexity fromM4 toM1).

Modelling steps
The general modelling setting described in the previous sub-section was subject to diagnose of
model assumptions, which shaped the final models presented in results. According to Eq 3, the
simple fixed-effects (α0,β0) modelM1 was fitted as:

hijk ¼ 1:3þ a0dijk

ð1þ dijkÞb0
þ eijk ð7Þ

This model obtained significant estimates for all parameters (see Table 2 in results). The
model form chosen achieved a homogeneous distribution of residuals, which was specially
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challenging for larger trees, rendering other alternatives unreliable. AlthoughM1was unbiased, it
was considered that its precision could be improved by including additive effects from other covari-
ates available. The first such covariate considered was the effect of species, since in highly mixed-
species forest it was likely that some species may significantly differ from the main effects in Eq 7.
Our strategy was to selected the species to be added as fixed effects on the grounds of statistical sig-
nificance, based on two steps: (i) incorporating these effect for all species, as a means for selecting
the significant ones, and (ii) using those selected ones in a final fixed-effects model predictingH
from bothD and species. Then, after obtaining unreliable intercept estimates when adding species
effects in the numerator of the equation (αsp; Eq 4), it was decided to incorporate these fixed effects
in the exponent of the denominator (βsp; Eq 4) only. For the first step to select significant species,
we added a categorical variable describing all theH-measured species (spijk) as fixed effects:

hijk ¼ 1:3þ a0dijk
ð1þ dijkÞðb0þbspspijkÞ þ eijk ð8Þ

Considering significances at the 95% level, five were the species which obtained a significant
estimate for the βsp parameter (in order of significance): Anogeissus leiocarpus, Burkea africana,
Combretum molle, Prosopis africana and Pterocarpus erinaceus. However, a model including
these five species effect as dummy variables violated model assumptions, showing the influence
of outliers in residuals, and presented an estimate for P. erinaceus with high standard error.
Accordingly, this model was rejected and, by increasing the significance level to 99%, the num-
ber of species was reduced to three: A. leiocarpus, B. africana and C.molle. Therefore, these spe-
cies were selected and added as dummy variables (denoted by the first letters of their genus and
species: Alijk; Baijk; Cmijk), resulting in a simpler modelM2:

hijk ¼ 1:3þ a0dijk

ð1þ dijkÞðb0þbAlAlijkþbBaBaijkþbCmCmijkÞ þ eijk ð9Þ

Table 2. Parameter estimates for the models M1-M4. σ: standard deviations. SE: standard errors. RMSE: root mean square error. D: tree diameter; j: plot;
k: cluster. Levels of significance: **, <0.01; ***, <0.001.

M1: Fixed-effects (Fixed = D) M2: Fixed-effects (Fixed = D
+ species)

M3: Mixed-effects (Fixed = D
+ species; Random = plot)

M4: Mixed-effects (Fixed = D
+ species; Random = plot
+ cluster)

Parameter† Estimate SE Estimate SE Estimate SE Estimate SE

α0 1.378*** 0.161 1.281*** 0.129 1.299*** 0.120 1.290*** 0.120

β0 0.484*** 0.035 0.487*** 0.030 0.491*** 0.028 0.490*** 0.028

βA.leiocarpus -0.122*** 0.009 -0.119*** 0.010 -0.118*** 0.010

βB.africana -0.065*** 0.013 -0.068*** 0.014 -0.065*** 0.014

βC.molle -0.078** 0.024 -0.075*** 0.022 -0.074*** 0.022

sbj
; sbjk

0.041 0.034

sb0
k

0.023

σres 2.027 1.728 1.424 1.421

RMSE (m) 2.022 1.717 1.516 1.549

RMSE (%) 25.64 21.78 19.23 19.65

Bias (m) -8.77�10−5 1.28�10−2 3.45�10−2 2.13�10−2
Bias (%) -0.001 0.162 0.437 0.270

† see Eqs 7, 9, 11 and 12.

doi:10.1371/journal.pone.0158198.t002
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As in other cases, these effects were also initially tested to modify both the intercept (α) and
the slope (β), however in the end they were only left in the slope due to lack of significance in
the intercept.

