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Abstract.  We study the phase diagram of an imbalanced two-component Fermi
gas in optical lattices of 1-3 dimensions (1D-3D), considering the possibilities
of the Fulde—Ferrel-Larkin—Ovchinnikov (FFLO), Sarma/breached pair, BCS
and normal states as well as phase separation, at finite and zero temperatures.
In particular, phase diagrams with respect to average chemical potential and the
chemical potential difference of the two components are considered, because this
gives the essential information about the shell structures of phases that will occur
in the presence of an additional (harmonic) confinement. These phase diagrams
in 1D, 2D and 3D show in a striking way the effect of Van Hove singularities

on the FFLO state. Although we focus on population imbalanced gases, the
results are relevant also for the (effective) mass imbalanced case. We demonstrate
by LDA calculations that various shell structures such as normal-FFLO-BCS—
FFLO-normal, or FFLO—-normal, are possible in presence of a background
harmonic trap. The phases are reflected in noise correlations: especially in 1D
the unpaired atoms leave a clear signature of the FFLO state as a zero-correlation
area (‘breach’) within the Fermi sea. This strong signature occurs both for a
1D lattice as well as for a 1D continuum. We also discuss the effect of Hartree
energies and the Gorkov correction on the phase diagrams.
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1. Introduction

A major experimental breakthrough in the study of ultracold Fermi gases was the realization of
spin—density imbalanced or polarized Fermi gadés[}]. These experiments are believed to
shed light also on the long standing question of the nature of Fégbuperconductivity§, 9].

In a normal superconductor, the main mechanism for pairing is the BCS paradigm, however itis
not applicable routinely in the highc systems10]. Imbalanced Fermi gases allow the study of
states with more exotic pairing, such as the Fulde—Ferrel-Larkin—Ovchinnikov (FFLO)
[11]-[13] phase and the Sarma or breached pair (BP) phiese p]. These concepts have also
been considered in other fields of physics, such as condensed matter, high energy and nuclear
physics [L6, 17]. It has been shown experimentally that the imbalanced gas will exhibit phase
separation by forming a core of BCS superfluid inside a shell of gas in the normal state in a
harmonically trapped system. FFLO-type features have been predicted to occur in harmonically
trapped Fermi gased §-[20] as an interface effect2fl, 22]. Optical lattices are extremely
promising in this context, since the lattice enhances the FFLO-type pairing due to nesting of the
Fermi surfacesZ3]. Moreover, optical lattices allow to manipulate the effective dimensionality

of the system as well as the mobility of the particles compared to the strength at which they
interact p4).

Density—density correlations have been used as an indicator for different phases in optical
lattices for bosonic atom<§] and the idea is promising also in the fermionic ca26].[]A
density—density correlation tells how strongly the atomic densities at different positions are
correlated. The reason why the density—density correlations can be a useful way to measure
different phases in optical lattices is that while densities can be very similar for different
phases, the density—density correlations can still be markedly different. As an example, one
can mention the Bose—Einstein condensate (BEC) and the Mott insulator phases, which show
dramatically different density—density correlatio2,[27]. In the Mott insulator one can see
clear correlation peaks in the density—density correlation, but the density—density correlations
vanish (after subtracting the product of average densities) for a BEC. Likewise, it is possible to
detect pairing effects in the Fermi gas by measuring the density—density correlations between
different components, as well as antibunching in the density—density correlations in a single
component Fermi ga2§].
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In this paper, we study phase diagrams for polarized Fermi gases in optical lattices, taking
into account the following states: BCS, BP, FFLO, normal state and phase separation into normal
and BCS regions. We account for the effect of the harmonic trap with the use of the local density
approximation (LDA) and show how shell structures such as FFLO—normal state will appear in
the trap. We also show how the effective dimensionality of the lattice (three-dimensional (3D),
2D or 1D) affects the phase diagrams and explain the relation to the Van Hove singularities of
the lattices. Furthermore, we study these states by measuring the density—density correlation
function of the system. We show that from the structure of the correlation peaks one can clearly
distinguish between the spatially modulated FFLO states, the usual BCS state, and gain valuable
information on the structure of quasi-particle dispersions. Finally, we discuss the effects of the
Hartree and Gorkov corrections on the phase diagrams. We focus on the density imbalanced
case, but the results, especially the phase diagrams for fixed chemical potential difference, are
also relevant for the mass imbalanced case. Different masses could be introduced as different
effective masses originating from different hopping strengths, or by considering mixtures of
fermions of non-equal masg9).

