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Abstract. We consider pairing in a two-component atomic Fermi gas, in a
three-dimensional optical lattice, when the components have unequal densities,
i.e. the gas is polarized. We show that a superfluid where the translational
symmetry is broken by a finite Cooper pair momentum, namely a Fulde-
Ferrel-Larkin—Ovchinnikov (FFLO)-type state, minimizes the Helmholtz free
energy of the system. We demonstrate that such a state is clearly visible in the
observable momentum distribution of the atoms, and analyse the dependence of
the order parameter and the momentum distribution on the filling fraction and the
interaction strength.
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1. Introduction

Newly realized strongly interacting Fermi gases [1]-[9] have enabled an intriguing line of
research into the nature of fermion superfluidity. In ultra-cold degenerate gases, the system
is composed of atoms in different internal states. The number of atoms in different states can
be experimentally controlled and this has enabled first experimental studies of polarized trapped
Fermi gases [10]-[12]. Imbalanced atomic gases have recently inspired a number of theoretical
works [13]-[26], in addition to the wide literature on fermion pairing with unequal chemical
potentials or number densities in the fields of condensed matter, nuclear and high-energy physics
(for a review of some of these studies, see [27]).

While several parameters of a harmonically trapped Fermi gas can be controlled
experimentally, the inhomogeneity is often crucial and some parameters, such as the atomic
mass, cannot be changed. The use of optical lattices provides unprecedented tunability and, for
example, the effective masses of atoms can be changed by simply changing the laser intensities.
Furthermore, in the centre of the optical lattice the effects due to the harmonic trapping can be
weak. This versatile tool has been recently widely used and has enabled, among other things, the
observation of the superfluid-Mott insulator quantum phase transition [28] in a cloud a bosons.
Use of optical lattices is not restricted by quantum statistics and indeed fermions have been
studied experimentally in one-dimensional [29, 30] as well as in three-dimensional [31]-[33]
optical lattices. In addition, the first experimental results of Bose—Fermi mixtures in optical
lattices were recently reported [34].

In this paper, we investigate the properties of polarized Fermi gases in a three-dimensional
optical lattice. In particular, we focus on the states of constant density and compare in detail
the energetics of the breached pair (BP) states [35]-[38] and the simplest variant of the Fulde—
Ferrel-Larkin—Ovchinnikov (FFLO) states [39, 40] in a three dimensional optical lattice. We
find that, while the nonzero gap BP state can be a minimum of the Helmholtz free energy, it can
lower its energy by forming pairs with nonzero momentum.

We show that the lattice dispersion causes a different dependence of the superfluid gap on
the polarization compared to homogeneous systems. We find that, while the nonzero gap BP
state can be a minimum of the Helmholtz free energy, it can lower its energy by breaking the
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translational symmetry and forming pairs with nonzero momentum as in FFLO states. Section 2
reviews the theory used in the numerical calculations. In section 3, we discuss the free energy
analysis and explain, illustrated by numerical examples, why it is necessary to use the Helmholtz
free energy in case of a system isolated from the environment with respect to particle exchange,
as is the case with trapped atoms. In section 4, we present the results on the FFLO states: we
analyse the system behaviour as a function of the lattice filling fraction and the interaction strength
between the two pairing components. Furthermore, we present the momentum distribution of the
atoms, showing that this easily observable quantity carries a clear signature of the FFLO state.
We conclude by a discussion in section 5.

2. Theory

The microscopic Hamiltonian for fermions of two (pseudo) spins 1 and |, in an external potential
V(x), is

h? . ,
H = Z f Yl (x) (—%VZ + V(x)) Vo (x) dx +4nh2% / YL@V (Y, (XY (%) dx,
(1)

where a is the s-wave scattering length. With a sufficiently deep periodic potential, the atoms are
localized in the minima of the potential, and the system can be described by the Fermi—Hubbard
Hamiltonian [41],

AT AT A A AT A A
H— Ny = Ny = =Y (14&08tn + 148108un) + U Y E1n'¢]ué nltn

n n

5D+ DT A Y | (Emlin+ i) - 2)
( (n,m), (n,m);

n,mj,

Here, (n, m), means a nearest neighbour pair in the x-direction. In mean-field theory, the
interaction term in the Hamiltonian is approximated with

