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Abstract  
This thesis investigates the causal role of two extra-striate visual regions, the lateral 

occipital (LO) cortex and the occipital face area (OFA), in certain visual processes. 

Firstly, I examined whether these areas are causally implicated in the perception of 

bilateral visual symmetry. Despite the ubiquitous presence of this feature in the external 

world, the neural basis underlying its detection is not fully known.  

In Studies I and II, this issue was explored by disrupting the activity of LO and OFA 

with fMRI-guided transcranial magnetic stimulation (TMS) while participants 

discriminated between symmetric and nonsymmetric dot configurations and between 

perfectly symmetric and normal (i.e. somewhat non symmetric) faces. The results 

showed that rightOFA plays a causal role in detection of symmetry in both 

configurations of dots and faces whereas LO exclusively in the former, with the rightLO 

showing greater involvement relative to the homologous region in the left hemisphere. 

As symmetry is extracted in a holistic manner (i.e. through a parallel global analysis 

of the stimulus rather than via a serial point-by-point comparison of the local elements), 

Study III examined whether rightOFA is involved, more generally, in visual detection 

based on holistic encoding and, if so, whether its role is restricted to faces or extends 

also to non-face stimuli. To examine this issue, rightOFA and rightLO were stimulated 

with fMRI-guided TMS meanwhile participants were asked to detect Mooney faces and 

non-face images, a class of stimuli which are known to be perceived through holistic 

processes. The results showed that rightOFA is causally involved in detection of both 

Mooney faces and objects.  

Taken together, this thesis sheds new light on the functions of LO and OFA in visual 

perception. Firstly, it demonstrates that both of these regions are causally involved in 

holistic processes, including detection of symmetry. Secondly, it is shown that OFA’s 

role in holistic processing extends to both face and non-face stimuli, suggesting that this 

region is not strictly face-selective.  
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Tiivistelmä  
Tässä väitöskirjatyössä tutkitaan kahden myöhäisen näköaivokuoren alueen (lateral 

occipital cortex (LO) ja occipital face area (OFA)) kausaalista roolia tietyissä 

visuaalisissa prosesseissa. 

Ensiksi tutkittiin, osallistuvatko nämä alueet kausaalisesti bilateraalisen symmetrian 

havaitsemiseen. Huolimatta siitä, että symmetriaa on läsnä kaikkialla ympäröivässä 

maailmassa, sen havaitsemisen hermostollinen perusta ei ole vielä täysin tunnettu.  

Osatutkimuksissa I ja II asiaa tutkittiin häiritsemällä koehenkilöiden aivojen 

aktiivisuutta alueilla LO ja OFA fMRI-ohjatun trankraniaalisen magneettistimulaation 

(TMS) avulla, samalla kun he erottelivat symmetrisiä ja epäsymmetrisiä pistekuvioita 

sekä täysin symmetrisiä ja normaaleja (jonkin verran epäsymmetrisiä) kasvoja 

toisistaan. Tulokset osoittivat, että oikeanpuoleisella OFA:lla on kausaalinen rooli sekä 

pistekuvioiden että kasvojen symmetrian havaitsemisessa, kun taas LO:lla pelkästään 

edellisessä. Oikeanpuoleisen LO:n osallistumisen havaittiin olevan lisäksi 

voimakkaampaa suhteessa vastaavaan alueeseen vasemmassa aivopuoliskossa. 

Koska symmetria havaitaan holistisesti (havaitun ärsykkeen globaalin rinnakkaisen 

analyysin perusteella paikallisen piste pisteeltä vertailun sijaan), III osatyössä 

selvitettiin osallistuuko oikeanpuoleinen OFA yleisemmin visuaaliseen havaitsemiseen 

holistiseen enkoodaukseen perustuen, ja onko sen rooli rajoittunut pelkästään 

kasvoärsykkeisiin. Tämän tutkimiseksi oikeanpuoleista OFA:ta ja LO:ta stimuloitiin 

fMRI-ohjatulla TMS:lla koehenkilöiden tarkkaillessa n.k. Mooney-kasvoja ja -kuvia, 

joita molempia tiedetään prosessoitavan holistisesti. Tulokset osoittivat, että 

oikeanpuoleinen OFA osallistuu kausaalisesti sekä Mooney-kasvojen että -objektien 

tarkasteluun.  

Tämä väitöskirja laajentaa ymmärrystä LO ja OFA -alueiden toiminnasta 

visuaalisessa havaitsemisessa. Ensiksi, se demonstroi, että molemmat näistä alueista 

osallistuvat kausaalisesti holistiseen prosessointiin, sisältäen myös symmetrian 

havaitsemisen. Toiseksi, työssä osoitetaan, että OFA:n rooli holistisessa prosessoinnissa 

käsittää sekä kasvo- että muut ärsykkeet, ehdottaen että alue ei ole tiukasti 

kasvoselektiivinen.  
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1 Introduction 
Visual perception is among the most critical processes carried out by the human brain, 

with approximatively 27% of the entire cortex devoted to encode and process the visual 

information coming from the external world (Van Essen, 2003).  

Therefore, understanding the neural mechanisms underlying vision represents one of 

the most exciting challenges of cognitive neuroscience. In this thesis, I focused 

specifically on the functions of two extra-striate visual regions, the lateral occipital (LO) 

cortex and the occipital face area (OFA), widely known as critical nodes in perception of 

objects and faces, respectively.  

 

1.1 The visual system 
 
1.1.1  Visual pathway from the retina to early visual cortex 

Visual perception begins in the retina, where photoreceptors (i.e. rods and cones) 

receive the perceptual input in the form of light reflected from physical objects and 

convert it into an electrical signal, a process called phototransduction.  

The signal from the retina is transferred by the retinal ganglion cells, whose axons 

form the optic nerve, to the lateral geniculate nucleus (LGN) of the thalamus, although a 

small percentage of the retinal visual output reaches other structures, including the 

superior colliculus of the midbrain and the basal optic system, which control eye 

movements (Bear, Connor and Paradiso, 2001).  

The LGN is the main gateway between the retina and the visual cortex and exhibits a 

six-layer structure: the two most ventral layers (layers 1-2, known as magnocellular (M) 

layers) receive input from the ganglion cells innervated by rods whereas the four dorsal 

layers (layers 3-6, known as parvocellular (P) layers) receive the signal conveyed by 

ganglion cells innervated by cones. M cells, with large receptive field, are sensitive to 

stimuli characterized by low spatial and high temporal frequency and are mainly 

involved in processing of gross features and movements of a visual stimulus. On the 

other hand, the smaller receptive fields of P cells are more sensitive to stimuli with high 
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spatial and low temporal resolution and mainly concern with perception of fine grained 

details of the stimulus as well as color and shape (in particular red/green contrast) 

(Kandel, Schwartz and Jessel, 2000; Kaplan, 2004). A third, less investigated cell group 

in the LGN, known as koniocellular (K) cells, is located ventrally to each layer and 

conveys information about low-acuity and blue/yellow color contrast (Hendry and Reid, 

2000). From LGN, most of the visual information reaches the primary visual cortex in 

the medial part of the occipital lobe (Brodmann’s area 17), often referred to also as V1 or 

striate cortex.  

The primary visual cortex is organized in six layers of cells (referred to as layers 1-6): 

input from LGN is transmitted in particular to layer 4, which is in turn divided in four 

sublayers (4A, 4B, 4C-α and 4C-β). Segregation of the M and P pathways is preserved 

also at the level of the visual cortex: in fact M cells project to layer 4C-α whereas P cells 

project to layer 4C-β (Bear et al., 2001; Kandel et al., 2000). An important feature of V1 

is its retinotopic organization, i.e neighboring cells represent neighboring locations in 

the visual field (Daniel and Whitteridge, 1961). Furthermore, V1 is organized in narrow 

columns of cells, whose receptive fields encode almost identical retinal position and 

show identical orientation axes (Hubel and Wiesel, 1974). Such columns include for 

instance ocular dominance columns (Wiesel, Hubel and Lam, 1974).  

 

1.1.2  Extrastriate visual areas 

V1 represents the first stage of the information processing in the visual cortex. 

Beyond V1, the visual pathway includes several further regions which are collectively 

termed “extrastriate visual areas”. Such regions exhibit a hierarchical organization, to 

the extent that increasingly complex information is processed in areas located at higher 

stages of the visual hierarchy (e.g Zeki, 1978). Thus visual perception can be thought of, 

to some extent, as a bottom-up process in which low-level input provided by the retina is 

transformed into higher-level information through successive stages of processing 

(Ungerleider and Pasternak, 2004).  

According to the seminal model of Ungerleider and Mishkin (1982), two main 

pathways originate from the early visual cortex: a dorsal stream (also known as “where” 
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pathway) that projects to the posterior parietal cortex and a ventral stream (also known 

as “what” pathway) projecting to the inferior temporal cortex. Besides being 

anatomically segregated, these pathways are also functionally distinct: neurons in the 

ventral stream are mainly involved in categorization and recognition of the stimulus and 

therefore respond specifically to visual features necessary for object identification such 

as shape, color and texture; neurons in the dorsal stream, on the other hand, are mainly 

implicated in determining the spatial relationship between different stimuli and have 

been shown to respond selectively to spatial attributes of stimuli, including speed and 

direction of motion, as well as to process visual attention (Milner and Goodale, 2008). 

The two pathways are however highly interconnected (Farivar, 2009).  

This thesis focuses specifically on two extrastriate visual regions, the lateral occipital 

(LO) cortex and the occipital face area (OFA), both located in the ventral occipito-

temporal lobe. 

