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Abstract. Argumentation is nowadays a core topic in AI research.

Understanding computational and representational aspects of ab-

stract argumentation frameworks (AFs) is a central topic in the study

of argumentation. The study of realizability of AFs aims at under-

standing the expressive power of AFs under different semantics. We

propose and study the AF synthesis problem as a natural extension of

realizability, addressing some of the shortcomings arising from the

relatively stringent definition of realizability. Specifically, AF syn-

thesis seeks to construct, or synthesize, AFs that are semantically

closest to the knowledge at hand even when no AFs exactly repre-

senting the knowledge exist. Going beyond defining the AF synthesis

problem, we (i) prove NP-completeness of AF synthesis under sev-

eral semantics, (ii) study basic properties of the problem in relation to

realizability, (iii) develop algorithmic solutions to AF synthesis using

constrained optimization, (iv) empirically evaluate our algorithms on

different forms of AF synthesis instances, as well as (v) discuss vari-

ants and generalization of AF synthesis.

1 INTRODUCTION

The study of representational and computational aspects of argu-

mentation is a core topic in modern artificial intelligence (AI) re-

search [5]. A current strong focus of argumentation research is

the extension-based setting of abstract argumentation frameworks

(AFs) [14] and its generalizations. A fundamental knowledge rep-

resentational aspect related to AFs is realizability [15], i.e., the ques-

tion of whether a specific AF semantics allows for exactly represent-

ing a given set of extensions as an AF. With important motivations

from various perspectives—including the analysis of the relation-

ships of central AF semantics [15] (in terms of the range of sets of ex-

tensions different semantics allow for representing as AFs) and con-

nections to the study of argumentation dynamics [13, 11] (in terms of

the ability to construct an AF for revised extensions)—realizability

has recently been studied by several authors [15, 3, 16, 23, 19, 20].

While the study of realizability has provided various fundamental

insights into AFs, the concept of realizability is quite strict in that

a set E of extensions is considered realizable (under a specific AF

semantics σ) if and only if there is an AF the σ-extensions of which

are exactly those in E. Implicitly, this definition hence requires that

all other sets of arguments must not be extensions of the AF of in-

terest. This strictness requires that we have complete knowledge of

the extensions of interest, and further, in order to actually construct a

corresponding AF of interest, relies on the assumption that the set of

extensions are not conflicting in terms of allowing them to be exactly

represented by an AF. However, from more practical perspectives,

we foresee these requirements to be somewhat cumbersome. Firstly,
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the requirement of complete knowledge implies in the worst case tak-

ing into account an exponential number of extensions. Secondly, the

definition does not allow for “mistakes” or noise in the process of

obtaining the extensions, and also rules out the possibility of dealing

with multiple sources of potentially conflicting sets of extensions.

In this work, with a central goal of generalizing the concept of re-

alizability to accommodate incomplete and noise information on ex-

tensions, we propose and study what we call the AF synthesis prob-

lem2. Specifically, AF synthesis relaxes the notion of realizability

to incomplete information—assuming only partial knowledge of ex-

tensions and non-extensions as positive and negative examples—and

noisy settings, by allowing for expressing relative trust in the exam-

ples via weights. In this generalized setting, we define AF synthesis

as the constrained optimization task of finding an AF that optimally

represents the given examples in terms of minimizing the costs (de-

fined via the weights of the given examples) incurred from the AF

by including a negative example or not including a positive exam-

ple. Beyond precisely defining the AF synthesis problem, our main

contributions include the following.

• We formally analyze the relationship of AF synthesis and realiz-

ability in terms of necessary and sufficient conditions for an AF

synthesis instance to be realizable under different AF semantics

(Section 3).

• We provide complexity results for AF synthesis under three cen-

tral AF semantics, namely, the conflict-free, admissible, and stable

semantics, with the main result that AF synthesis is in the general

case NP-complete under each of these semantics (Section 4).

• We develop a first constraint-based approach to optimal AF syn-

thesis, by providing declarative encodings for AF synthesis in

the Boolean optimization paradigm of maximum satisfiability

(MaxSAT), and furthermore, discuss how by simple modifications

to the encoding one can account for structural constraints over the

AFs to be synthesized (Section 5).

• We present results from an empirical evaluation of the approach

based on benchmarks from the recent ICCMA’15 argumentation

solver competition [26] as well as additional randomly generated

AF synthesis instances (Section 6).

• We discuss further variants and generalizations of AF synthesis

from representational and computational complexity perspectives,

including how to adapt the problem to multiple sources of ex-

tensions and allowing for mixtures of different AF semantics, as

well as symbolic representations of examples via Boolean formu-

las (Section 7).

A more detailed overview of connections to related work is pro-

vided after the main contributions (Section 8). For readability, more

complicated formal proofs are detailed in Appendix A.

2 Alternatively, one could refer to the problem focused on in this paper as an
AF learning problem.
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2 ARGUMENTATION FRAMEWORKS

We start by briefly recalling argumentation frameworks [14] (see

also [2]) as the central formalism in abstract argumentation.

Definition 1. An argumentation framework (AF) is a pair F =
(A,R), where A is a finite non-empty set of arguments and R ⊆
A × A is the attack relation. The pair (a, b) ∈ R indicates that a
attacks b. An argument a ∈ A is defended (in F ) by a set S ⊆ A
if, for each b ∈ A such that (b, a) ∈ R, there is a c ∈ S such that

(c, b) ∈ R.

Semantics for AFs are defined through functions σ which assign

to each AF F = (A,R) a set σ(F ) ⊆ 2A of extensions. We consider

for σ the functions stb, adm , com , and grd , which stand for stable,

admissible, complete, and grounded, respectively.

Definition 2. Given an AF F = (A,R), the characteristic function

FF : 2A → 2A of F is FF (S) = {x ∈ A | x is defended by S}.

Moreover, for a set S ⊆ A, the range of S is S+
R = S∪{x | (y, x) ∈

R, y ∈ S}.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free

(in F ) if there are no a, b ∈ S such that (a, b) ∈ R. We denote the

collection of conflict-free sets of F by cf (F ). For a conflict-free set

S ∈ cf (F ) it holds that

• S ∈ stb(F ) iff S+
R = A;

• S ∈ adm(F ) iff S ⊆ FF (S);
• S ∈ com(F ) iff S = FF (S);
• S ∈ grd(F ) iff S is the least fixed-point of FF .

For any AF F , we have cf (F ) ⊇ adm(F ) ⊇ com(F ) ⊇ stb(F ).
We use “σ-extension” to denote an extension under a semantics σ.