Note that by 1D and 2D lattices we mean here: 1D gas in a 1D lattice, and 2D gas in a
2D lattice. The first one could be realized by a 3D optical lattice where the confinement is very
strong in two directions and intermediate in the third one, and the second by strong confinement
in one direction and intermediate in two. This is different from what is often meant by 1D and
2D optical lattices superimposed on a 3D gas, namely that the 1D lattice forms 2D ‘pancakes’
and the 2D lattice forms 1D ‘tubes’. In other words, we study here the actual dimensionality of
the lattice, not the effective dimensionality of homogeneous space produced by a lattice.

2. Mean field attractive Hubbard model

We consider the mean field attractive Hubbard model in the lattice,
N o o P R R A2
H=) (ngCJ;kCTk FEKCCIK+ ALl ieag * ACi—k+qc¢k+q) TR 1)
k
where we have limited the study to include only the lowest energy eigenstate of each lattice site,
i.e. the lowest band. Here the single particle dispersion is

€,k = 23 (1 — cosky) +2J,(1 — cosky) +2J,(1 — cosk,) — i, (2)

The interaction termAC,_y.qC1k+q COrresponds to a plane wave (FFLO) ansatz for the order
parametert) (€,«C1x) = A€#9*. The interaction and hopping parametétsand J;, are defined

as in [30]. Throughout the paped without an index stands for the largekt Diagonalizing the
Hamiltonian with the standard Bogoliubov transformation yields the quasiparticle energies

2
Eirq= Erq+k — & 1g—k i & rq+k T & gk +A2, 3)
2 2
and the grand potential of the system is
A? 1 _
Q=-g5+ Zk: (s¢_k+q +E_kq— 3 In ((1+ePFrxa) (1+ eBE—M))) : (4)

wheref =1/kgT.
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We map out the phase diagrams of the system in se8tlmnminimizing 2 with respect
to A andq by keeping the average chemical potentigler= (14 +1;)/2 and the difference
between the chemical potentiadg, = 1y — i, fixed. We have also studied the phase diagrams
for fixed filling factorsn, andn,, in section6. In this case, the relevant thermodynamical
guantity to minimize is the Helmholtz free energy, which is related to the grand potential
by F = Q+ pu,ny + 1 n,. The major difference between these two schemes is that with fixed
chemical potentials the BCS state cannot support a finite polarization at zero temperature, and
BP is not stable, but with fixed densities BCS is essentially a special case of the BP state and
can have different numbers of the different spin components. See3&]dof a more detailed
discussion on the stability of different phases in these two situations.

3. Phase diagrams

Changing the difference of the chemical potentiéls= 1., — 11, changes the stable phase. At
T =0, whensu = 0, the result is the standard BCS state, with- 0 andg = 0 and with equal
densities in the (pseudo) spin componentsSAss increased beyond the Clogston linit],
V2A,, Where Aq is the energy gap atu = 0, the gas switches to a polarized FFLO state,
with some finiteq, which is found by minimizing4). This transition is of first order. A§u

is increased further) approaches zero and| grows, until the gas undergoes a second-order
phase transition to a polarized normal gas.

Some typical phase diagrams as functionsugfer= (14 +1,)/2 andsu are given in
figures1-5. In some of the diagrams, some of the circles representing the FFLO—normal state
phase boundary have fallen on the boundary between FFLO and BCS. This is an artefact of the
numerical method employed in the calculations.

