
Utility of a Behavlets approach to a Decision
theoretic predictive player model

Benjamin Ultan Cowley
BrainWork Research Centre

Finnish Institute of Occupational Health
POBox 40, Helsinki 00250, Finland

Cognitive Brain Research Group
University of Helsinki, Finland
Email: ben.cowley@helsinki.fi

Darryl Charles
School of Computing & Information Engineering

University of Ulster
Northern Ireland

Email: dk.charles@ulster.ac.uk

Abstract—We present the second in a series of three academic
essays which deal with the question of how to build a generalized
player model. We begin with a proposition: a general model of
players requires parameters for the subjective experience of play,
including at least three areas: a) player psychology, b) game
structure, and c) actions of play. Based on this proposition, we
pose three linked research questions, which make incomplete
progress toward a generalized player model: RQ1 what is a
necessary and sufficient foundation to a general player model?;
RQ2 can such a foundation improve performance of a computa-
tional intelligence-based player model?; and RQ3 can such a player
model improve efficacy of adaptive artificial intelligence in games?
We set out the arguments for each research question in each of the
three essays, presented as three preprints. The second essay, in
this preprint, illustrates how our ’Behavlets’ method can improve
the performance and accuracy of a predictive player model in
the well-known Pac-Man game, by providing a simple foundation
for areas a) to c) above. We then propose a plan for future work
to address RQ2 by conclusively testing the Behavlets approach.
This plan builds on the work proposed in the first preprint essay
to address RQ1, and in turn provides support for work on RQ3.
The Behavlets approach was described previously; therefore if
citing this work please use the correct citation:

Cowley B, Charles D. Behavlets: a Method for Practical Player
Modelling using Psychology-Based Player Traits and Domain
Specific Features. User Modelling and User-Adapted Interaction.
2016 Feb 8; online (Special Issue on Personality in Personalized
Systems):150.

I. INTRODUCTION

We argue that for generalised game AI to play at a human-
level will require a model of player psychology. Such a gener-
alised player model requires parameters to describe facets of
the player’s subjective experience, drawn from a foundation
of established models, including at least: a) psychology of
behaviour; b) general game design; and c) actions in the
context of a given game. This foundation should be integrated
with the computational intelligence that drives the model.

These arguments imply several research questions. In the
first preprint in this series, [1], we discussed how to improve
the theoretical validity of such a foundation by meta-analysis.
In this second preprint in the series, we discuss RQ2: can
such a foundation improve algorithmic performance of the

computational intelligence required for a real-time player
model?

In this preprint we give a proof-of-principle that such a
foundation, based on ’Behavlets’ approach for linking psychol-
ogy to game-play, can practically improve a simple predictive
model of Pac-Man players. We previously proposed the Be-
havlets method to build facets a) to c) above into composite
features of game-play defined over entire action sequences [2],
and thus model players for, e.g. personality type classification
[3]. The Behavlet approach is briefly recapped below.

Subsequently in Methods section we report a controlled
comparison of the use versus non-use of Behavlets, on two
Decision Theory models for predicting player movement in
Pac-Man (implemented in C++ Direct X). One model uses
simple features calculated for a single state of the game,
and the other uses Behavlet-like composite features. Decision
theory fundamentals are described below. As described in
Results section, the latter model improves speed (from non-
real-time to real-time), and accuracy by 35%.

However to comprehensively address RQ2 will require
further work, by adding a validated foundation to a general
player model, both topics for future work as described in
Discussion. An empirically-supported answer to RQ2 will
further work on the third planned question, RQ3 can such a
player model improve efficacy and viability of the AI required
to power games which adapt to their players?

A. Behavlets background

For full details of the Behavlet process see [2]; from that
paper, the following process description outlines an iterative
process for a game designer/developer (GD):

1) Gameplay Analysis and Mapping:
a) game structure and context (leads to) Ý
b) game mechanics and dynamics Ý
c) game design patterns

In this stage, GD should identify which game compo-
nents give the player agency, and are thus central to de-
scribing player behaviour. Further, GD must differentiate

ar
X

iv
:1

60
3.

08
97

3v
1 

 [
cs

.H
C

] 
 2

9 
M

ar
 2

01
6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/78561708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


between game mechanics and the dynamical operations
of player-game interaction. Then game-specific design
patterns can be identified.

