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Abstract 

Vitamin D deficiency in infancy and childhood impairs normal bone development and 

growth: defective bone mineralization leads to rickets. In adults, vitamin D deficiency 

causes osteomalacia, softening of the bones. For many decades in Finland, vitamin D 

supplementation in infants and small children has been successful in preventing rickets. 

However, along with increasing knowledge of non-skeletal vitamin D actions, optimal 

vitamin D status, defined by serum 25-hydroxyvitamin D (25OHD) concentration, has been 

under debate. Moreover, vitamin D deficiency has been prevalent in many populations and 

age groups. The need for vitamin D is affected by individual variation in vitamin D 

metabolism, state of health and many extrinsic factors. The optimal vitamin D status and 

the dose of supplemental vitamin D in different populations may differ considerably. 

This doctoral thesis aimed to define the prevalence of vitamin D deficiency (serum 25OHD 

<50 nmol/l) in Finnish children, focusing on individuals with high risk of vitamin D 

deficiency, and studying in chronically ill children the factors that further increase the 

prevalence of low serum 25OHD concentration. Vitamin D interventions in infants and 

young adults enabled examination of the effect and safety of higher than currently 

recommended vitamin D supplementation, and exploring vitamin D and mineral 

metabolism in more detail. 

The study populations comprised 113 healthy term newborns and 42 young adults who 

participated in vitamin D intervention, and 1,335 children followed at Children’s Hospital 

Helsinki between 2007 and 2010 for a chronic illness. The vitamin D interventions were 

double-blinded controlled randomized trials. The newborns received either 10, 30 or 40 µg 

of vitamin D3 daily from 2 weeks to 3 months, and blood samples were obtained at baseline 

and at 3 months. The young adults were either normal weight (n=24), or suffered from 

severe childhood-onset obesity (n=18). Both obese and normal-weight individuals received 

either placebo or 50 µg of vitamin D3 daily for 12 weeks. Blood samples were taken during 

follow-up visits at baseline, 6 and 12 weeks. Data on chronically ill children were collected 

in a retrospective manner from the hospital laboratory database. Serum 25OHD, parathyroid 

hormone, and other parameters of calcium and phosphate metabolism were available for 

analyses. 

Vitamin D deficiency was common, as more than 40% of the overall study population 

presented a serum 25OHD concentration <50 nmol/l. More than half of the adolescents with 

a chronic disease and of the obese young adults were vitamin D deficient. Obesity correlated 

inversely with 25OHD concentrations. Seasonal variation was evident in school-age 

children with a chronic disease, with the lowest prevalence of vitamin D deficiency in 

summer, and the highest prevalence in winter and spring. In younger children, on the other 

hand, vitamin D deficiency was less prevalent, and seasonal variation was lacking. Serum 

25OHD concentration in chronically ill children was higher in 2010 compared with 2007–

2009. Daily vitamin D3 supplementation with 30 to 40 µg in infants, and 50 µg in young 

adults was safe in short-term follow-up. When adherence to intervention was good, both 30 
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and 40 µg dosing increased infant 25OHD concentration to >80 nmol/l. The vitamin D3 

intervention did not affect serum fibroblast growth factor 23 (FGF23) concentrations, but a 

distinct sex difference in active FGF23 concentration was observed, girls having higher 

concentration than boys at three months of age. The response to vitamin D supplementation 

was lower in obese than in normal-weight young adults. Obese individuals receiving 50 µg 

vitamin D3 daily achieved similar 25OHD concentrations as normal-weight subjects who 

received placebo. 

In conclusion, the prevalence of vitamin D deficiency exceeded 40% in the study cohorts: 

especially adolescents and obese individuals were at risk for low 25OHD concentration. 

Seasonal variation in 25OHD was evident, the concentrations being lowest in winter and 

spring. High-dose vitamin D supplementation in infants proved to be safe and effective in 

short-term follow-up. Long-term effects require further studies. Obesity associated with 

inferior response to vitamin D3 supplementation. Chronically ill children and obese subjects 

need individualized vitamin D supplementation and follow-up.  
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Tiivistelmä 

D-vitamiinin puute lapsuus- ja nuoruusiässä aiheuttaa riisitaudin, johon liittyy luuston ja 

kokonaiskasvun häiriintyminen. Riisitauti on seurausta luuston puutteellisesta 

mineraalistumisesta. Aikuisilla D-vitamiinin puute johtaa luiden pehmenemiseen eli 

osteomalasiaan. Suomessa on jo usean vuosikymmenen ajan ehkäisty riisitautia antamalla 

vastasyntyneille ja pienille lapsille säännöllistä D-vitamiinilisää. Elimistön D-

vitamiinitilannetta kuvaa seerumin 25-hydroksi-D-vitamiinipitoisuus (25OHD). Samalla 

kun tieto luuston ulkopuolisista D-vitamiinivaikutuksista on lisääntynyt, keskustelu 

parhaasta mahdollisesta veren D-vitamiinipitoisuudesta on kiihtynyt. D-vitamiinin puute on 

ollut yleistä monessa maassa ja useissa eri ikäryhmissä. D-vitamiinin tarpeeseen voi 

vaikuttaa yksilöllinen aineenvaihdunta, terveydentila ja monet ulkoiset tekijät. Elimistön 

kannalta ihanteellinen 25OHD-pitoisuus ja tarvittava D-vitamiinilisän suuruus voivat 

vaihdella huomattavasti eri populaatioiden ja yksilöiden välillä. 

Tässä vaitöskirjatutkimuksessa selvitettiin D-vitamiinin puutoksen yleisyyttä lapsilla ja 

nuorilla, joilla on suuri riski kärsiä D-vitamiinin puutoksesta. Seerumin 25OHD-pitoisuus 

<50 nmol/l määriteltiin D-vitamiinin puutteeksi. Tutkimuksessa pyrittiin selvittämään 

matalalle 25OHD-pitoisuudelle altistavia taustatekijöitä. Nykyistä suositusta suuremman 

D-vitamiinilisän tehoa ja turvallisuutta sekä vaikutuksia luuston aineenvaihduntaan 

tutkittiin vastasyntyneillä ja nuorilla aikuisilla. 

Helsingin Lastenklinikalla vuosien 2007 ja 2010 välisenä aikana poliklinikkaseurannassa 

olleiden pitkäaikaissairaiden lasten 25OHD-määritykset poimittiin sairaalan 

laboratoriotietokannasta. Mukaan otettiin myös samanaikaisesti määritetyt kalsium- ja 

fosfaattiaineenvaihduntaa kuvaavat laboratorioarvot. Tämä poikittaistutkimus koostui 1335 

lapsen tiedoista. Vastasyntyneiden D-vitamiinitutkimukseen osallistui 113 täysiaikaisena 

syntynyttä imeväistä, jotka saivat sokkoutetusti joko 10, 30 tai 40 µg D3-vitamiinia päivässä 

2 viikon iästä 3 kuukauden ikään saakka. Verinäyte laboratoriotutkimuksia varten saatiin 

napasuonesta syntymän jälkeen ja 3 kuukauden seurantakäynnillä ihopistonäytteenä. 

Nuorten aikuisten D-vitamiinitutkimukseen osallistui 18 nuorta aikuista, jotka olivat 

kärsineet vaikeasta lapsuusiällä alkaneesta lihavuudesta, ja 24 heille valittua samanikäistä 

ja normaalipainoista verrokkia. Molemmat ryhmät arvottiin saamaan sokkoutetusti joko 

lumevalmistetta tai 50 µg D3-vitamiinia päivässä 12 viikon ajan. Seurantakäyntien 

yhteydessä (lähtötilanne, 6 ja 12 viikkoa) otettiin verinäytteet. 

Yli 40 % kaikista 25OHD-pitoisuuksista oli alle 50 nmol/l, ja jopa yli puolella yli 10-

vuotiaista pitkäaikaissairaista ja lihavista nuorista todettiin D-vitamiinin puutos. 

Kouluikäisillä pitkäaikaissairailla lapsilla havaittiin merkittävää vuodenaikaisvaihtelua 

25OHD-pitoisuudessa. D-vitamiinin puutos oli yleisintä talvella ja keväällä ja harvinaisinta 

kesällä. Alle kouluikäisillä vuodenaikaisvaihtelua ei havaittu, ja heillä D-vitamiinin puutos 

oli muita harvinaisempaa. Vuoden 2010 aikana pitkäaikaissairaiden lasten 25OHD-

pitoisuudet olivat korkeammat kuin vuosina 2007–2009. Lihavuuteen liittyi matalampi 

veren 25OHD-pitoisuus normaalipainoisiin verrattuna. Nykysuositusta korkeampi 
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päivittäinen D3-vitamiinilisä osoittautui turvalliseksi sekä aikuisilla että vastasyntyneillä. 

Vastasyntyneillä 30 ja 40 µg:n vuorokausiannos D3-vitamiinia nosti 25OHD-pitoisuuden 

>80 nmol/l. D-vitamiinilisä ei vaikuttanut fosfaatin aineenvaihduntaan osallistuvan 

seerumin fibroblastikasvutekijä 23:n (FGF23) pitoisuuteen, mutta aktiivisen FGF23:n 

pitoisuuksissa oli selvä ero sukupuolten välillä: kolmen kuukauden iässä pitoisuus oli 

tytöillä korkeampi kuin pojilla. Lihavuuteen liittyi huonompi vaste D3-vitamiinille: 50 µg:n 

vuorokausiannos nosti lihavien aikuisten 25OHD-pitoisuuden samalle tasolle kuin 

lumevalmistetta saaneilla normaalipainoisilla. 

Yhteenvetona voidaan todeta, että väitöskirjan tutkimusryhmissä D-vitamiinin puutos oli 

yleistä. Etenkin nuorilla ja ylipainoisilla riski D-vitamiinin puutokseen on kohonnut. 

Vuodenaikaisvaihtelu 25OHD-pitoisuudessa on huomattavaa, puutosta esiintyy eniten 

talvi- ja kevätkuukausina. Jopa 40 µg:n lyhytaikainen päivittäinen D-vitamiinilisän käyttö 

imeväisellä on turvallista, mutta pitkäaikaisvaikutusten arviointiin tarvitaan 

jatkotutkimuksia. Pitkäaikaissairaat lapset ja nuoret sekä ylipainoiset henkilöt tarvitsevat 

yksilöllistä ohjausta D-vitamiinilisän käytöstä ja seurannasta. 
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Abbreviations 

AI adequate intake 

ALTM all laboratory trimmed mean 

ANOVA analysis of variance 

ANCOVA analysis of covariance 

BMC bone mineral content 

BMD bone mineral density 

BMI body mass index 

D2 vitamin D2, ergocalciferol 

D3 vitamin D3, cholecalciferol 

DBP vitamin D-binding protein 

DEQAS vitamin D external quality assessment scheme 

DXA dual-energy X-ray absorptiometry 

1,25(OH)2D 1,25-dihydroxyvitamin D, calcitriol 

1,24,25(OH)3D 1,24,25-trihydroxyvitamin D 

24,25(OH)2D 24,25-dihydroxyvitamin D 

25OHD 25-hydroxyvitamin D, calcidiol 

FGF23 fibroblast growth factor 23 

iFGF23 intact, i.e., active fibroblast growth factor 23 

cFGF23 C-terminal, i.e., inactive fibroblast growth factor 23 

IOM Institute of Medicine 

NIST reference measurement, the national institute of standards and technology 

pQCT peripheral quantitative computed tomography 

PTH parathyroid hormone 

RCT randomized controlled trial 

RDA recommended dietary allowance 

RI recommended intake 

OC osteocalcin 

U-Ca/Cr urine calcium/creatinine ratio 

UL tolerable upper intake level 

VDR vitamin D receptor 

VDSP vitamin D standardization program 
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1 Introduction 

Vitamin D, a fat-soluble vitamin, is vital to humans, and is by definition a hormone. In 

addition to dietary intake (vitamin D2 and D3), the skin is able to produce vitamin D3. After 

hydroxylation in the liver and kidneys vitamin D is eventually secreted to the circulation in 

its active form: 1,25-dihydroxyvitamin D (1,25(OH)2D). In the target tissues, 1,25(OH)2D 

binds to the intranuclear vitamin D receptor (VDR), and affects directly or indirectly gene 

expression in numerous cells. 

Vitamin D has profound effects on mineral metabolism regulating the concentrations of 

calcium and phosphate. Vitamin D deficiency results in impaired bone mineralization 

leading to rickets in children and osteomalacia in adults. On the other hand, vitamin D 

excess leads to hypercalcemia and vitamin D intoxication. In addition to its impact on bone 

development and metabolism, vitamin D participates in several non-skeletal physiological 

processes. Vitamin D deficiency associates with several pathological conditions, such as 

infections, autoimmune diseases, cancers, and cardiovascular morbidities, even though a 

causal connection is still unconfirmed in many cases. Abundant vitamin D research has 

increased the understanding of the role of vitamin D in mineral metabolism, bone 

development, and in the development of various diseases. 

Serum 25-hydroxyvitamin D (25OHD) concentration reflects vitamin D status. An optimal 

25OHD concentration has not been confirmed. However, 25OHD <50 nmol/l is suggested 

to reflect vitamin D deficiency, and some consider 25OHD >75 nmol/l as a target 

concentration. In order to overcome the insufficient cutaneous synthesis of vitamin D, 

common in many countries, regular vitamin D supplementation or vitamin D fortification 

of foods, or both, is often necessary. In Finland, vitamin D supplementation has a long 

tradition in preventing rickets. However, the recommendations of supplemental vitamin D 

dose and the fortification of foods have changed over time. In fact, the currently 

recommended dose of supplemental vitamin D in infants has decreased from 100 µg in the 

1940s to 10 µg in 1992. Dietary intake of vitamin D, on the other hand, has improved due 

to increased vitamin D fortification of foods. Thus, vitamin D status has likely changed with 

time, and needs intermittent evaluation. 
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2 Review of the literature 

2.1 Vitamin D metabolism and action 

Ultraviolet B (UVB) radiation converts 7-dehydrocholesterol in the epidermis to pre-

vitamin D, which is further transformed in a temperature-dependent process to vitamin D3 

(Holick et al. 1980). In addition, some foods contain naturally ergocalciferol (vitamin D2) 

(e.g. mushrooms), and cholecalciferol (vitamin D3) (e.g. fish, egg yolk), while several 

spreads, bread, breakfast cereal, and juice are currently fortified with vitamin D3. Moreover, 

fortification of some foods, e.g. milk and yoghourt, expands the diversity of vitamin D 

sources. Mother’s breast milk does not provide sufficient vitamin D for the breast-fed infant 

(Vieth Streym et al. 2015). Maternal supplementation with vitamin D, however, may 

increase the vitamin D content in breast milk (Wall et al. 2015). In general, vitamin D 

supplements are an important source of vitamin D in some groups, such as children, 

especially infants, pregnant and lactating women and the elderly. 

From the skin and the intestine vitamin D passes to the circulation, where it is mainly bound 

to vitamin D-binding protein (DBP). 

2.1.1 Structure and metabolism 

 

Figure 1 Structure of 25-hydroxyvitamin D (left) and 1,25-dihydroxyvitamin D (right). 
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Figure 2 Vitamin D metabolism and classical actions on mineral metabolism. Modified from 

Holick 2006. UVB, ultraviolet B radiation; DBP, vitamin D-binding protein; PTH, 

parathyroid hormone. 

25-hydroxyvitamin D 

DBP-bound vitamin D is transported to the liver where cytochrome P450-linked 25-

hydroxylases (CYP2R1) convert it to the main circulating form of vitamin D, 25-

hydroxyvitamin D (25OHD) (DeLuca 2004). This hydroxylation is substrate-dependent, 

without tight regulation. In the circulation, DBP binds up to 90% of the 25OHD, and 

albumin approximately 10%, stabilizing 25OHD concentrations. Less than 1% of the total 

25OHD is circulating free (Bikle et al. 1985). Such free 25OHD may enter cells in several 

tissues without carrier-protein interaction. DBP-bound 25OHD enters proximal tubular cells 

in the kidneys through receptor-mediated endocytosis (Nykjaer et al. 1999). Megalin, a 

transmembrane protein, serves as a cell-surface receptor for DBP-25OHD complex 

(Moestrup and Verroust 2001). Binding to megalin leads to endocytosis of 25OHD. 
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1,25-dihydroxyvitamin D 

1,25-dihydroxyvitamin D (1,25(OH)2D) is the biologically active form of vitamin D. 