The next step was to include the plot random effects into a mixed-effects model (M3).
According to Eq 5, plot random effects (aj,bj) were incorporated from Eq 13 as:

hijk ¼ 1:3þ ða0 þ ajÞdijk
ð1þ dijkÞðb0þbAlAlijkþbBaBaijkþbCmCmijkþbjÞ þ eijk ð10Þ

Although, when this model was fitted, the assumptions of independent and identically dis-
tributed random effects was not met. After detecting high correlation between the random
effects r(aj,bj) = −0.997, it was decided to leave the random effects only in the exponent of the
denominator (i.e. aj = 0). Therefore, we obtained a simpler mixed-effects model accounting for
plot effects (M3) which was finally used:

hijk ¼ 1:3þ a0dijk
ð1þ dijkÞðb0þbAlAlijkþbBaBaijkþbCmCmijkþbjÞ þ eijk ð11Þ

M3 was only useful in case that at least one height measurement was available for a
given plot. There were, in fact, seven plots out of the total 152 plots containing trees, for
which no height measurement was taken. In order to obtain the final AGB estimation based
in both D and H (see next section below), the H prediction fromM2 was taken for those few
plots.

Finally, the convenience of using a more complex multilevel mixed-effects (M4) accounting
for both between-plots effects (bjk) nested within between-clusters effects (b0k) was also evalu-
ated as:

hijk ¼ 1:3þ a0dijk
ð1þ dijkÞðb0þbAlAlijkþbBaBaijkþbCmCmijkþbjkþb0

k
Þ þ eijk ð12Þ

As in the previous cases, the inclusion of these effects in both intercept and slope (Eq 6) was
initially considered but dismissed after observing lack of statistical significance for the inter-
cept. Similar restrictions to the use ofM3 apply forM4 as well, and therefore the prediction of
H from modelM2 had to be taken for the few plots where no tree heights were measured, with
the intention of obtaining the corresponding final AGB estimation.

Computation of aboveground biomass
We used pan-tropical allometric models from Chave et al. [24] for predicting AGB. The models
are based on trees (D from 5 to 212 cm) harvested from a wide range of tropical climatic condi-
tions and vegetation types (tropical forests, subtropical forests and woodland savannas). When
H is available, the best-fit pan-tropical model for tree AGB (kg) is (Eq 4 in Chave et al. [24]):

AGB ¼ 0:06773 ðr � D2 � HÞ0:976 ð13Þ
which includes the effect of species-specific wood densities (ρ; g cm–1). In the absence ofH, the
following alternative model is recommended (Eq 7 in Chave et al. [24]):

AGB ¼ exp½�1:803þ 0:976ðlnðrÞ � EÞ þ 2:673 lnðDÞ � 0:0299½lnðDÞ�2� ð14Þ
where E is a dimensionless measure of environmental stress based on temperature seasonality
(TS), climatic water deficit (CWD) and precipitation seasonality (PS) (Eq 6b in Chave et al.
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[24]):

E ¼ ð0:178 � TS� 0:938 � CWD� 6:61 � PSÞ � 10�3 ð15Þ

We computed AGB for each tree in the 0.1-ha plots using Eq 13 and differentH predictions.
AGB was also computed for median diameter trees in the 0.01-ha subplots using the measured
H. Wood density values ρ were derived from Nygård and Elfving [70] and online databases
[25,71]. They were assigned to each tree from the closest taxonomic level available [44,72]. 97.5%
of stems had ρ data available from species level and 100% from genus level. Averaged r values
were used whenever there were multiple values for a same species. On the other hand, AGB
based onD only was computed using Eq 8. The value of E (0.701) was extracted from the global
gridded dataset (2.5 arc sec resolution) provided by Chave et al. [24], and given to the entire
study area. To finalize, in order to compute plot-level AGB predictions (Mg ha–1), we assigned a
hectare expansion factor (HEF) for each stem, according to the size of the plot/subplot where it
was measured (i.e. HEF = 10 for 0.1-ha plots, and HEF = 25 for the four 0.01-ha subplots).

As a result of all the above-mentioned options forH-Dmodelling, we also obtained a similar
list of different plot-level AGB predictions:

• B0: AGB obtained from measured D only (Eq 14);

• B1: AGB obtained from measured D and predicted H (Eq 13), usingM1model with D fixed
effects (Eqs 2 and 3);

• B2: AGB obtained from measured D and predicted H (Eq 13), usingM2model with D and
species fixed effects (Eqs 2 and 4);

• B3: AGB obtained from measured D and predicted H (Eq 13), usingM3model with D, spe-
cies fixed effects and between-plot random effects (Eqs 2 and 5);

• B4: AGB obtained from measured D and predicted H (Eq 13), usingM4model with D, spe-
cies fixed effects and multilevel nested between-cluster and between-plot random effects (Eqs
2 and 6);