2) Feature/Behavlet Identification:
a) traits of play behaviour Ý
b) traits vs patterns Ý
c) observation and Behavlets

In this stage, GD specifies how behaviour would express
itself. GD uses a list of descriptive terms for behaviour,
to characterise how design patterns would turn into ex-
tended sequences of action selection. GD then observes
the play of the game to develop Behavlet concepts.

3) Behavlet coding: For the informal Behavlets from step
2, GD then defines pseudo-code and game engine en-
codings.

4) Feature selection and testing.
The Behavlets used below are from the same set derived

and reported in [2]; readers should thus refer to that paper
(esp. appendices) when, e.g., examining Table I below.

B. Decision Theoretic Player Modelling Background

Predictive player modelling works by considering the
player’s in-game goals as equivalent to some target function
of the game state, parameterized by predefined utilities; this
function is calculated using observed player data [4]. In many
classes of games, mechanics of play involve choosing the
action which maximises a utility function, from a set of actions
situated in a possibility-space evolving toward minimal utility
in the absence of player action - in other words, act or lose.

Decision Theory [5] is a formulation of the uncertainty
of outcomes due to making non-trivial choices, which adapts
well to modelling game-play [6]. Working from the Decision
Theory formulation for game-play by [7], we define our own
as follows.

A rational player makes decisions by picking from a finite
set A of alternative courses of action. a ∈ A can be thought
of as a plan consisting of consecutive moves extending to the
future time ta. The limit on this look-ahead time will be tmax

1.
An action plan takes place in the set S of all possible game
states. So each a corresponds to a sequence of states s ∈ S
starting with a state ’adjacent’ to the current state and ending
with sta . Since all the states considered in each decision-
making situation are limited by tmax they form a subset of
S which we call St. To obtain the necessary ordering of s
when selecting from St so that the sequence a makes sense
(since St is unordered), we identify each state by its distance
in the future, i.e. st.

We represent player uncertainty with a time-wise probability
function giving a distribution P (S) over S. This function is
a temporal projection expressed as proj : S × A → P (S);
such that the action a given the current state s0 results in
the probability of the projected states proj(s0, a) = Pa(S).

1In a game of Pac-Man ta will almost always equate tmax since for any
one plan, only Pac-Man’s death or the end of the level will result in a cessation
of planning

Specifically, pta will be the probability assigned by Pa(S) to
the state st. The utility function util : S → R encodes how
desirable the player finds the projected states.

Using this general notation for Decision Theory in some
method-specific formulation of probabilities and utilities, we
can predict the maximum utility plan a that a player should
perform. The two player modelling approaches compared
below each encode their characteristics as a specific formula.

II. METHODS

To test the two models, we collected a data set of games
for testing, using the same methodology as described in [2],
including ethical approval from the Research Governance
board of the University of Ulster. 37 players participated; each
played a number of practice games which were excluded; and
generated 105 test games from two to three post-practice plays
each. Two tree-search modelling approaches were compared
in this experiment: a ’simple-features’ model and a ’Behavlet-
based’ model. Our hypotheses for the comparison were that
the Behavlet model would outperform the simple model in
terms of: H1 accuracy, because the Behavlets better capture
the player’s intentions; H2 speed, due to the reduced num-
ber of computations required (as explained below); and H3
insights, because an explanatory framework is built into the
Behavlet features.

A. Tree Search Preliminaries

In this tree-search version of Decision Theory, the meaning
of some symbols is refined. Thus the subset of states St

corresponds to the finite look-ahead tree of future states
described below, and tmax is the computational limit on tree
size. A plan a corresponds to a path in the tree, with the last
state sta equating a leaf which can uniquely identify the path.

A ’classic’ look-ahead tree is built by calculating all pos-
sible combinations of positions that the in-game actors can
occupy in one ’step’, and then iterating for a computationally
tractable number of steps. Building the tree explores the
game’s possibility space, ranking each potential future state
by calculating the utility to the player of the features found
in that state. To calculate the utility weights for the tree, the
ideal metric in any game would be the difference between the
value of some utility for the current state, and the value for
this utility in the final state [8]. Since each possible state at
a time-step is ranked by its utility contribution to the path to
which its parent belongs, the algorithm navigates the tree of
states along the path of highest utility in order to ’back-up’
the prediction of which next move is optimal.

