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Abstract
Two blue mussel lineages of Pliocene origin,Mytilus edulis (ME) andM. trossulus (MT), co-

occur and hybridize in several regions on the shores of the North Atlantic. The two species

were distinguished from each other by molecular methods in the 1980s, and a large amount

of comparative data on them has been accumulated since that time. However, while ME

and MT are now routinely distinguished by various genetic markers, they tend to be over-

looked in ecological studies since morphological characters for taxonomic identification

have been lacking, and no consistent habitat differences between lineages have been

reported. Surveying a recently discovered area of ME and MT co-occurrence in the White

Sea and employing a set of allozyme markers for identification, we address the issue

whether ME and MT are true biological species with distinct ecological characteristics or

just virtual genetic entities with no matching morphological and ecological identities. We

find that: (1) in the White Sea, the occurrence of MT is largely concentrated in harbors, in

line with observations from other subarctic regions of Europe; (2) mixed populations of ME

and MT are always dominated by purebred individuals, animals classified as hybrids consti-

tuting only ca. 18%; (3) in terms of shell morphology, 80% of MT bear a distinct uninter-

rupted dark prismatic strip under the ligament while 97% of ME lack this character; (4) at

sites of sympatry MT is more common on algal substrates while ME mostly lives directly on

the bottom. This segregation by the substrate may contribute to maintaining reproductive

isolation and decreasing competition between taxa. We conclude that while ME and MT are

not fully reproductively isolated, they do represent clearly distinguishable biological, eco-

logical and morphological entities in the White Sea. It remains to be documented whether

the observed morphological and ecological differences are of a local character, or whether

they have simply been overlooked in other contact zones.
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Introduction
Cryptic or sibling species are species that are difficult or impossible to distinguish based on
morphological characters [1]. The existence of such taxa may reflect either inadequate explora-
tion of the morphology, or differences in habitats, life histories or chemical recognition systems
that have evolved without parallel divergence in morphology [2]. Often, with time and further
research, diagnostic morphological characters will also be revealed, and the species would then
be characterized as pseudo-sibling species [2]. Molecular characters have now revolutionized
low-level taxonomy and disclosed a host of “molecular” cryptic species diagnosed by these
characters alone [3]. Likewise one can expect that the description of such taxa will be followed
by subsequent discovery of unique phenotypic traits, both morphological and biological.

The Pacific musselMytilus trossulus Gould (MT) was one of the first examples of marine
cryptic taxa revealed by molecular genetic methods. Previously indistinguishable from the
common musselM. edulis L. (ME), MT was discovered in the 1980s by allozyme analysis [4–
6]. A bulk of comparative biological and molecular data on these two taxa has been accumu-
lated since then (see [7–9]).

According to the current zoogeographical view, MT and ME are relatively old lineages,
which have diverged in allopatry in the Pacific and Atlantic oceans, respectively, since the Plio-
cene [9]. Subsequently, Late Pleistocene or Holocene trans-Arctic migration(s) have brought
MT into the Atlantic [10–12]. Nowadays MT is widespread in the North Atlantic from the
Gulf of Maine to the Arctic along the North American coast, and within the Baltic Sea and sev-
eral isolated locations along the coasts of NE Europe [5,13–15]. In most cases wherever MT is
found in the Atlantic, it occurs together with ME. In spite of the substantial molecular diver-
gence in allozyme characters and in mitochondrial and nuclear sequences[5,16–18], the exter-
nal morphology of ME and MT is considered to be essentially similar with no known
taxonomical diagnostic characters, even though specimens from allopatric populations have
been probabilistically discriminated in multivariate morphometric analyses of shell characters
[13,19]. Basic physiological differences in temperature tolerance have also been demonstrated,
with ME thriving better in warm temperatures. These differences probably underlie the differ-
ent macrogeographic distributions in NE North America, where the distribution of ME extends
more to the south [20,21]. With respect to salinity, the MT population that (alone) occupies
the inner Baltic Sea is locally adapted to the strongly diluted brackish environment [9]. On the
other hand, no consistent physiological differences in respect to salinity have been found
between ME and MT from North American populations ([22], but see [23]).