3 THE AF SYNTHESIS PROBLEM

In this section we introduce the AF synthesis problem. For a given

set of weighted examples that represent semantical information, with

weights intuitively representing relative trust in the examples, the

task is to synthesize an AF that has minimum cost over the examples

not satisfied. We assume a given non-empty set of arguments A from

which we are to construct an AF. Formally, an example e = (S,w) is

a pair with S a subset of the set of arguments, i.e., S ⊆ A, and a posi-

tive integer w > 0 representing the example’s weight. We denote the

set of arguments of an example e = (S,w) by Se = S and weight

by we = w. For a set E of examples, we define SE = {Se | e ∈ E}
as a shorthand for the set of all sets of arguments occurring in E.

An instance of the AF synthesis problem is a quadruple P =
(A,E+, E−, σ), with a non-empty set A of arguments, two sets of

examples, E+ and E−, that we call positive and negative examples,

respectively, and semantics σ. An AF F satisfies a positive exam-

ple e if Se ∈ σ(F ); similarly, F satisfies a negative example if

Se /∈ σ(F ). For a given AF F , the associated cost w.r.t. P , denoted

by cost(P, F ), is the sum of weights of examples not satisfied by F .

Formally, cost(P, F ) is

∑
e∈E+

we · I(Se /∈ σ(F )) +
∑

e′∈E−

we′ · I(Se′ ∈ σ(F )),

where I(·) is the indicator function that returns 1 if the property

(membership in a set) is satisfied, and otherwise 0. The task in AF

synthesis is to find an AF of minimum cost over all AFs.

AF Synthesis

INPUT: P = (A,E+, E−, σ)
TASK: Find an AF F ∗ with

F ∗ ∈ argmin
F=(A,R)

(cost(P, F )).

Example 1. Consider the set of positive examples E+ =
{({a, b}, 1), ({a, c}, 1), ({b, c}, 5)} and the set of negative exam-

ples E− = {({a}, 1), ({a, b, c}, 5)}. We illustrate these examples

in Figure 1. Here we see that the positive examples claim together

that each pair of arguments of A is a σ-extension, and the nega-

tive examples claim that the whole set A is not a σ-extension and

that the singleton set {a} is likewise not a σ-extension. Let Pcf =
(A,E+, E−, cf ) with A = {a, b, c} be an AF synthesis instance un-

der conflict-free semantics. An optimal solution AF Fcf = (A,Rcf )
with cost(Pcf , Fcf ) = 2 is given by Rcf = {(a, b)}. This AF Fcf

does not satisfy the positive example ({a, b}, 1) and the negative ex-

ample ({a}, 1).
Regarding admissible semantics, let Padm = (A,E+, E−, adm).

In this case AF Fadm = (A,Radm) is an optimal solution with

Radm = {(b, a)}. Except for positive examples ({a, b}, 1) and

({a, c}, 1), all other examples are satisfied by Fadm for Padm . Thus

cost(Padm , Fadm) = 2.

For stable semantics, let Pstb = (A,E+, E−, stb). An op-

timal solution AF to Pstb is given by Fstb = (A,Rstb) with

Rstb = {(a, b), (b, a)}. Here stb(Fstb) = {{a, c}, {b, c}} and

cost(Pstb , Fstb) = 1.

We now investigate the existence of 0-cost solutions for the AF

synthesis problem by relating the problem with realizability results

from [15]. In contrast to the AF synthesis problem, [15] consider the

problem of a given unweighted set S of sets of arguments, and ask

whether there is an AF F s.t. S = σ(F ). In words, in the setting

of realizability, the given set exactly specifies which sets have to be

σ-extensions and which must not be σ-extensions. Further, [15] do

not consider weights attached to examples, and the set of arguments

A is not specified and may contain more arguments than occurring in

S. Restricting the set of arguments to only arguments occurring in S

is studied in [3, 20], although not directly applicable to our problem.

We make use of and generalize the notions proposed in [15] by

specifying conditions under which 0-cost solutions exist and as well

as properties 0-cost solutions satisfy. We first focus on the conflict-

free semantics. We utilize the following concept adapted from [15,

Definitions 6 and 7], defining a consequence operator that states

which sets must be conflict-free if we assume a given set of sets S

to be conflict-free in an AF. Let ImpliedCF (S) = {X | a, b ∈
X implies ∃S ∈ S with {a, b} ⊆ S}. Intuitively, if each set in S is

conflict-free, and each pair of arguments in a set X is contained in

one set of S, then X is conflict-free as well. Note that a and b in

this definition need not be distinct ({a, b} is equal to {a} if a = b).

Further, ∅ is in ImpliedCF (S) for any S.

Lemma 1. Let F = (A,R) be an AF and S ⊆ 2A. If S ⊆ cf (F ),
then ImpliedCF (S) ⊆ cf (F ).

Example 2. Continuing from Example 1, consider SE+ =
{{a, b}, {a, c}, {b, c}}. If each element of SE+ is conflict-free in an

AF F (SE+ ⊆ cf (F )), then, e.g., {a, b, c} ∈ cf (F ), since there can-

not be an attack between any of these three arguments. In particular,

we have ImpliedCF (SE+) = SE+ ∪ {∅, {a}, {b}, {c}, {a, b, c}}.

This directly shows for Pcf from Example 1 that there is no solution
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positive E+ negative E−

e1 = ({a, b}, 1) e4 = ({a}, 1)
e2 = ({a, c}, 1) e5 = ({a, b, c}, 5)
e3 = ({b, c}, 5)

a b

c

Fcf

a b

c

Fstb

a b

c

Fadm

Figure 1. AF synthesis example with optimal solution AFs

AF to Pcf of cost 0. In fact, there is no AF satisfying both the posi-

tive example ({a, b}, 1) and the negative example ({a}, 1) under the

conflict-free semantics. Also, there is no AF satisfying all three posi-

tive examples and negative example ({a, b, c}, 5) under the conflict-

free semantics.

Equipped with the preceding lemma, we give a necessary and

sufficient condition for 0-cost solutions for AF synthesis under the

conflict-free semantics.

Proposition 2. Let P = (A,E+, E−, cf ) be an instance of AF

synthesis. There is a solution AF F to P with cost(P, F ) = 0 iff

ImpliedCF (SE+) ∩ SE− = ∅.