3.1. Van Hove singularity and dimensionality

The phase diagrams-3 show interesting behaviour regarding the shape of the phase boundary
between the FFLO and normal states. The reason why FFLO can sustain a finite polarization,
i.e. Fermi surfaces of unequal size, and still be favorable compared to the normal state, is
that it allows the Fermi surfaces to be partially matched. In FFLO, Cooper pairs have a finite
momentum 8, which effectively means a relative displacement of the Fermi surfaces by an
amountq in order to match them. In 3D and 2D, this nesting of the Fermi surfaces is optimal
around the Van Hove singularity, i.e. when the Fermi surfaces touch the edge of the first
Brillouin zone, because the shape of the surface at such densities is octahedral in 3D and square
in 2D. In the non-interacting case this happens for componeviten, = 4J. Displacing two
octahedra or squares so that their corners connect actually allows to connect an area, optimally
half of the minority Fermi surface, instead of just one point, as in the case of spherical Fermi
surfaces. For this reason the area occupied by FFLO in the phase diagram is more dominant
than observed for spherically symmetric systems. Moreover, as our results show, the Van Hove
singularities lead to striking features in the FFLO—normal state phase boundary.

The phase boundary between the FFLO and normal state shows special features at the
points where the chemical potential of the majority compongit= piavertdi/2, has the
value 4J. In the 3D diagram, figur&, this produces a kink atae;~ 3.4J. The phase boundary
continues to grow, showing another slight change of shape around the minority component Van
Hove singularity. In 2D (figure), the critical value o has a pronounced maximum at the
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1

aver

Figure 1. The phase diagram of a two-component Fermi gas in a 3D lattice, at
zero temperature, as a function of the average chemical potentiabnd the
differences .. The dashed line (- - - -) shows whewg = 4J, that is, the place

of the Van Hove singularity for the majority component. The dash-dotted line
(— - —) shows whereu, = 4J, which is the minority component singularity.
Here J is the hopping amplitude. The solid line shows the calculated data
points for the BCS—FFLO (in some points BCS—normal gas) phase boundary
and the circles show the FFLO-normal gas phase boundary. The dotted)
horizontal lines correspond to the shell structures in figuiehe phase diagram
was obtained by minimizing the grand potentid) &t each point of the diagram.

singularity atuaver ~ 2.9J, after which it decreases. The singularity in 2D is stronger than in 3D
and the minority component does not reach its Van Hove singularity before half filling. In 1D
this also produces a clear featureuaie~ 2J, where the phase boundary essentially becomes
horizontal, see figura.

In our calculations, we have taken the lattice height to &g, and in the 2D and 1D
calculations, we have taken the lattice height in the orthogonal directions tohe W have
used 6 for the mass number of the atoms, corresponding to lithium. Our calculations are in
the intermediate coupling regime, with/ J < 6. We have also checked our results in the weak
coupling BCS limit and found no qualitative difference to the results presented here. The explicit
coupling strengthsU/J) used are—3.7 in 3D, —3.3 in 2D and—3.2 in 1D. Note that all
calculations are performed for the full 3D system, just with the higher lattice heights in the
orthogonal directions. Therefore the calculations take into account the small but finite tunneling
between the 1D and 2D systems.

3.2. Finite temperature

We have studied the phase diagrams also in finite temperature, and our results indicate that
the FFLO area, and features related to it, of the phase diagram, will gradually disappear
with increasing temperature, as shown in figugeS. At high temperatures even the effect of
dimensionality seems to disappear, and phase diagrams (b)—(d) in Si¢paree no qualitative
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Figure 2. The phase diagram of a two-component Fermi gas in an effectively 2D
lattice, at zero temperature. The dashed line (- - - -) shows where 4J, the

Van Hove singularity for the majority component. The calculated data points at
the phase boundaries are marked so that the solid line is BCS—FFLO and circles
represent FFLO—normal gas.