 

1.1.2.1 The lateral occipital cortex  

The lateral occipital complex (LOC) is a set of regions located posteriorly in the lateral 

portion of the fusiform gyrus and widely known as a central node in object and shape 

processing (Grill-Spector, 2003; Kourtzi and Kanwisher, 2001; Malach et al., 1995; see 

Grill-Spector, Kourtzi and Kanwisher, 2001 for a review).  

It includes two spatially segregated subdivisions: the posterior-dorsal portion (termed 

“lateral occipital”, LO) located in the posterior part of the inferior-temporal sulcus and 

an anterior-ventral portion (termed “PF/LOa”) along the posterior fusiform gyrus (Grill-

Spector and Malach, 2004). As most studies use the label “LO” to refer in general to this 

complex of regions, from now on this thesis will adopt the same terminology.   

Overall LO is a largely non-retinotopic region, activated by stimuli appearing in both 

ipsilateral and contralateral visual fields (Grill-Spector et al., 1998; Grill-Spector, 

Kourtzi and Kanwisher, 2001) and has been shown to respond to a wide variety of 

objects, ranging from common objects such as chairs and cars (Cichy, Chen and Haynes, 

2011; Eger, Kell and Kleinschmidt, 2008; Ishai et al., 2000; MacEvoy and Epstein, 

2009) to unfamiliar objects (de Beek, Torfs and Wagemans, 2008; Kourtzi et al., 2003, 
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Pitcher et al., 2009) and meaningless shapes (Altmann, Deubelius andKourtzi, 2004; 

Kourtzi et al., 2005), suggesting that it contains shape-selective neuronal populations 

but it is not involved in the “semantic” analysis of the object (Grill-Spector, 2003; 

Malach et al., 1995). Thus LO can be referred to as a general-purpose system for 

processing shapes and objects (Eger, Kell and Kleinschmidt, 2008; Grill-Spector, 

Kourtzi and Kanwisher, 2001).  

Importantly, LO is considered as a “high-order object area” (e.g. Lerner, Hendler and 

Malach, 2002), to the extent that it processes high-level object information rather than 

lower-level image features (Avidan et al., 2002; ; Kourtzi and Kanwisher, 2001; Malach 

et al., 1995):  in fact, representations of objects in this region are largely independent on 

low-level visual features such as luminance, motion, texture and depth (Avidan et al., 

2002;Grill-Spector et al., 2000; Kourtzi and Kanwisher, 2001; Malach et al., 1995) as 

well as on changes in stimulus size and location within the visual field (Grill-Spector et 

al., 1999; Malach et al., 1995).  

Of particular interest for the present thesis, LO has been extensively investigated also 

with transcranial magnetic stimulation (TMS), with several studies demonstrating that it 

is also causally implicated in object processing (e.g. Dilks et al., 2013; Ellison and 

Cowey, 2006; Mullin and Steeves, 2011; Pitcher  et al., 2007; 2009; 2011; Silvanto et al., 

2010). TMS data have also provided information about the timing of LO activity: 

specifically, the contribution of this region appears to be critical in a time window 

ranging from 90 to 150 ms from stimulus onset (Koivisto et al., 2011,2012; Mullin and 

Steeves, 2011).  

 

1.1.2.2  The occipital face area  

The occipital face area (OFA), located in the lateral inferior occipital gyrus, is a 

functionally defined face-selective region, responding more strongly to faces than a non-

face category, such as objects (Gauthier et al., 2000; Rossion et al, 2003; Yovel and 

Kanwisher, 2005, see Pitcher et al., 2011 for a review). Although some studies have 

revealed a weak face-selective functional activation of this region also in the left 

hemisphere (e.g. Rhodes et al., 2009; Rossion et al., 2003), it is more frequently found 
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in the right hemisphere (Pitcher et al., 2011), consistent with the preferential role of 

right hemisphere in face processing (Barton et al., 2002; Kanwisher et al., 1997).  

Its intermediate position in the visual hierarchy between early visual cortex and other 

higher-level face selective regions such as the face fusiform area (FFA) suggests that 

OFA might receive both feed-forward and re-entrant feed-back connections from other 

regions of the face network (Hemond et al., 2007; Pitcher et al., 2011).  

The specific role of OFA in face processing is still an open question. On one hand, 

influential hierarchical feed-forward models (Haxby et al., 2000) posit that OFA is the 

most “low-level” face-selective region in the visual cortex, where an early structural 

analysis of the face takes place, prior to further higher-level analysis occurring in FFA. 

Consistent with this, several studies revealed an involvement of this region in processing 

the physical structure (Rotshtein et al., 2005) and the local components of the face (so-

called facial feature information) including eyes, nose and mouth (e.g. Liu et al., 2010; 

Nichols et al., 2010; Zhang et al., 2012). An early involvement of OFA is also suggested 

by TMS studies reporting a critical role of this region in face processing as early as 60 

and 100ms after stimulus onset (Pitcher et al., 2007; 2008).  

On the other hand, however, there is evidence that OFA is not the necessary entry 

node of the face network, as prosopoagnosic patients with damage in this region still 

show a normal activation of FFA in response to faces (Dricot et al., 2008; Rossion et 

al.,2003; Rossion, 2008). Such findings have led to proposal in which OFA’s 

involvement occurs at a later stage of face processing, in response to re-entrant feedback 

from higher-level face regions where an initial and global representation of the face is 

carried out (Rossion, 2008; Rossion et al., 2003, 2011). In this view, OFA would 

contribute to a refinement of such global analysis providing information for fine-

grained, higher-level processes, fundamental for face recognition (Rossion, 2008).   

This view is consistent with TMS data demonstrating that stimulation of OFA leads to 

an impairment of more complex aspects of face processing, such as recognition and 

analysis of face expression, while having no impact on early face detection (Cohen 

Kadosh, Walsh and Cohen Kadosh, 2011; Solomon-Harris, Mullin and Steeves, 2013). 

Moreover, such impairment has been shown to occur from 170 ms onwards, suggesting a 
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later contribution of OFA probably reflecting re-entrant feedback processing from other 

higher-order face regions (Cohen Kadosh, Walsh and Cohen Kadosh, 2011).  

Another debated question relates to the face-selectivity of OFA. In fact, while most of 

the research on OFA has focused on face processing, emerging evidence shows an 

involvement of this brain region also in processing of non-face stimuli (Gilaie-Dotan et 

al., 2008; Haist et al., 2010;  Renzi et al., 2015; Silvanto et al., 2010; Slotnick and White 

2013). Intriguingly, neuroimaging studies have found a role of OFA in discrimination 

between individual exemplars (Haist et al., 2010) as well as comparable levels of 

activation in this region for faces and non-face stimuli when the latter are presented in 

specific regions of the visual field (Slotnick and White, 2013). Consistent with this, a 

prior TMS study causally implicated OFA in the encoding of two-dimensional 

meaningless shapes (Silvanto et al., 2010). 

Thus there is evidence inconsistent with the view that OFA is strictly face-selective; 

rather, it might be involved, at least to some extent, in processing of non-face stimuli.  

 

1.2  Detection of symmetry 

Symmetry is a prominent feature in the visual world and characterizes several elements, 

from human faces and bodies to living organisms (such as animals, trees, flowers and 

crystals) and nonliving man-made objects including tools, buildings and art works.  

The high prevalence of symmetry is supposed to have evolutionary origins, acting as a 

marker of genetic quality (Zaidel and Cohen, 2005).  

 

1.2.1 Features of symmetry 

The term “symmetry” refers to self-similarity under a class of geometric transformations 

occurring in 2D and 3D Euclidean space which preserve the structure of a stimulus 

(Treder, 2010; Wagemans, 1995, 1997). Such transformations are referred to as 

“isometries” and include translations, rotations and reflections.  

Reflectional symmetry (also termed “bilateral” or “mirror” symmetry) consists of a 

reflection of the pattern about a straight axis (i.e. half of the pattern is a mirror reflection 

of the other half) and represents the most salient symmetry type for the human visual 
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system. Vertical bilateral symmetry (on which this thesis focuses) is more easily 

detected than other types of symmetry, probably due to its higher prevalence in the 

visual world. This so-called “vertical advantage” might also depend on the bilateral 

symmetric organization of the visual system itself (Herbert and Humphrey, 1986). 

There is much evidence to show that the visual system extracts symmetry in a highly 

efficient way (Herbert and Humphrey, 1986; Treder et al., 2000; Wagemans, 1995): for 

example, symmetry can be detected rapidly (e.g. within 100 ms in the case of dense dot 

patterns (Barlow and Reeves, 1979), suggesting that its encoding occurs in parallel, 

rather than relying on a serial point-by-point comparison (Wagemans, 1995; 

Wenderoth, 1995). In other words, symmetry is detected through a global analysis of the 

visual stimulus (Huang, Pashler & Junge, 2004; Julesz, 2006), i.e comparing elements 

distributed across the whole image, and can therefore be thought of as a holistic feature 

(Rhodes et al., 2007; Wagemans, 1995). Furthermore, symmetry has been shown to be 

perceived in an automatic manner, i.e. without requiring any attentional resource 

(Cattaneo et al., 2014; Locher and Wagemans, 1993) even when the observer is not 

aware of its presence in the stimulus (Driver et al., 1992; Treder, 2010).  