Intuitively, to synthesize an AF F that has SE+ as its conflict-

free sets, ImpliedCF (SE+) need to be conflict-free, too. Moreover,

using results from [15], one can show that there is an AF F with

cf (F ) = ImpliedCF (SE+). Furthermore, if no negative example

e claims that a set of ImpliedCF (SE+) should not be conflict-free,

i.e., Se /∈ ImpliedCF (SE+), then this implies that F has cost 0.

Now consider admissible sets. Similarly as for conflict-free sets,

we define the following consequence operator. For a set of sets S,

let ImpliedADM (S) = {X | X =
⋃

S∈S′ S, S
′ ⊆ S, X ∈

ImpliedCF (S)}. Briefly put, if we assume S to be a collection of

admissible sets, then each union of sets in S that is conflict-free,

i.e., in ImpliedCF (S), is also an admissible set. By this definition,

∅ ∈ ImpliedADM (S) for any S.

Lemma 3. Let F = (A,R) be an AF and S ⊆ 2A. If S ⊆ adm(F ),
then ImpliedADM (S) ⊆ adm(F ).

Example 3. Consider SE+ = {{a, b}, {a, c}, {b, c}} from Exam-

ple 1. Then ImpliedADM (SE+) = SE+ ∪{{a, b, c}, ∅}. Regarding

the set S′ = {{b, c}} which is the set of positive examples satisfied

by Fadm , we have ImpliedADM (S′) = S
′ ∪ {∅}.

Consider P ′adm = ({a, b, c}, E+
1 , E−1 , adm) with E+

1 =
{({a, c}, 1), ({b, c}, 1)} and E−1 = {({a}, 1)}. We have

ImpliedADM (S
E+

1

) = S
E+

1

∪ {∅} and ImpliedADM (S
E+

1

) ∩

S
E−

1

= ∅. Unlike for the conflict-free semantics, this condi-

tion for the admissible semantics does not imply existence of a

0-cost solution AF for P ′adm . In fact, a 0-cost solution AF does

not exist for P ′adm . A 0-cost solution is possible, however, if

the set of arguments A includes more arguments. For instance,

take F ′ = ({a, b, c, d}, {(b, a), (a, b), (c, d), (d, a), (d, d)}). We

have adm(F ′) = {∅, {b}, {c}, {b, c}, {a, c}} and, for P ′′adm =
({a, b, c, d}, E+

1 , E−1 , adm), we have cost(P ′′adm , F ′) = 0. Such

“auxiliary” arguments, i.e., arguments not present in the examples,

are not always required for 0-cost solutions under the admissible se-

mantics. For instance, given only two positive examples ({a, c}, 1)
and ({b, c}, 1), and negative example ({a, b, c}, 1), one can synthe-

size a 0-cost AF with a mutual attack between a and b.

Similarly as for conflict-free semantics, each 0-cost solution under

the admissible semantics implies that for no negative examples e we

have Se ∈ ImpliedADM (SE+). For existence of an AF F with

ImpliedADM (SE+) = adm(F ), we make use of results from [15]

which requires auxiliary arguments, i.e., arguments not present in

SE+ . We use the abstract function AuxArgs(adm, SE+) that returns

the number of auxiliary arguments needed to construct F as specified

in [15, Definitions 13 and 14].

Proposition 4. Let P = (A,E+, E−, adm) be an instance of the

AF synthesis problem. Consider the following conditions.

1. ImpliedADM (SE+) ∩ SE− = ∅.

2. |A \ (
⋃

S∈S
E+

S)| > AuxArgs(adm, SE+).

If there is a solution AF F to P with cost(P, F ) = 0, then condition

1 holds. If both conditions 1 and 2 hold, then there is a solution AF

F to P with cost(P, F ) = 0.

We move on to the stable semantics, under which the picture is

more complex. Existence of a 0-cost solution for an AF synthe-

sis instance implies that the set of positive examples SE+ is ⊆-

incomparable, does not include ∅, is disjoint from the negative sets

SE− , and no positive set S ∈ SE+ is a proper subset of an implied

conflict-free set in ImpliedCF (SE+). These conditions are quite in-

tuitive, since, e.g., a violation of the last condition violates the fact

that stable extensions attack all arguments outside the set.

These conditions imply the existence of 0-cost solutions if a cer-

tain number of auxiliary arguments is available in A, i.e., arguments

not present in SE+ . For achieving this result, we use again results

from [15], providing a construction in this case that utilizes such

auxiliary arguments to synthesize the AF. We provide here a rough

bound for auxiliary arguments from [15, Definition 12]. More con-

cretely, we use the function AuxArgs(stb, SE+) that is equal to the

maximum number of stable extensions for any AF with |SE+ | many

arguments (for more details, see [4, Theorem 1]).

Proposition 5. Let P = (A,E+, E−, stb) be an instance of the AF

synthesis problem. Consider the following conditions.

1. Any two distinct S, S′ ∈ SE+ are incomparable w.r.t. ⊆.

2. ∀S ∈ SE+ we have S �⊂ S′ for all S′ ∈ ImpliedCF (SE+).
3. ∅ /∈ SE+ .

4. SE+ ∩ SE− = ∅.

5. |A \ (
⋃

S∈S
E+

S)| > AuxArgs(stb, SE+).

If there is a solution AF F to P with cost(P, F ) = 0, then conditions

1-4 hold. If conditions 1-5 hold, then there is a solution AF F to P
with cost(P, F ) = 0.

Interestingly, the negative examples play a relatively minor role in

0-cost solutions under the stable semantics (see condition 4 of Propo-

sition 5). In contrast to conflict-free or admissible sets, existence of

stable extensions does not directly imply existence of further stable

extensions for an unrestricted set of arguments A (this observation is

also implicitly stated in [15, Lemma 2 and Proposition 1]).
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Example 4. The AF Fstb from Example 1 has stb(Fstb) =
{{a, c}, {b, c}} = S

′. Conditions 1-4 from Proposition 5 hold for

S
′. One can synthesize an AF, e.g., Fstb , as a 0-cost solution to

P ′stb = ({a, b, c}, {({a, c}, 1), ({b, c}, 1)}, ∅, stb) without auxiliary

arguments. An example where auxiliary arguments are required to

synthesize an AF with 0-cost can be found in [3].

4 COMPLEXITY OF AF SYNTHESIS

We continue by analyzing the computational complexity of the AF

synthesis problem. As the main results of this section, we show

that AF synthesis is NP-complete in the unrestricted case under

the conflict-free, admissible, and stable semantics. Furthermore, we

show that while restricting either E+ or E− to be empty yields frag-

ments of the problem where a trivial AF solves the problem opti-

mally, NP-completeness persists even for E− = ∅ under the stable

semantics. The results are summarized in Table 1.