The tree branching rate corresponds to the number of
possible moves available to each actor at each step. Thus
branching rate is relevant to computational tractability. Our
Pac-Man map has 143 navigable squares with two adjacent
squares; 32 with adjacency three; and seven with adjacency
four. Therefore, if we consider the future moves of a number
of actors w, the minimum rate would be given by equation 1:

143

182
.2w +

32

182
.3w +

7

182
.4w ≈ 2.25w (1)



In practice the rate is higher because squares with adjacency
three or four tend to be entered more often. In our test data
we estimate the actual branching rate is ∼2.75w on average.
Given this rate we can calculate a default accuracy of 36%
generated by random choice of next move.

In both models, two parameters are important to help
conserve computation: depth of the look-ahead tree; and a
heuristic of player behaviour which we term the ’maximum
back-tracking limit’. This heuristic places a limit λ on the
number of moves a player can make along a bi-directional
corridor before the algorithm ceases to consider the backwards
direction in its predictions. Thus, leaves of the tree will be
pruned if they extend to the direction the player has come from
more than λ moves ago. The premise behind this heuristic is
that players are goal-directed.

We conducted a parameter sweep of depth and λ for each
model. The range of each parameter was bounded, depth from
4..9 and λ from 3..6. The lower-bound on depth arose because
for some Behavlets, estimation from three or less states would
be ill-defined. The upper-bound on depth was fixed to limit
computation time: ∼14 seconds per state was required for
depth nine tree-search, totalling ∼32 hours per test game. The
lower bound on λ was set to allow for backtracking by human
error; the upper bound on λ was set to the maximum length
of game map corridors. The parameter sweep was conducted
in a similar manner for each model, over the same data set.
Both models had best accuracy at depth=4 and λ=5.

B. Model 1

Model 1, termed the simple-features approach, performs
classic tree-search, calculating cumulative utility of simple
heuristic features in each state in a path. Since the look-
ahead tree was extensive, it was run off-line. The operation of
model 1 is described schematically in Figure 1, and defined
in formula 2:

a∗t = ArgMax(a ∈ A)
∑
s∈St

pta × util(s) (2)

The heuristic features are based on the items and events
which reward or threaten the player, i.e. are of importance in
the game. These include Pac-Man and Ghosts; Pills that the
player must collect to pass a Level; Power Pills that switch
the roles of Ghosts from hunters to hunted; and Fruit that acts
as a bonus reward.

• Threat - Ghost proximity (measured by A* algorithm)
and distribution across the map.

• Reward - count of each Pill weighted by the number of
adjacent Pill and the inverse of distance to Pac-Man.

• Number of Lives left to Pac-Man.
• ’Hunt’ reward (when Pac-Man has eaten a Power Pill)

– If game is in Hunt mode, this is just Ghost proximity.
– If not, then this is proximity to nearest Power Pill

combined with Ghost proximity.

C. Model 2

In model 2 Behavlets contribute to utility calculation for
each path from the look-ahead tree, in contrast to model 1
which sums the utilities of every state in the tree. For this
model, Behavlets were adapted to work over sequences of
states where some proportion of states are predicted. Adapted
Behavlets retained the core logic defined in [2], but we
excluded i) any Behavlet defined only over a long sequence,
e.g. game level; ii) Behavlets with logic incompatible with
prediction, e.g. those based on speed of movement.

Focusing the model on the player’s perspective using Be-
havlets allows an simple yet effective optimization: to the
player, future Ghost positions are estimated as a probability
distribution. Branching only for the potential moves of Pac-
Man, and not the Ghosts, the branching factor is reduced
by >2.25 for every Ghost. Behavlets are calculated using
Ghost locations estimated from their movement probability
distribution; model 2 can thus discard the proj function and
avoid calculating exhaustive look-ahead trees.

Model 2 also dynamically adjusts Behavlet use with a ’state-
checker’: each tree search is constrained to the Behavlets
contextually relevant to the game state.

Formula 3 for model 2 retains the established definitions,
but calculates utility for an entire sequence-of-states or plan
a, rather than just one state. Plan a is selected from St ⊂ S,
defined by the current state and the computational limit tmax.
a defines all included Behavlets Fa, where f ∈ F the set of
all Behavlets, as input to util. Thus util : S×A→ R assigns
value to states; summed output of multiple f ∈ Fa gives the
utility score of a plan a: best scoring a predicts next move.