Despite local production in several tissues, the circulating 1,25(OH)2D results from renal 

hydroxylation, which is under regulation of plasma parathyroid hormone (PTH), fibroblast 

growth factor 23 (FGF23), and serum calcium and phosphate concentrations (DeLuca 2004, 

Shimada et al. 2004b). In the proximal tubular cells mitochondrial cytochrome P450 enzyme 

(1α-hydroxylase, CYP27B1) converts 25OHD to 1,25(OH)2D (Zehnder et al. 2001) which 

is secreted to the circulation, and bound to DBP. In target cells 1,25(OH)2D binds to the 

VDR. This complex then binds to specific sequences in the genome (vitamin D response 

elements, VDREs), in conjunction with retinoid X receptor (RXR), and regulates gene 

expression (Pike and Meyer 2014). 

Intracrine activation of 25OHD to 1,25(OH)2D, without a tight regulation, occurs in several 

cells that may also express VDR. Such cells include e.g. macrophages, enterocytes, 

osteoblasts, osteoclasts and parathyroid cells (Adams et al. 2014). Regulation of local 

production of 1,25(OH)2D differs from the renal activation. For example, cytokines such as 

interferon-gamma (INFγ), but not calciotropic hormones, regulate the activity of 

macrophages to produce 1,25(OH)2D, and 1,25(OH)2D may escape the macrophage and act 

as a paracrine factor (Adams et al. 2014). In addition, 1,25(OH)2D produced by osteocytes 

may regulate bone remodeling independent of circulating renal 1,25(OH)2D (Turner et al. 

2014). 

 

Figure 3 Catabolism of vitamin D by 24-hydroxylase (CYP24A1). 25OHD, 25-hydroxyvitamin 

D; 1,25(OH)2D, 1,25-dihydroxyvitamin D; 1,24,25(OH)3D, 1,24,25-trihydroxyvitamin D; 

24,25(OH)2D, 24,25-dihydroxyvitamin D; PTH, parathyroid hormone; FGF23, fibroblast 

growth factor 23. 
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CYP24A1 enzyme (24-hydroxylase) inactivates both 1,25(OH)2D and 25OHD in target 

tissues to water-soluble 1,24,25(OH)3D and 24,25(OH)2D, respectively (Makin et al. 1989). 

The main regulators of 24-hydroxylase activity are 1,25(OH)2D, PTH, and FGF23 

(Schlingmann et al. 2011, Petkovich and Jones 2011). Figure 3 illustrates the catabolism of 

vitamin D. 

Vitamin D-binding protein 

Vitamin D-binding protein (DBP), originally named as group-specific component of serum 

(Gc-protein), is a polymorphic protein with several functions: in addition to binding vitamin 

D, it also modulates immune and inflammatory responses and regulates bone development 

(White and Cooke 2000, Gomme and Bertolini 2004). DBP, a glycoprotein with a molecular 

weight of 52-59 kDa, is synthetized in the liver. Abundant genetic variation in DBP results 

in versatile physiological characteristics, the three most common alleles being Gc1F, Gc1S 

and Gc2 (Bhan 2014). Although DBP binds all main vitamin D metabolites, it has greatest 

affinity to 25OHD, enabling regulation of vitamin D bioavailability (White and Cooke 2000, 

Gomme and Bertolini 2004). Binding to DBP stabilizes concentrations of 25OHD and 

1,25(OH)2D, especially in situations with restricted vitamin D intake (Chun et al. 2014). 

Moreover, the binding affinity and DBP concentration vary between different genotypes, 

and their prevalence is in turn affected by ethnicity (Taes et al. 2006, Chun et al. 2012).  

2.1.2 Biological actions 

The best-characterized actions of vitamin D are the regulation of calcium and phosphate 

homeostasis in the body. In the intestine, vitamin D induces calcium and phosphorus 

absorption (Rizzoli et al. 1977, Suda et al. 2015). Intestinal calcium absorption occurs 

mainly via a 1,25(OH)2D-dependent process: 1,25(OH)2D increases intestinal calcium 

channels (Van Cromphaut et al. 2001, Christakos et al. 2014). However, when calcium 

intake is high, as in infancy, calcium can also diffuse passively in an 1,25(OH)2D-

independent manner (Masuyama et al. 2003, Kovacs 2014). The role of 1,25(OH)2D in the 

intestinal phosphate absorption, on the other hand, is minor compared with the passive, 

concentration-dependent absorption (Kovacs 2014). In the intestine, 1,25(OH)2D likely 

increases phosphate absorption by acting on sodium-dependent phosphate cotransporters 

(Christakos et al. 2014). 

Despite passive reabsorption of minerals at the proximal tubules, the role of 1,25(OH)2D is 

fundamental in promoting renal reabsorption of calcium and phosphate (Kurnik and Hruska 

1985, Hoenderop et al. 2001, Blaine et al. 2015). The renal action of 1,25(OH)2D is similar 

to its action in the intestine, resulting in increased transcellular transport of calcium in the 

distal tubulus and increased reabsorption of phosphate in the proximal tubulus (Suda et al. 

2015). In addition to 1,25(OH)2D, the regulation of phosphate reabsorption in the kidneys 

involves FGF23, Klotho, PTH, and calcitonin (Urakawa et al. 2006, Blaine et al. 2015). 
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Relatively well-established renal and intestinal actions of 1,25(OH)2D increase essential 

minerals available for bone mineralization. Instead, direct 1,25(OH)2D action on bone is 

still poorly understood. In mice, 1,25(OH)2D stimulates bone resorption by inducing 

osteoclastogenesis and activation of osteoclasts, the cells that are responsible for bone 

resorption (Galli et al. 2008). However, one of the principal actions of 1,25(OH)2D, tightly 

connected to mineral metabolism, is the inhibition of synthesis and secretion of PTH in the 

parathyroid gland (Jones et al. 1998), leading to reduced bone resorption (Suda et al. 2003).  

In addition to its role in mineral metabolism, vitamin D regulates immune responses 

(Chesney 2010) and the cell cycle, thus exerting antineoplastic activity (Christakos et al. 

2016). In macrophages, locally activated 1,25(OH)2D enhances innate immunity, for 

example by increasing secretion of the antimicrobial peptide cathelicidin (Liu et al. 2006, 

Adams et al. 2007a). Vitamin D may reduce the risk of cancer via its actions on the cell 

cycle, enhancement of apoptosis and cell differentiation, and reduction of cell proliferation 

(Davis and Milner 2011, Moukayed and Grant 2013). 

The connection between vitamin D and cardiovascular health is complex. Vitamin D 

deficiency associates with several risk factors for cardiovascular disease, and vitamin D is 

accepted as being important for cardiovascular health (Reddy Vanga et al. 2010, Joergensen 

et al. 2010, Vacek et al. 2012). Despite observational evidence supporting an association 

between vitamin D and cardiovascular morbidity, causality is still unconfirmed (Pittas et al. 

2010, Christakos et al. 2016). 

2.1.3 Toxicity 

The risk for vitamin D toxicity is relevant due to a growing interest in increased vitamin D 

supplementation and free availability of high-dose supplements. Moreover, the attitude to 

supplementation in Finland is relatively liberal today. 

In the 1950s, fortification of dairy products and foods with vitamin D was widely banned in 

Europe due to hypercalcemia in infants in Great Britain, which was presumed, but not 

confirmed, to result from vitamin D (Chesney 1989). Vitamin D toxicity has not been an 

issue in Finland. In 1963 a cohort of 160 healthy newborns in Helsinki received either 100 

µg or 50 µg vitamin D daily for 3 to 5 months without any signs of excess vitamin D effect 

(Hallman et al. 1964). Reports on vitamin D toxicity occur intermittently with excessively 

high doses of vitamin D (6,650 to 100,000 µg/day) (Barrueto et al. 2005, Joshi 2009, Kara 

et al. 2014). Notably, the response to vitamin D supplementation, and hence the risk for 

toxicity, varies greatly between individuals (Vanstone et al. 2012, Rajakumar et al. 2013). 

Vitamin D intoxication is caused by the increase in total 25OHD in the circulation, which 

leads to increased local production of 1,25(OH)2D in extra-renal tissues and displacement 

of 1,25(OH)2D from the vitamin D-binding protein (DBP) (Vieth 1990, Pettifor et al. 1995). 

At the same time, the degradation and excretion of vitamin D metabolites may be 

diminished. When measuring vitamin D excess in the body, hypercalcemia and 
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hypercalciuria are the commonly used markers. In the intestine, 1,25(OH)2D increases the 

absorption of calcium (Heaney et al. 1997), leading to hypercalcemia and increased 

excretion of calcium to the urine. Increased 1,25(OH)2D also leads to bone resorption and 

consequent increase in serum calcium (Suda et al. 2003). Hypercalcemia causes the typical 

symptoms of vitamin D intoxication: nausea, vomiting, constipation, anorexia, polyuria, 

dehydration, muscle weakness, nonspecific pains etc. (Barrueto et al. 2005, Chambellan-

Tison et al. 2007, Ozkan et al. 2012), and may, if prolonged, lead to nephrocalcinosis (Joshi 

2009). 

Serum 25OHD concentration can rise above 200 nmol/l in adults with abundant sunlight 

exposure without signs of vitamin D excess (Barger-Lux and Heaney 2002). Such an 

exposure would be equivalent to oral daily dose of 250 µg of vitamin D (Stamp 1975, Holick 

1995). In vitamin D intoxication, the lowest serum 25OHD concentration resulting in 

hypercalcemia was 220 nmol/l, and in adults a daily dose higher than 250 µg increases the 

risk for vitamin D intoxication (Vieth 1999). The aforementioned numbers cannot as such 

be adopted to children, and unfortunately data on safety in children are limited. Most 

toxicity data come from single patient reports, and only a few randomized controlled trials 

have studied both the effect and safety of vitamin D supplementation. A recent review on 

current literature by the Drugs and Therapeutics Committee of the Pediatric Endocrine 

Society emphasizes that serum 25OHD concentration needs to be monitored when using 

long-term vitamin D supplementation with doses at or above the recommended upper intake 

level (Table 2), and serum calcium concentration should be monitored if serum 25OHD 

concentration is above 375 nmol/l (Vogiatzi et al. 2014). 

2.1.4 Nutritional rickets 

Rickets was first defined in a paper by F. Glisson in 1650 (Dunn 1998). Rickets was an 

endemic disease in industrialized cities in northern parts of Europe. In the beginning of the 

1900s, the prevalence in the UK was 25% (Paterson and Darby 1926). In Finland, rickets 

was extremely common in the 1920s. Archiater A. Ylppö noted in 1925 that 35% of 3- to 

6-month-old infants and 50 to 70% of 1- to 2-year-old children visiting an out-patient clinic 

in Helsinki had signs of rickets (Ylppö 1925). Between 1920 and 1950, the overall 

prevalence of rickets among children in Finland was as high as 80% (Uuspää 1950). 

Vitamin D deficiency, often accompanied by low intake of calcium, causes nutritional 

rickets. The risk for rickets is greatest during infancy and adolescence, the periods of rapid 

growth (Saggese et al. 2015). Rickets of prematurity, on the other hand, is primarily due to 

insufficient intake of phosphate, not vitamin D (Backström et al. 1996). Characteristic 

features in rickets are growth retardation, skeletal deformities, bone pain, and muscle 

weakness with delayed gross motor development (Elder and Bishop 2014, Munns et al. 

2016). Hypocalcemia may result in convulsions and tetany, in addition to dilated 

cardiomyopathy, and failure to thrive. Radiological findings include abnormal 

mineralization, bowing of the long bones, metaphyseal widening at long-bone ends, and 

rachitic rosary (expansion of the anterior rib ends at the costochondral junctions). Other 
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skeletal deformities include frontal bossing, craniotabes, and delayed closure of the 

fontanelle. 

In rickets (Figure 4), the differentiation of chondrocytes is abnormal, and deficiency of 

phosphate results in failure to mineralize newly formed bone (osteoid). Impaired 

endochondral mineralization at the growth plate leads to deformity of the long bones and 

impaired longitudinal growth (Munns et al. 2016). Due to hypocalcemia, as a result of 

vitamin D deficiency, PTH secretion increases, and this leads to increased loss of phosphate 

in the urine, and hence hypophosphatemia. Similarly, hypophosphatemia resulting from a 

variety of inherited disorders, or hypophosphatasia, may also cause rickets (Elder and 

Bishop 2014). 

 

 

Figure 4 Children with rickets in the beginning of the 1900s. (Wellcome Library, London) 

2.1.5 Vitamin D supplementation 

History 

The understanding of the treatment and prevention of rickets improved in the late 1910s and 

early 1920s, following the discovery of vitamin D. As early as 1889, lion cubs with rickets 
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were effectively treated with cod-liver oil (Bland-Sutton 1889). McCollum discovered 

Vitamin D as a nutrient in the 1920s (McCollum et al. 1922). In the beginning of the 1920s, 

sun light and cod-liver oil proved successful in preventing and treating rickets among infants 

(Chick 1976). The structure of vitamin D was identified in the 1930s (Wolf 2004), and the 

chemist Windaus received the Nobel Prize in chemistry in 1928 “for his studies on the 

constitution of the sterols and their connection with vitamins”. 

Vitamin D supplementation has been commonly used in Finland in the form of cod-liver oil 

since the 1930s, in addition to fortification of dairy products. From the 1940s to the 1960s, 

the recommended daily vitamin D dose was 5,000 to 4,000 IU (125-100 µg) (Hallman et al. 

1964). As a result of the potential risks of vitamin D intoxication, reports on hypercalcemia 

in infants in Great Britain, and the observations that rickets can be avoided with smaller 

doses, Hallman et al. proposed in 1964 that the recommended dose be decreased to 2,000 

IU (50 µg) /day. Since the prevalence of rickets in Finnish children decreased from 7% in 

1962 to 0.6% in 1972 the National Board of Health decreased the recommended daily dose 

to 25 µg (Ala-Houhala et al. 1995). According to a national questionnaire survey, between 

1980 and 1990 only 335 children in Finland were diagnosed as having rickets, and the most 

common predisposing factor was poor adherence to regular vitamin D supplementation 

(Ala-Houhala et al. 1995). In 1992 the recommendation was further decreased to the current 

daily dose of 10 µg (Sosiaali- ja terveyshallitus 1992). 

The first Nordic Nutrition Recommendation was published in 1980, and the latest 

recommendation is from 2013 (http://www.norden.org/nnr). Finland has modified national 

recommendations on the basis of the common Nordic recommendations. The first 

recommendation from the National Nutrition Council was published 1987, and the most 

recent update in 2014 (http://www.ravitsemusneuvottelukunta.fi/portal/fi/julkaisut). These 

guidelines include recommendations for daily vitamin D intake from food and supplements. 

Randomized trials on vitamin D supplementation 

A teaspoon of cod-liver oil contains approximately 10 µg of vitamin D3, which is the most 

commonly used supplemental dose of vitamin D (Holick 2007a). Despite increased 

understanding of the physiological actions of vitamin D, there are relatively few randomized 

controlled trials (RCT) investigating the effects of vitamin D in children. For example, the 

Cochrane database (http://www.cochrane.org/) review on the effects of vitamin D 

supplementation on bone mineral density (BMD) in children comprised only six RCTs 

(Winzenberg et al. 2010), although vitamin D action on mineral metabolism and bone 

development is well established. The aforementioned meta-analysis concluded that children 

with low 25OHD concentration (<50 nmol/l) may benefit from vitamin D supplementation 

in terms of BMD. Several studies in adults exist, and vitamin D has proven useful in fracture 

prevention (Bischoff-Ferrari et al. 2012).
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Table 1 summarizes pediatric trials from the last decade assessing the effect and safety of 

vitamin D supplementation in healthy children. The studies were heterogeneous in terms of 

race, age of subjects, given dose, duration, and baseline 25OHD concentration. Some studies 

include only black individuals (Maalouf et al. 2008, Dong et al. 2010), whereas others 

include ≥40% of Caucasian origin (Gordon et al. 2008b, Abrams et al. 2013, Gallo et al. 

2013, Putman et al. 2013, Lewis et al. 2013, Rajakumar et al. 2015). None of these studies 

showed any adverse effects. In an intervention study on healthy Canadian infants, however, 

the highest vitamin D dose of 40 µg/day was discontinued at three months due to high serum 

25OHD concentration (Gallo et al. 2013). In this group the mean concentration of 25OHD 

was 180 nmol/l. The researchers also examined bone mineral content (BMC) and BMD by 

dual-energy X-ray absorptiometry (DXA); these did not differ between intervention groups. 