Table 1. Complexity of AF synthesis

no restrictions E
+

= ∅ E
−

= ∅

Conflict-free NP-c trivial trivial

Admissible NP-c trivial trivial

Stable NP-c trivial NP-c

We first outline special cases of AF synthesis in which a trivial

solution AF is guaranteed to be optimal. In particular, if no positive

examples are present, then the complete digraph F = (A, 2A × 2A)
satisfies all negative examples (F has no stable extensions, and the

only conflict-free and admissible set is ∅). If the set of negative ex-

amples E− is empty, then AF synthesis under the conflict-free and

admissible semantics is trivial by constructing the AF F = (A, ∅)
(every subset of A is conflict-free and admissible).

Proposition 6 (Trivial solutions). An optimal solution AF F ∗ can

be computed in polynomial time for an AF synthesis instance P =
(A,E+, E−, σ) if one of the following conditions holds.

1. σ ∈ {cf , adm, stb} and E+ = ∅.

2. σ ∈ {cf , adm} and E− = ∅.

We now turn our attention to the NP-hard cases of the AF syn-

thesis problem under the conflict-free, admissible, and stable seman-

tics. Formally, the decision problem corresponding to AF synthesis

consists of an AF synthesis instance P = (A,E+, E−, σ) and an

integer k ≥ 0, and asks whether there is an AF F = (A,R) with

cost(P, F ) ≤ k.

Intuitively, the main source of NP-hardness for the AF synthesis

problem for the considered semantics lies in finding an optimal sub-

set of examples from which to synthesize an AF. We start with the

conflict-free semantics and prove NP-hardness by a reduction from

the Boolean satisfiability problem; recall that all formal proofs are

detailed in Appendix A. For intuition on the reduction, “choosing”

a truth assignment can be simulated by a set of examples similarly

as in Example 1 (shown in Figure 1). In other words, for positive

examples containing the sets {a, b}, {a, c}, and {b, c}, and negative

example {a, b, c}, one can attach high weights (beyond the bound

k) to the last two examples and unit weights to the first two. In this

way any solution AF of cost at most k does not satisfy both of the

unit-weighted examples, thus mimicking a truth assignment, i.e., one

has to choose which of these two examples to satisfy. The reduc-

tion is completed by additional examples that simulate satisfaction

of clauses of a Boolean formula, by ensuring that attacks have to be

present via negative examples.

Proposition 7. AF synthesis is NP-complete under the conflict-free

semantics.

The reduction we use for establishing NP-hardness under the ad-

missible semantics follows essentially the same idea.

Proposition 8. AF synthesis is NP-complete under the admissible

semantics.

For the stable semantics, we establish NP-completeness as well;

however, surprisingly, in contrast to the conflict-free and admissible

semantics, AF synthesis under the stable semantics is NP-complete

even when E− is empty. The reduction is technically more involved.

Intuitively, presence of attacks can be simulated via arguments out-

side the set of a positive example, since if the set is stable, it has to

attack all arguments outside the set. This is also a reason why hard-

ness holds even if E− is empty.

Proposition 9. AF synthesis is NP-complete for stable semantics,

even if the set of negative examples is empty.

Finally we observe that AF synthesis under the grounded semantics

is trivial, since exactly one grounded extension is present in an AF.

Proposition 10. Let P = (A,E+, E−, grd) be an instance of the

AF synthesis problem. An optimal solution AF F ∗ to P can be con-

structed in polynomial time.

Proof. For each e ∈ E+ an AF F with grd(F ) = {Se} and with

cost(P, F ) equal to the sum of all weights of E+ \ {e} plus we′ if

e′ ∈ E− and Se = Se′ , can be constructed in polynomial time by

adding a self-attack to all A \Se. Further, if 2A \ SE+ is non-empty,

pick S ∈ 2A \ SE+ with minimum-weighted e′′ ∈ E− ∪ {e | Se ∈
2A \ SE− , we = 0} s.t. S = Se′′ (best solution for synthesizing set

of arguments not among positive examples). One can compute e′′ in

polynomial time. Computing weights for all elements in E+ and e′′

yields an optimal solution AF.

5 CONSTRAINT-BASED SYNTHESIS OF AFs

We continue by presenting MaxSAT encodings of AF synthesis. For

background on MaxSAT, recall that for a Boolean variable x, there

are two literals, x and ¬x. A clause is a disjunction (∨) of literals. A

truth assignment τ is a function from variables to true (1) and false

(0). Satisfaction is defined as usual. A weighted partial MaxSAT (or

simply MaxSAT) instance consists of hard clauses ϕh, soft clauses

ϕs, and a weight function w associating to each soft clause C ∈ ϕs

a positive weight w(C). An assignment τ is a solution to a MaxSAT

instance (ϕh, ϕs, w) if τ satisfies ϕh. The cost of τ , c(τ), is the

sum of weights of the soft clauses not satisfied by τ . A solution τ to

MaxSAT instance ϕ is optimal if c(τ) ≤ c(τ ′) for any solution τ ′ to

ϕ.

Let P = (A,E+, E−, σ) be an AF synthesis instance with A =
{a1, . . . , an} the set of arguments, E+ the set of positive examples,

E− the set of negative examples, and σ ∈ {cf , adm, stb, com} a

semantics. In order to synthesize an optimal solution AF F = (A,R)
for P , we declare propositional variables ExtSe

σ for each e ∈ E+ ∪
E−, and ra,b for each a, b ∈ A. Now τ(ExtSe

σ ) = 1 indicates Se ∈
σ(F ), and τ(ra,b) = 1 indicates (a, b) ∈ R. The hard clauses are

for each e ∈ E+ ∪ E− equivalences of the form

Ext
Se

σ ↔ ϕσ(Se),
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where ϕσ(Se) encodes the fact that Se is a σ-extension. In other

words, for conflict-free sets we have

ϕcf (Se) =
∧

a,b∈Se

¬ra,b,

stating that no attacks should occur between arguments in the exam-

ple. Admissible sets are encoded as

ϕadm(Se) = ϕcf (Se) ∧
∧

a∈Se

∧
b∈A\Se

(
rb,a →

∨
c∈Se

rc,b

)
,

that is, the extension is conflict-free and every argument in the set is

defended. Likewise, if an example is a stable extension, it is conflict-

free and its range is the whole set of arguments, encoded as

ϕstb(Se) = ϕcf (Se) ∧
∧

a∈A\Se

( ∨
b∈Se

rb,a

)
.