Importantly, symmetry is a central cue in several visual processes, ranging from early 

lower-level processing such as detection of surface orientation (Saunders and Knill, 

2001), perceptual grouping and figure-ground segmentation (Machilsen et al., 2009; 

Treder and Meulenbroek, 2010) to higher-level processes such as detection of faces 

(Chen et al., 2007; Rhodes et al., 2005; Simmons et al., 2004) and shapes/objects 

(Biederman, 1987; Labonte’ et al., 1995; Machilsen et al., 2009). For example, symmetry 

aids figure-ground segregation to the extent that symmetrical regions of the visual field 

are usually perceived as figures (Machilsen et al., 2009; Wagemans, 1992). Likewise, 

face processing is facilitated when facial components are symmetric (Little and Jones, 

2006; Troje and Bulthoff, 1998) and face-likeness is shown to heighten perception of 

symmetry (Jones et al., 2012). 
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1.2.2  Neural basis of symmetry detection 
 

Despite the high prevalence of symmetry in the visual world, its neural basis has so far 

received relatively little attention. Existing evidence suggests that symmetry detection 

relies on higher-level visual areas (including V3, V4, V7 and the LO), whereas early 

visual regions such as V1/V2 do not seem to play a significant role (Chen et al., 2007; 

Palumbo, Bertamini and Makim, 2015; Sasaki et al., 2005; Tyler et al., 2005). This result 

pattern might be due to larger receptive fields being essential to extrapolate symmetry at 

a global level (Treder, 2010; Tyler et al., 2005).  

Most studies so far have focused on detection of symmetry in dot configurations, 

which has been shown to involve in particular the LO region (Cattaneo et al., 2011; 

Sasaki et al., 2005; Tyler et al., 2005).  The involvement of this region in symmetry 

detection is consistent with its role in perceptual organization in general (Grill-Spector, 

2003; Malach et al., 1995; Treder and van der Helm, 2007) and might at least partially 

depend on its role in object and shape processing, for which symmetry is a fundamental 

cue; however the symmetry-related response in this region has been shown not to 

completely overlap with the response to general features of objects (Sasaki et al., 2005) 

indicating that LO might be a critical node in symmetry detection in objects per se. Only 

one neuroimaging study so far has investigated symmetry detection in faces (Chen et al., 

2007) showing an involvement of the occipital face area (OFA).  

Critically, electrophysiological studies have provided information also on the timing 

of symmetry processing: specifically, a distinguishable deflection in the N1 component 

(ranging from 170 to 200 ms) has been reported during detection of symmetry in dot 

patterns (Makin et al., 2013), consistent with the evidence that this process involves 

extrastriate visual regions.  
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1.3 Holistic processing  

The term “holistic detection” refers to the simultaneous integration of the stimulus 

features into a global perceptual representation (Maurer et al., 2002); in other words, 

the visual stimulus is perceived as a whole, indecomposable entity (“Gestalt”) rather 

than a collection of independent elements (Latinus and Tylor, 2005; Rossion et al., 

2011). The most representative process exploiting a holistic encoding is face detection 

(Goffaux and Rossion, 2006; Yovel and Kanwisher, 2008), as indicated for example by 

an enhanced recognition of a facial component when presented within the whole face 

rather than in isolation (the so-called “part-whole recognition effect”; Farah et al., 1998; 

Leder and Carbon, 2005).  

The neural locus underlying holistic processing of faces has been shown to be in FFA 

(Andrews et al., 2010;Jiang et al., 2011; Schiltz et al., 2010; Zhang et al., 2012), probably 

because neurons in this region show larger receptive fields, which are assumed to be 

essential for holistic processing (DeSimone et al., 1984; Tsunoda et al., 2001).  

Whether OFA is also involved in holistic processing of faces is still an open question. 

There is some evidence to suggest that this might be the case: for example disturbances 

in perceiving the face as a whole have been reported following electrical stimulation of 

rightOFA (Jonas et al., 2012). Consistent with this, the prosopoagnosic patient P.S, 

exhibiting a lesion encompassing rightOFA but leaving  rightFFA unaffected,  shows an 

impairment in the face composite effect and in the part-whole effect (Ramon et al., 

2010;Ramon and Rossion, 2010), two widely known hallmarks of holistic processing. 

Finally, rightOFA has been shown to participate in detection of facial symmetry (Chen et 

al., 2007) a feature which, as discussed above, is defined as holistic (Rhodes et al., 2007; 

Tyler et al., 2005; Wagemans 1995).   

To the best of our knowledge, whether this region plays a causal role in holistic 

processes has not been assessed yet; this was the aim of Study III. 

 



22 

 

2  Aims of the study 
Overall, this thesis aims to shed new light on the causal role of LO and OFA in certain 

aspects on visual perception. Specifically: 

Study I investigated whether LO is causally implicated in detection of bilateral 

symmetry in dense dot patterns. As neuroimaging studies have shown an activation of 

this region during discrimination of symmetric and nonsymmetric configuration of dots 

(Sasaki et al., 2005; Tyler et al., 2005), we aimed to investigate whether it plays also a 

causal role in this process.  

In Study II we expanded the results obtained in Study I, exploring the neural correlates 

of symmetry detection in both dot patterns and faces. In particular, we aimed to assess 

whether the rightOFA, a region that was shown to participate in facial symmetry 

detection (Chen et al., 2007), plays also a causal role in this process and, if so, whether 

its implication is face-selective or extends also to non-face stimuli, such as dot 

configurations. Furthermore we investigated whether the rightLO is involved in 

symmetry detection also in faces.  

The aim of Study III was to assess whether rightOFA is causally involved, more in 

general, in holistic visual detection. Since symmetry detection is assumed to be a holistic 

process and Study II showed that rightOFA is causally implicated in this process, we 

investigated whether such involvement might reflect a more general implication of this 

region in visual processing based on holistic encoding.  
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3  General methods 

3.1  Functional magnetic resonance imaging  

3.1.1 Principles of magnetic resonance imaging (MRI)  

Magnetic resonance imaging (MRI) is founded on the principles of nuclear magnetic 

resonance (NMR) (Buxton, 2009; Huettel et al., 2009) and exploits the magnetic 

properties of hydrogen, the most abundant atom in the human brain. 

Hydrogen protons naturally spin around their axis generating a tiny magnetic field 

and, in their normal state, exhibit a random orientation, unaffected by the weak 

magnetic field of the Earth. When exposed to the powerful magnetic field created by the 

MRI scanner, most hydrogen protons align parallel (low-energy state) with the external 

field, whereas the remaining protons align in an antiparallel fashion (high-energy state).  

Furthermore, protons are in constant movement (so-called precession), with a 

frequency depending on the magnetic field strength. The small excess of higher-level 

spins generates a net magnetization along the external magnetic field (termed 

“longitudinal magnetization”). In order to create the magnetic resonance signal, a 

radiofrequency (RF) pulse with same frequency as the protons’ precession frequency is 

delivered. This energy is absorbed by the protons, which will thus switch from low- to 

high-energy state (a phenomenon known as “excitation”), leading therefore to a decrease 

in longitudinal magnetization. Furthermore, RF pulses also cause protons to precess in 

synchrony (or “in phase”) namely in same direction at the same time, thus adding a 

transverse component to the external field (the so-called “transversal magnetization”).  

When the RF pulses are turned off, the excitation of the nuclei is interrupted, the 

absorbed energy is eliminated and the excess spins at high-level energy state return to 

the original lower-level. Concurrently, protons lose their phase coherence resulting in a 

gradual reduction of transverse magnetization (transversal relaxation) whereas the 

longitudinal magnetization increases to the initial amount (longitudinal relaxation).  

The time needed for the longitudinal magnetization to recover is referred to as T1 

whereas the time that it takes for the transversal magnetization to disappear is referred 
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to as T2 relaxation time (or T2* when inhomogeneities in the magnetic fields, which 

affect the speed of transverse relaxation, are also considered).  

 

3.1.2 The BOLD signal 

Functional magnetic resonance imaging (fMRI) is nowadays the most widely used 

method for the non-invasive imaging of human brain. Importantly, it does not measure 

directly a neural event, but rather the hemodynamic changes correlated with neural 

activity (Logothetis, 2003).  

The most common fMRI technique employs the BOLD (blood oxygenation level 

dependent) signal (Ogawa et al., 1990, 1992), based on the magnetic properties of 

hemoglobin molecule. Deoxigenated hemoglobin is paramagnetic, i.e. exhibits higher 

magnetic susceptibility compared to the diamagnetic oxygenated hemoglobin, and 

variations in their respective amounts can be detected in T2*-weighted MR images. 

Paramagnetic deoxyhemoglobin in fact produces inhomogeneities in the surrounding 

magnetic field, resulting in a faster decay of transverse magnetization (i.e. shorter T2*) 

and therefore in a reduction of signal in regions where blood is highly deoxygenated.  

During neuronal activity, the increase of oxygenated blood flow leads to a drop in the 

amount of deoxyhemoglobin, and therefore to a corresponding increase in signal 

intensity. T2*-weighted MR images show therefore a stronger MR signal in regions 

where oxygenated blood is highly present compared to areas exhibiting higher 

proportions of deoxygenated hemoglobin.  

Variations in the MR signal in response to neuronal activity is referred to as 

hemodynamic response (HDR). During the first 1-2 seconds, a local decrease in signal 

occurs, probably due to the increase of deoxyhemoglobin (i.e increase of oxygen 

consumption). Following this initial dip, the hemodynamic response begins to increase, 

until reaching its peak approximatively 5 seconds later.  
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3.2 Transcranial magnetic stimulation  

Transcranial magnetic stimulation (TMS) is a powerful, noninvasive technique to 

investigate the human brain functions.  

The unique contribution provided by TMS is the possibility to actively modulate brain 

activity, unlike other techniques such as functional magnetic imaging (fMRI), 

magnetoencephalography (MEG) and electroencephalography (EEG) which simply 

measure the underlying brain activations.  