Effects of environmental stress factor (E) and baseline determination
It is worth noting that the AGB allometry without H as predictor in Eq 14 assumes a pan-tropi-
cal H-Dmodel that depends on E (Eq 6a in Chave et al. [24]):

lnðHÞ ¼ 0:893� E þ 0:760 lnðDÞ � 0:0340½lnðDÞ�2 ð16Þ

In other words, in a hypothetical case of empirical H-D data fitting exactly to this relation,
there would be no difference between Eqs 13 and 14 for predicting AGB. In the context of the
present article, we name this modelM0, as the H-Dmodel that corresponds to the AGB predic-
tions obtained by B0 (for comparison to our own modelsM1-M4, the pan-tropical model has
been incorporated to Fig 3A, see results). We considered that such hypothetical case could be
regarded as a ‘baseline’ (assumed most accurate, in absence of destructive sampling of AGB) to
which all other alternatives could be compared. For that purpose, using our empiricalH-D
data, we solved E from Eq 16. The result was an alternative E ‘calibrated’ to the specific local
conditions defined by the empirical H-D relations measured in the field, which can be applied
directly in Eq 14. The calibration was carried out by including the exponential form of Eq 16 in
function “nls” [66], obtaining the adjusted value for E which best fits to the measured H-D
data. In the context of the present article, these are the baseline model (M0�) and its subsequent
AGB predictions (B0�).
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Assessing statistical differences among alternatives
We were especially interested in detecting whether the choice of method can actually lead to
bias in AGB estimation, which is a conclusion that can be deducted by simply comparing meth-
ods. In the absence of AGB data obtained by destructive sampling which would allow an inde-
pendent validation of the final AGB estimations, we considered that accounting for differences
between the modelling approaches can provide an idea on how differences in H-Dmodelling
can propagate to the final AGB predictions [11,20]. After obtaining all the alternative AGB pre-
dictions (B0-B4 and the baseline B0�), we tested whether they were significantly different, or
otherwise the AGB allometry and H-Dmodelling approach does not significantly affect the
final outcome. With that intention, we computed pair-wise differences (diff) between all plausi-
ble combinations of the alternatives. Since normality could not be assumed for all groups, the
hypothesis that two alternatives were significantly different was tested using paired Wilcoxon
signed rank tests (R function “wilcox.test”).

Results

H-Dmodelling
Fig 3 shows the fit for the final H-Dmodels, whereas Table 2 details their estimates and sum-
marizes their performance in terms of accuracy and bias. Fig 3A also includes the fit that would
correspond to modelM0 (dashed line), which is the assumed H-D relation (Eq 16) for the AGB
prediction using only D as predictor (B0). Table 3 shows the results of model comparison by
LR test.

Nested additive terms were successively included so that models were increasing in com-
plexity.M1 was accepted as a valid and unbiased H-Dmodel, although its RMSE of 25.64%
was deemed quite high (Table 3), and therefore we considered the possibility of including addi-
tional effects. Observing the model fit against the training data, it became apparent that some
species (Fig 3A) stand out from the general H-D relation in this forest community. When indi-
vidual species were highlighted in residual versus prediction plots, some of those residuals
appeared to be highly biased for few individual species (Fig 4). It therefore seemed to exist an
important species effect in theH-D relation (Eq 4), although there was a challenge in defining
for which species a modification in the model was actually necessary. Using the two-step
approach to determining significant species effects, as detailed in sub-section “modelling
steps”, the following species were finally selected for species effects: A. leiocarpus, B. africana
and C.molle (Fig 4). Although the significance for the latter one was weak (Table 2), it was
accepted as the standard error of its estimate was acceptable. ModelM2 (Fig 3B) explained a

Fig 3. Model fit plots. Effects were included as nested additive terms, increasing complexity: (a) fixed-effects H-Dmodel; (b) adding species fixed effects;
(c) adding plot random effects; and (d) adding cluster random effects. Predictions have been omitted from (a), since they are known to follow the fixed-effects
model (solid line), so that the species distribution in the training data can be observed more clearly in this plot.

doi:10.1371/journal.pone.0158198.g003

Table 3. Likelihood ratio tests comparing nested models. -LogLik.:—log of likelihood; D: tree diameter. Levels of significance: **, <0.01; ***, <0.001.

χ2

-LogLik. M2 M3 M4

M1: Fixed-effects 855.65 131.85*** 172.65*** 180.96***

M2: Fixed-effects (D + species) 789.73 40.80*** 49.11***

M3: Mixed-effects (D + species + plot) 769.33 8.31**

M4: Mixed-effects (D + species + plot+ cluster) 765.17

doi:10.1371/journal.pone.0158198.t003
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substantially higher proportion of variance thanM1, achieving a reduction of the RMSE down
to 21.78% (Table 2). Results from the LR test demonstrated the significance of including these
additional terms in the model (Table 3).