Finally, we note that some further semantics can be covered in a sim-

ilar fashion; for instance, an NP encoding for complete semantics is

ϕcom(Se) = ϕadm(Se) ∧
∧

a∈A\Se

(∨
b∈A

(
rb,a ∧

∧
c∈Se

¬rc,b

))
,

ensuring that every argument that is defended is included.

The soft clauses, on the other hand, encode the objective function

of AF synthesis under minimization. For each e ∈ E+, we have a

soft clause ExtSe

σ , and for each e ∈ E−, a soft clause ¬ExtSe

σ , with

corresponding weights. An optimal solution to an AF synthesis in-

stance is directly extracted from an optimal solution τ to the MaxSAT

instance by including (a, b) to the attack structure iff τ(ra,b) = 1.

MaxSAT also allows for declaring additional constraints on the so-

lution AFs of interest by encoding such constraints as hard (or soft)

clauses. For instance, any particular attack (a, b) can be fixed by in-

cluding the hard clause (ra,b). Furthermore, one can for instance also

synthesize an AF with the minimum number of attacks satisfying the

maximum number of examples by adding soft clauses which state

that the secondary preference is minimizing the number of attacks

in the style of multi-level Boolean optimization [1]; in this case, in

order to still guarantee that the primary objective of satisfying the

maximum number of examples is met, the weights of the examples

can be adjusted to be larger than the sum of the weights imposed on

adding individual attacks to the solution AFs.

6 EXPERIMENTS

We implemented our MaxSAT encodings; the resulting system and

benchmarks are available at http://www.cs.helsinki.fi/

group/coreo/afsynth/. Here we present results from a first

empirical evaluation of the scalability of the approach. The experi-

ments were run on 2.83-GHz Intel Xeon E5440 quad-core machines

with 32-GB memory and Debian GNU/Linux 8 using a per-instance

timeout of 900 seconds. For the experiments, we used the state-of-

the-art MaxSAT solver MSCG [21].

We used two different approaches to construct AF synthesis in-

stances. The first set of benchmarks was generated based on the

benchmark AFs used in the ICCMA’15 competition [26] as follows.

We selected all AFs among the benchmarks that have at least five

stable extensions. The number of arguments in these 17 AFs ranges

from 141 to 964. For each AF, we picked uniformly at random 5

positive examples from the set of extensions. To obtain negative ex-

amples, we selected 10, 20, . . . , 150 subsets of
⋃

SE+ uniformly at

random, using parg =
∑

e∈E+ |Se|/|E
+|

|
⋃

S
E+ |

as the probability of includ-

ing an argument in a negative example. For intuition, this choice

of parg makes the sizes of positive and negative examples approxi-

mately the same. Letting A =
⋃

SE+ resulted in instances contain-

ing 54 to 370 arguments. Further, we introduced noise by swapping

each of the initial positive and negative examples with a probability

pnoise ∈ {0, 0.25, 0.5}. Weights were associated to each example by

picking uniformly at random integers from the interval [1, 10].
The second set of benchmarks was generated using the following

random model. We picked 5, 10, . . . , 80 positive examples from a set

of 100 arguments uniformly at random with probability p+arg = 0.25.

Then |E−| = 20, 40, . . . , 200 negative examples were sampled from

the set A =
⋃

SE+ , and each argument was included with probabil-

ity p−arg =
∑

e∈E+ |Se|/|E
+|

|
⋃

S
E+ |

. Again, each example was assigned as

weight a random integer from the interval [1, 10]. For each choice of

parameters, this procedure was repeated 10 times to obtain a repre-

sentative set of benchmarks.

A summary of the results for the admissible and stable semantics

is shown in Figure 2. We exclude results for ICCMA instances under

admissible, as these turned out to be very easy for our approach until

running out of memory due to the increasing size of the encoding.

For the ICCMA instances under the stable semantics (Figure 2 left),

almost every instance can be solved within the timeout limit for up

to 100 examples, with a median running time of only ≈ 10 seconds

at 100 examples. Increasing the noise probability clearly increases

hardness; we hypothesize this to be due to the fact that by increasing

noise we are increasing the number of positive examples. On the ran-

dom instances the number of negative examples under the admissible

semantics (Figure 2 right) clearly correlates with runtimes. Under the

stable semantics (Figure 2 middle), the number of negative examples

does not appear to have a noticeable effect on the runtimes. This is

inline with our complexity analysis (recall Section 4), as under the

stable semantics AF synthesis remains NP-complete even without

any negative examples, unlike under admissible.

7 VARIANTS AND EXTENSIONS

We discuss further variants of AF synthesis: synthesis from multi-

ple sources, synthesis under multiple semantics, and synthesis from

symbolically represented examples.

Multiple Sources. The problem of AF synthesis is in a natural way

applicable when the examples originate from multiple sources, e.g.,

collections of extensions of several source AFs, and resulting in an

AF that optimally solves the task of synthesizing the union of seman-

tical collection or examples of the different sources. This use of the

AF synthesis problem shares resemblance with aggregation or merg-

ing of multiple AFs studied in [12, 11].

Multiple Semantics. So far for each AF synthesis problem we re-

quired that all examples are given w.r.t. a specific semantics. A nat-

ural generalization is to let each example individually be linked to a

semantics. Formally, an example e = (S,w, σ) is then a triple with

a semantics σ, denoted by σe. The cost of an AF F is given by∑
e∈E+

we · I(Se /∈ σe(F )) +
∑

e∈E−

we · I(Se ∈ σe(F )).

Example 5. Consider E+ = {({a, c}, 1, cf ), ({b, c}, 1, stb)} and

E− = {({a}, 1, adm)}. This defines a unique 0-cost AF F =
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Figure 2. ICCMA instances for stable semantics (left); random instances for stable (middle) and admissible (right).

(A,R) with A = {a, b, c} for the AF synthesis instance with multi-

ple semantics P = (A,E+, E−) by R = {(b, a)}.

The corresponding decision problem, i.e., for a given AF synthesis

problem with multiple semantics P = (A,E+, E−), is there an AF

F with cost(P, F ) ≤ k for an integer k ≥ 0, does not exhibit higher

computational complexity among the conflict-free, admissible, and

stable semantics.

Corollary 11. AF synthesis with multiple semantics among the

conflict-free, admissible, and stable semantics is NP-complete.

For solving AF synthesis with multiple semantics we can make

use of our encodings of Section 5. In particular, we can conjoin the

corresponding formulas for the different semantics and sharing the

variables for attacks.