Furthermore, correlational approaches (such as fMRI, PET, MEG and EEG) cannot 

differentiate between epiphenomenally and causally activated neural population 

whereas TMS allows to reveal the causal relevance of the targeted brain region in a 

specific cognitive function (Miniussi, Harris and Ruzzoli, 2013; Pascual-Leone, Walsh 

and Rothwell, 2000;Sack et al., 2009; Silvanto and Pascual-Leone, 2012; Walsh and 

Cowey, 2000): the rational is that if TMS applied over a specific brain area induces a 

significant modulation of task performance, such region can be considered as causally 

relevant for the specific cognitive process (Miniussi, Harris and Ruzzoli, 2013; Siebner et 

al., 2009). In other words, TMS allows to make causal inferences on the functional role 

of the target area in a specific cognitive function.  

 

 3.2.1 Principle of TMS 

In TMS, a brief and high-amplitude current is delivered through a coil placed above the 

scalp, generating a perpendicular and rapidly changing magnetic field (“pulse”) which 

penetrates the skull with minimal attenuation inducing an electric field in the 

underneath neuronal tissue. This in turns provokes an ionic current flow and therefore a 

rapid and above-threshold depolarization of the target neurons, leading to a neuronal 

activation (Bestmann, 2008; Hallett, 2000; Sandrini, Umilta’ and Rusconi, 2011).  

The magnetic field delivered by the coil can reach up to 2 Tesla and lasts 

approximatively 100 to 200 μs (Hallet, 2007; Sack and Linden 2003).  

The efficacy of the stimulation depends on several parameters, including coil shape, 

size and orientation, as well as pulse intensity, frequency (single pulse or short burst of 

pulses, called repetitive (r)-TMS) and shape (monophasic or biphasic).  Importantly, 
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TMS has been shown to preferentially stimulate the neurons located where the induced 

electric field is highest (Thielscher and Kammer, 2002).  

The mechanisms of action of TMS are not fully understood yet. Traditionally, TMS 

effects were described in terms of “virtual lesion” (Pascual-Leone, Bartres-Faz and 

Keenan, 1999; Walsh and Cowey, 1998; Walsh and Pascual-Leone, 2003), referring to 

TMS inducing a transient and reversible functional “lesion” in the stimulated area and 

therefore enabling to establish a causal relationship between the target area and a 

specific cognitive function. However, the virtual lesion approach does not provide 

information on the exact mechanisms underlying TMS (Miniussi, Ruzzoli and Walsh, 

2010) and cannot explain phenomena such as state-dependency (i.e. the phenomenon 

according to which the effects of TMS depend on the initial activation state of the 

targeted region; Silvanto et al., 2008).  

For example it is still an open question whether TMS acts by suppressing the 

neuronal function of the target area (e.g Harris et al., 2008) or rather introducing 

interfering random activity to the neuronal processing (so-called “neuronal noise”) 

(Ruzzoli, Marzi and Miniussi, 2010; Silvanto and Muggleton, 2008; Walsh and Cowey 

2000). According to the former view, TMS might selectively suppress target-related 

activity and in this manner reduce the signal-to-noise ratio of the target stimulus (Harris 

et al., 2008). This suppressing effect has been proposed to depend on TMS enhancing 

the levels of GABA activity, which in turn inhibits the neural activity (Mantovani et al., 

2006; Moliadze et al., 2003).  Alternatively, TMS might act by adding random noise 

(unrelated to the ongoing activity of the target neurons) which interferes with signal 

processing because it competes with the neural activity coding for the signal. In other 

words, the signal-to-noise ratio, which represents the basis of the behavioural output, is 

affected by TMS which increases the level of noise. This in most cases leads to a decrease 

in the task performance (e.g. Miniussi et al. 2013; Ruzzoli et al., 2010).  

In an alternative view, TMS might preferentially activate neurons that have not been 

activated by the target stimulus; this might occur because neurons activated by the 

target are already firing and thus likely to be less susceptible to TMS (Silvanto and 

Muggleton, 2008). This reduces the signal-to-noise ratio impairing therefore the target 

detection. 



27 

 

3.2.2 Spatial and temporal resolution of TMS 

The spatial resolution of TMS depends on several factors, including shape and 

orientation of the coil, intensity of stimulation and electrical properties of the target 

areas. Figure-of-eight coil (as used in the present studies), is the most widely used as it 

allows a more focal stimulation: in fact, current flowing in the opposite direction within 

the wings produces a maximal current peak at the central intersection, enabling a 

stimulation with a spatial resolution ranging from 0.5 to 1.5 cm2 (Barker, 1999; 

Robertson et al., 2003; Sandrini et al., 2011).  

However, a critical aspect to be considered is that the magnetic field delivered by this 

coil peaks at approximatively 2.5 cm from the surface of the coil and logarithmically 

declines in strength with distance from the coil, with current reaching maximally 2-3 

cm2 of cortex underlying the coil (Barker, 1999; Sack and Linden, 2003; Sandrini et al., 

2011).  Therefore, the use of TMS is limited to regions no deeper than this. 

Importantly, it should be also considered that the TMS-induced effects are not 

restricted to the target region, but rather have been shown to spread to adjacent as well 

as anatomically connected regions (Robertson, Theoret and Pascual-Leone, 2003; 

Siebner et al., 2009; Walsh and Cowey, 1998). Such “distant effects” have been assessed 

mainly by TMS-EEG studies (e.g. Ilmoniemi et al., 1997), reporting a spreading of the 

TMS effects to the contralateral hemisphere within 10 milliseconds.   

Of a particular interest for the present thesis, the spatial resolution of TMS is 

significantly enhanced when combined with neuroimaging techniques (see next 

paragraph): for example, fMRI-guided TMS has been shown to allow a selective 

stimulation of rightLO and rightOFA (Pitcher et al., 2007; 2009), although located at a 

distance of less than 2 cm. 

The temporal resolution of TMS also depends on the stimulation parameters, 

including duration, frequency and intensity of the train. Single-pulse TMS (spTMS) 

allows a temporal resolution as high as few tens of milliseconds, as shown by the early 

pioneering work of Amassian et al. (1993). It can therefore be used in chronometric 

studies aimed to investigate the critical period during which the target area contributes 

to the experimental task. When short burst of TMS (repetitive TMS, rTMS) are applied, 
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the temporal resolution is naturally lower. However, the behavioural effects following 

rTMS have been shown to be stronger and of longer duration compared to spTMS 

(Hallett, 2000).  

Therefore, when the experiment primarily aims to assess whether a region is causally 

implicated in an ongoing process and high temporal resolution is not necessary, rTMS 

represents the best stimulation design, because of its higher efficiency. On the other 

hand, if the main objective of the study is to investigate the exact timing of a specific 

region’s contribution, spTMS is the elective choice, due to its superior temporal 

resolution. 

 

3.3  fMRI-guided TMS   
 

fMRI-guided TMS includes the acquisition of participants’ individual fMRI data to 

accurately localize the target area and guide the coil positioning during the subsequent 

TMS experiments (Sack et al., 2009; Siebner et al., 2009b; Sparing et al., 2010; see Sack 

and Linden 2003 for a review). 

Specifically, during TMS stimulation the coil is positioned over the individual local 

activation peaks obtained during the fMRI scan. This procedure highly enhances the 

spatial resolution of TMS, as it removes the error resulting from inter-individual 

variability in cortical anatomy and functional architecture, allowing a direct comparison 

both within (across different TMS sessions) and between participants (Robertson et al., 

2003; Rossini et al., 2015; Sack and Landen 2003). To date, this combined technique is 

considered the most accurate method for coil positioning (Sack et al., 2009; Sparing, et 

al., 2008), with an accuracy not exceeding 8-13 millimeter range (Hannula et al., 2005; 

Ruohonen and Karhu, 2010; Sparing et al., 2010).  

In an fMRI-guided TMS set up, the accurate coil positioning is achieved by using a 

Navigated Brain Stimulation (NBS) system, a software which allows co-registration of 

the individual MRI image with the participant’s actual head in a common reference 

space. This is accomplished by identifying three anatomical landmarks (usually the 

nasion and the two incisurae intertragicae, see e.g. McKeefry et al., 2009; Sack and 
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Linden, 2003) over the participant’s head using a digitizing pen and aligning them with 

the corresponding anatomical points marked on the participants’ MRI image.  

After the co-registration is performed, the system enables coil navigation exploiting 

the principle of frameless stereotaxy: specifically, an optical tracking system emitting 

infrared light locates and monitors the position of light-reflecting tracker elements 

which are attached to the TMS coil and the participant’s head. This information is 

transmitted to a computer which visualizes the coil position and orientation relative to 

the participant’s head. This aids preventing unintended coil movements during the 

stimulation, which lead to changes in the stimulated location and the strength of the 

magnetic field applied over the target area.  
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4 General procedures 
 

4.1 Participants  

Across all studies, participants were right-handed students or staff member of Aalto and 

Helsinki University (Espoo and Helsinki, Finland), with age ranging from 19 to 35 and 

with normal or corrected-to-normal vision.  

All participants provided a written informed consent and were screened for fMRI and 

TMS contraindications prior participation. All studies were approved by the local ethics 

committee of Hospital District of Helsinki and Uusimaa and participants were treated in 

agreement with the Declaration of Helsinki.  

All experimental subjects were naïve to the purpose of the studies and were paid for 

their participation. In all studies, participants underwent three different sessions, 

carried out in three different days. First, the fMRI localization was performed; the TMS 

tasks were then carried out during the remaining two sessions.  

 

4.2 fMRI localization 

fMRI localization of the LO and OFA was performed using a 3T Signa Excite scanner 

(General Electric Medical systems) in Studies I-II and a 3T Magneton Skyra whole-body 

scanner (Siemens Healthcare, Erlangen, Germany) in Study III. In all studies a 30-

channel head coil was used. The localization procedure was the same across all studies. 