Fig 4. Plot of residuals versus predictions for fixed-effectsH-Dmodel (M1). Species which were found to significantly
include additional effects are highlighted.

doi:10.1371/journal.pone.0158198.g004
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The next increase in model complexity was the inclusion of plot random effects. ModelM3
delivers predictions (triangular symbols in Fig 3C) that differ from the fixed part of the model
(solid lines in Fig 3C) according to ratios of variances within-plots and between-plots (sbj

).M3

was very successful in terms of model fit, since all parameter estimates were significant
(Table 2), with residuals from Eq 11 showing normality, heteroscedasticity and independence
of predictors and random effects, and also lacking dependencies (correlations) among random
effects (not the case for Eq 10, which was therefore dismissed). Compared toM2,M3 obtained
a considerable increase in the amount of explained variance and lower RMSE (Table 2). LR test
demonstrated the significance of incorporating the between-plot variability as random effects
into the previous fixed-effects modelM2 (Table 3), and it was therefore accepted the inclusion
of this additional term (bj).

Furthermore, as detailed in Eq 12, a final multilevel mixed-effects (M4) including nested
levels for plot and clusters effects, was obtained. In the case of modelM4, final predictions (tri-
angular symbols in Fig 4C) depend on ratios of within-groups variances with respect to
between-clusters variance (sb0

k
) and variances between-plots at each cluster (sbjk

). Diagnosis of

the resulting modelM4 (Fig 3D) was positive, although the amount of explained variance was
very similar to the other simpler mixed-effects modelM3 (Table 2). A very surprising outcome
was to observe a slight increase in the RMSE ofM4 with respect toM3. Nonetheless, the LR
ratio test between these two models was still significant at a 95% level (Table 3), and therefore
the incorporation of this nested additional random effect between clusters could, in principle,
be accepted.

Comparison of AGB estimates
Five different plot-level AGB predictions (B0-B4) were obtained, each corresponding to one
H-Dmodel alternative (M0-M4). (Fig 5A) compares their box-whisker plots and Table 4
includes their summary statistics. Table 4 also presents a matrix of all combinations for pair-
wise differences (diff) whereas, for simplicity, the box-whisker plots selected for Fig 5B only

Fig 5. (a) Above-ground biomass (Mg�ha-1) predictions at plot-level obtained by different methods and (b) their absolute
differences. For simplicity, differences are shown sequentially, comparing methods which increase the complexity of prediction
successively. B0: Eq 14; B1: Eqs 13 and 7; B2: Eqs 13 and 9; B3: Eqs 13 and 11; B4 Eqs 13 and 12; B0*: Eqs 14 and 16.

doi:10.1371/journal.pone.0158198.g005
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compare differences between options of successively increasing complexity: B0 versus B1; B1
versus B2; B2 versus B3; and B3 versus B4. We used actual Mg�ha-1 units to help the reader in
reflecting on the practical significance of absolute AGB differences. Positive diff values denote
underestimation with respect to the simpler option, and negative corresponds to overestima-
tion (i.e., diff is rows minus columns in Table 4). Medians and interquartile ranges (IQR) for
diff are reported, because the distribution of some of the differences was extremely asymmetric.
Table 4 also includes a matrix of significance results for the Wilcoxon signed rank tests for
those differences. The null hypothesis for those tests was that differences between two groups
equal zero (H0: diff = 0).

Although some of the differences seem negligible overall (Fig 5A), they may also be system-
atic and therefore lead to bias in AGB estimation (Fig 5B). Taking into account the worst case
scenario (B0 versus B1 or B2), 95% of differences observed in plot-level predictions were
reaching roughly 5.5 Mg�ha-1 at most. However, AGB predictions from Eq 8 may be biased,
since differences between option B0 and the rest of alternatives were all significantly different
than zero (Table 4). For instance, 82.3% of B0 –B1 differences were above zero, which showed
that using Eq 7 makes predictions systematically below those obtained by Eq 8, however with
some exceptions.

This was not the case for the rest of contrasts carried out, which were largely non-signifi-
cant, in spite of the significances found in the final fit of the H-Dmodels (Table 3). Only the
inclusion of species effects could be considered to significantly affect the final AGB predictions,
although only considered under a 90% level of significance (p-value = 0.065; Table 4). Differ-
ences in the AGB predictions between approaches using fixed-effects or mixed-effects H-D
models could be considered negligible, although it may be worth noting the presence of numer-
ous outliers among the plot-level AGB differences obtained when the additional term incorpo-
rated were the random effects B2 –B3 (Fig 5B).