In look-ahead tree terms, model 2 calculates utility for an
entire look-ahead tree path from Behavlets which trigger for
that path. The model 2 algorithm is described schematically
in Figure 3.

a∗t = ArgMax(a ∈ A)util(
∑
f∈Fa

f) (3)

III. RESULTS

Model 1 had a prediction accuracy average of 39%, 3%
above the random chance default accuracy of 36%. This meant
that for games which had an average length of 327 states, on
average only 131 moves were correctly predicted. The number
of consecutive predictions (a sign of accurate classification
of activity sequences) averaged 2.3 moves in length, with
standard deviation of 2.4, implying that model 1 does not
predict long sequences of Pac-Man’s actions.

Model 2 accuracy was 70.5%: this represents a lift of ∼35%
from the random chance default of ∼36%. The millisecond
speed of execution per state was M=81, md=63, SD=37. Given
that the state-rendering rate of our Pac-Man engine was 10-
11 Hz at 96ms per frame, this performance allowed real-time
execution.

Comparing the models, the accuracy difference between
39% and 71% supports H1. To clarify whether Behavlets or the
difference in algorithm is responsible for improved accuracy,



Fig. 1. Schematic of the operation of the model 1 algorithm. All possible future moves are calculated, by generating a look-ahead tree of depth D. The
utility of each state in each path is then accumulated to give a final score to each possible direction of movement, allowing a prediction for action a

we performed a simple ’leave-one-out’ test, summarised in
Table I. The test operates by measuring a baseline for speed
and accuracy including all Behavlets and state-checker. Then
each Behavlet is iteratively excluded from the model. Com-
pared to baseline, if exclusion of Behavlet i raises execution
time (indicated by a negative difference) and lowers accuracy
(positive difference), then Behavlet i should improve speed

and accuracy. The second row of the table tests the removal
of state-checker code. Cutting it means using all Behavlets in
any given prediction, increasing execution time to 296ms.

The columns of Table 1 are: name of the Excluded Be-
havlet, or state-checker; ms/State millisecond computation
time per state difference from baseline; Acc% accuracy dif-
ference from baseline; and Usage, if the Behavlet should be



Fig. 2. Schematic of the algorithm for model 2. Multiple Behavlets contribute to utility calculation for each path in the tree, to evaluate action a

included in a final model, Yes or No.

An important result here is that the Points Max feature
reduces accuracy by ∼16% when excluded. The Behavlet
exclusions affected accuracy by 0-2%. Thus about half the lift
over default is due to this single feature. However the other
half is attributable to the combined Behavlets, and the fact that
no single Behavlet dominates suggests that all are contributing,
perhaps by interaction. The importance of Points Max can be
attributed to frequency: Points Max influences every single
utility calculation, while e.g. C3 Close Calls might only fire

a few times per level or per game.

Hypothesis H2 is well supported by the increase in per-
formance to real-time. Dedicating more resources to utility
calculation does not seem to be a requirement for accurate
predictions. There is a positive linear relationship between
accuracy and longer execution times, shown in Figure 3
below, but the Pearson correlation coefficient of 0.16 is non-
significant, p ' 0.1.

To address hypothesis H3, we examine the correlation
between results from model 2 and our work on player type



TABLE I
COMPARATIVE SPEED AND ACCURACY RESULTS OF EXCLUDING EACH

FEATURE IN TURN.

Excluded ms/State Acc % Usage
None baseline 240 72.7 -
State-checking code1 -56 0.5 Y
Points Max -4 16.2 Y
A1 Hunt Close To Ghost House -4 0 Y
A4 Hunt Even After Power Pill Finishes -31 0 Y
A6 Chase Ghosts or Collect Dots -13 0.1 Y
C1.b Times Trapped and Killed 42 0 N
C2.a Average Distance to Ghosts2 -1 0.3 Y
C2.b Average Distance During Hunt -23 1.6 Y
C3 Close Calls -20 0.1 Y
C4 Caught After Hunt -40 -0.1 Y
C5 Moves With No Points Scored 0 0.9 Y
C7 Killed at Ghost House -16 0.1 Y
Cherry Onscreen Time 2 -0.3 N
D2 Player Vacillating -11 0.1 Y
P1 Wait Near Power Pill to Lure Ghosts 120 0.1 N
P1.c Lure: # Ghosts Eaten After Lure 120 0.1 N
P1.d Lure: Caught Before Eating Pill 120 0.1 N
P4 SpeedOfHunt -5 0 Y
S2a Lives Gained 10 -0.2 N
S2b Lives Lost 10 -0.2 N
S4 Teleport Use 11 0 N

1 - determines use of state-dependent features
2 - outside of Power Pill mode only