Symbolic Representation of Examples. For a set A of arguments,

there can be in general up to 2|A| positive or negative examples. This

exponentiality in the input can be restrictive for large number of ex-

amples. Following ideas from [15], we note that, instead of explicit

representation, examples could also be represented symbolically by

encoding them succinctly in Boolean logic. This gives rise to the

problem variant of AF synthesis with symbolic representation, with

instances of the form P = (A, φ+, φ−, σ), where φ+ and φ− are

Boolean formulas. Let Mod(φ) be the set of models (satisfying as-

signments) of a Boolean formula φ, represented as sets themselves

(variables assigned to true). For a given AF F , its associated cost

cost(P, F ) is∑
m∈Mod(φ+)

I(m /∈ σ(F )) +
∑

m∈Mod(φ−)

I(m ∈ σ(F )),

that is, unit weight is applied when a model of φ+ is not a σ-

extension of F and when a model of φ− is a σ-extension of F .

Lemma 12. Let φ be a Boolean formula, A the vocabulary of φ, F
an AF, and σ a semantics. It holds that |Mod(φ)| = cost(P, F ) for

P = (A, φ, φ, σ).

Proof. Any AF F satisfies exactly |Mod(φ)| examples encoded in

the formulas, since if m ∈ Mod(φ), then either m ∈ σ(F ) or m /∈
σ(F ) (each implies unit weight). If m /∈ Mod(φ), then both m ∈
σ(F ) and m /∈ σ(F ) imply no weight.

Based on this lemma, determining the cost of a given AF for an

AF synthesis instance with symbolic representation is presumably

very complex. In particular, we show #P-hardness, #P being the

class of counting problems where the task is to count the number of

accepting paths of a given non-deterministic polynomial-time Tur-

ing machine (see [27, 28]). As a prominent example, counting the

number of models of a Boolean formula is #P-complete.

Corollary 13. Counting the number of examples from a given AF

synthesis instance with symbolic representation that are not satisfied

by a given AF is #P-complete under the conflict-free, admissible,

complete, and stable semantics.

8 RELATED WORK

Before conclusions, we briefly discuss some of the most related work

to ours within and beyond argumentation.

As we generalize the notion of realizability, the most closely

related work to ours are recent articles focusing on realizabil-

ity of AFs, and most recently, of abstract dialectical frameworks

(ADFs) [8, 23, 19]. The central question studied in these works, as

initiated in [15], is whether a given set of sets (of arguments) S can be

realized by an AF, i.e., whether an AF with σ(F ) = S for a seman-

tics σ exists. In [3, 20] realizability was studied under the restriction

that the set of arguments of the constructed AF has to match exactly

the set of arguments occurring in the input, i.e., is in S. In [16] the au-

thors give a construction for an AF using additional arguments in the

three-valued labeling setting under the preferred and semi-stable se-

mantics. We study the problem of synthesizing an AF that optimally

matches a given set of examples semantically, even when an exact

realization (a 0-cost solution) is not possible. Also, we analyze the

complexity of AF synthesis, showing that, in contrast to polynomial-

time results for checking realizability [15], AF synthesis is in gen-

eral NP-complete. To our best knowledge, no previous systems for

solving realizability have been empirically evaluated. Most recently,

in [23, 19] a declarative encoding in answer set programming (ASP)

for realizability was presented but not empirically evaluated. Our

MaxSAT-based implementation for the AF synthesis problem also

covers realizability.

In related work that incorporates AF construction from examples,

[22] formally studies a logical characterization of inductive con-

cept learning and AF learning in a multi-agent setting. In contrast

to our work, they induce a rule-based theory and construct an AF

based on conflicting rules. Very recently, [24] study probabilistic

AF [17, 18, 25] learning with non-exact methods; we tackle the exact

optimization problem of AF synthesis.
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Finally, going beyond argumentation, there is a long line of re-

search of constructing, inducing, or learning logical structures from

examples, from [29] to, e.g, work for constraint acquisition [7] as

well as inductive logic programming [10, 6].

9 CONCLUSIONS

We proposed AF synthesis as a generalization of the important prob-

lem of realizability in abstract argumentation, relaxing in a natural

way the stringent requirements for realizability to accommodate in-

complete and noisy information. From the theoretical perspective,

we related AF synthesis to realizability, and analyzed the complex-

ity of AF synthesis both in the general case and in restricted set-

tings. Motivated by the NP-completeness of AF synthesis in general

under three key AF semantics, we proposed Boolean optimization

based algorithmic solutions for the problem, and empirically studied

this first approach to AF synthesis using a state-of-the-art MaxSAT

solver on different types of AF synthesis instances. In terms of fur-

ther work, we hope to establish the computational complexity of AF

synthesis under further central AF semantics, and thereafter extend

the MaxSAT-based approach to cover additional semantics.
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A FORMAL PROOFS

We provide formal proofs for the results presented in Sections 3

and 4. We start by restating definitions from [15].

Definition 4. ([15, Definitions 6, 7, and 8]) Let A be a set of argu-

ments and S ⊆ 2A a set of sets of arguments. Set S is

• incomparable if S �⊆ S′ holds for all S, S′ ∈ S with S �= S′;
• tight if for all S ∈ S and all a ∈ A it holds that S ∪ {a} /∈ S

implies that there exists a b ∈ S s.t. {a, b} �⊆ S′ for all S′ ∈ S;

• conflict-sensitive if for each S, S′ ∈ S s.t. S ∪S′ /∈ S it holds that

∃a, b ∈ S ∪ S′ s.t. {a, b} �⊆ S′′ for all S′′ ∈ S; and

• downward closed if S = {S′ | S ∈ S, S′ ⊆ S}.

Proof of Lemma 1. Assume that S ⊆ cf (F ) holds. Let S ∈
ImpliedCF (S). By definition it follows that for each a, b ∈ S we

have ∃S′ ∈ S with {a, b} ⊆ S′. If S ⊆ cf (F ) then S′ ∈ cf (F ) and

thus {a, b} ∈ cf (F ). This implies that S ∈ cf (F ) (each pair in S is

conflict-free).

For proving Proposition 2 we use the following auxiliary lemma.

Lemma 14. Let S ⊆ 2A for a set A. It holds that ImpliedCF (S)
(i) contains ∅, (ii) is downward closed, (iii) is tight, and (iv) S ⊆
ImpliedCF (S).