U el émein = U ((€1aela)2inétn +E1neln 1ne1n) — (€1 ]a) Einéa)) - 3)
n n

where the Hartree and Fock terms have been dropped since the former are effectively
included in the chemical potentials and the latter do not contribute. A general ansatz
U(CinCin) = Ae?®™ describes several apparently different states. For equal (pseudo)spin
number densities, q = 0 gives the standard Bardeen—Cooper—Schrieffer (BCS) solution. For
unequal densities, q = 0 gives the BP solution and nonzero values for q describe a FFLO state
where Cooper pairs have a finite momentum, q. Finally, A = 0 naturally describes a state with
no superfluid, i.e. the normal state.
Including the chemical potentials in the Hamiltonian it becomes, in momentum space,

NS

1 - .
AT A AT ~ AT A
H = M Ek ((Gk — /’LT)CTkCTk + (ex — Mi)ﬂk%k + ACTq+kC¢q7k +h.c. — T) , 4)

New Journal of Physics 8 (2006) 179 (http://www.njp.org/)


http://www.njp.org/

4 Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

where M is the number of lattice sites, ;4 and | are the chemical potentials of the different
spin species and the lattice dispersion is given by

ek = 2J(1 — cos(kid)) +2J,(1 — cos(kyd)) +2J,(1 — cos(k.d)). 5

Here, d is the lattice parameter, i.e. the distance between two neighbouring lattice points. The
parameter U describes the energy associated with the interaction of the particles, with negative
values corresponding to an attractive interaction. The hopping parameter, J is the energy gain
corresponding to tunnelling between nearest-neighbour sites. In a lattice, J is essentially the
band width. For a more detailed discussion on the parameters J and U, see e.g. [42]. Using
the fermionic anticommutators, the Hamiltonian can be rearranged as (note periodic boundary
conditions in the k summations)

1 A A A ~ AT ~
H = M E <(€k+q - /-LT)C%r~k+chk+q - (€—k+q - M¢)(C¢—k+qci_k+q -D+ ACTq+kCIq—k
k

U
This can be written in matrix form as

1 A oa €keq — M1 A Crqrk
H=- > (Chq Cioie) ( X :

en A A2
+A Clq-kCrq+k — —— |- (6)

k —(€_keq — 1) 6¢q—k

Py A g
— € kiq — My —— |-

M - k+q Mmy U

Because A was chosen as the amplitude of the order parameter, it is a real number, which
simplifies the expressions. The second sum in (7) is just a constant, but it is important for
the calculation of free energies. The eigenvalues of the matrix part (i.e. the quasiparticle
energies) are

2
— € — €_ € +e_ +
Ek L= My A + k+q k+q + k+q k+q _ Mmy + Uy + A2 (8)
@ 2 2 2 2

With the introduction of the single particle energies &4 = €x — 4 and § ) = €x — py, this can
be written in a simpler form

2
Exgqs= Stice = Suckerg 4 \/ <—§“‘+‘1 * gi"‘*‘*) + A2, 9)

2 2

Unequal densities introduce unequal chemical potentials, which destroys the particle-hole
symmetry that exists in the standard BCS theory. A suitable Bogoliubov transformation,

Crqek Ukq Ukq\ [ Vka
, = , 10
()= ) w
lg—k 4 “kq 1-k.q

with the coefficients given by
A

1 SA 1 SA
2 2
ukq__ 1+ —— . qu— ] - ——— y Uk, qUk,q = )
’ 2 ( vV ng AQ) ’ 2 ( vV ng AQ) a a 2\/ 525 + AZ
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where £5 = (§4k+q + & —k+q)/2, diagonalizes the Hamiltonian to

1 Ek,q,+ 0 ?Tk q A2
H=— (?Tk Vi-ka) + (&m — —) : (12)

Here, the ¥,k q are the quasiparticle operators and they obey Fermi statistics.