Effect of environmental stress factor (E)
Since the AGB estimations not using H as predictor in the allometry (Eq 14; B0), were notably
different from all those including aH-Dmodel, we considered it relevant to further investigate
the reasons for what seemed an overestimation in B0. In order to investigate the sensitivity of
the AGB estimations to changes in the E parameter, we employed Eq 16, which tells us theH

Table 4. Comparison of above-ground biomass (AGB) estimates including summary of plot-level AGB, pair-wise differences amongmethods (diff;
rowminus column), and significances yielded by pairedWilcoxon signed rank tests (H0: diff = 0). Levels of significance: NS, not significant; •, <0.1; *,
<0.05;***, < .001. SD: standard deviation. IQR: inter-quartile range. AGB: above-ground biomass;D: tree diameter;H: tree height; sp: species; j: plot; k: clus-
ter; E: environmental stress. B0: Eq 14; B1: Eqs 13 and 7; B2: Eqs 13 and 9; B3: Eqs 13 and 11; B4 Eqs 13 and 12; B0*: Eqs 14 and 16.

AGB (SD) (Mg
ha-1)

diff: median (IQR) (Mg ha-1) p-value

B1 B2 B3 B4 B0* B1 B2 B3 B4 B0*

B0: AGB = f(D) 21.32 (14.47) 1.226
(1.74)

1.451
(2.10)

1.199
(2.35)

1.075
(2.30)

2.148
(1.47)

< .001*** < .001*** < .001*** < .001*** < .001***

B1: AGB = f(D,H =
f(D))

19.49 (13.47) 0.218
(0.98)

0.117
(1.30)

0.021
(1.41)

0.331
(1.19)

.065• .909NS .786NS .042*

B2: AGB = f(D,H =
f(D,sp))

19.53 (13.67) -0.013
(0.86)

-0.014
(0.92)

0.423
(1.67)

.634NS .271NS .050•

B3: AGB = f(D,H =
f(D,sp,j))

19.72 (14.10) -0.002
(0.26)

1.669
(0.86)

.239NS .031*

B4: AGB = f(D,H =
f(D,sp,j,k))

19.72 (14.06) 0.857
(3.14)

.043*

B0*: AGB =
f(D,E = f(D,H))

19.17 (13.01)

doi:10.1371/journal.pone.0158198.t004
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that on average corresponds each D under the environmental stress conditions defined by a
given value of E. In Fig 3A, the dashed line depicts that model for the exact case of E = 0.70
applied in this study site (M0). Fig 6 shows how changing values of E within a range of 0.6–0.9
affects the prediction ofH from D, and how this propagates to AGB predictions at the tree level
(B0).

As explained in the sub-section about “assessing statistical differences among alternatives”,
we determined baseline AGB predictions as those for the value of E which secured the best fit
of Eq 16 to the empirical H-D data (M0�). This ‘calibrated’ value was found to be E = 0.81
(Table 5), and its subsequent AGB predictions (B0�; Eq 14) were unbiased with respect to those

Fig 6. Sensitivity of tree height (H) and tree-level above-ground biomass (AGB) predictions to changes in the environmental stress
parameter (E). (a) Tree H predictions by Eq 16, including (white colour) those obtained by the value of E = 0.7 extracted from Chave et al. [24]
(B0; Fig 3A) and the calibrated baseline value (B0*; Table 5), and compared with those measured in the field (black colour). (b) Pair-wise
differences of those H predictions against measured values. (c) Tree-level AGB predictions, also includingB0 andB0* (white colour), and
compared with the AGB predictions obtained directly from field measurements, applying the corresponding Eq 13 (black colour). (d) Pair-wise
differences of those AGB predictions and those obtained directly from field measurements. Outliers have been omitted from (c) and (d) to
improve the clarity of figures.

doi:10.1371/journal.pone.0158198.g006
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obtained directly from the fieldH-Dmeasurements, via Eq 13 (Fig 6D). The inclusion of the
red dashed line within boxplots’ notches in Fig 6B and 6D, are therefore also an indication of
whether they are significantly equal to the measured values, whereas its exclusion from within
those notches signify a possibility for bias. Also, to help the reader in reflecting on the absolute
AGB differences, we incorporated plot-level aggregates of B0� to Table 4 and Fig 5A. Moreover,
Fig 5B also includes B0�–B1 differences, which can be directly compared to B0 –B1, showing
the effect of calibrating E for obtaining the best fit to Eq 16. All by-group differences and their
significances have also been added to Table 4. Differences between the baseline (B0�) and H-D
modelling approaches were statistically significant, although significance levels were much
lower than those for the approach using D only (B0).