5 . . . . .

ou/d

Normal

u

aver

Figure 3. The phase diagram of a Fermi gas in an effectively 1D Ilattice,
at zero temperature. The dashed line (- - - -) shows wheye=4J, the

Van Hove singularity for the majority component. The calculated phase
boundaries are shown so that the solid line is BCS—FFLO and circles represent
FFLO-normal gas.

differences. It should be noted that in lattices the BCS critical temperdgudepends on the
average filling factor or average chemical potential, sifigés directly proportional to the gap
at zero temperature. At half fillingc is much higher than at low fillings. At finite temperatures,
the BCS state can also support some polarization, due to thermal fluctuations.
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(a) (b)

1
! ; dm% Normal
S >

. Normal
Normal S Q@ )

Haver /Y Moo/ Y
Figure 4. Finite temperature phase diagrams in 3D and 2D lattices: (a) 3D at
ksT/J ~ 0.1 (or 10 nK), (b) 3D akgT/J ~ 0.2 (or 20 nK), (c) 2D akgT/J ~

0.1 (or 10nK), and (d) 3D akgT/J ~ 0.2 (or 20 nK). The dashed line (- - - -)
always shows the majority Van Hove singularity, whare= 4J, and the dash-
dotted line (— —) shows the minority singularity, with, = 4J (only reached

in 3D). The calculated data points at the phase boundaries are solid: BCS—
FFLO and circles: FFLO—normal state. The temperatures in nK correspond to
J« =0.07ER.

4. Effect of harmonic confinement

We have used the LDA to study the effects of a harmonic trapping potential superimposed on
the lattice. Assuming that the harmonic trap is sufficiently shallow, it is possible to account for
its effects by taking it to be locally constant and letting the chemical potential vary as a function
of position, the standard LDA. This means that we take the system to consist of cubical regions
of Ng;q lattice sites, where we approximate the local chemical potential for each component to
beu. (r) =u, —V(r), wherer is the distance from the center of the trap to the center of the
cube,V (r) is the trapping potential, and, is the global chemical potential for component
which is constant throughout the system. Because the system is approximated with an infinite
lattice inside each region, the valueNy;iq can be chosen freely and does not have any physical
implications.

In this scheme, reading the effect of the trapping potential from the phase diagrams
computed with respect ta,er andsu is exceedingly simple: because both the components

New Journal of Physics 10 (2008) 045014 (http://www.njp.org/)
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Figure 5. Finite temperature phase diagrams: (a) 1Rsdt/J ~ 0.2 (or 20 nK),

(b) 3D atkgT/J ~ 0.4 (or 40nK), (c) 2D atkgT/J ~ 0.4 (or 40nK), and

(d) 1D atkgT/J ~ 0.4 (or 40 nK). In (a), the flat top (see figuB} disappears,
because the maximuy is so small thatu, does not reach the Van Hove
singularity. In the high-temperature diagrams, (b)—(d), FFLO and all the features
related to the dimensionality have vanished. The temperatures in nK correspond
to Jy = 0.07 Er.

see the same trapping potentigl, does not depend an and any situation with given numbers

of atoms in each component corresponds to a horizontal line in the appropriate phase diagram.
Since the maximum number of identical fermions in the ground state of each lattice site is 1 for
each component in the gas, the order paramgtgoes to zero as the filling factor of either of

the components approaches zero or one. This implies that with sufficiently high total particle
numbers the region in the center of the trap is not superfluid, but a normal gas, surrounded by
a superfluid shell, which is again surrounded by a shell of normal3ga84]. Because at zero
temperature, with any filling besides close to an empty or a full lattice, FFLO is always between
the BCS and the normal states in the phase diagram, there is a shell of FFLO between the BCS
and normal regions in the trap. This is demonstrated in the gap profiles in igure
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Figure 6. Gap (A/J), average density(ii; +ny)/2), and density difference

(ny — ny) profiles for a 3D lattice in a harmonic trap with LDA, together with
the FFLO wavevectoq. The frequency of the harmonic trap is chosen to be
120 Hz and the wavelength of the lattide 515 nm. Shown are four different
shell structures: (a) withu/J =~ 1.7 and the density in the center of the trap at
half filling, the system forms a polarized core in the FFLO state, surrounded by
a shell of polarized normal gas. In (B)/J ~ 1.6, but there are more atoms
overall in the system, giving a higher density in the center of the trap, which
leads to a core of normal gas to form inside a shell of FFLO. (c) Shows an
even more intriguing shell structure, correspondingigJ ~ 1.4: normal gas—
FFLO-BCS—-FFLO-normal gas. Note that this structure is dramatically reflected
in the density difference. In (d), the system is unpolarized, but the density in the
center of the trap is so high that a core of normal gas is formed inside a shell
of BCS superfluid. All the plots correspond to horizontal lines in figur&he
overall polarizationd = (N; — N;)/(N; + N,) are: (a) 0.44, (b) 0.27, (c) 0.13
and (d) 0.