2.1. Self-consistent equations for A, |14 and i

The ansatz U(C nCtn) = Ae®9™ implies A = U Y, (¢} _k+qCrkeq)/M, where M is the total
number of lattice sites. With the Bogoliubov transformation (10), this can be written as

U
A= M Z(Ci k+qCTk+q Zuk qVk.q [f(Ekq ) o f(Ekq+)]

k

U f(Ek,q,—) - f(Ek,q,+)
= A— . 13
Z 2,/E% + A2 (13)

The following equations hold for the particle numbers

Ny =) (e = Dtk g f(Era) + Vi o f(Biq ), (14)
k k

Ny = (Eln) =Y up o (—Eig-) + v o f(—Eiqa)- (15)
k k

Equations (13)—(15) are self-consistent equations in the sense that they are always satisfied by
the stable macroscopic state. In particular, the gap equation, (13), can have many solutions, of
which the one with the lowest free energy is stable. For example, for equal populations of the
two components, even below the critical temperature, the gap equation always has the trivial
solution A = 0, in addition to the standard BCS solution. However, the BCS solution has lower
free energy and is therefore stable.

It is useful to define a gap function g(A) that vanishes at the correct value of A. This
reduces (13) to g(A) = 0.

Exq) — f(Exqs
g(A) = Zf( ""\/ﬁkq ) _a=o. (16)

In optical lattices, the relevant quantity, instead of the total number of particles in one
component, is the filling fraction of one component. The filling fraction is defined as the number
of particles divided by the number of lattice sites. We denote filling fractions as f, = Ny/M
and f, = N /M. Because of the Pauli exclusion principle, only one fermion of each kind can
fit on the lowest Hubbard band at each site, thereby having both f; and f| equal to one means
having a full lattice, which is a band insulator. Putting three atoms in the same site or on the same
momentum state would mean populating higher energy bands, which involves a significant cost
in energy. For superfluidity, the optimum setting, giving the highest value for A, is f; = 0.5 and
fi = 0.5 [43]. For population imbalance, it is useful to define the polarization:

_h-h
A+ f

(17)
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2.2. Experimental parameters

In our numerical calculations, we consider ®Li atoms trapped in a lattice created by A = 1030 nm
lasers. The wavelength is related to the lattice parameter d by d = A /2. The lattice height is
2.5Eg, where the recoil energy is 7%(2m/1)?/2m. In the present paper, calculations are done
in zero temperature. Except where explicitly noted, we use —1000 Bohr radii for the scattering
length a. Typical lattice sizes we have used are 64 x 64 x 64 and 128 x 128 x 128. We calculate
the finite lattice sums explicitly, which limits all the vectors in our numerical analysis to a set of
discrete lattice points.

3. Free energy analysis

The relevant free energy of a Fermi gas depends on the physical system in question. We start by

considering the grand potential 2 = —1 In Zg, where Zg = tre™#¥ is the partition function of
the grand canonical ensemble. The partition function is [44]
~pH g B o—HC
Zg=Tre :l_[<1+e M>(1+e M )e , (18)
k

where C corresponds to the constant part of the Hamiltonian and 8 = 1/kgT. The grand
potential is

Q= % ) [gi_.ﬁq t Exq- — %2] - %Z [n (1 +e ) 4 (1 +eﬂEk$)] . (19)
k

k

At low temperatures, this is independent of 8 and becomes

1 A?
Q= ; €1k * Fig- = 7 * Fia O (—Fiqs) = Eig-O(Biq ) |- (20)

There are two different schemes for treating population imbalanced Fermi gases: fixing the
particle numbers or fixing the chemical potentials; this choice depends on the physical system in
question. We are interested in the former, but first we will briefly discuss the latter, to enlighten
the differences between the two cases.