Stimuli were projected in the middle of the screen on a 18-inch monitor with a display 

resolution of 1280 x 1024 using Presentation software (Neurobehavioural System) and 

viewed at a distance of 40 cm through a mirror inserted in the head coil. All stimuli were 

gray-scale images measuring approximately 16 x 16 degrees of visual angle.  Participants 

were instructed to carefully fixate the centre of the images, marked with a fixation cross.  

LO was determined as the activation peak of clusters of voxels that responded more 

intensively to images of common objects versus the scrambled version of the same 

pictures. Scrambled objects were obtained by randomly selecting an equal number of 
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square tiles from the original object image and moving their position within a grid of the 

same dimension as the original objects. Functional volumes were acquired in a single 

run lasting 432 sec with gradient-echo EPI sequence. Imaging parameters were as 

follows: 23 slices with 3.5 mm slice thickness (except for Study I, where 29 slides with 

3.0-mm slides thickness were used), repetition time=2 s, echo time= 30 ms, voxel size= 

3.125 x 3.125 x 3 mm3, flip angle= 75 (except for Study I, where flip angle was 60).  

OFA was identified as the activation peak of the cluster of voxels that responded more 

intensively to faces compared to objects. Functional data were acquired over 2 runs, 

each 271.2 sec long. Otherwise, the same parameters as for LO localization were used.   

For each participant, a high-resolution T1- weighted MPRAGE anatomical image was 

also acquired, in order to anatomically localize the functional activations and accurately 

guide the TMS stimulation.  

  Following data collection, SPM8 MatlabTM toolbox (http://www.fil.ion.ucl.ac.uk/spm) 

was employed for data preprocessing, parameter estimation and visualization. 

During the preprocessing, the functional data were corrected for head motion and slice 

acquisition time. The first four volumes of each runs were excluded in order to obtain a 

stable magnetization. In the parameter estimation, the data were high-pass filtered with 

128 sec cutoff, and noise autocorrelation was modeled with AR(1) model.  

Each participant’s functional data were co-registered with the high-resolution 

anatomical images, which were standardized into MNI space.  

Figure 1 shows the rightOFA and rightLO sites in a representative participant.   
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Figure 1.Axial, sagittal and coronal views (from upper left in clockwise direction) of the activation peaks 
of rightOFA (left panel) and the rightLO (right panel) of a representative experimental subject. 

 

 

4.3 TMS stimulation and site localization  

TMS pulses were delivered using Nexstim Stimulator (Nexstim LtD, Helsinki, Finland) 

connected with a 70mm figure-of-eight coil.  

The stimulation parameters were the same across all studies in the thesis: specifically, 

on each trial TMS was applied concurrently with the presentation of the visual stimulus 

and consisted of 3 pulses at a frequency of 10Hz, i.e covering a time window of 300ms 

from stimulus onset. This stimulation timing was selected in order to cover the period 

within which the OFA and LO would most likely be critically implicated in the task, 

similar to previous studies targeting the same brain regions (e.g. Cattaneo et al., 2011; 

Gilaie-Dotan et al., 2010; Silvanto et al., 2010).  

The intensity was set at 40% of the stimulator output for all participants and was 

selected on the basis of a prior piloting study revealing this was the maximum intensity 

participants showed to well tolerate, without inducing discomfort, muscle twitching or 

eye blinking. A fixed intensity was used in most studies targeting LO (Mullin and 
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Steeves, 2011; Pitcher et al., 2009) and OFA (Pitcher et al., 2007; Solomon-Harris et al., 

2013). 

The stimulation sites were defined as the cluster of voxels exhibiting the strongest 

activation in each functionally defined region and were individually located using the 

coordinates obtained from the fMRI localizers. The TMS pulses were then delivered over 

the target sites using eXimia Navigated Brain System (NBS), exploiting each 

participant’s individual high-resolution MRI scan (for a detailed description of fMRI-

guided TMS set-up see the previous chapter “General methods”).   

During the stimulation, the coil was held tangentially to the scalp in order to 

minimize the distance in between the coil and the cortex, with the handle pointing 

upward and parallel to the midlines, similar to previous studies targeting the same brain 

areas (e.g Gilaie-Dotan et al., 2010; Pitcher et al., 2009;  Silvanto et al., 2010). In all 

sessions, the coil was held in place by the experimenter, its position being constantly 

monitored in real-time by using the eXimia NBS system.  

In each experiment, a block with no significant stimulation was also included as a 

baseline against which the effects of TMS over the target regions were compared: 

specifically, in Study I we employed a block without stimulation (no TMS block), 

whereas in Study II and III we used stimulation of Vertex, in order to control for the 

non-specific TMS-induced effects such as the somatosensory sensation on the scalp and 

the auditory click evoked by the pulses (as in previous TMS studies e.g.Cattaneo et al., 

2012; Dilks et al., 2013; Mullin and Steeves, 2011; O’Shea et al., 2004). Vertex is 

identified as the halfway point in between the nasion and the inion and equally distant 

from right and left intertragal notches and it is assumed not to play a significant role in 

visual tasks (e.g. Sandrini et al., 2011; Vetter et al., 2015). 

All stimulation parameters were within the safety limits (Rossi et al., 2009; 

Wassermann, 1998).  
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4.4 Data analysis  

In all studies, the causal implication of the target sites in the ongoing process was 

investigated by assessing the impact of TMS on task performance when applied over the 

stimulated regions.   

Specifically, in Study I and II we analyzed performance by using the mean reaction 

time adjusted for accuracy level (i.e. RTs divided by the proportion of correct responses, 

the so-called “Inverse Efficiency”, IE) in order to account for any possible trade-off 

effects between speed and accuracy of response (see e.g. Bardi et al.,2013; Brozzoli et al., 

2008; Chambers et al., 2004; Pasalar et al., 2010). Because it combines accuracy and 

reaction time into a single measure, IE represents an optimal variable to assess task 

performance, particularly in tasks leading to high accuracy levels (almost at ceiling in 

our studies).  

In Study III we reported the results in terms of reaction times of correct responses, 

but the IE results showed the same pattern (not reported in the manuscript).  

Across all studies the impact of TMS on the task performance was assessed by using a 

repetitive measure ANOVA with “TMS sites” as within-subjects variable. In Study I we 

also included the variable “hemisphere” (i.e. left VS right), as both left and rightLO were 

stimulated in order to reveal any hemispheric lateralization in the investigated process.   
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5  Specific studies 

5.1 Study I: The causal role of the lateral occipital complex in visual 
mirror symmetry detection and grouping: an fMRI-guided TMS study 

Study I included two experiments: in Experiment 1 we assessed whether bilateral LO is 

causally implicated in detection of symmetry in dense dot patterns. Experiment 2 aimed 

to disentangle the effects related to symmetry from those associated to figure-ground 

segmentation and perceptual grouping: specifically, it consisted of a shape detection 

task where shape contour was defined by collinearity of Gabor elements. Critically, 

detection of these stimuli required figure-ground segmentation based on collinearity, 

rather than symmetry, and enabled therefore to control for specificity of LO effects in 

symmetry-based processing.  

5.1.1 Material and Methods 

In Experiment 1 we used dense dot configurations, consisting of 198 white dots on a 

black background and with a diameter of 16’’ of visual angle: in half of the configurations 

the white dots were perfectly symmetrically organized along the vertical axis, coinciding 

with the stimulus midline (symmetric configurations) whereas in the remaining 

configurations, the dots were distributed in a pseudo-random order over both halves of 

the stimulus, each one displaying the same number of dots (non-symmetric 

configurations). All symmetric configurations exhibited exclusively vertical symmetry, 

based on previous neuroimaging studies employing similar stimuli and reporting a 

stronger effect with vertical symmetry compared to other orientations (Sasaki et al., 

2005, Tyler et al., 2005).  

Figure 2 shows an example of an experimental trial: participants were presented with 

a configuration of dots (appearing on the screen for 75ms) and instructed to report 

whether it was symmetric or not. Symmetric and non-symmetric patterns were 

presented in random order. Critically, concurrently with stimulus presentation fMRI-

guided TMS was applied, in different blocks, over either the functionally localized 

rightLO and the leftLO or over two control sites in the extra-striate cortex of both 
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hemispheres, localized by moving the coil 2 cm up from right and leftLO (see e.g. Pitcher 

et al., 2007 for a similar procedure). Furthermore, a condition without TMS was also 

included as a baseline against which to compare the effects of TMS over the target sites. 

In the TMS sessions, the stimulation consisted of 3 pulses at 10 Hz and at an intensity of 

40% of maximum stimulator output (see previous section “General Procedure” for more 

details on TMS stimulation). 

Stimuli of Experiment 2 consisted of meaningless shapes formed by Gabor patches 

(GP) patterns presented on a gray background with a diameter of 16’’ of visual angle.  

The total number of patches in each pattern ranged from 120 to 210. In half of the 

stimuli, the GP were distributed so that they formed a closed contour of similarly 

oriented patches, embedded in a background constituted of randomly oriented patches.  

Contours contained 40% of the total amount of patches in the configurations, whereas 

the remaining 60% formed the background. In the other half of the stimuli, all GP were 

randomly distributed and did not display a visible closed contour (see the original article 

for further details on stimuli). In each block, stimuli were presented in random order 

and participants were required to report whether they perceived a shape or not. fMRI-

guided TMS was applied as in Experiment 1.   
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Figure 2. Timeline of an experimental trial in Experiment 1: A fixation cross, appearing on the screen for 
500ms, was followed by the stimulus target (i.e. either a symmetric or a non-symmetric dot pattern) 
lasting for 75 ms. Participants had to judge whether the stimulus was or not symmetric. Concurrently with 
stimulus onset, a TMS train of 3 pulses (10Hz) was delivered over the target sites.  
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5.1.2 Results  

Statistical analyses of both experiments were carried out on Inverse Efficiency (i.e. mean 

RT adjusted for accuracy). 