 

 Current recommendations of vitamin D intake and tolerable upper intake level for 

children. 

Age PES       IOM 

      AAP† 

EFSA 

ESPGHAN 
NNR 

0–6 mo 101 10* 103 103 

6–12 mo 101 10* 103 103 

1–3 y 151 152 - 102 

4–8 y 151 152 - 102 

9–10 y 151 152 - 102 

11–18 y 151 152 - 102 

Tolerable upper intake level (µg/d) 

0–6 mo 50 25 25 25 

6–12 mo 50 38 25 25 

1–3 y 100 63 50 50 

4–8 y 100 75 50 50 

9–10 y 100 100 50 50 

11–18 y 100 100 100 100 

PES, Pediatric Endocrine Society; IOM Institute of Medicine; AAP, American Academy of 

Pediatrics; EFSA, European Food Safety Authority; ESPGHAN, European Society of 

Pediatric Gastroenterology, Hepatology, and Nutrition; NNR, Nordic Nutrition 

Recommendations 

Recommendations given as follows: 1daily requirement, 2dietary allowance, 3daily 

supplementation 

†AAP has agreed on IOM statements 

*Adequate daily intake, i.e., the level that is assumed to meet the daily requirements, with 

limited scientific evidence 
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Present recommendations 

Current recommendations of vitamin D intake vary according to different authorities; they 

provide recommendations for daily requirement, dietary allowance (RDA) or daily 

supplementation of vitamin D (Ross et al. 2011, Holick et al. 2011, Agostoni et al. 2012, 

Fogelholm 2013, Braegger et al. 2013, Golden et al. 2014). The Institute of Medicine (IOM) 

states that adequate daily intake (AI) of vitamin D for infants before age 1 year is 10 µg, 

and RDA for children over 1 year and for adolescents is 15 µg (Ross et al. 2011). AI is 

reported when scientific evidence to develop an RDA is insufficient. The IOM also states 

that tolerable upper intake level (UL) for infants 0 to 6 months and 6 to 12 months is 25 µg 

and 37.5 µg/day, respectively. RDA or recommended daily intake (RDI) estimates an 

average daily intake (from food and supplements) to meet the nutrient requirement of 97.5% 

of the population. The requirement is defined by target concentration: serum 25OHD above 

50 nmol/l (Ross et al. 2011). UL defines the highest daily intake above which the risk of 

adverse events increases. Table 2 summarizes the current pediatric recommendations of 

vitamin D intake. Moreover, a recent consensus highlights the means to prevent and treat 

nutritional rickets (Munns et al. 2016). 

In Finland the current recommendation for daily supplemental vitamin D in children, 

adolescents, and pregnant and lactating women throughout the year is: 

1. children 0 to 2 years: 10 µg 

2. children 2 to 17 years: 7.5 µg (recommended daily intake 10 µg) 

3. pregnant and lactating women: 10 µg. 

2.2 Vitamin D and bone 

2.2.1 Bone growth 

Bone is derived from mesenchymal cells which differentiate to either chondrocytes or 

osteoblasts (Berendsen and Olsen 2015). By the 8th week of gestation chondrocytes form a 

model of the bone, which is then replaced by mineralized bone in axial and appendicular 

skeleton, and parts of the skull in a process called endochondral bone formation (Kovacs 

2014). On the other hand, osteoblasts form bone directly in the skull and in parts of the 

clavicles (intramembranous bone formation). 

Most of the mineralization of the fetal bone occurs during the third trimester. Active 

placental transport of calcium, phosphorus, and magnesium to the fetus ensures sufficient 

concentrations of minerals for bone formation. The bone formation is regulated by PTH, 

and especially PTH-related protein (PTHrP) (Kovacs 2014). Postnatally normal bone 

homeostasis requires adequate intake of minerals, and several hormones regulate bone 
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metabolism (e.g. PTH, 1,25(OH)2D, FGF23, calcitonin, sex steroids). Bone growth and 

mineral accretion is a continuous process from childhood to young adulthood (Molgaard et 

al. 1999), and most of the peak bone mass is achieved by the end of puberty (Bailey et al. 

1999). 

Longitudinal growth after birth occurs mainly at growth plates, at the metaphyseal ends of 

the long bones. Similarly as in fetal bone development, chondrocytes undergo tightly 

regulated maturation and differentiation into hypertrophic chondrocytes, and eventually 

form the growth plate (Adams et al. 2007b, Wang et al. 2011). The cartilage model of the 

bone is then replaced by bone. In this process hypertrophic chondrocytes may transform 

into osteoblasts, and further into osteocytes, and matrix mineralization starts (Yang et al. 

2014, Tsang et al. 2015). As mentioned in section 1.4 Nutritional rickets, inadequate supply 

of minerals may lead to poor mineralization, deformity of the growth plate, various skeletal 

defects, and growth retardation. 

2.2.2 Vitamin D actions on bone 

Fetal bone development is independent of vitamin D (Miller et al. 1983, Brommage and 

DeLuca 1984). Physiologic hypocalcemia of the newborn results from cessation of active 

placental calcium transport (Stulc et al. 1994). Hypocalcemia induces PTH production and 

subsequent activation of 25OHD into 1,25(OH)2D (Kovacs 2014). During the early 

postnatal period intestinal absorption of minerals is mostly passive, but gradually 

1,25(OH)2D-dependent mineral absorption from the intestine becomes essential for normal 

bone growth and development (Kovacs 2012). 

VDR and 1α-hydroxylase activity are present in all major bone cell types: osteoblasts, 

osteocytes, and osteoclasts (van Driel et al. 2006, Morris and Anderson 2010). Autocrine 

action of locally activated 1,25(OH)2D in bone cells is still poorly understood. Renal 

1,25(OH)2D, however, regulates FGF23 production of osteocytes, and thereby phosphate 

metabolism and bone mineralization (Lanske et al. 2014). In osteoblasts 1,25(OH)2D 

regulates proliferation, differentiation and mineralization (van Driel and van Leeuwen 

2014). Interestingly, 1,25(OH)2D has a dual action on bone metabolism, as it also stimulates 

bone resorption by inducing osteoclastogenesis (Takahashi et al. 2014). Thus, 1,25(OH)2D 

is one of the regulators of bone remodeling, the continuous process of removal of mature 

bone tissue and formation of new bone tissue (Ormsby et al. 2014). It is unknown if 

1,25(OH)2D has a direct effect on mineralization. However, by enhancing mineral 

absorption in the intestine, 1,25(OH)2D stimulates bone mineralization indirectly (Tanaka 

and Seino 2004). The regulatory role of vitamin D on the growth plate is also poorly 

understood, but vitamin D metabolites (e.g. 24,25(OH)2D) may have an impact on the 

differentiation of chondrocytes (Nilsson et al. 2005, Boyan et al. 2010, Tsang et al. 2015). 
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2.2.3 Bone as an endocrine organ 

Bone is an active tissue with continuous remodeling, and production of at least two 

hormones: FGF23 and osteocalcin (OC) (Fukumoto and Martin 2009). FGF23 is a 

phosphaturic hormone while OC is suggested to participate in energy metabolism. 

Fibroblast growth factor 23 

FGF23 is a hormone that regulates phosphate homeostasis (Quarles 2008). Mineralized 

osteocytes produce FGF23 (Yoshiko et al. 2007). Hyperphosphatemia and 1,25(OH)2D 

enhance FGF23 production, but the overall regulation of FGF23 still remains insufficiently 

characterized (Saito et al. 2005, Smith et al. 2014). Moreover, PTH is able to increase 

production of FGF23 (Burnett-Bowie et al. 2009, Lavi-Moshayoff et al. 2010). Full-length, 

i.e., intact FGF23 (iFGF23) is the biologically active form. The main target of iFGF23 is in 

the proximal tubules in the kidneys, where it inhibits renal phosphate reabsorption by 

reducing the expression of type 2a and 2b sodium-phosphate cotransporters (Shimada et al. 

2004a, Miyamoto et al. 2007). iFGF23 requires the co-receptor Klotho to exert its effects in 

the kidneys (Urakawa et al. 2006). iFGF23 also reduces the expression of renal 1α-

hydroxylase, which converts 25OHD to 1,25(OH)2D, and thereby indirectly reduces the 

intestinal absorption of phosphorus (Shimada et al. 2004a). The net result is decreased 

concentration of phosphate in the circulation. FGF23 may also affect bone mineralization 

in an autocrine or paracrine fashion by regulating the secretion of osteopontin, a protein that 

inhibits mineralization (Murali et al. 2015). 

 

 

Figure 5 Interaction between the main regulators of phosphate metabolism, adapted from 

Fukumoto, 2014. FGF23, fibroblast growth factor 23; PTH, parathyroid hormone; 

1,25(OH)2D, 1,25-dihydroxyvitamin D. 



 

 

 

 

26 

After phosphorylation, iFGF23 is proteolytically processed into N- and C-terminal 

fragments (Tagliabracci et al. 2014). These fragments do not regulate phosphate metabolism 

directly, but the C-terminal FGF23 (cFGF23) may have a regulatory role (Goetz et al. 2010). 

The C-terminal fragment may adhere to Klotho and thus compete with iFGF23. 

Increased production or decreased degradation of FGF23 results in several diseases 

involving the mineral homeostasis and the skeleton. Excess FGF23 due to impaired 

degradation is evident in autosomal dominant hypophosphatemic rickets (ADHR) (ADHR 

Consortium 2000) and X-linked hypophosphatemic rickets (XLH) (Yamazaki et al. 2002), 

whereas in tumor-induced osteomalacia (TIO) increased FGF23 production by the tumor 

results in renal phosphate loss (Shimada et al. 2001). On the other hand, diseases with 

hyperphosphatemia due to FGF23 deficiency also exist but they are rare (Folsom and Imel 

2015). 

Osteocalcin 

Osteoblasts produce OC, a bone-derived hormone that regulates energy metabolism (Lee et 

al. 2007). In the circulation two forms of OC are present: carboxylated and 

undercarboxylated OC. The latter is able to increase β-cell proliferation, insulin secretion 

and sensitivity (Ferron et al. 2010). Moreover, osteoblasts express insulin receptors, and 

insulin can regulate osteoblast development, and further increase OC activity (Fulzele et al. 

2010). Hence, bone and pancreas form an endocrine loop, regulating each other. As 

osteoblasts produce OC, it can be used as a bone formation marker (Fukumoto and Martin 

2009). In obese individuals lower OC has been observed (Viljakainen et al. 2014). However, 

the overall role of OC in energy homeostasis and its potential other functions remain 

inadequately understood. 

2.2.4 Bone assessment 

Radiography 

Conventional radiography is widely used as a primary tool to examine bone morphology 

and fractures and to assess bone maturation, i.e., bone age. Radiological findings seen in 

rickets are well-defined (Figure 6). However, radiographs do not provide detailed and 

accurate information on BMC, BMD, bone quality, bone architecture, or body composition, 

and have therefore limited value in the assessment of skeletal characteristics. 
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Figure 6 Radiographic findings of rickets: widening and cupping of the metaphysis and 

enlarged costochondral junctions. 

Dual-energy X-ray absorptiometry 

DXA enables rapid and non-invasive examination of bone area, BMC, BMD, in addition to 

body composition, with a relatively low radiation dose. It is an established method in clinical 

use to diagnose osteoporosis and to predict fracture risk in adults (Cummings et al. 2002). 

Hip and lumbar spine are the most common sites for BMD measurement in adults while in 

pediatric use lumbar spine (Figure 7) and whole body are the recommended sites (Crabtree 

et al. 2014). As DXA does not provide three-dimensional data, it is biased by different size 

and shape of the target and cannot provide data on volumetric BMD. 
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Figure 7 DXA scan at lumbar spine in a child. The area between the curves (right) indicates 

normal BMD for age (Z-score between -2.0 and +2.0). 

Peripheral quantitative computed tomography 

Peripheral quantitative computed tomography (pQCT) is a tool for imaging bone and 

surrounding soft tissues, fat and muscle (Figure 8). This method is not in clinical use but it 

is useful for research purposes, as it provides data on total, trabecular, and cortical true 

volumetric BMD and bone area, as well as an estimate of bone strength (stress and strain 

index, SSI) (Zemel et al. 2008). This leads to several important advantages in pQCT 

measurement compared with DXA: lower radiation dose, the ability to differentiate between 

cortical and trabecular bone, and to quantify volumetric BMD without confounding effects 

of size, and the ability to examine relationships between bone and soft tissues locally 

(Schoenau et al. 2002, Binkley et al. 2008). On the other hand, the measurements sites are 

peripheral (e.g. tibia and radius), while proximal or central skeleton (e.g. hip and spine) 

needs to be examined with DXA. In fact, different techniques complete each other by 

providing additive information (Amstrup et al. 2015, Daneff et al. 2015). Every method has 

its challenges, and in pQCT movement artifacts and difficulty in positioning the site of 

interest may cause bias (Blew et al. 2014). In addition, researchers need to deal with 

selection of analysis mode, resolution, and thresholding (Ashe et al. 2006). 

Bone metabolism markers 

Type 1 collagen is the main form of collagen in bone. During the continuous formation and 

resorption of bone tissue type 1 collagen is synthetized and degraded (Szulc et al. 2000). 
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During the synthesis of type 1 collagen N-terminal propeptide (PINP) is released. Thus, in 

addition to bone alkaline phosphatase and OC, which reflect osteoblast activity, PINP serves 

as a marker of bone formation (Yang and Grey 2006). On the other hand, during bone tissue 

resorption, as a result of osteoclast activity, N- and C-terminal fragments of collagen are 

released into the circulation. Measurement of cross-linked telopeptides of N- and C-terminal 

fragments reflects the rate of bone resorption (Yang and Grey 2006). 

 

Figure 8 Example of pQCT scan of a 1-year-old child’s leg. Upper arrow points at tibia (right) 

and lower arrow at fibula (left). 

2.3 Vitamin D status 

Research communities widely agree, based on scientific evidence, that the concentration of 

the most abundant vitamin D metabolite, circulating 25OHD, reflects the vitamin D status 

of the body. Still, a consensus on definition of vitamin D deficiency, insufficiency and 

sufficiency is under debate. The Pediatric Endocrine Society defined in 2008 that 25OHD 

<37.5 nmol/l indicates deficient, 37.5 to 50 nmol/l insufficient, and 50 to 250 nmol/l 

sufficient vitamin D status (Misra et al. 2008). In line with this, the American Academy of 

Pediatrics and ESPGHAN Committee on Nutrition stated that 25OHD concentration in 

infants and children should be ≥50 nmol/l (Wagner et al. 2008, Braegger et al. 2013). This 

is the same target concentration that the IOM definition of vitamin D RDA is based on (Ross 

et al. 2011). On the other hand, the Endocrine Society defined in 2011 vitamin D deficiency 

as 25OHD <50 nmol/l, insufficiency as 25OHD 50 to 75 nmol/l, and sufficiency as 25OHD 

75 to 250 nmol/l (Holick et al. 2011). These thresholds are similar to those recommended 
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for adolescents for whom the optimal concentration was defined as 75 to 125 nmol/l 

(Society for Adolescent Health and Medicine 2013). 

2.3.1 Assessing vitamin D status 

Methods for assessing 25-hydroxyvitamin D 

The concentration of the biologically active form of vitamin D, 1,25(OH)2D, does not 

consistently correlate with signs of vitamin D deficiency or excess. Hence, in a widely 

accepted manner, measurement of serum 25OHD concentration defines vitamin D status 

(Vieth 2007, Holick 2007b). The use of several different 25OHD assessing methods in 

vitamin D studies complicates interpretation of the results and comparison of individual 

studies (Barake et al. 2012, Sarafin et al. 2015). The estimated difference between the results 

in various 25OHD assays may exceed 20 nmol/l (Sempos et al. 2015). In order to deal with 

this challenge in verifying the accuracy and specificity of the 25OHD results in different 

studies, the International Vitamin D Quality Assessment Scheme (DEQAS) monitors 

constantly the performance of different 25OHD assays. In addition, the Vitamin D 

Standardization Program (VDSP), organized by the National Institute of Health, strives to 

standardize internationally the measurement of 25OHD (Binkley et al. 2014). VDSP 

recognizes DEQAS as one of the acknowledged external quality assessment schemes. The 

laboratories that participated in DEQAS between 2000 and 2004 (N=88) showed relatively 

concordant 25OHD results, as the mean bias of the most commonly used individual methods 

differed less than 7% from All-Laboratory Trimmed Mean (ALTM) (Carter et al. 2004). 