5. Density—density correlations

Here, we compute the density—density correlation functions after free expansion. Correlation
functions are defined by[]

Gy (r, r',t) = (ﬁT(r, t)ﬁi(r/, 1)) — (ﬁT(r, t))(ﬁi(r/, D)
= (W (r, W (r, W[, W (1, 1) — (A (r, )R, 1),

(5)
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wheret and| are the component indices anig time. In the above formula, we have subtracted

the term with mean atomic densities, since often it is easier to focus on fluctuations. Because
the density—density correlations after the free expansion reflect correlations in momentum space
att =0, correlations can be computed using the wavefunction in momentum space prior to
expansion 35]. Positions in real space after tinhare related td-vectors through = htk/m.

In momentum space it turns out that the plane-wave FFLO density—density correlations
are strongly correlated at points which correspond to momlesatiad —k + 2q, whereq is the
wavevector associated with the FFLO state. In the BCS state density—density correlations peak
similarly, but withg = 0. The two-mode FFLO state, i.e. the state where the pairing gap is given
by A(r) = Agcos(q-r), can also leave a clear signature on the density—density correlations. In
the two-mode FFLO state arratom which is in the momentum stdtas paired with| -atoms
which are in the momentum state& + g and—k — g. This gives rise to large correlation peaks
whenk +k’+q =0.

In figure 7, we demonstrate the difference between the BCS density—density correlations
and the FFLO density—density correlations at zero temperature. In (a), we have plotted an
example of the BCS-state density—density correlation between the componentszie: the
plane while in (b) we show on example of the FFLO density—density correlation between
components, again in the same plane. As one can clearly see, the correlations are very different
and the difference arises from two reasons. Firstly, in the FFLO-state the density—density
correlation peaks have been effectively shifted loy Secondly, in the FFLO-state density—
density correlation there are areas in the momentum space where correlation peaks vanish. The
reason for this ‘breach’ is that one quasiparticle dispersion has changed sign in the peakless
region. Physically this means that these areas are populated only by normal atoms, and there
are no pairs to give rise to correlation peaks. The height of the correlation peaks contains
information on the underlying pair wavefunctieruy vy [35]. In the weakly interacting BCS
limit this function is strongly peaked at the Fermi surface, but it becomes broad and featureless
in the BEC Ilimit. In (c) and (d), we show that the difference between the BCS- and FFLO-state
density—density correlations can persist even for integrated correlation signals

Cy (X, y):/ dz G; | (x, Yy, z, =X +ht2qg,/m, —y +ht2q,/m, —z+ht2qz/m), (6)

although integration obviously smooths out some features, especially the complete ‘breach’
is not visible. At non-zero temperatures, sharp areas without correlation peaks disappear with
increasing temperatures. However, the shift in the positions of the peaks persists even at non-
zero temperatureS¥§|.

The difference between density—density correlations of the FFLO and BCS states can
be seen even more clearly when the lattice is 1D, i.e. when tunneling strengjhsaimd
z-directions vanish. In figure3, we show an example of density—density correlations in
a 1D lattice. Figure8(a) demonstrates the antibunching in the BCS-state density—density
correlation of a single component. The result is similar to the one in the ideal Ferni§jas [
However, in the superfluid BCS state a ‘bunching’ peak appea@(at — Q(x’) =0, where
Q(x) = mx/(ht) =k, wherek is a lattice momentum. This peak is absent for the ideal Fermi
gas. In figure8(b), we demonstrate the BCS-state density—density correlation between the
components and in figuic), we show the FFLO-state density—density correlation between the
components. As one can see from fig8fle) the BCS-state density—density correlation between
components is symmetric with respecixte- 0 and it has no regions without correlation peaks.
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Figure 7. Differences between the BCS-state density—density correlations and
the FFLO-state density—density correlations in a 3D lattice. In (a) is shown an
example of the BCS-state density—density correlations iz thé® plane, while