Specifically, In Experiment 1 (Fig. 3a) a repeated-measures ANOVA with TMS site 

(LO vs Control) and hemisphere (Left vs Right) as within-subjects variables revealed a 

significant main effect of TMS site [F(1,13) = 6.28, p = .026, ηp2 = .33], indicating that 

TMS applied over bilateral LO impaired performance relative to stimulation of control 

sites. Furthermore, a significant main effect of hemisphere [F(1,13) = 6.51, p = .024, 

ηp2 = .33] and a significant interaction TMS site by hemisphere [F(1,13) = 5.39, p = .037, 

ηp2 = .29]  were reported.  To further explore such interaction we assessed the main 

effect of hemisphere within each target site (LO and control): performance was the same 

between left and right control site [t(13) = .87, p = .402] whereas it was significantly 

reduced for stimulation of rightLO relative to leftLO [t(13) = 2.62, p = .021].  

This result pattern demonstrates that TMS applied over both right and leftLO 

significantly impaired symmetry detection in dot patterns relative to the control sites; 

critically however, the disruptive effect was significantly higher following stimulation of 

rightLO, suggesting that symmetry processing preferentially relies on the right 

hemisphere.  

In Experiment 2 (Fig. 3b), the same ANOVA as in Experiment 1 revealed a significant 

main effect of TMS site [F(1,11) = 14.67, p = .003, ηp2 = .57], indicating that performance 

was disrupted when TMS was applied over bilateral LO compared to stimulation of 

control sites. The effect of hemisphere was not significant [F(1,11) = .21, p = .654, 

ηp2 = .02], nor was the interaction TMS site by hemisphere [F(1,11) = .97, p = .345, 

ηp2 = .08]. Overall, these results showed that shape detection based on collinearity was 

equally impaired when TMS was applied over right and leftLO compared to control sites, 

demonstrating that the right-lateralization in the LO’s involvement observed in 

Experiment 1 is specific for symmetry processing and does not extend to other figure-

ground segmentation processes. 
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Taken together, our results showed that bilateral LO is causally implicated both in 

symmetry detection and in shape detection based on collinearity; however a right 

hemisphere lateralization can be observed exclusively in symmetry processing, with 

rightLO playing a greater role than the homologous region in the left hemisphere.    

Overall, Study I expanded previous neuroimaging studies showing a participation of 

LO in detection of symmetry in dense dot patterns (Sasaki et al., 2005; Tyler et al., 

2005), demonstrating that this region is also causally implicated in this process.   

 

 

 

Figure 3. Participants adjusted RT (i.e. Inverse Efficiency) normalized to the NO TMS condition 
(baseline) in Experiment 1 (panel A) and Experiment 2 (panel B). In Experiment 1, detection of symmetry 
in dot patterns was impaired when TMS was applied over both right and leftLO relative to stimulation of 
control sites; however TMS over rightLO lead to a significantly greater disruption, compared to the leftLO 
TMS. Stimulation of control sites did not reveal any hemispheric difference.  In Experiment 2, shape 
detection based on collinearity was impaired when TMS was applied over both right and leftLO, with no 
significant hemispheric difference. Error bars indicate ±1 SEM.  
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5.2 Study II: The causal role of the occipital face area (OFA) and lateral 
occipital (LO) cortex in symmetry perception  

Study II included four experiments: Experiment 1a assessed whether detection of 

symmetry in dot patterns involves also rightOFA. Experiment 1b was a direct replication 

of the Experiment 2 of Study I and aimed to ensure that possible involvement of rightLO 

and rightOFA in symmetry detection in dot patterns was specific for symmetry and did 

not depend on these regions playing a role in figure-ground segmentation processes in 

general. Experiment 2a investigated whether rightLO and rightOFA are causally 

implicated in symmetry detection in faces. Finally, Experiment 2b consisted in a 

standard face discrimination and was performed to ensure the correct localization of 

rightOFA and the selective stimulation of this region relative to the adjacent rightLO.  

 

5.2.1 Material and Methods 

In Experiment 1a participants performed the same task as in Experiment 1 of Study I 

(i.e. discrimination between symmetric and non-symmetric configurations of dots) with 

the difference that fMRI-guided TMS was applied over either the functionally localized 

rightOFA, rightLO, leftOFA (control site) or over the Vertex (baseline condition). 

Otherwise, stimuli and TMS parameters were the same as in Study I.  

In Experiment 1b participants performed the same task as in Experiment 2 of Study I 

(i.e. detection of Gabor shapes) and TMS was applied as in the Experiment 1a.  

Stimuli of Experiment 2a consisted of a set of perfectly symmetric and normal (i.e not 

fully symmetric) human faces (half males and half females), all measuring 

approximatively 10.5 x 14.5 degrees of visual angle. Symmetrical faces were created by 

blending each face with its mirror image. All faces displayed neutral facial expression 

and were presented in frontal view embedded in semi-oval black mask covering most of 

the hair.  An example of experimental trial is represented in Fig.4: in each trial 

participants had to judge whether the face appearing on the screen was either perfectly 

symmetric or a normal face (i.e. somewhat non-symmetric). The face types appeared in 

random order and were presented for 300ms. TMS stimulation was applied as in 
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Experiment 1a and 1b with the exception that leftOFA was no longer included as target 

site because we focused on the right hemisphere.  

Finally the task in Experiment 2b required participants to discriminate between pairs 

of female faces differing on featural components (i.e. the shape or the size of eyes and 

mouth). Stimuli consisted of five grayscale images of a female face (Jane) and its four 

featural variants, obtained by replacing Jane’s original eyes and mouth with the same 

facial features from different female faces whereas the remaining portion of the faces 

was identical. Each face measured approximatively 9.7 x 14.4 degrees of visual angle.  

In each trial, participants were presented with two faces in a short sequence and had to 

report whether the second face was identical to the first one or differed in some aspects. 

The first face was presented for 200ms whereas the second one, appearing after a 

300ms delay, remained visible until participant’s answer. Stimulation was applied as in 

Experiment 2a and concurrently with the onset of the second face. 

 

 
Figure 4. Timeline of an experimental trial in Experiment 2a: Following a fixation cross appearing on the 
screen for 500ms, the visual target (namely either a perfectly symmetric or a normal (i.e not fully 
symmetric) face) was presented for 300ms. Participants had to judge whether the face was perfectly 
symmetric or not. Concurrently with stimulus presentation, the TMS train (3 pulses,10Hz) was delivered 
over the target sites. 
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5.2.2 Results  

In all experiments statistical analyses were performed on IE, as in Study I.  

Specifically, in Experiment 1a (Fig. 5a), a repeated-measures ANOVA with TMS site 

(rightLO, rightOFA, leftOFA, and Vertex) as within-subjects variable showed a 

significant effect of TMS [F(3,39) = 7.46, p<.001; ηp2 =.36]. Post hoc t-tests revealed 

that performance was reduced when TMS was delivered over both rightLO [t(13) = 3.57, 

p =.014] and rightOFA [t(13) = 4.15, p =.007] compared to Vertex, whereas stimulating 

leftOFA did not have any affect [t(13)< 1, p =.92]. This result pattern demonstrates that 

both rightLO and rightOFA play a causal role in detection of symmetry in dot 

configurations. 

In Experiment 1b (Fig. 5b), the same ANOVA revaled that TMS lead to a disruption in 

shape detection task when applied over rightLO [t(13) = 3.46, p= .026] and leftOFA 

[t(13) = 3.25, p = .031], but not over rightOFA [t(13) = 1.73, p =.33], demonstrating that 

rightOFA’s involvement in symmetry detection in dot configurations is symmetry-

specific and does not extend to figure-ground segmentation based on collinearity.    

In Experiment 2a (Fig. 5c) a repeated-measure ANOVA with TMS site (rightLO, 

rightOFA, and Vertex) as within-subjects variable revealed a significant effect of TMS 

[F(2,26)= 7.38, p =.003; ηp2 =.36]. Post hoc t-tests revealed that the ability to 

distinguish between perfectly symmetric and normal (i.e. not fully symmetric) faces was 

lowered following stimulation of rightOFA [t(13) = 3.15, p = .015] relative to Vertex 

whereas stimulation of rightLO had no impact [t(13)< 1, p =.79]. This result pattern 

suggests that only rightOFA, but not rightLO, plays a casual role in processing facial 

symmetry.  

Finally the same ANOVA performed in Experiment 2b (Fig. 5d) showed that TMS 

affected discrimination of faces based on internal features when delivered over rightOFA 

[t(13) = 2.88, p =.026], relative to Vertex but not over rightLO [t(13)< 1, p = .92], 

demonstrating that OFA was correctly localized and that these regions were 

differentially stimulated.    

Overall, Study II showed that both rightLO and rightOFA are causally implicated in 

detection of symmetry in dot patterns whereas only rightOFA is recruited during 
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symmetry processing in faces. Furthermore, the rightOFA’s involvement in symmetry 

detection is shown to be specific for symmetry and not dependent on its role in figure-

ground segregation in general.  Our results expanded previous neuroimaging data 

reporting an activation of rightOFA during detection of facial symmetry (Chen et al., 

2007) demonstrating that this regions is also causally implicated in this process; 

furthermore it is shown that the involvement of this region in symmetry processing 

extends also to non-face stimuli. 