Along with an increasing number of participants in DEQAS the inter-laboratory precision 

has increased (Carter et al. 2010). 

Vitamin D-binding protein 

Both monoclonal and polyclonal antibody-based immunoassays are available for assessing 

DBP concentrations. Although the use of monoclonal antibodies usually results in high 

specificity, in DBP assessment, due to abundant genetic variation in DBP (Malik et al. 

2013), polyclonal antibody-based assay may be more accurate (Bouillon et al. 2014). Unlike 

polyclonal antibodies, monoclonal antibodies may have variable affinity for different 

haplotypes of DBP (Hollis and Bikle 2014, Hoofnagle et al. 2015). In order to minimize the 

effect of different DBP isoforms in assessing DBP concentrations, a liquid chromatography-

tandem mass spectrometric assay was recently introduced (Henderson et al. 2015). 
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Free 25-hydroxyvitamin D 

Since the mid-1980s the assessment of bioavailable and free 25OHD concentrations has 

been based on mathematical formulas which take into account vitamin D-binding protein 

and albumin concentrations (Bikle et al. 1986). A direct two-step immunoassay for 

quantifying free 25OHD concentration has been available for a short time, and based on the 

first findings with this assay, mathematical formulas may overestimate the true 

concentration of free 25OHD (Schwartz et al. 2014). However, this is a novel assay with 

scarce reports so far, and the results need to be interpreted with caution. 

2.3.2 Vitamin D intake and 25OHD levels in Finnish children and adolescents 

The National FINDIET survey by the National Institute of Health and Welfare reports 

adults’ dietary habits and nutrition intake at five-year intervals. The latest report is from 

2012 (Helldan et al. 2012). Unfortunately, it does not provide data on children and adults 

younger than 25 years. In Finland, fortification of dairy products with vitamin D started in 

2003 due to low vitamin D intake in all age groups in the National FINDIET 2002 study 

(Männistö et al. 2003). The initiation of food fortification, however, did not improve the 

situation sufficiently (Lehtonen-Veromaa et al. 2008). Thereby, a major change in the 

fortification was implemented in 2010 when the recommended fortification doubled. 

Dietary fats presently contain 20 µg vitamin D/100 g and liquid dairy products 1 µg vitamin 

D/100 ml. After this increment, no systematic survey has evaluated the intake of vitamin D 

in children or young adults. FINDIET 2012, however, showed that adults reached the 

vitamin D intake recommendations better than before. Of men, 33% used vitamin D 

supplements regularly, while the corresponding number for women was 55%. Moreover, 

the daily vitamin D intake exceeded the current recommendation (7.5 µg), as mean daily 

vitamin D intake was 11 µg in men and 9 µg in women (Helldan et al. 2012). 

Two studies among Finnish adolescent girls reported alarming data on the prevalence of 

vitamin D deficiency in the late 1990s (Lehtonen-Veromaa et al. 1999, Cheng et al. 2003). 

At that time, the cut-off value for vitamin D deficiency was 37.5 nmol/l (Lehtonen-Veromaa 

et al. 1999) and 40 nmol/l (Cheng et al. 2003). In these two studies, the prevalence of vitamin 

D deficiency was 68 and 78%, respectively. Table 3 summarizes Finnish pediatric studies 

in recent decades reporting either the use of vitamin D supplements or 25OHD 

concentrations, or both. 

After launching of the fortification of some food items with vitamin D in 2003, vitamin D 

status improved. Higher serum 25OHD concentration was evident in children with genetic 

susceptibility for type 1 diabetes participating in the Type 1 Diabetes Prediction and 

Prevention (DIPP) study: between 1998 and 2002, serum 25OHD concentration in children 

2-12.2 years was on average 62 nmol/l, and between 2003 and 2006, 82 nmol/l (Mäkinen et 

al. 2014). During the DIPP study the increased use of supplements was also evident 

(Räsänen et al. 2006, Kyttälä et al. 2010). Moreover, data on vitamin D intake in the DIPP 

study from food and supplements in children 1–6 years were collected between 2003 and 
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2005. The mean (± SD) daily intake of vitamin D from food and supplements was 12.2 (± 

4.6) µg in 1-year-olds. After that, the intake decreased considerably, the mean daily intake 

being 7.0 (± 4.4) µg in 3-year-olds and 5.9 (± 3.4) µg in 6-year-olds (Kyttälä et al. 2010). 

The decrease is probably a result of a decreased use of supplements, as the proportion of 

supplement users declined from 86 to 21%. 

From 2006 to 2008, altogether 195 Finnish children aged 7 to 19 years participated in a 

cross-sectional study: 34% received less than the recommended daily intake of vitamin D 

(7.5 µg/day) and the prevalence of vitamin D deficiency (25OHD <50 nmol/l) was as high 

as 71% (Pekkinen et al. 2012). In a cohort of 124 newborns (2007) mean (± SD) 25OHD 

concentration in cord blood was 51 (± 15) nmol/l (Viljakainen et al. 2010b). Of these, 86 

participated in a follow-up visit at 14 months. Then, the daily vitamin D intake of the 

children was on average 12.3 (± 3) µg and mean serum 25OHD concentration 64 (± 21) 

nmol/l (Viljakainen et al. 2010a). There are no data on vitamin D status in children and 

adolescents in Finland after doubling the vitamin D fortification of food and changing the 

recommendations for supplement use. It is worth noticing that dietary assessment methods 

may vary between studies and this may complicate comparison of dietary intakes. 
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2.3.3 Seasonal and age-related variation in 25OHD 

Cutaneous synthesis of vitamin D has a considerable effect on serum 25OHD concentration. 

Factors influencing this include skin pigmentation, the use of sunscreen, age-related 

decrease in epidermal 7-dehydrocholesterol (a precursor for vitamin D), genetics, and the 

penetrance of ultraviolet B radiation to the earth surface (Holick 1995). Finland is located 

in the north (latitude >60°N). For comparison, in Edmonton, Canada (52°N), between 

October and April no cutaneous vitamin D synthesis was observable (Webb et al. 1988). 

Hence, in Finland cutaneous synthesis of vitamin D is relevant for vitamin D status only 

during the summer. Seasonal variation in vitamin D status is well known (Holick et al. 2007, 

Prentice 2008, Kumar et al. 2009, Michel et al. 2015), and age also has an effect on vitamin 

D status. In Boston, USA, the prevalence of vitamin D deficiency (25OHD <50 nmol/l) was 

evaluated among healthy children: vitamin D deficiency was more common in adolescents 

(42%) (Gordon et al. 2004) compared with toddlers and infants (12%) (Gordon et al. 2008a). 

During childhood a downward trend in 25OHD concentration with age is apparent in several 

Western countries (Lapatsanis et al. 2005, Cashman 2007, Vidailhet et al. 2012) 

2.4 Vitamin D and chronic illness in childhood 

Due to the profound skeletal and several non-skeletal effects of vitamin D, its deficiency 

associates with several diseases, and the risk of osteoporosis is true already in pediatric 

patients (Rosen et al. 2012, Palermo and Holick 2014, Högler and Ward 2015). The most 

common conditions that associate with vitamin D deficiency in childhood are (in 

alphabetical order): chronic renal failure, immobility, inflammatory and infectious diseases, 

malabsorption, and obesity (Chapter 5) (Palermo and Holick 2014). In addition to the 

disease itself, the required medication and other treatments may also increase risk for 

vitamin D deficiency (Zhou et al. 2006). 

2.4.1 Chronic diseases influencing vitamin D status 

As diet (food and supplements) is the main source of vitamin D in the northern latitudes, 

any condition affecting intake or absorption of vitamin D from the intestine may cause 

vitamin D deficiency. In Finland the main source of dietary vitamin D is fortified dairy 

products (Helldan et al. 2012). Hence, milk allergy and reduced consumption of dairy 

products may cause vitamin D deficiency (Fox et al. 2004, Yu et al. 2006, Barreto-Chang 

et al. 2010). Moreover, cystic fibrosis and intestinal failure due to short bowel syndrome 

impair vitamin D absorption (Tangpricha et al. 2012, Wozniak et al. 2015). 

Other intestinal morbidities, associated with vitamin D deficiency, include celiac disease 

(Mager et al. 2012) and inflammatory bowel diseases (IBD), including Crohn’s disease and 

colitis ulcerosa. IBD patients are at risk for osteoporosis partly due to inflammation, and 
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partly due to vitamin D deficiency (Mouli and Ananthakrishnan 2014). Celiac disease, on 

the other hand, is an autoimmune disease like diabetes mellitus type 1, both being relatively 

common diseases of childhood, especially in Finland. In such conditions, vitamin D may 

play a role as either a causal factor (Hyppönen et al. 2001) or a consequence of the disease, 

or both (Bellastella et al. 2015). 

Chronic kidney disease (CKD) may lead to vitamin D deficiency (Seeherunvong et al. 

2009). In kidney failure, hyperphosphatemia due to reduced glomerular filtration rate leads 

to increased iFGF23, and further increased inactivation of 25OHD and 1,25(OH)2D, in 

addition to reduced renal activation of 1,25(OH)2D (Quarles 2012). Such alterations lead to 

a disorder known as “chronic kidney disease-mineral bone disorder” (Khouzam et al. 2014, 

Kazama et al. 2015). 

Several diseases may affect vitamin D status directly (see 4.1), but often the medication 

given also increases the catabolism of vitamin D. Such medications include for example 

antiepileptic drugs and glucocorticoids, which both stimulate the degradation of 25OHD 

and 1,25(OH)2D (Zhou et al. 2006). Impaired growth and bone mineralization are common 

in pediatric patients after transplantation (Taskinen et al. 2007, Valta et al. 2008), with 

immobility (Kilpinen-Loisa et al. 2010), and in conditions characterized by chronic 

inflammation such as arthritis (Markula-Patjas et al. 2012). 

2.4.2 Vitamin D deficiency as a risk factor for chronic disease 

Vitamin D exerts regulatory effects on both innate and adaptive immune responses (Rosen 

et al. 2012). As already mentioned, vitamin D deficiency may increase the risk of 

autoimmune diseases, such as celiac disease, although the causal relationship is still 

unconfirmed (Dong et al. 2013, Vondra et al. 2015). Poor vitamin D status relates to 

recurrent wheeze in small children (Devereux et al. 2007, Camargo et al. 2011), and to later 

risk of asthma (Erkkola et al. 2009) and asthma exacerbations (Brehm et al. 2010). Vitamin 

D supplementation may reduce such exacerbations (Pojsupap et al. 2015, Xiao et al. 2015). 

In addition, maternal vitamin D supplementation may reduce wheezing in small children 

(Chawes et al. 2016, Litonjua et al. 2016). Furthermore, low 25OHD concentration 

associates with childhood allergies and atopic eczema (Sharief et al. 2011, Jones et al. 2012), 

and vitamin D supplementation may improve these conditions (Camargo et al. 2014). 

Further studies are necessary to verify the causality. 
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2.5 Vitamin D and obesity 

2.5.1 Vitamin D status and response to supplementation 

The association between obesity and impaired vitamin D status is well established (Jorde et 

al. 2010, Brock et al. 2010, Saneei et al. 2013). A recent meta-analysis supports the 

association between vitamin D deficiency and obesity in all age groups (Pereira-Santos et 

al. 2015). The prevalence of obesity in childhood is increasing (Gordon-Larsen et al. 2004, 

Cunningham et al. 2014, Lobstein et al. 2015), and already at that time an inverse correlation 

exists between adiposity-related parameters and 25OHD concentration (Rajakumar et al. 

2011). Despite lower vitamin D status, the fracture risk in obese individuals is not linearly 

increased (Premaor et al. 2013, Johansson et al. 2014), although interaction between adipose 

tissue and the skeleton is evident (Viljakainen et al. 2011, Pollock 2015). Such a finding has 

raised a question of whether obesity affects bioavailable or free 25OHD concentration. 

As obesity increases the risk for cardiovascular complications (Ayer et al. 2015), and low 

vitamin D status associates with increased risk for cardiovascular outcomes (Reddy Vanga 

et al. 2010, Rosen et al. 2012), the combination of vitamin D deficiency and obesity may 

significantly increase the risk for obesity-related morbidity. Low vitamin D status may also 

associate with an increased risk for metabolic syndrome, a well-known risk factor for 

cardiovascular morbidities (Joergensen et al. 2010, Mitri et al. 2014). Although a previous 

systematic review could not confirm the correlation between vitamin D supplementation 

and cardiovascular outcomes (Pittas et al. 2010), in a more recent cohort with almost 11,000 

patients, treatment of vitamin D deficiency resulted in improved survival (Vacek et al. 

2012). 

Several studies in different populations have documented lower response to vitamin D 

supplementation in obese individuals than in normal-weight subjects (Gallagher et al. 2013, 

Didriksen et al. 2013). In obese adolescents, previous studies have confirmed this finding 

with both daily and weekly dosing of vitamin D (Harel et al. 2011, Aguirre Castaneda et al. 

2012, Rajakumar et al. 2015). Obese individuals are at risk for vitamin D deficiency, and its 

treatment may require larger doses of vitamin D than in normal-weight individuals. 

2.5.2 Bioavailable (free) 25-hydroxyvitamin D 

Bioavailable 25OHD means the part of circulating 25OHD that is not bound to DBP (Chun 

et al. 2014). As DBP binds most of the circulating 25OHD, and albumin approximately 

10%, free 25OHD makes up less than 1% (Bikle et al. 1985). The impact of obesity on the 

concentration of vitamin D-binding protein, and the bioavailable 25OHD, is poorly 

characterized and the available data conflicting. Some studies have shown a positive 

correlation between obesity and DBP, while several others have failed to demonstrate any 

correlation between DBP and BMI or body fat content (Powe et al. 2011, Ashraf et al. 2014, 

Karlsson et al. 2014). Both adipose tissue and muscle are vitamin D storage sites in the body 



 

 

 

 

37 

(Vieth 2007). In obese individuals fat-soluble vitamin D is diluted in a larger fat mass 

(Drincic et al. 2012), and the bioavailability of vitamin D may be affected (Wortsman et al. 

2000). 

The free hormone hypothesis 

The free hormone hypothesis, by Mendel 1989, states that the unbound form of a hormone 

is responsible for its biological actions (Mendel 1989). In clinical use, this approach has 

proved useful in measuring free thyroid and free testosterone concentrations, but concerning 

vitamin D scientific evidence is still inadequate (Faix 2013). However, bioavailable 25OHD 

may influence mineral metabolism (Bhan et al. 2012), and BMD has associated with 

calculated bioavailable 25OHD (Powe et al. 2011, Powe et al. 2013a). 
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3 Aims of the study 

Normal growth requires adequate intake of vitamin D. As diet and cutaneous vitamin D 

synthesis are insufficient to secure the need for vitamin D in infants, continuous 

supplementation is essential. In addition to infants, chronically ill children are also prone to 

vitamin D deficiency. Therefore, the specific risk factors predisposing to vitamin D 

deficiency and the appropriate dose for vitamin D supplementation need to be determined. 

This doctoral thesis aimed to: 

 

I Examine the prevalence of vitamin D deficiency in pediatric risk groups. 

 

II Evaluate specific risk factors for vitamin D deficiency in children with a 

chronic illness. 

 

III Study the efficacy and safety of vitamin D supplementation in newborns and 

individuals with childhood-onset obesity. 

 

IV Explore the impact of vitamin D supplementation on mineral metabolism and 

bone growth in healthy newborns. 
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4 Subjects and methods 

4.1 Subjects and study design 

This thesis work is based on four studies involving three study populations (Table 4). In a 

cross-sectional study in chronically ill children (I) we examined the prevalence of and risk 

factors for vitamin D deficiency. We conducted two randomized vitamin D interventions: 

one in infants (II, III) and one in young adults (IV). 

 

 Study populations and design. 