Proof. From the definition it directly follows that ∅ is contained in

ImpliedCF (S) for any S. Let S ∈ ImpliedCF (S). Then for all

a, b ∈ S it holds that ∃S′ ∈ ImpliedCF (S) s.t. {a, b} ⊆ S′. It

follows that for any S′′ ⊆ S it holds that S′′ ∈ ImpliedCF (S). To

show (iii), suppose that the set is not tight, i.e., ∃S ∈ ImpliedCF (S)
and a ∈ A s.t. S ∪ {a} /∈ ImpliedCF (S) and for all b ∈ S there

exists an S′ ∈ ImpliedCF (S) s.t. {a, b} ⊆ S′. This implies that for

all x, y ∈ S ∪ {a} we have ∃S′′ ∈ ImpliedCF (S) s.t. {x, y} ⊆ S′′

and thus S ∪ {a} ∈ ImpliedCF (S) which contradicts the assump-

tion that ImpliedCF (S) is not tight. Finally, if S ∈ S then it follows

that S ∈ ImpliedCF (S) (iv).

Proof of Proposition 2. For the “only-if” direction, assume AF F is

an optimal solution to P of cost 0, i.e., cost(P, F ) = 0. It follows

that SE+ ⊆ cf (F ). By Lemma 1 we have ImpliedCF (SE+) ⊆
cf (F ). Thus ImpliedCF (SE+)∩SE− = ∅, since cf (F )∩SE− = ∅.

For the “if” direction, assume ImpliedCF (SE+) ∩ SE− = ∅.

By Lemma 14 it follows that ImpliedCF (SE+) is tight, down-

ward closed, and contains ∅. Due to [15, Proposition 5] it immedi-

ately follows that there exists an AF F = (A′, R′) s.t. cf (F ) =
ImpliedCF (SE+). Since ImpliedCF (SE+) ∩ SE− = ∅, it follows

that cost(P, F ) = 0. In [15, Proposition 5] the set A′ is specified

as all arguments occurring in ImpliedCF (SE+). If A contains more

arguments, then we construct F = (A,R) by extending R′ with

self-attacks for each A \A′.

Proof of Lemma 3. Assume S ⊆ adm(F ) holds and let S ∈
ImpliedADM (S). Then S ∈ ImpliedCF (S) and thus S ∈ cf (F )
(Lemma 1). Finally, every union of admissible sets which is conflict-

free is again an admissible set (see [9, Lemma 1]).

For proving Proposition 4 we utilize the following lemma.

Lemma 15. Let S ⊆ 2A for a set A. It holds that ImpliedADM (S)
(i) contains ∅ and (ii) is conflict-sensitive.

Proof. Claim (i) follows from definition. Suppose (ii) does not

hold, i.e., there exist S, S′ ∈ ImpliedADM (S) s.t. S ∪ S′ /∈
ImpliedADM (S) and for all a, b ∈ S ∪ S′ there exists an S′′ ∈
ImpliedADM (S) with {a, b} ⊆ S′′. It follows that S ∪ S′ ∈
ImpliedCF (S) and S ∪ S′ ∈ ImpliedADM (S). This contradicts

the assumption that ImpliedADM (S) is not conflict-sensitive.

Proof of Proposition 4. For the first claim, assume that there exists

an AF F with cost(P, F ) = 0. Then SE+ ⊆ adm(F ) and thus

ImpliedADM (SE+) ⊆ adm(F ), due to Lemma 3. For the second

claim, assume ImpliedADM (SE+) ∩ SE− = ∅ and condition 2

holds. By Lemma 15, ImpliedADM (SE+) is conflict-sensitive and

contains ∅. By [15, Proposition 8], there exists an AF F ′ = (A′, R′)
s.t. A′ ⊆ A and adm(F ′) = ImpliedADM (SE+). Define F =
(A,R) by extending R′ to have self-attacks for each argument in

A \ A′. It follows that adm(F ) = ImpliedADM (SE+). Assuming

conditions 1-2, we have cost(P, F ) = 0.

Proof of Proposition 5. The claims of the proposition follow directly

for the special case with E+ = ∅. We proceed with the case that

E+ is non-empty. For the first claim, assume that F is a 0-cost so-

lution to P . Conditions 1, 3, and 4 follow immediately. For condi-

tion 2, since SE+ ⊆ stb(F ) it follows that SE+ ⊆ cf (F ) and thus

ImpliedCF (SE+) ⊆ cf (F ). Supposing condition 2 does not hold

directly violates that SE+ ⊆ stb(F ) (stable extensions are subset-

maximal conflict-free sets). For the second claim, assume that condi-

tions 1-5 hold. Then SE+ is a subset of the ⊆-maximal elements of

ImpliedCF (SE+), since SE+ ⊆ ImpliedCF (SE+) (Lemma 14),

and by assumption of condition 2. By [15, Lemma 2] it follows that

SE+ is tight. Further, by [15, Proposition 7] and conditions 1-5, it

follows that there exists an AF F ′ = (A′, R′) with A′ ⊆ A s.t.

stb(F ′) = SE+ . Construct F = (A,R) by extending R′ to con-

tain self-attacks for each argument in A \ A′ and attacks from each

argument in SE+ to each A \A′.

We continue with proofs for the special cases of empty E+ or E−.

Proof of Proposition 6. If the first condition is met, AF F = (A,R)
with R = (A×A) satisfies cf (F ) = adm(F ) = {∅} and stb(F ) =
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∅. If the second condition is met, AF F ′ = (A, ∅) satisfies cf (F ′) =
adm(F ′) = 2A.

We move on to proofs of complexity results.

Proof of Proposition 7. For an AF synthesis instance P =
(A,E+, E−, cf ) membership in NP follows from a guess of an AF

F = (A,R), since cost(P, F ) can be computed in polynomial time.

For hardness, we provide a reduction from the satisfiability prob-

lem of conjunctive normal form (CNF) Boolean formulas. Let φ be a

propositional formula in 3-CNF over variables X = {x1, . . . , xn},

|X| = n and set of clauses C. Let b = n+ 1.

E+ ={({xi, x
T
i }, 1) | xi ∈ X} ∪ (1)

{({xi, x
F
i }, 1) | xi ∈ X} ∪ (2)

{({xT
i , x

F
i }, b) | xi ∈ X} ∪ (3)

{({y, z}, b) | xi, xj ∈ X, i �= j,

y ∈ {xi, x
T
i , x

F
i }, z ∈ {xj , x

T
j , x

F
j }}

(4)

E− ={({xi, x
T
i , x

F
i }, b) | xi ∈ X} ∪ (5)

{({xi, x
T
i | xi ∈ c} ∪ {xi, x

F
i | ¬xi ∈ c}, b) | c ∈ C} (6)

Let P = (A,E+, E−, cf ) be the constructed instance for AF syn-

thesis with bound k = n. Intuitively, one cannot satisfy all examples

of forms (1), (2), (3), and (5) simultaneously, and due to the chosen

weights and cost limit, one has to violate either (1) or (2) for a given

xi ∈ X , thus “choosing” a truth assignment over X (true iff an at-

tack between xi and xF
i is synthesized). We now claim that there

exists an AF F = (A,R) with cost(P, F ) ≤ n iff φ is satisfiable.