in (b) we show an example of the FFLO-state density—density correlations in
thez =0 plane. In (c) and (d) are shown the corresponding signals which have
been integrated ovez. In (a) and (c), we chose= —r’ and in (b) and (c)

r = —r’+ht2g/m. Note that any other choice would produce zero correlation.
All these examples were calculated at zero temperature and in (a) and (c)
P =0.0,(ny+n;)/2=0.55, andA /(2J) = 0.49 and in (b) and (dP = 0.168,

(ny +ny)/2=0.55, ), =0.25(r/d), gy =09, =0, andA /(2J) = 0.16. Color-
coding is such that warm colors imply high peaks and cold colors low, but in the
white areas the correlations vanish identically.

On the other hand, from figui&c) we can see that the FFLO-state density—density correlation
has a region (marked with dashed lines) without correlation peaks and one can also see that the
FFLO-state density—density correlation is not symmetric with respectHt®. Note especially

that in 1D the region empty of correlation peaks does not vanish by integration over other
dimensions. In figuré&(d), we show that this remarkable signature appears in the low filling
case as well, which also corresponds to the continuum 1D system that is of current experimental
interest.

Interestingly, the phase separation between the normal gas and a paired state could be
visible in the density—density correlations between components. This follows from the fact that
the density—density correlations between components in the normal state vanish, whereas in
the paired state the correlations are at their strongest around the Fermi momentum. In a lattice
superimposed by a trap the local density, and therefore the local Fermi momentum, is differentin
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Figure 8. 1D lattice density—density correlations. In (a), we demonstrate
the antibunching effects of the BCS density—density correlation of a single
component in a 1D lattice. In (b) is shown the BCS-state density—density
correlation between components and in (c), we show the FFLO-state density—
density correlation between components and (d) the FFLO-state density—density
correlation between the components with low average filling fraction. In (c)
and (d) dotted lines indicate the gapless regions. In (a) and (b) the polarization
P=0,(n;+n;)/2=0.41andA /(2J) = 0.53. In (c) the polarizatio® = 0.48,

(ny +n,;)/2=0.40, 2y, = 0.40(rr/d) andA /(2J) = 0.19. In (d) the polarization
P=0.91, (n;+n;)/2=0.20, Z)x =0.37(xr/d) and A/(2J) = 0.041. In (a),

Q(x) = mx/(ht) and we have chosen= 0. In (b), we have chosexn+x’ =0

and in (c) and (d), we have chosert x’ — 2htg,/m = 0. For other choices,
correlations vanish. The distance between the peaks in (b)—(d), as well as in
figure7, reflects the discreteness of the finite size lattice.

different areas of the gas. This may allow to identify spatial phase separation and shell structures
of normal and paired states from the freely expanded cloud where momentum has been mapped
to position.
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6. Fixed density phase diagrams

In ultracold gas experiments, the number of particles is often the fixed quantity, not the chemical
potential. Although the trapping potential makes also fixed chemical potential calculation
relevant in the LDA sense (as discussed in sectipnit is of interest to consider also the
fixed particle number case, because in the case of optical lattices the background potential is a
practical issue which may be eliminated to a certain extent. We have studied the phase diagrams
as a function of polarizatio® = (n, —n;)/(n, +n;) and temperature, i.e. keeping the filling
factorsn, andn, constant with respect to position.