3.1. Fixed chemical potentials, q = 0

With fixed chemical potentials, the relevant thermodynamic free energy is the grand potential
Q(A, py, py). The extrema of €2, 9€2/dA = 0, correspond to solutions of the gap equation, (16),
i.e. g(A) = 0. Figure 1 shows a typical scenario with the chemical potentials fixed at ;14 = 0.394
and p, = 0.304. The figure shows how the extrema of €2 coincide with the zeros of g(A).
In this scheme, the BP state is unstable because it is a local maximum of Q2 (A). However, both
the polarization and the total number of atoms change as A changes, as can be seen from figure 2.
Therefore the extrema correspond to situations with different total numbers of particles. If the
numbers of atoms are to stay fixed in the system, this comparison is not valid.

New Journal of Physics 8 (2006) 179 (http://www.njp.org/)
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Figure 1. The grand potential 2 per lattice site (green), in the units of recoil
energy, and g(A)/A (blue) in arbitrary units. The maximum of €2 at A = 0.04
corresponds to the BP state with polarization 0.12, and the minimum at A = 0.068
corresponds to the BCS state with a zero polarization. The chemical potentials
are fixed at py = 0.394 and puy, = 0.304.

0.73

0.725

0.72

0.715

0'71 C _ - _ i _ _ i _ | _ 1 _ i _ _ i _ i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Al Eo

Figure 2. The total filling fraction f = f; + f, as a function of A, with the
chemical potentials fixed at p4 = 0.394 and u|, = 0.304.
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Figure 3. The Helmholtz free energy F(A) per lattice site (green), in the units
of recoil energy, and g(A)/A (blue) in arbitrary units. The filling fractions are
fixed at f; = 0.44 and f, = 0.36, so the polarization is 0.1. The minimum of F
at A =~ 0.045, coinciding with the zero of g(A), corresponds to the BP state. Also
shown is €2(A) (red) with chemical potentials fixed so that the filling fractions
have the values mentioned above at the point where g(A) = 0.

3.2. Fixed numbers of particles, q = 0

When numbers of particles, instead of the chemical potentials, are fixed, the relevant
thermodynamical quantity is the Helmholtz free energy,

F(A,NT,N¢)29+/LT%+M¢%:Q+/LTf¢+/,L¢f¢. (21)
Now the physical solutions are the minima of F(A, Ny, N): dF/dA = 0 gives the extrema
and 3*F/0A? > 0 defines the minima. These solutions again coincide with the zeros of g(A).
Moreover, the extrema given by F are the same as given by €2, i.e. 92/0A = 0F/dA = 0, but
determining which of the extrema are minima, and thereby the physical solutions, depends on
whether F or €2 is used. The solutions where q is fixed at zero are the uniform solutions. If the
densities of the different components are the same, the solution is known as the BCS state and
if the densities differ, the solution is known as the BP state. With fixed densities, both the BCS
(Ny = N,) and the BP (N, # N,) state correspond to a minimum of F(A). We consider there
the case Ny # N, that is, the BP state.

Figure 3 shows the Helmholtz free energy and the gap function with fixed numbers of
particles (with Ny # N|) and q fixed to 0. It is clear that F(A) is minimized with a finite A,
1.e. the BP state is stable in this consideration; however one has to consider also the possibility
of a nonzero q.

New Journal of Physics 8 (2006) 179 (http://www.njp.org/)
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Figure 4. The momentum distributions f; and f|, on the k, = 0 plane, of the
BP (top row) and FFLO (bottom row) states. Both states demonstrate a depairing
region around the Fermi surface, but whereas the region is symmetric in the BP
state, it is asymmetric in FFLO. The background scattering length is —1500ay,
the total filling fraction is 0.1 and polarization 0.2. In this situation, the FFLO

state is energetically favourable.

4. FFLO states

Stability analysis is always limited to some set of states. Many states have been studied in
isotropic systems [35, 39, 40], [45]-[47]. A Monte Carlo study [48] suggests the FFLO state to
be the ground state in a two dimensional lattice in the weakly interacting regime. Here, we study

BCS, BP and single mode FFLO states in three dimensional lattices.