As a rule, where the distributions of ME and MT overlap, the species do hybridize and intro-
gression takes place (i.e. further backcrossing does occur) [7,9]. The extent of hybridization in
the contact areas varies regionally. The extreme examples are the hybrid zone at the entrance
to the Baltic Sea, where most individuals are hybrids, on the one hand, and the NE American
contacts where most individuals represent the pure parental species, on the other [9,15,24]. In
general, if hybridization is restricted and does not break up the genetic integrity of species,
some incomplete reproductive barriers between the taxa should exist. Poor gamete compatibil-
ity between species and poor survival of hybrid larvae have been suggested as the principal bar-
riers to gene flow between ME and MT [25,26]. The (micro)spatial segregation of mussel
species could be another powerful factor limiting interbreeding [27,28], and from the ecological
competition theory one could expect some ecological divergence to evolve between sympatric
lineages [29,30]. There is however so far very little information on this topic for the sympatric
MT and ME occurrences. Nevertheless, in the North American zone of overlap, MT tends to
dominate more exposed localities and ME the more sheltered ones [31].
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The systematic and taxonomic status of ME and MT (and of the third sister speciesM. gallo-
provincialis Lamarck, which we do not consider here) have puzzled marine biologists since the
very discovery of their molecular differences. In the 1990s, ME and MT were suggested to rep-
resent either separate species, semispecies, subspecies, or genetic or even ecological races (e.g.
[8,32,33]). The debate has centered on the morphological similarity (lack of distinction) and
proneness to hybridization (lack of reproductive isolation) between the taxa. Therefore the
cryptic mussel species were listed by Knowlton [2] among the “most vexing taxonomic contro-
versies in the Sea”. This debate seems to have calmed down later on and the current practice
has largely converged to using binomial names of the taxa, as with full species.

However, there is evidently a persisting hesitation among marine biologists, especially in
Europe, concerning the reality of MT and ME as separate species. This is best illustrated by the
Baltic mussel, already identified as MT 25 years ago, simultaneously with the initial species
description [5,6,13,33]. A large part of the papers on the ecology of Baltic mussels have contin-
ued to refer to them asM. edulis, almost as often asM. trossulus (see S1 Fig), which appears
confusing particularly as the presence of MT and usage of its scientific name were relatively
soon adopted in North Pacific and NW Atlantic studies.

Apart from the Baltic Sea, occurrences of European MT have more recently been discovered
in a number of isolated locations in Scotland, along the Norwegian coast, and in the Barents
and White Seas in NW Russia [14,15] (see Fig 1A). Since the sampling so far has been rather
limited, it seems plausible that the species would be even more widespread in NE Europe.
Hence local marine biology in Scotland, Norway and NW Russia now faces the problems of
identifying MT and ME in routine studies of northernMytilus and of interpreting the results,
particularly when presented in comparative framework with other regions. Are they just virtual
entities lacking distinct morphology and ecology and interesting from a genetic or biogeo-
graphic point of view only, or true biological entities (species) that should be taken into account
in any mussel oriented studies?

Aiming to clarify these questions we had in mind the simple concept that old evolutionary
lineages such as ME and MT should ultimately demonstrate many characteristics of species,
such as reproductive isolation in sympatry, ecological divergence and morphological diagnosa-
bility (secondary species criteria according to de Queiroz [35]). We performed a survey of pop-
ulations from the White Sea Kandalaksha Bay where the presence of both species was disclosed
in a previous study comprising only a few samples [15]. The sampling was now extended con-
siderably and habitat and size differences were particularly targeted. Using data on four nearly
diagnostic allozyme loci from the set initially used for the taxon delineation, and conventional
statistical approaches applicable to any multilocus data, we assessed the extent of hybridization
and estimated the proportions of purebred and hybrid individuals in mixed populations.