Fig. 3. Scatter plot of individual test games, with linear relationship between
accuracy and speed of execution.

classification [3], where Behavlets were heavily used to gen-
erate insights 2. The same 37 players participated in each
study, and we compared the classification score they received
in the earlier study to their mean ’Behavlet-based’ prediction
accuracy. The two sets of results share a Pearson correlation
coefficient of 0.5, p=0.001 (two-tailed). The type classifier
was a continuous scale between two class labels, termed
Conqueror/Not Conqueror; thus, the correlation indicates that
model 2 had better accuracy for Conqueror type. This suggests
that Behavlet player type relationships proven in [3] can be
used to reason about game periods with accurate predictions.

2Details of this paper cannot be reproduced as licence is not open access.

IV. DISCUSSION

With this comparison of Behavlets with a ’naı̈ve’ approach,
and in earlier work [3], we have demonstrated some of the
inherent value of Behavlets for player modelling. However we
believe there is more to be gained from the Behavlet approach,
predicated on fixing some existing limitations. For example,
the bias in model 2 indicates that it should be possible to
bias the algorithm toward any given pre-classified type, simply
by tuning a set of weights attached to the utilities of each
Behavlet, with respect to the correlated type scores. In fact, a
simple hill-climbing algorithm for weight tuning was reported
in [9], illustrating that simple solutions could be found to
address this issue. For more Behavlet issues see [2].

In the task of validating and advancing the general player
modelling approach, future work will study the efficacy of
building state-of-art machine learning models on a foundation
of psychology, game design patterns and player action pref-
erences. This foundation will be an evolution of Behavlets
informed by the theoretical validation work defined in the
previous preprint, [1]. Implementation will include both a
modern, commercial-standard game for ecological validity,
and a formally well-defined game to facilitate rigorous analysis
under a formal model. These implementations will further
help address the third planned question, RQ3, to investigate
whether such general models can not only help understand
players, but drive AI to play responsively with players.

V. CONCLUSION

We presented a comparative study of two predictive player
models in Pac-Man. The outcome shows conclusive improve-
ment with the Behavlet foundation, and suggests the potential
for further studies on adding such psychological foundations
to computational intelligence for player models.

REFERENCES

[1] B. U. Cowley and D. Charles, “Short Literature Review for a General
Player Model Based on Behavlets,” arXiv, p. 7, mar 2016. [Online].
Available: http://arxiv.org/abs/1603.06996

[2] B. Cowley and D. Charles, “Behavlets: a Method for Practical Player
Modelling using Psychology-Based Player Traits and Domain Specific
Features,” User Modeling and User-Adapted Interaction, vol. online, no.
Special Issue on Personality in Personalized Systems, pp. 1–50, feb 2016.

[3] B. Cowley, D. Charles, M. Black, and R. Hickey, “Real-time rule-based
classification of player types in computer games,” User Modeling and
User-Adapted Interaction, vol. 23, no. 5, pp. 489–526, aug 2013.

[4] D. Thue and V. Bulitko, “Modeling Goal-Directed Players in Digital
Games,” Stanford, CA, USA, pp. 86–91, 2006.

[5] S. P. Curley and J. F. Yates, “An empirical evaluation of descriptive mod-
els of ambiguity reactions in choice situations,” Journal of Mathematical
Psychology, vol. 33, no. 4, pp. 397–427, 1989.

[6] B. Cowley, D. Charles, M. Black, and R. Hickey, “Toward an understand-
ing of flow in video games,” Comput. Entertain., vol. 6, no. 2, pp. 1–27,
2008.

[7] P. J. Gmytrasiewicz and C. L. Lisetti, “Modeling users’ emotions during
interactive entertainment sessions,” Stanford, CA, USA, pp. 30–35, 2000.

[8] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 3, no. 3, pp.
210,229, 1959.

[9] B. Cowley, D. Charles, M. Black, and R. Hickey, “Analyzing player
behavior in pacman using feature-driven decision theoretic predictive
modeling,” in Proceedings of the 5th international conference on Com-
putational Intelligence and Games. Milano, Italy: IEEE Press, 2009, pp.
170–177.

http://arxiv.org/abs/1603.06996

	I Introduction
	I-A Behavlets background
	I-B Decision Theoretic Player Modelling Background

	II Methods
	II-A Tree Search Preliminaries
	II-B Model 1
	II-C Model 2

	III Results
	IV Discussion
	V Conclusion
	References