Study N Time 
Baseline age 

(years) 
Sex (F/M) Study Design 

I 1,351 
1/2007–

12/2010 
10.6 (5.2) 49.5%/ 50.5% 

Register-based cross-

sectional 

II, III 113 
9/2010–

5/2011 
0 (0)* 49.6%/ 50.4% 

Randomized double-

blinded intervention 

IV 42 
11/2012–

5/2013 
20.5 (2.7) 45.2%/ 54.8% 

Randomized double-

blinded intervention 

age: mean (SD), *0-3 months; F/M: female/male 

4.1.1 Vitamin D deficiency in chronically ill children (I) 

To evaluate vitamin D status in children with a chronic illness, data on serum 25OHD 

measurements performed at Children’s Hospital Helsinki between 2007 and 2010 for 

patients who had visited the outpatient clinic were collected from the hospital’s laboratory 

database. These children required follow-up at a tertiary hospital and suffered from one or 

several diseases, including asthma, allergies, gastrointestinal diseases, cancer, renal 

diseases, diabetes and other endocrine diseases, chronic inflammatory or infectious 

diseases, eating disorders or metabolic bone diseases. We included children aged 0 to 18.0 

years, and selected the first measurement of 25OHD during the given time period. Serum 

25OHD measurements were made as part of patients’ normal follow-up, based on the 

decision of an individual clinician, specialized in pediatrics. Altogether 1,351 children were 

included in this register-based cross-sectional observational study (Figure 9). In order to 

avoid misleading values caused by renal insufficiency and impaired 1-α hydroxylation, we 
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excluded 25OHD concentrations from children with serum creatinine exceeding the upper 

normal limit by 20%. Since baseline characteristics did not include ethnic background or 

data on diseases or medications, we conducted a post-hoc analysis searching for factors 

predisposing for and predicting vitamin D deficiency; we included children with the 50 

highest and 50 lowest 25OHD concentrations. Clinical characteristics, collected from 

hospital records for each subject, included ethnicity, anthropometric measurements, 

diagnosis and features of the underlying illness, and the use of vitamin D supplements. 

 

 

Figure 9 Flow chart of study I. 25OHD, 25-hydroxyvitamin D. 

4.1.2 Vitamin D intervention in infants – pilot study (VIDI-P) (II, III) 

VIDI-P was a randomized, controlled and double-blinded interventional study. Children 

were randomized into three groups, stratified by gender (Figure 10). The vitamin D doses 

were 10 µg, 30 µg or 40 µg, given daily from two weeks to three months. Randomization 

and blinding was carried out by Helsinki University Hospital Pharmacy. The study 

preparation replaced the otherwise recommended vitamin D supplementation for infants, 

and the use of other vitamin D products was not allowed. 

Recruitment of healthy term infants started in September 2010 at Helsinki Maternity 

Hospital, and continued until February 2011. Families participating in routine pre-labor 

hospital visits during the third trimester (H33-36) received information about the study. 

Written informed consent from parents was collected by midwifes who met the families 

before the child was born. Inclusion criteria were verified before entering the study; these 

included healthy Caucasian mother with uneventful pregnancy, labor at gestational weeks 
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37+0 to 42+0, and children’s birth weight appropriate for gestational age (-2.0 to +2.0 SD) 

without signs of postnatal illness or major malformations. The final study cohort comprised 

113 healthy term infants. 

 

Figure 10 Flow chart for studies II and III. FGF23, fibroblast growth factor 23. 

4.1.3 Vitamin D intervention in obese young adults (IV) 

To evaluate vitamin D status and response to supplementation in obese young adults we 

recruited altogether 42 subjects to a 12-week vitamin D intervention (Figure 11). The study 

was a part of a larger follow-up study (ELLU) assessing the effects of lifestyle factors and 

obesity among adolescents and young adults. The study was conducted between November 
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2012 and May 2013. Controls with a similar age range, without history of obesity, were 

collected from the national population register (N=24). Obese subjects (N=18) had a 

medical history of long-term severe obesity, defined as weight-for-height ratio exceeding 

60% for at least 3 years, from early childhood (diagnosis before age 7 years). Patients with 

endocrine or genetic disorders underlying obesity were excluded. Hospital records at 

Children’s Hospital provided detailed information of diagnosis and follow-up. Participants, 

or guardians of those <18 years, gave their written informed consent before entering the 

study. 

 

 

Figure 11 Flow chart of study IV. 
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Randomization, without stratification by gender, was performed prior to study initiation.  

Subjects received in a double-blinded fashion placebo or vitamin D3 50 µg daily for 12 

weeks. Habitual use of vitamin D containing supplements was allowed. A Finnish 

pharmaceutical company, Verman (Kerava, Finland), donated the preparation used and 

ensured blinding, but had no role in study conduction or data analysis. 

4.2 Ethical considerations 

Study design, conduction and recruitment practices, including information about the study 

protocol, potential discomfort and written informed consents, were performed in accordance 

with the World Medical Associations’ Declaration of Helsinki, a statement of ethical 

principles for clinical research. The Research Ethics Committee of the Hospital District of 

Helsinki and Uusimaa, and Children’s Hospital Helsinki approved each study protocol 

before inception of any given study. The Finnish Medicines Agency (Fimea) gave approval 

for study II (EudraCT 2009-015940-40), which was also registered in ClinicalTrials.gov 

(NCT01275885). Study IV was registered in ClinicalTrails.gov after the completion of the 

intervention (NCT02549326). 

4.3 Methods 

4.3.1 Vitamin D preparation (II, III, IV) 

In VIDI-P, the vitamin D preparation was vitamin D3 dissolved in medium-chain 

triglyceride (MCT) oil (Vitamin D3 Forte®; Renapharma, Uppsala, Sweden). Helsinki 

University Hospital Pharmacy prepared the three different concentrations (10 µg/ml, 30 

µg/ml and 40 µg/ml), and the Finnish Food Safety Authority Evira confirmed appropriate 

stability of the preparation. Parents gave the daily dose with a 1 ml syringe. The intervention 

began when the children were 2 weeks and lasted until they were 3 months. In study IV, 50 

µg vitamin D3 tablets (Minisun®; Verman, Kerava, Finland) were used. Placebo was 

otherwise equal in composition, but without cholecalciferol. The intervention began at the 

first follow-up visit and lasted 12 weeks. 

4.3.2 Questionnaires (II, III) 

Data on family background, infant feeding, allergies, infectious or other diseases, 

medications, and abdominal symptoms were collected with a questionnaire. The 

questionnaires were reviewed in detail during the follow-up visit. The vitamin D follow-up 

form served as a prospective way of recording adherence; guardians documented every 
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vitamin D dose given to the infant during the study. Overall compliance was calculated 

based on reported use of vitamin D supplements and returned vitamin D preparations. 

4.3.3 Anthropometric data 

Anthropometric data were collected at every follow-up visit. We measured height as 

centimeters (cm), and the result was recoded at millimeter (mm) accuracy. In studies II and 

III, the infant was lying down during height measurement. Weight was recorded in grams 

(g) in infants, otherwise as kilograms (kg). In studies II&III, head circumference (cm), and 

in study IV, waist and hip circumference (cm) were measured. In study I, anthropometric 

data were obtained from patient records for the patients with the 50 lowest and 50 highest 

25OHD concentrations. 

4.3.4 Laboratory measurements 

Table 5 summarizes the biomarkers analyzed in studies I-IV and the methodological aspects. 

In order to increase the comparability and accuracy of the results, 25OHD concentrations in 

the intervention studies were analyzed with IDS-iSYS chemiluminescent-based automated 

analyzer. The manufacturer of the analyzer, Immunodiagnostic Systems Ltd., has 

harmonized the method along VDSP recommendations (Simpson CA 2015). Moreover, the 

research laboratory of Children’s Hospital has participated in the DEQAS. During 2013 the 

policy changed, and NIST is currently the reference. Our results were on average 11% 

higher than NIST. The assay for iFGF23, provided by Kainos Laboratories (Tokyo, Japan), 

detects only the full-length, i.e., active FGF23. C-terminal assay (Immunotopics 

International, San Clemente, CA, USA), however, measures both full-length and C-terminal 

fragments. The sensitivity of the used FGF23 assays has been good in previous studies (Imel 

et al. 2006). Both FGF23 analyses were performed in duplicate. Values below the detection 

level for iFGF23 (3 pg/ml) were recoded as 3 pg/ml, and values exceeding the upper 

detection level for cFGF23 (1400 RU/ml) were recoded as 1400 RU/ml (n=15). 

4.3.5 Bone mineral density and body composition 

In study II, bone mass and other skeletal markers were measured with pQCT from distal 

tibia. Although complete DXA analyses were available for young adults in study IV, only 

parameters of body composition were utilized. 

pQCT (II) 

Peripheral quantitative computed tomography (pQCT) measurements were performed 

during the follow-up visit in study II. The length of the left tibia was measured and pQCT-
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scan was performed at sites of 65% and 10% (measured from the distal end of the tibia). 

The majority of the measurements at the 10% site, located near the region of growth plate, 

failed due to lack of solid bone tissue. Measurements at the 65% site were included in the 

final analysis. Movement artifacts resulted in disqualification of 25% of the measurements. 

We used voxel size of 0.2 mm2 and CT scan speed of 20 mm/s. The threshold used for 

cortical bone was 480 mg/cm3, for total bone 180 mg/cm3, and for muscle 40 mg/cm3. 

CALCBD refers to the analysis of total and trabecular bone; contour mode 1 was used for 

detection of outer bone edge, and peel mode 1 for distinguishing subcortical bone from 

trabecular bone. CORTBD refers to analysis of cortical bone, and separation mode 1 was 

used to distinguish cortical bone from trabecular bone. In polar stress and strain index (SSI) 

threshold of 480 mg/cm3 was used. No reference values exist for children under 5 years. 

DXA (IV) 

Dual-energy X-ray absorptiometry measurement was performed with Lunar Prodigy 

Advance on each subject participating in the larger follow-up study ELLU. In the 

intervention study (IV) (N=42) data on total body fat (%) and fat-mass index [fat mass (kg)/ 

cm2] were used in order to evaluate the effect of body composition on vitamin D status.



    

 
L

a
b

o
ra

to
ry

 a
n

a
ly

se
s 

u
se

d
 i

n
 o

ri
g
in

a
l 

st
u

d
ie

s 
I-

IV
 

B
io

m
a
rk

e
r
 

T
es

t 
S

tu
d

y
 

In
tr

a
-a

ss
a
y
 C

V
 

S
it

e 
o
f 

a
n

a
ly

si
s 

S
-2

5
O

H
D

 
H

P
L

C
 

I 
 

H
U

S
 

 
C

L
IA

 
II

, 
II

I 
<

8
%

 
P

S
 

 
C

L
IA

 
IV

 
<

5
%

 
C

H
 

S
-i

P
T

H
 

C
L

IA
 

I 
 

H
U

S
 

 
C

L
IA

 
II

, 
II

I 
 

P
S

 

 
C

L
IA

 
IV

 
<

7
%

 
C

H
 

P
-C

a 
S

p
ec

tr
o
p
h
o
to

m
et

ri
c 

I-
IV

 
 

H
U

S
 

P
-P

i 
S

p
ec

tr
o
p
h
o
to

m
et

ri
c 

I-
IV

 
 

H
U

S
 

S
-i

F
G

F
2
3

 
E

L
IS

A
 

II
I 

<
5
%

*
 

U
U

 

S
-c

F
G

F
2
3

 
E

L
IS

A
 

II
I 

 
U

U
 

S
-2

5
O

H
D

 f
re

e 
E

L
IS

A
 

IV
 

<
8
.5

%
 

C
H

 

S
-D

B
P

 
E

L
IS

A
 

IV
 

8
%

 (
m

ea
n
) 

C
H

 

S
-P

IN
P

 
C

L
IA

 
II

, 
II

I 
 

P
S

 

S
-C

T
X

 
C

L
IA

 
II

, 
II

I 
 

P
S

 

S
-O

C
 

IF
M

A
 

IV
 

4
.4

%
 

U
T

 

2
5
O

H
D

, 
2
5
-h

y
d
ro

x
y
v
it

am
in

 D
; 

iP
T

H
, 
in

ta
ct

 p
ar

at
h

y
ro

id
 h

o
rm

o
n

e;
 C

a,
 c

al
ci

u
m

; 
P

i,
 p

h
o
sp

h
at

e;
 i

/c
F

G
F

2
3
, 
in

ta
ct

/C
-t

er
m

in
al

 

fi
b
ro

b
la

st
 g

ro
w

th
 f

ac
to

r 
2
3
; 

D
B

P
, 
v
it

am
in

 D
-b

in
d
in

g
 p

ro
te

in
; 

P
IN

P
, 
ty

p
e 

1
 c

o
ll

ag
en

 N
-t

er
m

in
al

 p
ro

p
ep

ti
d
e;

 C
T

X
, 
ty

p
e 

1
 

co
ll

ag
en

 C
-t

er
m

in
al

 t
el

o
p

ep
ti

d
e;

 O
C

, 
o
st

eo
ca

lc
in

 

H
P

L
C

, 
h
ig

h
-p

er
fo

rm
an

ce
 l

iq
u
id

 c
h
ro

m
at

o
g
ra

p
h

y
; 

C
L

IA
, 

ch
em

il
u
m

in
es

ce
n

ce
 i

m
m

u
n
o
as

sa
y
; 

E
L

IS
A

, 
en

z
y
m

e-
li

n
k
ed

 

im
m

u
n
o
so

rb
en

t 
as

sa
y
, 

IF
M

A
, 

im
m

u
n
o
fl

u
o
re

sc
en

ce
 a

ss
a
y
; 

C
V

, 
co

ef
fi

ci
en

t 
o
f 

v
ar

ia
ti

o
n

 

*
as

se
ss

ed
 i

n
 t

h
e 

p
er

fo
rm

in
g
 l

ab
o
ra

to
ry

 i
n
 p

re
v
io

u
s 

st
u
d
ie

s 

H
U

S
, 
U

n
iv

er
si

ty
 H

o
sp

it
al

 L
ab

o
ra

to
ry

; 
P

S
, 
P

h
ar

m
at

es
t 

S
er

v
ic

es
 L

td
.;

 C
H

, 
R

es
ea

rc
h
 L

ab
o

ra
to

ry
 o

f 
C

h
il

d
re

n
’s

 H
o
sp

it
al

; 
U

U
, 

U
p
p
sa

la
 U

n
iv

er
si

ty
, 
S

w
ed

en
; 

U
T

, 
U

n
iv

er
si

ty
 o

f 
T

u
rk

u
 

46



 

 

 

 

47 

4.3.6 Statistical analysis 

Statistical analyses were performed with IBM SPSS Statistics 19 (II), 22 (III, IV) and PASW 

18 (I) (IBM, Armonk, USA). P-values <0.05 indicated statistical significance. Distribution 

of the variables was tested with Kolmogorov-Smirnov test. If a variable was non-normally 

distributed, a logarithmic transformation was performed or a non-parametric test was used. 

For continuous variables, baseline differences between means of two groups were analyzed 

with Independent samples T-test or Mann-Whitney U test, appropriate for the distribution. 

Respectively, analysis of variance (ANOVA) or Kurskal-Wallis test was used in the case of 

three or more comparable groups. For categorical variables, Pearson’s chi-squared test (χ2) 

was used. In sub-study I, seasonal or age-related differences in S-25OHD were analyzed 

with analysis of covariance (ANCOVA), as covariates were included in the analysis. In the 

interventional studies (II, III, IV) repeated-measures ANCOVA was used in analyzing the 

impact of the intervention, allowing to take into consideration the effect of covariates. 

Covariates were associated with the dependent variable in simple linear regression models. 

In order to test the strength of the association between two variables, either Pearson’s or 

Spearman’s (both variables non-normally distributed) correlation coefficient was used. In 

sub-study III, association between FGF23 and phosphate required non-parametric partial 

correlation due to covariates (25OHD, PTH). 

In studies II, III and IV, intention-to-treat (ITT) analysis was used. In order to illustrate how 

adherence affects dose-response in study II, results in subjects receiving >80% of the study 

preparation were also reported. Compliance-based dose-response was calculated in the 

following way: change in S-25OHD (nmol/l)/by dose (µg) *compliance (%). 
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5 Results and Discussion 

This doctoral thesis comprises four studies involving healthy term infants (N=113), children 

and adolescents aged ≤18 years with a chronic illness (N=1,335), and both normal-weight 

(N=24) and obese (N=18) adolescents and young adults. Hence, it was possible to 

extensively evaluate vitamin D status in young population at risk for low 25OHD 

concentration and the prevalence of vitamin D deficiency (25OHD <50 nmol/l) and to 

compare the impact of vitamin D supplementation in different populations. On the other 

hand, due to heterogeneous study populations with respect to age, health, and study year 

(Table 4), comparison of absolute serum 25OHD concentrations between different study 

populations was inappropriate. Age groups narrowly overlapped between the studies: in 

studies II and III infants were less 4 months, in study I only 8 children were ≤4 months and 

60% were between 10.1 and 18.0 years, and in study IV the proportion of subjects >18.0 

years was 74%. Study I involved chronically ill children, whereas the infants in studies II 

and III were healthy. The timing of the studies may also affect 25OHD concentrations, as 

vitamin D fortification of foods increased in 2010, together with revised recommendations 

for supplemental vitamin D intake in children, pregnant and breastfeeding mothers in 2011 

(www.ravitsemusneuvottelukunta.fi). 