“Only-if” direction: assume that F = (A,R) has cost(P, F ) ≤
n. Then all examples with weight n + 1 are satisfied by F . It is im-

mediate that for each xi ∈ X we have either {xi, x
T
i } ∈ cf (F )

or {xi, x
F
i } ∈ cf (F ) but not both (if both would be conflict-free

then together with {xT
i , x

F
i } being conflict-free in F implies that

{xi, x
T
i , x

F
i } if conflict-free which contradicts that cost of F is lower

than n+ 1 (5); if none of the sets with weight 1 are conflict-free for

xi ∈ X , then overall cost would be over n as well). This straightfor-

wardly defines a truth assignment τ(xi) = 0 iff {xi, x
T
i } ∈ cf (F )

and 1 otherwise. Suppose τ does not satisfy φ. Then there exists a

c ∈ C s.t. τ �|= c and τ does not satisfy any literal l in c.

τ(l) = 0, ∀l ∈ c

iff ∀l ∈ c

l = xi implies τ(xi) = 0 and

l = ¬xi implies τ(xi) = 1

iff ∀l ∈ c

l = xi implies {xi, x
T
i } ∈ cf (F ) and

l = ¬xi implies {xi, x
F
i } ∈ cf (F )

iff {xi, x
T
i | xi ∈ c} ∪ {xi, x

F
i | ¬xi ∈ c} ∈ cf (F ) (∗)

only-if cost(P, F ) ≥ n+ 1

Conclusion (∗) follows from (4): for each xi, xj ∈ X with xi �=
xj no attacks are in between sets {xi, x

T
i , x

F
i } and {xj , x

T
j , x

F
j }.

“If” direction: assume φ is satisfiable. Construct AF F = (A,R)
with R = {(xi, x

T
i ) | τ(x) = 0} ∪ {(xi, x

F
i ) | τ(x) = 1}. It

is immediate that F satisfies all non-unit weighted examples except

for (6), which follows from similar consideration as in the only-if

direction. Finally, cost of F is n.

Proof sketch of Proposition 8. NP-completeness for admissible se-

mantics follows the same reasoning as proof of Proposition 7. For the

“only-if” direction, just note that the same unit-weighted examples

are mutually exclusive for a solution AF as in the conflict-free case.

For “if” direction, the constructed AF has mutual attacks instead of

uni-directional ones (conflict-free sets are then admissible).

Proof sketch of Proposition 9. Membership follows from a non-

deterministic guess of an AF F and checking each example individ-

ually whether it is satisfied (which can be done in polynomial time).

For hardness, we provide a reduction from the Boolean satisfiabil-

ity problem. Let φ be a Boolean formula in CNF, with vocabulary X ,

with |X| = n, and set of clauses C. Let b = n+ 1.

A =X ∪ {xT , xF , dx | x ∈ X} ∪ {d′c, d
′′
c | c ∈ C} ∪ {d} (7)

E+ ={({d′c} ∪ {xT | x ∈ c} ∪ {xF | ¬x ∈ c}, b) | c ∈ C}∪ (8)

{({d′c, d
′′
c , d}, b) | c ∈ C} ∪ (9)

{({xT , xF , dx}, b) | x ∈ X} ∪ (10)

{({xT , dx, d}, 1) | x ∈ X} ∪ (11)

{({xF , dx, d}, 1) | x ∈ X} (12)

Let P = (A,E+, ∅, stb) and bound k = n. We claim that φ satisfi-

able iff there exists an AF F s.t. cost(P, F ) ≤ n.

Assume such an AF F exists. It is immediate that all examples

with weight n + 1 are satisfied by F . For each x ∈ X it holds that

exactly one example of {({xT , dx, x}, 1), ({x
F , dx, x}, 1)} is satis-

fied. If none of them is satisfied the cost of F would be higher than

n. If both are satisfied, then there is no attack between xT , xF , dx,

and d, thus {xT , xF , dx} cannot be stable (does not attack d). This

defines a truth assignment τ(x) = 0 iff ({xT , dx, d}, 1) is satisfied

by F . We claim that τ |= φ. Suppose the contrary, then ∃c ∈ C with

τ �|= c and all literals in c are not satisfied by τ . Consider the set

{d′c} ∪ {xT | x ∈ c} ∪ {xF | ¬x ∈ c}, which must be stable in

F by assumption. By construction of τ and example (9), it follows

that no argument in that set attacks d, thus it cannot be stable, which

contradicts the assumption that τ does not satisfy φ.

Assume that φ is satisfiable. Construct AF F = (A,R) with

R ={(d′′c , dx), (dx, d
′′
c ) | c ∈ C, x ∈ X} ∪

{(d′′c , x
T ), (d′′c , x

F ), (xT , d′′c ), (x
F , d′′c ) | c ∈ C, x ∈ X} ∪

{(a, b), (b, a) | a∈{d′c, d
′′
c }, b∈{d′c′ , d

′′
c′}, c, c

′∈C, c �= c′} ∪

{(dx, dy), (dx, z), (z, dx) | x, y ∈ X,x �= y, z∈{yT , yF }} ∪

{(dx, d
′
c), (d

′
c, dx) | c ∈ C, x ∈ X} ∪

{(d′c, x
T ), (xT , d′c) | c ∈ C, x ∈ X,x /∈ c} ∪

{(d′c, x
F ), (xF , d′c) | c ∈ C, x ∈ X,¬x /∈ c} ∪

{(xT , d), (d, xT ) | τ(x) = 1} ∪

{(xF , d), (d, xF ) | τ(x) = 0}.

Briefly put, this involved construction adds mutual attacks between

arguments to ensure that all the examples (9) and (10) are stable.

A mutual attack is added between xT and d (xF and d) based on

the truth assignment τ , violating one of the unit weighted examples.

Finally, examples of form (8) are satisfied, since one of the arguments

in these sets (except d′c) attacks d due to assumption that τ satisfies φ.

Intuitively, the examples encoding the clauses (8) are satisfied since

one of the arguments corresponding to the chosen truth assignment

that satisfies one of the literals attacks d.
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