When the particle numbers are fixed and the momentum of the Cooper pairs, 2q, is allowed
to get nonzero values, the translational symmetry is broken and the state is FFLO like. The stable
state is now found by minimizing F' with respect to A and q. Figure 4 shows the momentum
distributions of the different components along the k, = 0O plane in BP and FFLO states. Note
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ATE 0 o

9erLO

Figure 5. The Helmholtz free energy F(A, g) per lattice site. Here, q is in the
x-direction, i.e. q = (g, 0, 0). The filling fractions are fixed at f;, = 0.24 and
fiL = 0.16, so that P = 0.2. The units of g are selected so that (32, 32, 32) would
correspond to the corner of the first Brillouin zone, the R point.

that there is a vacant region, or breach, in the momentum distribution of the minor component
in the BP phase.

Figure 5 shows a typical free energy landscape for the FFLO state. The filling fractions are
fixed at f; = 0.24 and f, = 0.16. The figure shows that the minimum energy is found with a
nonzero A and nonzero q. The BP state is a saddle point and the BCS solution is absent since it
does not support polarization at zero temperature.

Figures 611 show the energy gap A and the FFLO momentum q as a function of polarization
for different interaction strengths. With increasing polarization, the energy gap A decreases
and the magnitude of q increases. Whether a critical polarization P, where A vanishes, exists,
depends on the total density f; + f| and the interaction strength between the atoms, characterized
by the scattering length a. With @ = —1000 Bohr radii and total filling fractions between
0.4 and 1.0, the critical polarizations are around 0.3. Raising the scattering length toa = —1500q,
gives a P, around 0.6 with the same densities. With a = —2000ay, P, is more than 0.9, as can
be seen in figure 11.

Figures 6-10 show the q = 0, i.e. the BP phase, with small polarizations. However, the
discrete steps in the values of q are due to the finite size of the lattice and using a larger lattice
allows for smaller steps with shorter intervals. We expect these steps, and the kinks in the energy
gap, to vanish in the limit of larger lattices. The figures also show that stronger interactions as
well as larger densities lead to higher critical polarizations, as is expected.

New Journal of Physics 8 (2006) 179 (http://www.njp.org/)
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P

Figure 6. The order parameter A (blue) and the magnitude of q (red) as a function
of polarization P. Here, the total filling fraction is 0.1, the scattering length is
—1000qy, and the lattice size is 128 x 128 x 128. The ¢ is given in reciprocal
lattice indices, so that 64 on the y-axis would correspond to the edge of the first
Brillouin zone.

0.055 - 23.0
0.05
, 125
0.045
0.04
, 12.0
0.035
o
YW o003} 15 ©
<
0.025
, 11.0
0.02
0.015
, 105
0.01
0.005 1 1 1 1 1 1 0
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

P

Figure 7. The energy gap A and the magnitude of q as a function of polarization
with the total filling fraction of f = 0.4 and scattering length a = —1000ay.
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Figure 8. The energy gap A and the magnitude of q as a function of polarization
with the total filling fraction of f = 1.0 and scattering length a = —1000ay.
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Figure 9. The energy gap A and the magnitude of q as a function of polarization
with the total filling fraction of f = 0.1 and scattering length a = —1500a.
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Figure 10. The energy gap A and the magnitude of q as a function of polarization
with the total filling fraction of f = 0.4 and scattering length a = —1500ay.
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Figure 11. The energy gap A and the magnitude of q as a function of polarization
with the total filling fraction of f = 0.1 and scattering length a = —2000ay.
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Figure 12. The momentum distributions f; + f,and f; — f,,integrated over the
z-direction. Here, the total filling fraction is f = 0.1 and P = 0.02. Here, q = 0
and the momentum difference shows the BP depairing symmetrically along the
Fermi surface.

-1 =172 0q 12 1 -1 -1/2 0q 1/2 1

Figure 13. The momentum distributions f; + f, and f; — f|, integrated over
the z-direction. Here, the total filling fraction is f = 0.1 and P = 0.04. The
state is of the FFLO type with a finite ¢ = 7/(128d), which shows clearly in the
momentum difference. The depairing region is similar to what has been predicted
for homogenous systems, see [49].