In this situation, in addition to minimizing the free enerfy it is necessary to solve the
chemical potentials from the number equations:

Ny =D (i) = DU (Buseq) + 02 (B o).
k k

N, = Z <éIké¢k> = Z UE f(—E_xq)+ vf f(—E+kq), (7)
k k

where

, 1 Erkrg T & —keg o1 Stirq 8 kg
=3 |1 2 ’ U=z | 1- 2
2\/(§¢k+q +& | kia/2)" + AZ 2\/(ka+q +E | irq/2) "+ A2

and f is the Fermi function. This scheme produces the following stable phases: a polarized
superfluid phase, which is the standard BCS phase WwherD and the BP/Sarma phase when

P > 0, FFLO and normal state. It is important to note that when the densities are kept fixed, the
BCS state is a special case of the BP state, with zero polarization. In addition to these phases, we
have considered a phase separated state consisting of an unpolarized BCS gas and a polarized
normal gas, as suggested 86]. Such phase diagrams have already been discuss&g]ifof

a 3D lattice, here we expand those results to a 1D system and discuss the effects of Hartree and
Gorkov corrections on the phase diagrams.

The temperature—polarization phase diagram in a 1D lattice is shown in figurke
interaction is chosen so that the BCS critical temperature is close to that in the diagrams for
the 3D lattice, shown in figur&0. These figures demonstrate that with comparable conditions,

a 1D lattice can support much higher critical polarizations in FFLO and polarized superfluid
phases than the 3D system( 8 versus~0.3 in zero temperature with the chosen parameters).

The Hartree corrections arise from the Hartree ternh.t(cthk)cIkch and

Ucl,Ci(C]Cy), Which have been left out of the Hamiltonian. When the density is con-
stant in the system, the effect of the Hartree terms is implicitly included in the number
equations, 7). However, as the phase separated state contains components with different
densities 23], including the Hartree terms explicitly may change the difference in free energies
between phase separation and e.g., FFLO. The free energy of a system with constant densities
n; andn,, with the Hartree terms included, is

AZ
F Z—U + Ny +u$n¢+2UnTn¢

D (5¢—k+q +E_kq— % In ((1+e75wa) (1+ egE“k'q))) (8)
k
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Figure 9. The phase diagram of an imbalanced Fermi gas in an effectively
1D lattice. Colors: polarized superfluieblue (this is BCS aP = 0), FFLO=
yellow, phase separatigi®S = red, normak= white. The average filling factor

is 0.2 atoms/lattice site in each componegdt,= 0.07Eg, andU = —0.2Eg,
where Eg = h?k?/2m is the recoil energy. The FFLO area is remarkably large,
with a high critical polarization.

0 10 20 30 40 0 10 20 30 40
T (nK) T (nK)

Figure 10. Phase diagrams in a 3D lattice, without (left) and with (right) the
Hartree corrections included. The colors are the same as in fiyyoelarized
superfluid= blue, FFLO=yellow, phase separationiPS =red, normak
white. The average filling is.@ atoms/lattice site in each componegdt=
0.07Eg andU = —0.26ERr. The phase diagram on the left was publishe®j [
and is shown here for comparison to the one on the right.

We have found that while including the Hartree corrections brings the absolute difference,
Fps— FrrLo Closer to zero, it enlarges the FFLO area in the phase diagram, compared to phase
separation. This is shown in figué, where two phase diagrams with identical conditions,
except for the inclusion of the Hartree terms, for a 3D lattice, are shown.

For a two-component Fermi gas with equal densities, the transition tempefatute
superfluid state has been calculated as

Teoox EFexp(1/N(0)Uy), 9
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whereN (0) is the density of states at the Fermi surface dpts the two-body interaction. This
transition temperature is obtained by considering a purely two-body interaction. However this
picture can be modified due to the effect of the medium. This effect, which is also referred
to as induced interactior3f], was originally studied in the 1960s by Gorkov and Melik-
Barkhudarov 88]. The main idea goes back to the polarization in the medium by one fermion
and its influence on another atom. The second atom is scattered by a modified total interaction,
including induced interaction, which can be written as

Utot = U0 + Uind- (10)

Gorkov and Melik-Barkhudarov3g] found that the contribution of this effect reduces the
transition temperature by a facter2.2. In our formalism, the interaction enters via the first
term in the grand potential. Therefore in principal one could take into account the induced
interaction correction by consideringy, instead ofUy. This requires to calculate the induced
interaction which is~UZ and involves the Lindhard function.