 

 

Figure 12 Timeline illustrating the timing of data collection in the studies. 
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5.1 Vitamin D status and the prevalence of vitamin D deficiency 

More than 40% of all subjects suffered from vitamin D deficiency, and the prevalence 

increased with age: more than half of school-aged chronically ill children were vitamin D 

deficient. Table 6 summarizes mean 25OHD concentrations (±SD) and the prevalence of 

vitamin D deficiency, defined as serum 25OHD <50 nmol/l, in studies I-IV. Even 44% of 

cord blood 25OHD concentrations were below 50 nmol/l, reflecting the proportion of 

vitamin D deficient newborns before the initiation of vitamin D supplementation. In young 

adults, obesity associated with lower 25OHD concentration than in normal-weight subjects, 

the prevalence of vitamin D deficiency being in study IV 56% and 29% in the obese and 

normal-weight groups, respectively. Seasonal variation of 25OHD in chronically ill children 

was evident in school-aged subjects. Serum 25OHD concentrations were lowest and the 

prevalence of vitamin D deficiency highest during winter and spring. 

 

 Baseline concentrations of 25OHD and the prevalence of vitamin D deficiency 

(25OHD <50 nmol/l) in studies I-IV. 

Study N year 

mean (SD) 

25OHD 

(nmol/l) 

25OHD 

<50 nmol/l 

(%) 

Season 

I      

0–2.0 year 129 2007–2010 74 (27) 19 all seasons 

2.1–6.0 year 185 2007–2010 64 (23) 26 all seasons 

6.1–10.0 year 229 2007–2010 56 (20) 40 all seasons 

10.1–15.0 year 473 2007–2010 49 (20) 54 all seasons 

15.1–18.0 year 319 2007–2010 47 (18) 56 all seasons 

II, III      

cord blood 112 2010–2011 53 (14) 44 
September-

February 

IV      

obese 18 2012–2013 49 (15) 56 
November- 

March 

normal weight 24 2012–2013 62 (24) 29 
November- 

March 

5.1.1 Cord blood (II, III) 

In studies II and III, mean 25OHD concentration was on average 53 nmol/l (±14) and the 

prevalence of vitamin D deficiency 44%. Altogether, 88% of mothers in studies II and III 

reported regular use of supplemental vitamin D, the daily intake of supplemental vitamin D 

being on average 11 µg. Despite the well-adopted maternal recommendation of vitamin D 
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supplementation during pregnancy, almost half of the newborns were vitamin D deficient. 

In a previous Finnish study (Viljakainen et al. 2010a), mean cord blood 25OHD 

concentration was 51 nmol/l, which is almost identical with studies II and III. This is 

surprising, because in the study by Viljakainen, 80% of the mothers used daily vitamin D 

supplementation, and the mothers’ mean daily intake of supplemental vitamin D was 4.8 

µg. Thus, the cord blood 25OHD concentrations were similar even though in studies II and 

III maternal vitamin D intake from supplements was more than double that in the study by 

Viljakainen. Both studies were conducted in the same maternal hospital in Helsinki during 

winter, and 25OHD assay was similar (IDS-iSYS). Hence, despite higher fortification of 

foods and greater self-reported intake of supplemental vitamin D, the cord blood 25OHD 

concentration did not improve. Different study populations undoubtedly complicate direct 

comparison between the studies, and vitamin D intake from foods would be of interest: after 

the increment of vitamin D fortification of foods in 2010 in Finland, the mean daily intake 

of vitamin D from food has increased from 6 µg in pregnant women to 9 µg in women of 

reproductive age (Marjamäki et al. 2010, Helldan et al. 2012). 

The aforementioned studies included mothers who had likely adopted vitamin D 

recommendations better than the average population. Thus, vitamin D deficiency may be 

even more prevalent in the general population.  In the late 1990s, pregnant women in Finland 

were recommended to use supplemental vitamin D during wintertime. At that time, only 

40% of pregnant women reported taking vitamin D supplements, and only 15% reached the 

recommended total daily vitamin D intake (Arkkola et al. 2006). However, self-reported 

vitamin D supplementation among pregnant women whose children were at risk for type 1 

diabetes increased from 63% in 2004 to 71% in 2010 (Aronsson et al. 2013). In the same 

population, the use of vitamin D supplements was more common if the mother was pregnant 

with the first child, and less common if the mother was ≥35.0 years. In our cohort, parity 

did affect the adherence, since the average compliance was 89% in families with the first 

child and 80% in others (p=0.002). On the other hand, maternal age did not affect the use 

of supplements. The use of supplemental vitamin D has remained relatively stable, as in a 

recent report among mothers at high risk for gestational diabetes the proportion of pregnant 

women using regular vitamin D supplement was 72% (Meinilä et al. 2015). 

Because 25OHD passes the placenta readily, low maternal 25OHD concentration before the 

delivery inevitably leads to low 25OHD in the newborn: cord blood 25OHD concentration 

is on average 75% of maternal concentration (Kovacs 2012). Genetic factors play a limited 

role in regulating neonatal 25OHD concentration (Novakovic et al. 2012). Data on how 

maternal 25OHD concentration changes during pregnancy are conflicting: some report a 

decline towards the end of the pregnancy, others an increase, or no change at all (Novakovic 

et al. 2012, Grant et al. 2014). The bioavailable 25OHD, i.e., not bound to DBP, may 

decrease towards to end of the pregnancy, probably due to increased DBP concentration 

(Zhang et al. 2014). With an extensive maternal supplementation with vitamin D, however, 

cord blood 25OHD increases (Kovacs 2008). In fact, in studies II and III the cord blood 

25OHD concentration correlated with maternal supplemental vitamin D intake (r=0.215, 

p=0.024). In conclusion, sufficient maternal vitamin D supplementation is an effective 

means to prevent vitamin D deficiency in the newborn. 
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5.1.2 Chronically ill children (I) 

Serum 25OHD concentrations in different age groups 

The mean serum 25OHD concentration in children with a chronic disease decreased with 

age, and the prevalence of vitamin D deficiency increased (Table 6). The prevalence of 

vitamin D deficiency, defined as serum 25OHD <50 nmol/l, was in total 45%: of children 

less than 2 years, <20% had vitamin D deficiency, compared with 56% of adolescents; 

concurrently, the mean 25OHD concentration decreased from 74 nmol/l to 47 nmol/l, 

respectively. In 2010 mean 25OHD concentrations were higher than between 2007 and 2009 

(Table 7): the increase in mean 25OHD concentrations was highly significant in children 

<2 years and adolescents >15 years (both p=0.001). 

Previous studies among healthy children have reported a decrease in 25OHD concentration 

with age (Prentice et al. 2008, Kumar et al. 2009). However, reports in pediatric patients are 

still relatively scarce (Robien et al. 2011, Lerner et al. 2012). The age-dependent variation 

in 25OHD concentrations in study I was striking: the prevalence of vitamin D deficiency in 

children <2 years was only one third of the prevalence in adolescents >15 years. It is likely 

that the well-established recommendation of vitamin D supplementation to all infants and 

small children resulted in a relatively good vitamin D status in the age-group of 0 to 2 years 

(mean 25OHD 74 nmol/l). As seen in a previous Finnish study, the proportion of supplement 

users decline with age: the child’s 1st year 86%, 2nd year 70%, 3rd year 47%, 4th year 31%, 

while only 21% of 6-year-old children received vitamin D supplements (Kyttälä et al. 2010). 

Such a decrease could explain, at least partly, the dramatic age-related change in the mean 

25OHD concentrations seen in study I. Along with the decline in the use of supplements, 

the increased intake of vitamin D from food in older children was not sufficient to cover the 

nutritional need for vitamin D. The unselected study population in study I complicates the 

interpretation of the results. Baseline characteristics did not include data on underlying 

clinical conditions, duration of the illness or the medication given, which likely differ 

between age groups, and may also directly affect 25OHD concentrations. Moreover, since 

approximately 25,000 children have follow-up at Children’s Hospital in Helsinki, the total 

number of 25OHD measurements was relatively low.  

The overall prevalence of vitamin D deficiency (45%) was a notable finding, as vitamin D 

is essential for normal growth and development, and chronically ill children may be even 

more vulnerable to the adverse effects of vitamin D deficiency due to their chronic disease 

or the medication they receive. Fortunately, higher 25OHD concentrations were evident in 

measurements made in 2010 (Table 7). In fact, the overall prevalence of vitamin D 

deficiency in 2010 was 36%. Especially in the youngest and oldest age groups, the increase 

in mean 25OHD concentration over time was significant. However, almost half of the 

adolescents were still vitamin D deficient. Improved 25OHD concentrations in 2010 could 

at least partly be a result of increased intake of vitamin D due to the recommended increase 

in vitamin D fortification of foods in 2010. In 2011, revised recommendations stated that 
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all children <18 years should receive regular vitamin D supplementation. The sufficiency 

of these recommendations remains to be elucidated in future studies. 

 

 Mean 25OHD concentrations, adjusted for the summer season, in study I 

according to age groups and sampling year. 

  Mean 25OHD (nmol/l)  

Age group (y) N 2007 2008 2009 2010 p† 

0–2.0 129 70 68 60 85 0.001 

2.1–6.0 185 57 65 66 71 0.084 

6.1–10.0 229 53 54 59 61 0.026 

10.1–15.0 473 47 51 46 53 0.028 

15.1–18.0 319 45 44 47 55 0.009 

25OHD, 25-hydroxyvitamin D; y, year 
†ANCOVA, using summer season as a covariate 

 

Infants are prone to vitamin D deficiency. In study I, almost every fifth child aged 0 to 2 

years presented vitamin D deficiency.  Breastfeeding of the newborn is common in Finland: 

in the DIPP study, 92% of the mothers reported that they breastfed their child at 1 month, 

and 58% at 6 months (Erkkola et al. 2009). The WHO recommendation for the duration of 

exclusive breast-feeding is 6 months (http://who.int/topics/breastfeeding). Breast milk is 

scarce in vitamin D (Vieth Streym et al. 2015). Mothers would need high doses (50 to 100 

µg) of daily supplemental vitamin D in order to achieve increased vitamin D content in their 

breast milk (Hollis and Wagner 2004, Wall et al. 2015). In fact, in a Finnish study, non-

breast-fed children had higher mean intake of vitamin D compared with breast-fed children 

(17 vs. 10 µg at 3 months, and 16 vs. 10 µg at 6 months) (Räsänen et al. 2006). Infants are 

dependent on regular vitamin D supplementation. Considering the frequency of vitamin D 

deficiency in this population, in spite of the supplementation that most of the children 

probably received, the question of the optimal dose of supplemental vitamin D is debatable. 

The prevalence of vitamin D deficiency exceeded 50% in school-aged children, which is 

lower compared with the prevalence of 71% among healthy Finnish school-aged children 

in 2006 to 2008 (Pekkinen et al. 2012). This could be a result of individual counseling that 

patients have received during follow-up visits at the outpatient clinic, in addition to 

increased awareness of the potential health benefits of vitamin D. It is worth noting that 

both in the study by Pekkinen and study I, the 25OHD measurements were performed in the 
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same laboratory and with the same assay. Between 2007 and 2009, the results from HPCL 

assays resulted in ca. 5% higher concentrations than All-Laboratory Trimmed Mean 

(ALTM). For comparison: In 2013 the IDS-iSYS method resulted on average in 15% higher 

concentrations compared with ALTM. It is therefore likely that the aforementioned studies 

give a reliable estimation of the true prevalence of vitamin D deficiency in this population. 

Despite the limitations of study I, it demonstrated that in this unselected population of 

children with an illness requiring follow-up at a tertiary center the prevalence of vitamin D 

deficiency was considerably high. 

Parallel to the reduced use of vitamin D supplements, bone mineral accrual and rapid bone 

growth occur during adolescence, leading to increased need for vitamin D (Bonjour et al. 

1991, Lehtonen-Veromaa et al. 2002, Pekkinen et al. 2012). Hence, vitamin D deficiency in 

this age group may have long-term adverse effects on bone growth and bone quality. 

Moreover, during puberty, as a result of hormonal changes, the body composition changes, 

and fat mass increases in both sexes, though it may be more prominent in girls than in boys 

(Kang et al. 2015, Medina-Gomez et al. 2015). Such an increase in fat mass could also lead 

to volumetric dilution of 25OHD concentration (Drincic et al. 2012). 

Predisposing and preventing factors of vitamin D deficiency 

In order to further examine the predisposing and preventing factors of vitamin D deficiency, 

we included children with the 50 highest and 50 lowest 25OHD concentrations in a post-

hoc analysis. Compared with children in the group of 50 highest 25OHD concentrations, 

children in the group of 50 lowest concentrations were older (6 vs. 14 years, p<0.001), more 

commonly of non-Finnish ethnicity (4 vs. 36%, p<0.001), used less vitamin D supplements 

(88 vs. 23%, p<0.001), and tended to have higher height-adjusted weight (-4 vs. +5%, 

p=0.054).  

Identified risk factors of low 25OHD concentration were consistent with the established risk 

factors for vitamin D deficiency in other populations. As discussed above, the prevalence 

of vitamin D deficiency increased with age. Gender did not affect the risk for vitamin D 

deficiency. Instead, ethnicity was an important factor: as much as one third of the 50 patients 

with the lowest 25OHD were of non-Finnish ethnicity, compared with 4% in the group of 

high 25OHD. In several studies conducted in the USA, blacks have presented lower 25OHD 

concentrations than whites (Ginde et al. 2009, Powe et al. 2013b).  Pigmentation of the skin 

reduces cutaneous synthesis of vitamin D (Holick et al. 2007). Two surveys by the Institute 

of Health and Welfare showed that in addition to the reduced cutaneous vitamin D synthesis 

of dark-skinned patients, eating patterns (including the use of dairy products) and the 

adoption of Finnish nutritional recommendations may also differ from those of Finnish 

ethnicity (Castaneda et al. 2012, Alitolppa-Niitamo et al. 2014). In fact, the use of 

supplements was less frequent in those with non-Finnish ethnicity and with low 25OHD. 

Unfortunately, due to the relatively small sample size and wide variety of diseases, it was 

not possible to evaluate how single diseases affect the risk: only eating disorders were 
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exclusively prevalent among those with low 25OHD. In fact, one of the most interesting 

findings was that despite eating disorders, prevalent in the low 25OHD group, height-

adjusted weight tended to be higher in the low 25OHD groups than in the high 25OHD 

group. This indicates that, also in this population, obesity is a risk factor for vitamin D 

deficiency. 

Seasonal variation in 25OHD 

We did not observe seasonal variation in 25OHD concentration in children under 6 years in 

study I. On the other hand, it was notable in older age groups. The prevalence of vitamin D 

deficiency in chronically ill children according to season is illustrated in Table 8. The overall 

prevalence was highest in the winter and spring, as more than 50% of all subjects presented 

serum 25OHD <50 nmol/l, and among adolescents aged 15 to 18 years the prevalence was 

as high as 65%. In the summer, the prevalence of vitamin D deficiency was on average 27%, 

and of adolescents approximately one third still suffered from vitamin D deficiency. 

 

 Prevalence of vitamin D deficiency (25-hydroxyvitamin D <50 nmol/l) in study I 

according to season. 

  Season   

Age group (y)  N Winter Spring Summer Autumn Total p* 

0–2.0 129 19% 23% 14% 21% 19% 0.830 

2.1–6.0 185 37% 27% 23% 19% 26% 0.210 

6.1–10.0 229 44% 55% 23% 34% 40% 0.006 

10.1–15.0 473 62% 63% 36% 49% 54% <0.001 

15.1–18.0 319 65% 65% 28% 57% 56% <0.001 

Total 1,335 52% 52% 27% 42% 45% <0.001 

y, year; *Pearson Chi-Square 

 

Although it was not possible to examine seasonal variation in cord blood 25OHD in studies 

II and III, such variation has been evident in mothers and neonates in different populations 

(Bowyer et al. 2009, Godang et al. 2014), as well as in infants and toddlers (Michel et al. 