Because the Cooper pairs each carry momentum 2, it would seem that the system has total
momentum. However, it has been shown for homogenous systems that the net momentum is
cancelled by momentum distributions of the individual components cancelling the effect of the
momentum ¢ [49]. This is consistent with figures 12—17 where the total momentum distribution
ni (= f4 + f))1s biased to the direction opposite to where ¢ is located. We have also numerically
checked that the net momentum is zero.
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Figure 14. The momentum distributions f; + f|, and f; — f,, integrated over
the z-direction. Here, the total filling fractionis f = 0.4 and P = 0.03. Here again
q = 0 and the momentum difference shows the BP depairing symmetrically along
the Fermi surface.
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Figure 15. The momentum distributions f; + f|, and f; — f,, integrated over
the z-direction. Here, the total filling fraction is f = 0.4 and P = 0.15. The state
is FFLO with ¢ = 27/(64d) in the x-direction.

Figures 12—17 show the momentum distributions in different states, integrated over the k.
The background scattering length is —1000ay in each figure. The figures show clearly the effect
of filling fraction, with low filling fractions giving a spherical Fermi surface, but higher filling
fractions showing deformations caused by the lattice. The BP state is visible in the difference
of the momentum distributions, n4x — 71k, as a symmetric depairing region, whereas the FFLO
phase has asymmetric depairing. Note that the vacant region in the momentum distribution in
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Figure 16. The momentum distributions f; + f|, and f; — f,, integrated over
the z-direction. Here, the total filling fraction is f = 1.0 and P = 0.01 and the
state is BP.
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Figure 17. The momentum distributions f; + f|, and f; — f,, integrated over
the z-direction. Here, the total filling fraction is f = 1.0 and P = 0.08 and the
state is FFLO with ¢ = 27/(64d) in the x-direction.

the BP phase is present, but not visible due to the column integration and also due to the small
polarization.

The FFLO state has been suggested to be observable in the correlations in the atom shot
noise [50]; however, as figures 12—17 show, the FFLO state is already reflected in the momentum
distributions.
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5. Conclusions

We have shown that, in the case of interacting fermionic atoms trapped in optical lattices, a stable
FFLO state can be found. The stability of various non-BCS superfluids such as BP state/Sarma
state has been an intriguing topic of study and it is known that the stability depends for instance
on whether the particle number in the system is fixed or not. Moreover, one has to always
consider also the possibility of a state beyond the BP/Sarma state, such as FFLO-type states
associated with a nonzero Cooper pair momentum. The FFLO state has been predicted to lower
the system free energy compared to the BP state in many cases; however, it is often predicted
to occur only in some narrow parameter window [39, 40]. According to the analyses we present
here, in atomic gases trapped in optical lattices, the FFLO state minimizes the relevant free
energy, and does it for a considerable range of parameters. This is influenced by the fact that the
particle numbers, not the chemical potentials, are fixed in trapped atomic gases. Furthermore,
considerable critical polarizations can be achieved, which may be partly aided by lattice features.
For low filling fractions, e.g. f = 0.1, critical polarizations are P. = 0.075, 0.5 and 0.9 for the
scattering lengths —1000a, —1500a, and —2000ay, respectively, showing strong dependence on
the interactions. Also raising the filling fraction increases the critical polarization, for instance
for —1000q scattering length, P, = 0.3 for f = 0.4 (compared to P. = 0.075 for f =0.1).
Interestingly, however, further increase of f does not necessarily make P, to grow, for example
P. = 0.3 also for f = 1. This dependence of the critical polarization on the filling fraction
requires further study and may be useful in comparison of theory to experiments. Stronger
interactions may bring in additional interesting features, but then one has to consider the validity
of the single band approximation. We have also showed that the FFLO state is clearly reflected
in the directly observable momentum distribution of the atoms.

An important topic of further study is to evaluate the effect of the residual harmonic trapping
potential which is always associated with optical lattices, despite their approximate periodic
translational invariance. Issues related to potential phase separation have to be clarified. Based on
previous experiments on bosonic and fermionic atoms in optical lattices, it seems possible to limit
the effect of the harmonic potential in such a way that essential predictions of a homogeneous
lattice model can be observed. On the other hand, for strong harmonic trapping, interesting
combined lattice and phase separation effects may be seen.
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