Discussion
In the framework of a project quantifying carbon stocks and inventorying fuel wood resources,
this particular research aimed at detecting the effect of H-Dmodelling in AGB estimation
using many of the options available in the literature. Chave et al. [24] recommended to include
H as a predictor in AGB allometry, and preferably develop locally-fittedH-Dmodels for each
study. The cluster sampling design employed in our field data collection and the high number
of species present in the study area led us to an a priori assumption that the correct approach
should be a multilevel mixed-effects model designating the hierarchical levels of sampling as
random effects, and also including fixed effects accounting for species influence. However, as
detailed in the results for H-Dmodelling, the development of such a complex model requires
some skill in carefully checking that modelling assumptions are met and no critical dependen-
cies are left among random effects, residuals, etc. [50]. On the other hand, Mehtätalo et al. [39]
found no critical differences among H-Dmodelling approaches, while Feldpausch et al. [47]
recommended to include plot-level random effects in tropical H-D allometric models. The key
question for us was: does theH-Dmodelling approach actually matter to the final purpose of
AGB estimation, or could otherwise the simplest option work out a proper prediction for AGB?

Multilevel versus single-level random effects
Considering the final AGB estimations, differences between theH-Dmodels including nested
multilevel random effects (B4) and the single-level plot random effects (B3) were negligible
and probably lacked importance in practice. Differences were only marginal, dispersing nar-
rowly around zero (Fig 5B), within an approximate 95% confidence interval of– 0.002 ± 0.50
Mg�ha-1. Therefore, in spite that the inclusion of nested multilevel random effects was concep-
tually the most appropriate approach for the sampling design based on LDSF [61,62], adding
such complexity to theH-Dmodel may not matter much in practice, after all.

Table 5. Baseline determination (E ‘calibration’) (M0*). σ: standard deviations. SE: standard error.
RMSE: root mean square error. Level of significance: ***, <0.001.

M0*: Calibration of E

Parameter† Estimate SE

E 0.808*** 0.018

σres 2.841

RMSE (m) 2.837

RMSE (%) 35.94

Bias (m) -0.279

Bias (%) -3.535

doi:10.1371/journal.pone.0158198.t005
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Furthermore, although the LR tests found the inclusion of cluster-plus-plot random effects
significant compared to plot-only (Table 3), the significance level was lower than other con-
trasts’. It was also observed thatM4 increased the RMSE with respect toM3, which may be a
sign of overfitting for the multilevelH-Dmodel. In conclusion, since the complexity of the
model was increased without substantially improving its precision, we decided that modelM3
with single level of grouping for random effects was more convenient in practice. However,
this result may reflect an absence of significant landscape-level differences or gradients influ-
encing theH-D relation at our study area. This may be the case since, for example, the entire
study area shared a same value of environmental stress (E) (sensu Chave et al. [24]). The inclu-
sion of multilevel random effect could, however, be relevant in studies following LDSF inven-
tory design over larger areas, or dealing with more heterogeneous landscapes or latitudinal/
altitudinal gradients.

Mixed-effects versus fixed-effects models
Mixed-effects models outperformed fixed-effects ones in terms of LR tests and accuracies.
However, the plot random effects (bj) are only useful in plots where at least one tree has been
measured, providing a calibrated prediction [73]. In turn, the advantage is that this same
model could be applied on additional field plots from this same study area if acquiring a higher
sample size was considered necessary [32,46].

Although results inH-Dmodelling suggested the importance of the mixed-effects model
M3 with regards to the final plot-level AGB estimations (Table 4), we found no substantial dif-
ferences between the models that included random effects (B3-B4) and those which did not
(B1-B2). This does not mean that AGB differences between these approaches are not impor-
tant, but that they are not systematic. As mentioned, in the absence of data for external valida-
tion, we cannot reflect on the accuracy of each approach, but only study differences in means
and infer that they could indicate the presence of bias. In the light of our results, there are no
systematic differences between the AGB estimations based on the fixed-effects and mixed-
effects models, and therefore omitting the random effects would not lead to bias in the AGB
estimation for the study area. This is, however, not an unexpected outcome, since it demon-
strates that the random effects are actually random. Nonetheless, Fig 5B shows the presence of
a large number of outliers in B2 –B3. This may mean that the mixed-effects model is mending
the prediction for few given plots, which were probably needing it, possibly having characteris-
tics that makes them differ slightly from others, such as soil [47], site productivity, or relative
stand density [22]. Differences between B2 –B3 show that AGB discrepancies were enclosed
within– 0.013 ± 1.69 Mg�ha-1 (Table 4). This suggests that, although the fixed-effects model
would by itself lead to an unbiased AGB estimation for the entire study area, the mixed-effect
models may correct some large errors which may be relevant at some plots, better reflecting the
spatial distribution of AGB. The most conservative choice is therefore to use mixed-effects
modelling to avoid error at such areas, and therefore B3 is our recommended option among
those compared.