 

 

Figure 5. Participants mean adjusted RT (i.e. Inverse Efficiency) in Experiment 1a (Panel A), 1b (Panel 
B), 2a (Panel C) and 2b (Panel D). In Experiment 1a, TMS applied over both rightLO and rightOFA 
impaired detection of symmetry in dot patterns relative to Vertex (baseline) whereas leftOFA TMS had no 
impact. In Experiment 1b shape detection based on collinearity was significantly impaired following 
stimulation of rightLO and leftOFA compared to Vertex, whereas TMS over rightOFA did not affect 
performance. In Experiment 2a TMS over rightOFA, but not over rightLO, interfered with ability to 
discriminate between perfectly symmetric and normal faces. Finally, In Experiment 2b face discrimination 
was impaired by TMS applied over rightOFA but not over rightLO. Error bars indicate ±1 SEM. 



44 

 

5.3 Study III: Investigating the causal role of rOFA in holistic detection 
of Mooney faces and objects: an fMRI-guided TMS study  

The study included two experiments: In Experiment 1 we assessed whether rightOFA is 

causally implicated in holistic processing of face and non-face stimuli by using a Mooney 

detection task. Experiment 2 was a replication of the Gabor shape detection task used in 

Study I and II and was performed to ensure the specificity of rightLO and rightOFA 

implication in holistic processing: in fact, detection of shapes used here is based on 

integration of local components (i.e. the similarly oriented Gabor elements which form 

their contour) rather than on a holistic processing. 

5.3.1 Material and Methods 

In Experiment 1 (Fig.6) we used Mooney stimuli, namely two-tones (black and white) 

images which can be recognized exclusively on the basis of their global configuration, i.e 

via holistic processing, as their local components are too degraded to be individually 

recognized (Eimer et al., 2011; Latinus and Taylor, 2005; Rossion et al., 2011). 

Specifically, Mooney images represented exemplars of three different stimulus 

categories: guitars, human faces or different objects (including man-made objects, 

animals and fruits). Guitars were specifically selected because they show a clear 

prototypical shape, as in the case of faces. Additionally, a set of meaningless Mooney 

images was created by randomly modifying the position of several black and white 

portions of the original pictures. The three stimulus categories were tested in separated 

blocks: participants’ task consisted in detecting the visual target (i.e. a Mooney face, 

guitar or object, depending on the block), presented in random order intermixed with 

meaningless stimuli. The stimulation sites were rightLO, rightOFA and Vertex (baseline) 

and TMS train was applied as in Study II, commencing at stimulus onset.   

In Experiment 2 participants performed the same Gabor shape detection task as used 

in Study I and II. TMS stimulation was applied as in Experiment 1.  
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Figure 6. Timeline of an experimental trial in Experiment 1: A fixation cross was presented in the middle 
of the screen for 500ms, followed by the visual target (i.e a Mooney face, guitar or object, depending on the 
block)  which remained visible for 150ms (except for objects that were presented for 200ms). Participants’ 
task was to report whether they perceived the target or a meaningless image. TMS train (3 pulses,10Hz) 
was applied over the target sites concurrently with target presentation. 

 

5.3.2 Results  

In both experiments statistical analysis were performed on the reaction times (RT) of 

correct responses.  In Experiment 1 (Fig.7a-c), a repeated-measure ANOVA with TMS 

site (rightLO, rightOFA, Vertex) and stimulus category (Mooney faces, guitars and 

objects) as within-subjects variables revealed a significant main effect of TMS [F(2,34)= 

11.48, p < .001, ηp2=.41)] but no significant effect of stimulus category [F(2,34)= 3.09, 

p= .06, ηp2=.15)] and no interaction TMS site by stimulus category [F(4,68)= 1.98, 

p=.12, ηp2=.11)]. Post-hoc t-tests revealed that TMS over both rightOFA [t(14) = 4.03, 

p = .002] and rightLO [t(14) = 4.03, p =.003] disrupted performance compared toVertex 

stimulation. Such result pattern indicates that stimulation of both rightOFA and rightLO 

impaired detection of all Mooney stimuli (with no category-specificity), causally 
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implicating these regions in holistic processing of both face and non-face stimuli. 

However, importantly, despite the analysis revealed that the rightLO’s implication  is not  

selective for objects, a visual inspection of  Fig.7a-c shows that the effect of this region is 

driven by an impairment in detection of object and guitar images.  

In Experiment 2 (Fig. 7d) a repeated-measure ANOVA with TMS site (rightLO, 

rightOFA, Vertex) as within-subjects variable revealed a significant main effect of TMS 

[F(2,24)= 10.71, p < .001, ηp2=.47)]. Post-hoc t-tests showed that detection of Gabor 

shapes is reduced when TMS is applied over rightLO compared to stimulation of Vertex 

[t(12) = 3.41, p=.01] and of rightOFA [t(12) = 3.39, p=.015]; stimulation of rightOFA,on 

the other other hand, had no impact [t(12) = .05, p=.96], demonstrating that the 

involvement of this region in detection of non-face stimuli is restricted to circumstances 

when stimulus detection requires a holistic encoding. Furthermore, Experiment 2 shows 

that rightLO and rightOFA were selectively stimulated.  

Overall, Study III revealed that rightOFA does play a causal role in holistic processing 

and that such involvement is not face-specific. Critically, the involvement of this region 

in processing non-face stimuli is shown to be specific for holistic encoding and does not 

apply to circumstances when detection requires other type of processes (e.g. integration 

of local features).  



47 

 

 

Figure 7. Participants’ reaction times of correct responses in Experiment 1 (Panel A-C) and Experiment 2 
(Panel D). In Experiment 1, TMS over both rightLO and rightOFA impaired detection of all Mooney 
stimuli, compared to stimulation of Vertex. In Experiment 2 shape detection was affected when TMS was 
applied over rightLO but not over rightOFA. Error bars indicate ±1 SEM. 
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6 Discussion  

6.1 The role of LO and OFA in symmetry detection 

Studies I and II explored the neural basis underlying detection of bilateral symmetry 

with different types of stimuli. Specifically we addressed the following questions: are LO 

and OFA, two regions which are known to participate in detection of symmetry in dot 

patterns and face respectively, also causally implicated in this process? And if so, is their 

role specific for stimuli belonging to the category they are primarily sensitive to (i.e. dot 

configurations for LO and faces for OFA) or does it extend also to other stimulus 

categories?  

Study I demonstrated that LO, bilaterally, plays a causal role in detection of symmetry 

in dot configurations; however rightLO is shown to play a significantly greater role 

compared to leftLO. This right-lateralization was found to be specific for symmetry 

detection, as it was not revealed when the task required figure-ground segmentation 

based on collinearity.  

Study II showed that rightOFA is causally implicated in symmetry detection both in 

dot patterns and in faces, whereas rightLO’s role was restricted to the former. 

Importantly, rightOFA was not found to be involved in figure-ground segregation based 

on collinearity, demonstrating the symmetry-specificity of this result. Taken together, 

our results demonstrate that detection of symmetry in low-level stimuli such as dot 

patterns involves both bilateral LO and rightOFA, whereas facial symmetry perception 

relies exclusively on the latter.  

This result pattern can be explained by conceptualizing symmetry as a feature which 

recruits functionally different coding mechanisms depending on the stimulus type. On 

one hand symmetry is a low-level visual property, acting as an important cue in early 

visual processes such as figure-ground segmentation and detected by means of general 

mechanisms operating on simple stimulus features and regardless of stimulus identity 

(Koning and Wagemans, 2009; Labonte’et al., 1995; Machilsen et al., 2009). Both LO 

and OFA appear to be involved in processing of this kind, as shown by their involvement 

in encoding symmetry in dot configurations. 
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On the other hand, symmetry perception in faces might recruit specialized, higher-

level coding mechanisms, probably responding to more abstract properties of the 

stimulus (Rhodes et al., 2005, 2007). The existence of such higher-level face-specific 

mechanisms for facial symmetry detection is consistent with behavioural evidence 

showing for example a superior facial symmetry detection in upright faces compared to 

stimuli sharing the same low-level image properties but not engaging face-specific 

coding mechanisms, such as inverted faces (Rhodes et al., 2005, 2007). The role of OFA 

in encoding of facial symmetry might relate to this mechanisms. 

Furthermore, these results indicate that these two functionally different mechanisms 

share a common basis, given that rightOFA was involved in detection of both facial and 

low-level symmetry. Indeed, it has been proposed that generic symmetry perception 

mechanisms might have become specialized for facial symmetry due to our high 

experience with faces. Thus, rightOFA might represent a critical area for symmetry 

processing per se, independently on stimulus identity.  

Further studies testing symmetry processing in different types of stimuli (e.g 

meaningful objects) are necessary to verify this hypothesis.  

 

6.1.1 The right-lateralization of symmetry detection 

Overall, these results indicate that perception of symmetry preferentially relies on the 

right hemisphere. In fact, Study I revealed that rightLO plays a more critical role than 

the leftLO in encoding symmetry detection in dot patterns; in Study 2, rightOFA but not 

leftOFA was shown to be implicated in facial symmetry detection. 

Although previous neuroimaging studies have not reported such right-lateralization, 

our data are consistent with behavioural evidence showing a left visual field/right 

hemisphere advantage during perception of symmetry (Brysbaert, 1994, Verma et al., 

2013). Furthermore, as symmetry is extracted via a global analysis of the stimulus (i.e. in 

a holistic manner), such right-lateralization might depend on the right hemisphere being 

specialized in configural/global processing (Christie et al. 2012; Yovel et al., 2001). 

Alternatively, the right hemisphere might be preferentially tuned for low spatial 

frequencies, which mainly convey configural information of a visual stimulus and have 
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been shown to play a greater role in symmetry detection relative to lower spatial 

frequencies (Lamb and Yund, 1993; Peyrin et al., 2003). A further possible explanation 

relates to right hemisphere preference in face detection: the right hemisphere might 

have become specialized for symmetry processing due to its prevalent implication in face 

detection, or vice versa. 