2015). Small children are usually protected against direct sunlight exposure with clothing 

and sunscreen, both of which inhibit cutaneous vitamin D synthesis (Holick et al. 2007). On 

the other hand, chronic disease or medication may require protection against sunlight 
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regardless of the age group, and this should be taken into consideration when treating 

chronically ill children. Notably, in this study population, sunlight exposure was insufficient 

to prevent vitamin D deficiency. Thus, dietary intake of vitamin D is essential, and a survey 

is needed on current vitamin D status after the increment of vitamin D fortification and the 

revision of guidelines for supplementation. 

5.1.3 Obese young adults (IV) 

Study IV involved young adults aged 15 to 21 years with severe childhood-onset obesity 

and normal-weight subjects with a similar age range. The mean 25OHD concentration was 

lower in obese than in normal-weight subjects (49 vs. 62 nmol/l, p=0.041), and the 

prevalence of vitamin D deficiency was 56% and 29%, respectively (Table 6). Compared 

with the difference in total 25OHD concentration between obese and normal-weight 

subjects, the difference in free 25OHD was even greater (2.8 vs. 4.7 pg/ml, p=0.001). 

Furthermore, obesity-related parameters (waist circumference, BMI, fat%, and fat-mass 

index) correlated inversely only with free 25OHD, not with total 25OHD or DBP. 

Several studies have indicated that obesity and low 25OHD concentration associate with 

each other (Saneei et al. 2013). In study IV, more than half of the obese and almost one third 

of the normal-weight individuals suffered from vitamin D deficiency. This study was 

conducted during winter and early spring, which probably increased the prevalence of 

vitamin D deficiency. On the other hand, compared with the extremely high prevalence of 

vitamin D deficiency in school-aged children in 2006 to 2008 (71%) (Pekkinen et al. 2012), 

the prevalence in this population was lower. 

Is the low 25OHD concentration (total or free) a reason for obesity or a consequence of it? 

Dilution of 25OHD due to increased fat mass explains, at least partly, the low 25OHD 

concentrations in obese subjects (Drincic et al. 2012). Instead, the interaction between 

obesity and DBP is still unconfirmed. Although hyperinsulinemia and insulin resistance 

showed an inverse correlation with DBP concentrations (Ashraf et al. 2014), body fat mass 

or obesity has not been consistently associated with DBP: some studies have failed to 

observe any correlation while others have reported an inverse or positive correlation (Taes 

et al. 2006, Bolland et al. 2007, Winters et al. 2009, Powe et al. 2011, Karlsson et al. 2014). 

In study IV, DBP did not associate with obesity-related parameters. 

The fact that only free 25OHD concentration, not total 25OHD, correlated with obesity-

related parameters at baseline could be due to the relatively small sample size. Anyhow, 

obesity seems to affect both total and free 25OHD concentrations. Reduced free 25OHD (or 

bioavailable 25OHD) has been apparent in previous studies among obese individuals 

(Wortsman et al. 2000, Karlsson et al. 2014). However, in those studies a mathematical 

formula was used when calculating free 25OHD. The direct method for assessing free 

25OHD has been available for a couple of years. It is likely that the calculated free 25OHD 

overestimates the true free 25OHD concentration (Schwartz et al. 2014, Aloia et al. 2015b). 
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Study IV was the first one to report differences in directly measured free 25OHD in obese 

compared with normal-weight individuals. 

Obese subjects in study IV had all suffered from severe childhood-onset obesity, and do not 

represent all overweight or obese individuals. In addition, a specialized pediatric 

endocrinologist had organized their follow-up and individual counseling during childhood. 

This unique population is prone to various long-term health problems; impaired bone 

development being just one of them. Obesity in childhood may impair bone mineral accrual 

(Mughal and Khadilkar 2011, Mosca et al. 2014), and obesity-related metabolic syndrome 

may also reduce BMD (Nobrega da Silva et al. 2014). In a similar population as in study 

IV, obesity affected metabolic activity and the quality of the bone (Viljakainen et al. 2014, 

Viljakainen et al. 2015). 

The free hormone hypothesis 

Free 25OHD correlated inversely with PTH (r=-0.345, p=0.025) but lacked correlation with 

calcium, phosphate, and osteocalcin. Total 25OHD concentration did not correlate with any 

of the markers of bone metabolism.  

In order to study the free hormone hypothesis, which states that the unbound form of a 

hormone is responsible for its biological actions, many groups have examined correlations 

between calculated or directly measured free 25OHD concentration, or bioavailable 

25OHD, and parameters of calcium and bone metabolism. The results have not been 

consistent and the hypothesis is still questionable. Previously, correlations between PTH 

and free 25OHD have occurred either with or without concomitant correlation with total 

25OHD, but the study populations have been heterogeneous in terms of age, ethnicity, way 

to assess free 25OHD, and state of health (Bhan et al. 2012, Ponda et al. 2014, Lai et al. 

2015, Aloia et al. 2015a, Schwartz et al. 2016). Considering the small sample size in study 

IV, the correlation between free 25OHD and PTH that is only moderate provides weak 

support for the free hormone hypothesis.  
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5.2 Response of 25OHD concentration to vitamin D supplementation 

In study II, a randomized vitamin D3 intervention in infants, due to the critical role of vitamin 

D in the overall postnatal development and growth it would have been unethical to perform 

a placebo-controlled study. We examined the effect and safety of a daily dose of vitamin D3 

of 30 and 40 µg compared with the currently recommended daily dose of 10 µg. Instead, 

study IV was a placebo-controlled intervention of 50 µg vitamin D3, and participants were 

allowed to continue the habitual use of vitamin D containing supplements during the follow-

up. 

The average duration of interventions in studies II and IV was 11 and 12 weeks, 

respectively. The overall adherence was good in both studies, as 82% of infants (II) and 

81% of young adults (IV) received more than 80% of the originally planned doses. In study 

II, 14% of the parents were at most high-school graduates, 26% had bachelor’s degree, and 

60% had a higher university degree. Unlike in study II, the level of education in the families 

of young adults was notably different between the groups: parental education was higher in 

the families with normal-weight subjects than in those with obese subjects (Viljakainen et 

al. 2015). The overall adherence to the intervention in study IV, however, was equal in obese 

and normal-weight subjects (95% vs. 99%, p=0.495). 

In the general population the adherence to vitamin D supplementation, and hence the dose-

response, would likely be lower (Kyttälä et al. 2010). In study II, parents’ high level of 

education may also cause bias. Interestingly, however, pregnant women in Finland used 

equally dietary supplements regardless of their level of education, while in the USA and in 

Sweden the use of supplements associated with higher education (Aronsson et al. 2013). 

Overall awareness of health issues and motivation to participate in the study are likely to be 

better than on average, and such a selected study population may result in abnormally 

favorable results. 
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5.2.1 Infants (II) 

Mean cord blood 25OHD concentration was similar in the three intervention groups (Table 

9). After the intervention, however, mean 25OHD concentration differed significantly 

between the groups: the higher the daily vitamin D3 dose, the higher the mean 25OHD 

concentration. The overall dose-response was highest with the lowest daily dose: the 

increase in 25OHD for each 1 µg of vitamin D was 3.6 nmol/l with 10µg daily dose, 2.3 

nmol/l with 30 µg, and 2.5 nmol/l with 40 µg (Table 9). 

 

 Serum 25-hydroxyvitamin D (25OHD) concentrations in study II at baseline (BL) 

and at three months (3 mo), including minimum, maximum, and dose-responses at three 

months, according to intervention groups. 

 Intervention group  

 10 µg 30 µg 40 µg p† 

S-25OHD (nmol/l)     

BL mean (SD) 52 (14) 54 (15) 54 (13) 0.772 

3 mo mean (SD) 88 (18) 124 (30) 153 (40) <0.001 

minimum 49 57 86 - 

maximum 125 198 230 - 

mean dose-response 

(nmol/l*µg-1) 
3.6 2.3 2.5 <0.001 

†ANOVA     

 

As baseline 25OHD concentrations were similar in the groups, gender alone served as a 

covariate in repeated measures ANCOVA. Serum 25OHD increased from baseline to three 

months in each group (p<0.001), and the increase in 25OHD was more pronounced the 

higher the dose was (p<0.001) (Figure 13). 
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Figure 13 Serum 25-hydroxyvitamin D (25OHD) in the three intervention groups in study II 

from baseline to 3 months. Repeated measures ANCOVA using gender as a covariate, 

p<0.001. Values are estimated marginal means. 

Vitamin D intervention studies in healthy infants are scarce. After study II, only one large 

intervention has been published (Gallo et al. 2013). This study included 132 healthy infants 

who received either 10, 20, 30 or 40 µg of vitamin D3 daily from 1 month to 11 months. 

The group of 40 µg daily dose was discontinued prematurely because of high 25OHD 

concentrations (>250 nmol/l) observed at 3 months without hypercalcemia. Notably, the 

decision to discontinue the 40 µg arm was based on an enzyme immunoassay, and the final 

results were assessed with liquid chromatography tandem mass spectrometry (LC-MS/MS). 

At three months with LC-MS/MS mean 25OHD concentration with 40-µg dosing was 180 

nmol/l (95% CI 154-207 nmol/l). 

In countries with recommendations for vitamin D supplementation, placebo-controlled 

studies are unethical. In Australia, however, a large placebo-controlled vitamin D 

intervention is now recruiting (Allen et al. 2015). Their primary outcome includes allergic 

sensitization and prevalence of infections at 12 months, in addition to prevalence of vitamin 

D deficiency. 

Several factors affect dose-response: baseline 25OHD concentration, dose of vitamin D, the 

preparation in use (vitamin D2 vs. vitamin D3), and the method of administration 

(Viljakainen et al. 2010a, Tripkovic et al. 2012, Gallo et al. 2013, Tan et al. 2015). In the 

study by Viljakainen et al. (2010), the highest increment in 25OHD concentration was 

evident in those with the lowest baseline 25OHD concentration. In a recent meta-analysis, 

vitamin D3 proved to be better than vitamin D2 in increasing 25OHD concentration 
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(Tripkovic et al. 2012). Vitamin D3 is most commonly available in Finland, and due to the 

national recommendations, daily supplementation is widely used compared with more 

infrequent dosing. 

The pre-defined target 25OHD concentration in study II was 80 nmol/l. All of the infants 

who received 40-µg dosing achieved this target concentration. On the other hand, 10% of 

those infants showed 25OHD concentration >200 nmol/l which was considered to be 

unnecessarily high. If the compliance was good, over >80%, 30-µg dosing was also 

sufficient to achieve 25OHD concentration ≥80 nmol/l. To conclude, in order to achieve 

25OHD concentration at or above 80 nmol/l with regular use of supplemental vitamin D3, a 

daily dose of 30 µg is sufficient. 

Safety issues 

Plasma calcium concentration and urine calcium/creatinine (U-Ca/Cr) ratio at three months 

served as safety measurements. Plasma calcium concentration remained within the 

reference range 2.22-2.82 mmol/l, and it did not correlate with 25OHD concentration. In 

study II the cut-off for abnormally high U-Ca/Cr was 2.2 mmol/l, and 39% of all infants 

exceeded this. However, hypercalciuria occurred in all intervention groups, it did not 

correlate with 25OHD concentration, and the mean U-Ca/Cr was similar in all groups. The 

reference range for U-Ca/Cr in this age group is poorly defined, and infants have much 

higher values than older children or adults (Sargent et al. 1993, Matos et al. 1997). A 24-h 

urine collection is preferable to a spot urine sample but impossible to perform in a study 

like this. In the Canadian study in infants with a high dose of vitamin D (up to 40 µg /day) 

no hypercalcemia was observed (Gallo et al. 2013). Moreover, in older children daily doses 

of vitamin D3 up to 100 µg did not increase calcium absorption or cause hypercalcemia 

(Lewis et al. 2013). In conclusion, vitamin D3 supplementation in infants with up to 40 µg 

daily is safe in the short term but 25OHD concentrations may rise to an unnecessarily high 

level. 

5.2.2 Young adults (IV) 

In study IV with young adults, mean baseline total and free 25OHD concentrations were 

lower in the obese than in the normal-weight subjects, without any differences in DBP 

concentrations (Table 10). The dose-response to 50 µg of vitamin D3 supplementation also 

differed between obese and normal-weight subjects, resulting in lower total and free 25OHD 

concentrations in the obese subjects at the end of the intervention. In repeated measures 

ANCOVA (both total and free) baseline 25OHD concentration served as a covariate. Figure 

14 illustrates the change of total and free 25OHD concentration over time. Total 25OHD 

concentration increased during the follow-up period (p<0.001) and differed between the 

four intervention groups (p<0.001). The increase in the placebo groups was not significant 

(p=0.058). Free 25OHD increased in both obese and normal-weight subjects receiving 
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vitamin D supplementation (p=0.006). Unlike total 25OHD, the increase in free 25OHD did 

not differ between obese and normal-weight subjects (p=0.487). 

 

 Total and free 25-hydroxyvitamin D (25OHD) concentrations [mean (SD)] at 

baseline and after 12 weeks’ intervention in study IV. 

 Group  

Baseline 25OHD Normal weight Obese p† 

t25OHD (nmol/l) 62 (24) 49 (15) 0.041 

f25OHD (pg/ml)  4.7 (2.0) 2.8 (1.4) 0.001 

DBP (µg/ml) 346 (98) 309 (87) 0.212 

Final 25OHD Placebo 50 µg D3 Placebo 50 µg D3 p† 

t25OHD 

(nmol/l) 
85 (28) 112 (22) 63 (19) 89 (24) <0.001 

f25OHD (pg/ml) 4.5 (1.9) 6.5 (2.0) 2.7 (1.5) 4.9 (2.0) 0.001 

DBP (µg/ml) 333 (101) 362 (86) 372 (48) 375 (110) 0.708 

Minimum 

t25OHD (nmol/l) 
46 67 38 54 - 

Maximum 

t25OHD (nmol/l) 
129 147 97 118 - 

t25OHD        

dose-response 

(nmol/l*µg-1) 

0.2 1.2 0.1 0.9 <0.001‡ 

†ANOVA, ‡Kruskal-Wallis test 

t, total; f, free; DBP, vitamin D-binding protein 
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Figure 14 Study IV. Changes in total (left) and free (right) 25-hydroxyvitamin D (25OHD) 

concentrations with time and according to intervention group. In repeated measures ANCOVA 

using baseline 25OHD concentration as a covariate: temporal change in total 25OHD 

(p<0.001) and difference between intervention groups (p<0.001), and temporal change in free 

25OHD (p=0.021) and difference between intervention groups (p<0.001). Solid lines 

represent normal-weight subjects and dashed lines obese subjects, squares represent vitamin 

D3 groups and circles placebo groups. Values are estimated marginal means. 

DBP concentrations were similar between obese and normal-weight subjects at baseline and 

did not differ between intervention groups at the end of the follow-up (Table 10). The 

change in DBP concentration with time (p<0.001) is illustrated in Figure 15. 

In study IV the response of both total and free 25OHD concentrations was of interest, as 

there are no previous studies examining changes in directly measured free 25OHD in obese 

subjects. When comparing the response of total 25OHD concentration between those obese 

and normal-weight who received vitamin D3 supplementation, a notable difference was 

evident: normal-weight subjects responded better than obese ones (p=0.027). In normal-

weight individuals the mean increment of 25OHD concentration/1 µg vitamin D3 was 1.2 

nmol/l, and in obese individuals 0.9 nmol/l. Thereby, supplementation in obese subjects 

resulted on average in 13.8 nmol/l (95% CI: 1.8, 25.8) lower 25OHD concentration than in 

normal-weight subjects. A trend towards an increase in total 25OHD concentration in 

placebo groups was evident (p=0.058), without a difference between obese and normal-

weight subjects (p=0.074). Moreover, at the end of the intervention obese subjects merely 

achieved equal total 25OHD concentrations to normal-weight subjects in the placebo group; 

89 vs. 85 nmol/l, respectively. The finding of a lower response to vitamin D3 

supplementation in obese individuals is similar as seen previously in other populations 

(Dhaliwal et al. 2014). 

Correspondingly, at the end of the follow-up free 25OHD concentrations were similar in 

obese subjects who received vitamin D3 supplementation and in normal-weight subjects in 

the placebo group. Unlike total 25OHD concentration that showed a trend towards increase 
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in placebo groups, free 25OHD concentration remained stable during the follow-up 

(p=0.924), and no difference was observed between obese and normal-weight subjects in 

placebo groups (p=0.758). Hence, free 25OHD concentration may be more tightly 

regulated. 