H-Dmodelling with species effect versus D-only
The effect of species observed in theH-Dmodel showed that only few species had a slightly dif-
ferent relation than others (Fig 4). These may be species that dominate the top of the canopy
and grow taller for a same D than other species do [74]. Availability of sufficient sample size
for a given species may also critical for finding significant differences in its H-D relation, and
therefore the species that were finally found to significantly differ from the others–A. leicocar-
pus, B. africana and C.molle–also show some of the highest frequencies in the study area (Fig
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1). There was, however, no univocal relation between sample size and significance, since not all
species with large sample sizes were found to significantly affect theH-D relation (36 species
tested). In practice this shows the reliability of the method for identifying significant species
effects, but it also means that we cannot statistically assure whether a differentH-D relation
should apply the rest of species, as probably many more among the non-significant ones do. In
turn, since A. leicocarpus, B. africana and C.molle collectively account for almost 40% of the
total number of stems (Fig 1), their effect on the final AGB computations is greater. As a result,
not only including the additional term for species was found to be significant for H prediction,
but the derived plot-level AGB estimation was significantly different (B1 versus B2; Table 4).
These differences reached 0.218 ± 1.69 Mg�ha-1, which may be relevant specially if considering
that there is an overall bias leading to overestimation if no species information is included. All
these significances found in the species fixed effects showed the importance of accounting for
species-wise differences in H-Dmodelling of highly-mixed tropical forests. Therefore, the
effects by species were demonstrably the most relevant we found among those considered.
However the inclusion of random effects, although being systematic and of lesser importance,
may also lead to improvements in some given plots.

Topics related to the effect of species in allometry and methods dealing with species mixture
in AGB estimations are of current interest in the research literature [22,23,75]. Typical
approach is to derive separate H-D allometry for each species (e.g., [39–42]), although this may
be unpractical in highly mixed forests [27]. The alternative is to use pan-tropical models [24],
in which it is commonly assumed that the effect of species in biomass estimations is implicitly
included when considering species-specific ρ in the AGB allometry (e.g., [29]). However, even
though ρ was included in B1 (Eq 7), we still observed a weak significance in its plot-level differ-
ences against the AGB predictions of B2, which made use of theH-Dmodel accounting from
species effect (Table 4). This may indicate a possibility for bias in AGB predictions using a pan-
tropical AGBmodel if the species effect is not accounted for in the H-Dmodel. In our study,
we were even surprised to find that the fixed species effect was more relevant than the random
plot effect, in terms of added explained variance. Accordingly, we suggest to include additional
terms accounting for species effects in the H-Dmodels. In this article, we presented a two-step
replicable methodology to tackle with the presence of multiple species in a same study area. In
the first step, species was added as a fixed-effect factor only with the purpose to identify the sig-
nificant species, which were added as separate dummy variables in the second step and final
model. We suggest that this method can be easily replicable in other highly mixed-species for-
est areas.

AGB allometry using D-only versus D and H
The largest differences were found between the AGB estimations obtained from the allometry
involving only D (B0; Eq 8), and those including both as predictors (B1-B4; Eq 7). Results
were very significant, with clearly biased differences which reached levels within a 95% confi-
dence interval of 1.451 ± 4.12 Mg�ha-1 (Table 4). This result was not surprising, since it is con-
vergent with conclusions drawn by Chave et al. [11, 24], that best approach is to derive local H-
D allometry for each study. Some readers may think of a plausible fifth alternative to those con-
trasted in this article: apply a publishedH-Dmodel and use those H predictions in Eq 13. It is
noteworthy to mention that we also tested H-Dmodels published by Feldpausch et al. [27] and
Banin et al. [74], only to observe that such approach would dramatically overestimate H and
hence AGB for our study area. The reason is that those models have been fitted in very different
kind of forests and conditions than those present at this study site. The fact that they are unbi-
ased over the extent at which they were adjusted (pan-tropical, continental or regional) does
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not prevent that they can lead to bias if applied locally, like it was for our case. In contrast, the
flexibility provided by the E parameter in Chave et al.’s [24] models allows modifying the inter-
cept for each case study, allowing locally-unbiased implementation of the model.