 

6.2 The role of rightOFA in holistic processing of face and non-face  
stimuli 

Study II demonstrated that the rightOFA is causally involved in symmetry processing in 

both face and non-face stimuli. Given that the detection of symmetry is a holistic 

process, this raises the question of whether rightOFA might be implicated in holistic 

processing more generally, independently of stimulus identity. In Study III we assessed 

this issue and demonstrated that rightOFA plays a casual role in detection of Mooney 

faces and objects, a process which is widely known to recruit a holistic strategy.  

Taken together, studies II and III indicate therefore that rightOFA is causally 

implicated in holistic processes, such as detection of symmetry and of Mooney stimuli, 

and that such role is not face-selective but rather extends also to non-face stimuli.  

It is therefore tempting to conclude that rightOFA might be implicated overall in visual 

detection exploiting a holistic code and regardless of stimulus identity.  

As discussed in the Introduction, although rightOFA is widely assumed to respond 

preferentially to face components (Liu et al., 2010; Nichols et al., 2010; Pitcher et al., 

2007; Zhang et al., 2012), previous studies have already suggested that it might be 

involved, at least to some extent, in holistic processing of faces (e.g. Chen et al., 2007; 

Jonas et al., 2012; Ramon et al., 2010; Ramon and Rossion, 2010). However, whether 

rightOFA plays a causal role in holistic encoding was not investigated so far. 

Furthermore, critically, the holistic response in this region has been so far assessed 

exclusively within the face processing domain, in line with the traditional view of 

rightOFA as a critical node in the face encoding network. The results of the present 

thesis demonstrate, for the first time, that rightOFA does play a causal role in holistic 
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processing and that such involvement is not restricted to faces but rather extends also to 

non-face stimuli.  

Also the view of rightOFA not being a strictly face-selective region is not without 

precedents. In fact, despite its well-established role in face detection, this region has 

been also implicated in the processing of non-face stimuli (Gilaie-Dotan et al., 2008; 

Haist et al., 2010; Renzi et al., 2015; Silvanto et al., 2010; Slotnick and White 2013).  

The present data are consistent with and strengthen this line of evidence, 

demonstrating that rightOFA plays a causal role in encoding of non-face stimuli and that 

such involvement is restricted to circumstances when detection relies on holistic 

mechanisms, as is the case in perception of symmetry and of Mooney images; in fact this 

region is found not to play a significant role in detection of meaningless shapes 

consisting of Gabor patches, a process requiring integration of local features (i.e the 

similarly oriented line segments that compose the shape contours) rather than holistic 

processes. Therefore, the role of rightOFA in processing non-face stimuli appears to be 

specific for holistic encoding whereas, when detection is rather based on the encoding of 

local details, rightOFA’s role does not seem to extend to non-face stimuli. This evidence 

is consistent with previous TMS data reporting no causal role of rightOFA in featural 

encoding of objects and houses (Pitcher et al., 2007; 2009; Solomon-Harris et al., 2013). 

To conclude, the results of the present thesis demonstrate that rightOFA is causally 

implicated in holistic processes, such as detection of symmetry and Mooney stimuli, and 

that such role is not tight to any specific stimulus category. Additional studies are 

necessary to establish whether the role of this region extends to all kinds of holistic 

processes in both face and non-face stimuli.  
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6.3 Toward a new conceptualization of OFA 

Taken together, the results of the present thesis suggest that the traditional view of OFA 

as a face-selective region, responding preferentially to face local components, might not 

be exhaustive of the functions underlying this brain region. This calls for a new 

conceptualization of the role of OFA in visual perception. 

An intriguing possibility, as discussed in the previous paragraph, is that rightOFA is 

not a face-selective region but rather is involved, more generally, in a wider range of 

holistic processes, not tight to any specific stimulus category. In this view, rightOFA 

shows a greater sensitivity to faces compared to other classes of stimuli because of face 

detection strongly relying on holistic processes. In other words, rightOFA is not 

specialized for face detection per se, but is rather implicated more generally in stimulus 

detection recruiting a holistic code, of which face processing represents the most 

common example. At first sight, this hypothesis might appear in conflict with the well-

established role of rightOFA in responding to face local components (Liu et al., 2010; 

Nichols et al., 2010; Pitcher et al., 2007; Zhang et al., 2012). Two hypothesis are 

provided to reconcile these apparently contradictory views.  

A first possibility is that holistic processes contribute, at least to some extent, to the 

processing of face parts also: in fact, in most studies investigating the role of rightOFA in 

featural components, participants are nevertheless presented with the entire face, 

therefore the involvement of holistic processes cannot be entirely excluded. These 

holistic processes may include for instance the detection of facial symmetry, a process 

which is known to involve rightOFA (Chen et al., 2007): in other words, the rightOFA’s 

contribution in processing face components might reflect, at least partially, the presence 

of bilateral symmetry, a property which is known to be detected automatically, even 

when not relevant for the ongoing task and not consciously revealed by the observer 

(Driver et al., 1992; Locher and Wagemans, 1993; Treder, 2010). This hypothesis would 

be consistent with recent evidence revealing a role of rightOFA in processing face parts 

but not in detection of spatially scrambled faces (Solomon-Harris et al., 2013), a 

manipulation which abolishes facial symmetry. Interestingly, this hypothesis would also 

explain evidences revealing a role of rightOFA in processing of face components 
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presented in isolation, i.e not within the context of the whole face (e.g Arcurio et al., 

2012). In fact, the face parts such as eyes, nose and mouth have a roughly symmetric 

structure; therefore detection of symmetry might contribute to processing of face 

components also when presented in isolation. In this case symmetry detection would be 

most likely carried out via low-level mechanisms (as in dot configurations) rather than 

higher-level, face specific mechanisms; in fact face components presented isolated 

would not engage any face-specific mechanisms, including facial symmetry detection. 

However, an open question related to this explanation is why rightOFA is not involved in 

processing the spacing between the face parts (Liu et al., 2010; Pitcher et al., 2007), a 

task that would still imply the presence of facial symmetry, although whether this region 

is not involved in such process is still debated (see Rhodes et al., 2009; Rotshtein et al., 

2007). Investigating the exact timing of rightOFA’s contribution in facial symmetry 

detection with chronometric TMS might help verifying this hypothesis, enabling to 

establish whether detection of facial symmetry precedes or follows the processing of face 

parts.  

A second possibility is that within the face encoding network, rightOFA might be 

causally implicated in both processing of face parts and holistic detection, at different 

timings: in particular it might encode face components during an early phase of the face 

processing, and contribute to the construction of a more elaborated, holistic 

representation of the face at a later stage, presumably via feedback projections from 

FFA. Interestingly, this activity profile of rightOFA would be face-specific, as no 

involvement of this region is reported during featural encoding of non-face stimuli, such 

as houses (Pitcher et al., 2007; 200; Solomon-Harris et al., 2013). Therefore, in this view 

rightOFA would show, to some degree, a face-selective response; namely when the task 

requires a part-based encoding, the role of rightOFA does not extend beyond faces.  

This view would be in agreement with single-pulse TMS studies revealing that OFA 

responds to face components at early latencies (60-100ms after stimulus presentation; 

Pitcher et al., 2007,2009). This hypothesis however remains speculative, because the 

timing of the causal involvement of rightOFA in holistic encoding of faces still needs to 

be examined; the present studies cannot resolve this issue, as the TMS parameters were 

likely to cover both feedforward and feedback activity in rightOFA. Future TMS studies 
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exploiting the optimal temporal resolution of single-pulse stimulation are necessary to 

validate this possibility. 

It is important to note however that the conceptualization of rightOFA as a holistic 

region proposed here cannot account for all the available evidence on the rightOFA’s 

functions: for example it does not explain why this region is shown to respond equally to 

faces and objects when the task requires to distinguish two exemplars belonging to same 

category (Haist et al., 2010). Additional research is therefore needed to further define 

the role of rightOFA in visual perception. Nevertheless, the present thesis demonstrates 

that rightOFA cannot be considered a strictly a face-selective region but rather is 

involved, at least to some extent, in holistic processing of both face and non-face stimuli.    
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7 Conclusions and future perspectives 

The present thesis sheds new light on the functional role of LO and the OFA, assessing 

their causal implication in visual processes such as perception of symmetry and holistic 

stimulus detection. While the functions of LO have been extensively investigated, those 

of the OFA have so far received only relatively little attention, compared to other higher-

level face regions such as the FFA;  many questions on its functions are still unsolved. 

The studies reported in this thesis have raised new questions requiring further 

research, including for example: can rightOFA be considered primarily a face region? In 

which circumstances (other than holistic detection) does its role extend also to non-face 

stimuli?  Does the rightOFA play a causal role in all kinds of holistic processes? And, if 

so, is it also implicated in holistic processing of faces, or is its role in face detection 

restricted to processing face parts?   

Furthermore, this thesis contributes to our knowledge on the neural basis underlying 

detection of bilateral symmetry, demonstrating that this process causally involves at 

least the bilateral LO and the rightOFA. Given the critical influence that such process 

exercises on overall visual perception, it might be of wide interest to investigate whether 

other brain regions are also involved. Also, it could be interesting to further explore the 

causal implication of rightOFA: for example it might be intriguing to assess whether this 

region plays a role in symmetry detection also in other stimulus classes, and therefore 

whether it might be considered as part of a neural network responsible of symmetry 

processing per se, independently on stimulus identity.  

Also, as we demonstrated that rightOFA is implicated in detection of symmetry in 

both dot patterns and faces, it could be of interest to investigate whether the same 

neural populations within this region are implicated in both symmetry detection 

mechanisms or whether different types of neurons can be distinguished, some selective 

for symmetry in lower-level stimuli and others for symmetry in higher-level stimuli such 

as faces.  
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