 

Figure 15 Study IV. Changes in vitamin D-binding protein (DBP) over time and according to 

intervention groups. In repeated measures ANCOVA using baseline DBP concentration as a 

covariate: temporal change p<0.001 without differences between intervention groups 

(p=0.193). Solid lines represent normal-weight subjects and dashed lines obese subjects, 

squares represent vitamin D3 groups and circles placebo groups. Values are estimated 

marginal means. 

 

Vitamin D3 intervention had an impact on DBP concentrations: DBP tended to be at its 

highest at 6 weeks in normal-weight subjects, and at 12 weeks in the obese (Figure 15). At 

the end of the intervention, among those who received vitamin D3, obese subjects had higher 

DBP concentration than normal-weight ones (p=0.025). Due to the large variation in DBP 

concentrations the importance of this finding needs to be verified in other studies. Moreover, 

the differences between monoclonal and polyclonal antibodies in the detection of DBP 

require further studies (Powe et al. 2014). Only few studies have examined the response of 

DBP concentration to vitamin D supplementation, and the results are conflicting. Among 

elderly vitamin D deficient patients (25OHD <50 nmol/l) with hip fracture, vitamin D 

supplementation with both vitamin D2 and D3 resulted in increase in DBP concentration 

(Glendenning et al. 2013). This patient group is, however, very different from that in study 
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IV. On the other hand, vitamin D3 supplementation did not affect DBP concentrations in 

adults with vitamin D deficiency or in adults with prediabetes (Ponda et al. 2014, Sollid et 

al. 2016). In addition, DBP phenotype affects 25OHD concentrations (Lauridsen et al. 2005, 

Pekkinen et al. 2014, Ashraf et al. 2014, Braithwaite et al. 2015) and may also affect the 

response to vitamin D supplementation (Fu et al. 2009, Didriksen et al. 2013). And as 

earlier, obesity and DBP concentrations may be associated (Powe et al. 2011, Ashraf et al. 

2014, Karlsson et al. 2014). 

In conclusion, we observed an increase in both total and free 25OHD concentrations in those 

who received vitamin D3. The response varied between total and free 25OHD 

concentrations: the response of free 25OHD was similar in normal-weight and obese 

subjects, but the response of total 25OHD was greater in normal-weight than in obese 

subjects. As this was the first study to examine the response of directly measured free 

25OHD to vitamin D3 supplementation in obese subjects, further studies are needed to verify 

the finding and to examine the clinical significance. The impact of DBP remains uncertain. 

Safety issues 

The highest total 25OHD concentration in study IV was 147 nmol/l, i.e., well below the 

concentrations seen in vitamin D intoxication. A reference range for directly measured free 

25OHD concentration does not exist yet. Plasma calcium (P-Ca) and U-Ca/Cr served as 

safety measurements. No hypercalcemia existed, and neither P-Ca nor U-Ca/Cr correlated 

with total 25OHD concentrations. P-Ca and U-Ca/Cr did not differ between placebo and 

vitamin D3 groups. Thus, daily supplementation with 50 µg vitamin D3 was safe. 

5.3 Mineral metabolism and bone growth 

Studies I-IV included data on serum 25OHD concentration and markers of mineral 

metabolism, namely PTH, calcium and phosphate, enabling the examination of vitamin D 

impact on mineral metabolism. Table 11 summarizes the results of correlation analyses 

between 25OHD and PTH, calcium and phosphate. In infants and small children, in addition 

to young adults, 25OHD and PTH concentrations lacked mutual correlation. In school-aged 

children a weak inverse correlation between 25OHD and PTH concentrations was evident. 

Serum 25OHD concentration lacked consistent correlation with either calcium or 

phosphate. 

Although in studies I-IV it was possible to examine correlations between 25OHD 

concentration and markers of mineral metabolism – phosphate, calcium, and PTH – it should 

be noted that these studies differed from each other, which must be taken into consideration 

when comparing the results. In studies II and III correlations are analyzed at three months, 

at the end of the vitamin D3 intervention. In study IV, on the other hand, correlations are 

examined before the intervention, and in study I without any intervention, in a retrospective 
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fashion. In studies III and IV also other biomarkers were included: FGF23 (III) and OC 

(IV). 

 Pearson correlations between 25-hydroxyvitamin D (25OHD) and markers of 

mineral metabolism in studies I to IV. Significant correlations are in bold. 

  PTH P-Ca P-Pi 

Study I (total 25OHD)    

0–2 years r -0.128† -0.104† 0.116† 

 p 0.279 0.447 0.270 

2–6 years r -0.118† 0.188 0.002† 

 p 0.218 0.097 0.979 

6–10 years r -0.347† 0.099† -0.212 

 p 0.000 0.312 0.009 

10–15 years r -0.174† 0.067 -0.047 

 p 0.003 0.299 0.396 

15–18 years r -0.189† -0.066 -0.176 

 p 0.015 0.490 0.017 

Study II&III (total 25OHD)    

3 months r -0.175† 0.160 0.054 

 p 0.107 0.102 0.585 

Study IV (age 15 to 25 years)   

total 25OHD r -0.086 -0.220 0.295 

 p 0.590 0.162 0.058 

free 25OHD r -0.345 -0.123 0.129 

 p 0.025 0.437 0.414 

PTH, parathyroid hormone; Ca, calcium; Pi, phosphate 

†Spearman’s correlation coefficient 
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5.3.1 FGF23 and bone turnover markers (II and III) 

In cord blood, iFGF23 was mainly below the detection level, and cFGF23 considerably high 

(Table 12). At three months a rise in iFGF23 and a concurrent decrease in cFGF23 was 

evident. The increase in iFGF23 differed between sexes: in girls the iFGF23 concentration 

was almost double than in boys (51 vs. 26 pg/ml, p<0.001). Vitamin D3 intervention did not 

affect FGF23 concentrations. Correlation between iFGF23 and phosphate was observed 

only in girls, not in boys (r=0.433, p=0.004 and r=0.069, p=0.327). Instead, boys presented 

an inverse correlation between cFGF23 and phosphate (r=-0.373, p=0.006). 

Bone formation marker procollagen type 1 N-terminal propeptide (P1NP) concentration and 

bone resorption marker collagen type 1 cross-linked C-telopeptide (CTX) concentration was 

similar in both sexes, and vitamin D3 intervention did not affect their concentrations. CTX 

and iFGF23 correlated inversely, though the correlation was weak (Spearman’s r=-0.262, 

p=0.007). P1NP and iFGF23 did not correlate (r=-0.057, p=0.559), and neither did cFGF23 

and CTX or P1NP. 

 Sex-related differences in mean (SD) concentrations of intact and C-terminal 

fibroblast growth factor 23 (i/cFGF23) at baseline, at 3 months, and the change over time in 

study III. 

 Girls Boys p† 

Cord blood    

 iFGF23 (pg/ml) 3.0 [10.7]a 3.0 [2.3]a 0.314 

 cFGF23 (RU/ml) 536.2 [731.7]a 605.9 [842.9]a 0.970 

3 months    

 iFGF23 (pg/ml) 51.4 [30.0]a 25.9 [48]a <0.001 

 cFGF23 (RU/ml) 106.9 (64.0) 105.4 (52.1) 0.573 

Change from baseline to 3 months   

 iFGF23 (pg/ml) 44.9 [35.3]a 15.7 [46.2]a 0.001 

 cFGF23 (RU/ml) -574.7 (442.4) -581.2 (430.1) 0.970 

†Mann-Whitney U-test; aMedian [Interquartile Range] 

 

An increase in iFGF23 and concomitant decrease in cFGF23 in previous studies support the 

hypothesis that regulation of mineral metabolism starts after birth, as a result of 
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physiological hypocalcemia which leads to secretion of PTH, and further to 1,25(OH)2D 

activation in the kidneys (Takaiwa et al. 2010, Ohata et al. 2011). Because FGF23 does not 

cross the placenta (Ma et al. 2014), the high concentration of cFGF23 in cord blood reflects 

the capability of the fetus to secrete iFGF23, which is mainly cleaved to C- and N-terminal 

fragments (Kovacs 2014). The physiological role of FGF23 during fetal development is 

unknown. The regulation of FGF23 metabolism after birth is also inadequately understood. 

 

Figure 16 Increase in intact fibroblast growth factor 23 (iFGF23) in boys and girls separately. 

In repeated measures ANCOVA using baseline iFGF23 as a covariate, iFGF23 increased with 

time p<0.001, and differed between boys and girls p<0.001. 

A striking finding was the considerable sex difference in iFGF23 at three months (Figure 

16). This was a novel finding, and no other similar findings have been published. On the 

other hand, studies on sex-related differences in FGF23 are infrequent (Gkentzi et al. 2014). 

What could explain the sex difference? Minipuberty and high concentration of sex steroids 

could be one reason. During neonatal minipuberty, at 1 to 3 months after birth, testosterone 

concentrations may rise up to pubertal levels (Kuiri-Hänninen et al. 2014), and testosterone 

plays a significant role in bone development (Vanderschueren et al. 2014, Carson and 

Manolagas 2015). Unlike at birth, bone parameters differ between sexes at 14 months 

(Viljakainen et al. 2010a). We hypothesized that male bones grow faster and require more 

phosphate than in girls. Both sexes receive abundant phosphate from milk. As iFGF23 is a 

phosphaturic hormone, the increased need for phosphate could explain the low 

concentration of iFGF23 seen in boys (Figure 17).  
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Figure 17 Hypothesis of sex difference in intact fibroblast growth factor 23 (iFGF23) 

metabolism. 

One of the limitations in study III was that we used serum samples. iFGF23 is more stable 

in plasma than in serum, and the use of serum for measurements may result in decreased 

concentrations of iFGF23 (Smith et al. 2014). In fact, altogether 22 measurements of 

iFGF23 were below the detection level at baseline and at three months. Due to several low 

iFGF23 concentrations, we performed sensitivity tests: after omitting iFGF23 

measurements that were below the detection level at baseline and at three months, we were 

able to verify the significant sex difference and change over time in iFGF23. Moreover, the 

blood samples in both sexes were equally processed. 

5.3.2 Osteocalcin (IV) 

In young adults OC was slightly lower in obese than in normal-weight subjects (14 vs. 17 

ng/ml, p=0.027) at baseline, and differed between intervention groups at the end of the 

follow-up. The focus was on the correlation between OC and 25OHD concentrations. 

Correlation between OC and free 25OHD concentration would support the free hormone 

hypothesis. However, we failed to observe any correlation between OC and either free or 

total 25OHD. In this population, OC and its connection to energy metabolism has been 

published previously (Viljakainen et al. 2014). 

5.3.3 Peripheral quantitative computed tomography (pQCT) (II) 

In order to examine BMD and other bone parameters in infants in study II, we included 75% 

of pQCT measurements and omitted 25% due to poor quality. BMD was similar in the three 

intervention groups (vitamin D3 10 µg, 30 µg or 40 µg/day), but a trend towards greater 

total and trabecular bone area (p=0.069), cortical area (p=0.053), and higher stress and strain 

index (p=0.070) was evident with the 40 µg daily dose. 
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pQCT measurements at three months were challenging due to lack of the infants’ co-

operation as motion affects the quality of the pQCT image. We evaluated the quality of the 

measurement visually. Recently a quantitative motion assessment methodology was 

introduced in order to manage the motion artifacts (Blew et al. 2014). Moreover, this is a 

small study with limited sample size and short follow-up period. Changes in bone 

microarchitecture, gross structure, and growth require time, and individual variation may be 

great. Maternal 25OHD concentration may affect newborn bone parameters, and 

supplementation with vitamin D has an impact on bone health already in infancy 

(Viljakainen et al. 2010a, Viljakainen et al. 2010c). The dose-dependent effect of vitamin 

D supplementation on bone parameters needs to be confirmed in a longer intervention with 

a larger cohort. 

5.4 Future considerations 

Along with the increasing data on the multiple physiological roles of vitamin D, awareness 

of its health benefits has increased, and the use of vitamin D supplements has become 

popular in Finland. In addition, detailed age-specific national recommendations for nutrient 

intakes and the increased vitamin D fortification of foods introduced in 2010 have likely 

increased the overall intake of vitamin D in all age groups. In fact, the FINDIET survey in 

2012 reported increased vitamin D intake and increased prevalence of supplement use 

among adults >25 years (Helldan et al. 2012). However, data on vitamin D intake, the 

prevalence of supplement use, and most importantly, serum 25OHD concentrations in adults 

less than 25 years of age, adolescents and younger children are lacking. It would be 

important to study the impact of current recommendations in all these populations. 

Moreover, the prevalence of vitamin D deficiency was considerably high in children with a 

chronic disease. It would be of interest to examine if the increase in mean 25OHD 

concentrations seen in 2010 has continued and resulted in improved 25OHD concentrations 

in pediatric patients. Serum 25OHD measurements are commonly based on decisions by 

individual clinicians, not performed as part of treatment or follow-up protocol. For example, 

Current Practice Guidelines (Käypä hoito, Duodecim) commonly include vitamin D 

recommendations of the National Nutrition Council, but detailed recommendations for 

vitamin D supplementation or the follow-up scheme of serum 25OHD concentration are 

often lacking. 

The currently recommended vitamin D supplementation is sufficient to prevent rickets and 

osteoporosis in otherwise healthy Finnish children. It has previously been discussed that in 

order to achieve e.g. immunological benefits of vitamin D supplementation, the given dose 

and the target concentration of 25OHD may need to be higher than what is needed for 

optimal bone health. In order to study the long-term effects and safety of higher than 

currently recommended vitamin D3 supplementation, a prospective vitamin D intervention 

in healthy infants (VIDI) was started in 2013. The comparison dose (30 µg/day) was defined 

based on the findings of study II. Primary outcomes of the VIDI study include vitamin D3 

effects on bone and infections. Altogether nearly 1,000 healthy infants are included in the 



 

 

 

 

70 

study, and the 2-year follow-up ended in May 2016. In this cohort it is possible to examine 

the dose-response of vitamin D3 supplementation on pQCT parameters in order to verify the 

findings of study II. Moreover, sex differences in iFGF23 concentrations needs to be 

confirmed in a larger cohort, although the age group will differ from that in study III. 

In rodent models 1,25(OH)2D does not cross the placenta, whereas 25OHD crosses it readily 

(Kovacs 2014). The transport mechanism is unknown: it is not known whether it is DBP-

bound 25OHD or free 25OHD that crosses the placenta. Thus, it would be interesting to 

examine the impact of maternal free 25OHD concentration on cord blood 25OHD 

concentration. Although the role of vitamin D during fetal bone development may be minor, 

other functions of fetal vitamin D are still poorly studied. Additionally, the attempt to 

examine the free hormone hypothesis in study IV with a relatively small sample size 

requires further confirmation in a larger and more homogenous population. Considering free 

25OHD concentration, the understanding of DBP polymorphism is essential and needs to 

be taken into consideration. 
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6 Summary and conclusions 

This doctoral thesis provides data on the prevalence of vitamin D deficiency in specific risk 

groups: infants, children with a chronic disease, and adolescents and young adults with 

obesity. Exploring specific risk factors for vitamin D deficiency in chronically ill children 

revealed seasonal- and age-related variation in 25OHD. Further, vitamin D interventions 

examined the effect and safety of higher than currently recommended vitamin D3 doses in 

both infants and obese individuals, and allowed us to deepen our understanding of the 

factors influencing mineral metabolism. 

The main results and conclusions can be summarized as follows: 

 

I The prevalence of vitamin D deficiency, defined as serum 25OHD <50 nmol/l, 

in all cohorts exceeded 40%, the prevalence being highest among adolescents 

(10 to 18 years) and obese individuals. 

 

II In chronically ill children higher age, winter and spring seasons, non-Finnish 

ethnicity, and earlier sampling (between 2007 and 2009) were associated with 

inferior vitamin D status, defined by serum 25OHD concentration. 

 

III Vitamin D supplementation in infants from 2 weeks to 3 months with 30 or 

40 µg vitamin D3 daily was effective in raising serum 25OHD >80 nmol/l, 

without hypercalcemia. Long-term safety and benefits warrant further studies. 

 

IV In young adults with severe childhood-onset obesity, daily supplementation 

with 50 µg vitamin D3 resulted in similar serum 25OHD concentration as in 

normal-weight individuals receiving placebo. Obesity associates with lower 

total and free 25OHD concentrations and increases the requirements for 

supplemental vitamin D.  

 

V Vitamin D intervention did not affect serum FGF23 concentrations. Sex 

difference in serum iFGF23 concentration may reflect differences in skeletal 

growth and mineral metabolism in boys and girls during infancy. 
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