The induced interaction iSSP

2 2 dp fp— fou
Uina = UoL (k) = Us (2rh)3 epux —€p
Let us here qualitatively discuss the effect of having a lattice dispetgiorstead of the usual
guadratic dispersion in free space. In the low density limit, the lattice dispersion becomes
effectively quadratic, and one can expect the same factaRat@uction of critical temperature
as in the free space casgf]. The term in the denominator of the Lindhard function is, in the
case of the usual quadratic dispersion, of the fokm p)?/2 — p?/2 = k?/2 +kpcosd (where
0 is the angle betweek andp). Around the pointk; = /2 (for 1D lattice at half filling),
the lattice dispersions 2 cogk;) (herei meansx, y, z depending on the dimensionality)
become effectively linear. Linearizing the lattice dispersion produces in the denominator of the

Lindhard function terms of the forrtk; + pi| — |pi| = /k*+ p?+ 2k pi — | pi|. Assuming that

this can be approximated by a Taylor expansion, one ends upk#ith+kpcosé as in the
quadratic dispersion case. This indicates that the linear dispersion regimes might not change the
Gorkov correction considerably. However, only a numerical evaluation of the integrals can give
a definite answer. An interesting issue is the behaviour of th¢ when the lattice filling is high
enough to include irL (k) dispersions near the band edges, i.e. Van Hove singularities. Then,
the dispersion 1 cogk;) aroundk; = 7 becomes quadratic again, but with a negative effective
mass. Naively, this means the induced interactions would have the opposite sign than usual,
i.e. enhancdc rather than suppress. However, the Lindhard function in this case, in addition to
guadratic dispersion with negative mass, contains also additional terms due to expansion around
7, and again a numerical approach should be applied. Anyhow, one could still expect the Van
Hove singularity to reduce the effect of the Gorkov correction, as has been shod@j fiorf{

a 3D gas in a 1D lattice. Note that this is not the same system as what we mean here by 1D
lattice, (which is a 1D gas in a 1D lattice) as explained in the introduction. In our 1D lattice, the
Van Hove singularity would not influence the Gorkov correction since the singularity happens
at full filling, and that should be the same as low density limit due to symmetry of pairing of
particles and holes over half filling. However, in 2D and 3D the Van Hove singularities as well
as regions of linear dispersion affdctk) and it is an intriguing question how these effects add

up. Numerical investigation of these issues is a topic of our further work.

(11)
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7. Conclusions

We have considered phase diagrams of density imbalanced two-component Fermi gases in
optical lattices of 1D, 2D and 3D. The phase diagrams in the plane of the average chemical
potential of the two components, and the chemical potential difference, show striking effects
originating from the Van Hove singularities of the lattice. These features appear only for the
FFLO state, not the BCS. Therefore they are unique signatures of the FFLO state and reflect
the fact that the nesting of the Fermi surfaces in a lattice enhances FFLO pairing compared to
case of the homogeneous space. We show how these features preserve to finite temperatures and
finally disappear for very high temperatures.

Using LDA, we have demonstrated various shell structures that can appear when the lattice
is superimposed by a harmonic trapping potential. For the studies of the FFLO state itself, it is
useful that structures where only FFLO and normal states appear can be found, but also more
exotic shell structures such as normal-FFLO-BCS—FFLO-normal are possible.

Density—density correlations are one possibility for observing the various phases and states.
We have shown here how the unpaired atoms in the FFLO state leave a clear signature in the
correlations. Especially in 1D the signature is very prominent. This is true for the 1D gas in
a 1D lattice as considered here, as well as for the 1D continuum system (our system in low
density limit) which is also of high interest since the 1D confinement is known to enhance
FFLO pairing A1, 42] even without the lattice potential.

We also considered Hartree corrections which according to our calculations tend to increase
the FFLO area versus phase separation in the case of fixed particle numbers. The outlook for
further work includes more detailed considerations of the Gorkov corrections, and studies of
strongly interacting gases instead of the weak and intermediate coupling regime considered
here.
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