Sensitivity to the environmental stress parameter
We also though that inaccurate assumptions in Emay be conditioning the AGB predictions
using only D, and decided to further investigate their sensitivity to E. The resulting test demon-
strated the high sensitivity of the AGB predictions to E, and since it affects to the meanH and
AGB, any uncertainty in E induce bias rather than random errors (Fig 6C). This begged the fol-
lowing question: what value of E would provide correct meanH for our study area? Then we
developed the ‘calibrated-E’ approach and its derived AGB predictions. Although they were
still significantly different than the predictions yielded byH-Dmodelling, those differences
were no longer systematic, serving as a baseline for our study. The magnitude of change in was
higher than 0.1, which leads to relevant changes in the predictions, since Eq 14 is critically sen-
sitive to the value chosen for describing the environmental stress (Fig 6). In our case, the values
of E that would provide correct mean AGB can be found from Chave et al. [24] less than 100
km northward from our study area. Since our study site was not large enough to cover areas
with different values for E, we are unable to detect a systematic error of E. However, the overes-
timation effect in the AGB allometry predicting from D only has also been observed by other
authors [18,20,27], while we found no reports accounting for an underestimation of AGB when
allometry lacks H as predictor. There is therefore a possibility that Emay be more easily under-
estimated than overestimated, which needs to be further investigated. We postulate that there
may be a need for including causes for environmental stress other than those included in the
current definition of E (TS, CWD and PS; Eq 9) which may induce an increase in the ‘real E’,
such as soil conditions and natural or human-induced forest disturbance. It may also be the
case that underestimation is caused by measurement error of the parameters TS, CWD or PS,
which should be object of further investigation. To derive their pan-tropical allometry, Chave
et al. [24] employed data from old-growth and secondary forests, excluding plantations and
agroforestry systems. Adding such components, could extend the applicability of their equa-
tions in tropical managed forests with high degrees of human intervention. This would bring
an opportunity since perhaps such calibration could be carried out with a lower field effort in
Hmeasurements, although that would be only a hypothesis to be corroborated by further
research.

Results showed that the alternative B0�, which is very simple in its implementation, can
result in AGB predictions not systematically differing from those obtained by a separate H-D
allometry, and therefore unbiased with respect to them. This indicates that the only reason for
finding significant differences between B0 and B1 was the choice of model form. It must be
recalled that the fixed-effects modelling procedure for calculating B1 also included a compari-
son of different model forms, selecting the one which best fits to the empirical H-D data. The
comparison is therefore unfair, and there are clear advantages in using a pan-tropical model.
However, it could be suggested that an alternative version for Eq 16 which would allow changes
in E to modify the slope, and not just the intercept, could yield more flexibility in model form,
and perhaps the ‘calibrated-E’ approach would be more efficient as well.

Conclusions and Suggestions for Future Research
In the light of these results, the modelling approach followed in some cases affected the final
AGB estimation significantly, although differences were also negligible for some of the alterna-
tives considered. The most important difference found was given by the additive term which
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accounted for species effect. Therefore, we recommend to include species as fixed effects in
future allometry, as a simpler and more practical approach than obtaining models for each spe-
cies in forests with high degree of mixture. The presented two-step methodology described for
selecting species with significant effects, discriminating them from those that followed the gen-
eral fixed-effects model, was successful in improving the accuracy of the H prediction, and
proved relevant for the subsequent AGB estimation. We therefore suggest its replication in the
similar studies. Further research could also test the same approach on AGB allometry, address-
ing the effect of species variation directly. Our final choice was theH-Dmixed-effects model
(B3), which accounts for the species but also for the plot random effects reflecting site factors
such as soil properties and degree of disturbance. It should be noted that the practical use that
we gave to the mixed-effects modelling would not be, however, applicable to the case of AGB
modelling. The reason is that destructive sampling would be needed at every new field plot for
calibrating its effect, which would be neither practical nor desirable.

We observed that AGB predictions without H were very sensitive to the chosen E, which
represents the environmental stress of a given study site. We postulate that Emay be systemati-
cally underestimated in forest areas with human intervention, although that extreme cannot be
tested with our experimental design. Further research could investigate factors affecting E, con-
sidering the possibility of including an additional component for disturbance in Eq 15. Overall,
factors most affecting the final AGB estimates were, in order of decreasing influence: the choice
E (when using noH-Dmodel), species variation, and plot-level variation. Cluster-level varia-
tion had lower influence, which may be sign of homogeneity within the given study area. Con-
sequently, we concluded that alternatives rank in this order from the most desirable to the least
accurate: (1) using mixed-effects H-Dmodels accounting for species and plot-level variation;
(2) using local fixed-effects H-Dmodels; and (3) obtaining the AGB from D data only.
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