Further, we addressed two hypotheses on specific distinguishing features of the taxa. The
first hypothesis was that ME and MT could be distinguished by a single morphological charac-
ter: a distinct uninterrupted strip of a dark prismatic shell layer under the ligament on the
inner side of the shell (“dark strip” further on). This character has long been used for discrimi-
nating MT fromM. galloprovincialis in the Russian Pacific [36]; more lately it was suggested
for identification of ME and MT too [37,38]. The second hypothesis was that sympatric mus-
sels are segregated by the substrate to which they are attached by byssus threads: algal thalli
(the fucoid brown algae Ascophyllum nodosum and Fucus spp.) vs. bottom substrates (stones,
gravel, etc.). As far as we know, this hypothesis has never been tested before.
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Materials and Methods

Ethics statement
Part of the collections ofMytilus spp. were performed within the Kandalaksha State Nature
Reserve with an approval of the Reserve administration (agreements on cooperation between
the Kandalaksha State Nature Reserve and the Department of Ichthyology and Hydrobiology,

Fig 1. Map of study area and sampling sites. (A). Location of the Kandalaksha Bay of theWhite Sea, and general distribution of three mussel taxa in
Europe: ME (Mytilus edulis, blue), MT (M. trossulus, red) andM. galloprovincialis (MG, yellow). Bi- or tri-colored circles indicate zones of sympatry (see
references in the text). (B-D) Sampling locations in theWhite Sea: (B) Kandalaksha Bay. (C) Umba town area. (D) Top of Kandalaksha Bay. Pie diagrams
depict estimates of the proportions of ME (blue sector) and MT (red sector) genomes in samples from the genetic dataset (GDS), obtained by STRUCTURE
analysis of four-locus genotype data (PSS, see text for details). Data on paired local subsamples collected from the algal and the bottom substrates are
shown above and below the algae pictogram, respectively. Black pins indicate sampling sites of the MDS (morphology only). Detailed sampling locality data
are in S1 Table. The green lines in part D are isohalines of surface water (after [34]).

doi:10.1371/journal.pone.0152963.g001
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St. Petersburg State University Nos. 2010_30; 2011_24, 2011_25). No special permits were
required for the field studies carried out outside the Reserve.

Study area
The Kandalaksha Bay of the White Sea (Fig 1) is a subarctic area characterized by a continental
climate with cold winters (up to 5 months of ice cover) and warm summers. Mean annual sea
surface temperature (SST) is 4.5°C and mean August SST is 13.8°C. In summer the salinity of
surface waters is 24‰ in most of the Bay, but lower at the top influenced by freshwater outflow
([34,39], Fig 1D). There are few harbors in the area, the largest of them is Kandalaksha at the
top of the Bay. IntertidalMytilusmussels are found en masse both on brown algae and on the
various bottom substrates (see Fig 2C), while subtidal mussel beds, each of which may cover
dozens of hectares and feature biomasses of dozens of kilograms per m2, are mainly found in
the top of the Bay and along its northern shore [40].

Sample sets
Two sets of samples were used in our work. The main genetic data set (GDS) was used for the
evaluation of genetic identities of individuals and populations, in order to analyze the extent of
hybridization and of physical mixing of the taxonomic lineages within samples, and to reveal
substrate preferences of genotypes and associations between genotype and morphology. An
additional morphological data set (MDS) was used for the analysis of associations between
mussel morphology and the substrate.

GDS included 31 geographical samples (N = 20–109, 1504 mussels in total). The material
was collected in 2002–2013. Five of the samples were also analyzed earlier by Väinölä and
Strelkov [15]. Most of the samples were taken at the intertidal, and a few samples from subtidal
mussel beds (detailed sample information in Fig 1 and S1 Table). Each sample was collected
from an area of approximately 5 m2, in such a way as to include mussels of different shell
length (from 5 mm up) both from algal and bottom substrates (i.e. thalli of the fucoid brown
algae Ascophyllum nodosum, Fucus spp. vs. stones, gravel, etc.). For three samples from locali-
ties geographically remote from each other–Umba (Um), Ryazhkov (Ry) and Chupa (Ch) (Fig
1)–the sampling procedure was modified to study the substrate specificity of genotypes: in
these samples mussels from algal substrates and those from bottom substrates were kept as sep-
arate subsamples.

MDS included samples from 17 sites located all over the top of the Bay (Fig 1D, S2 Table)
collected in 2011–2012. Sampling at each site was made within an area of approximately 10 m2

and consisted of six independent quantitative samples of mussels with a shell length�10 mm
(N = 2–785; on average 139 individuals per sample, 14219 mussels in total). Three of six sam-
ples at each site were taken from the bottom substrates and three from algal ones. Samples
from the bottom were obtained using a core frame of 16x16 cm, placed on a randomly selected
mussel patch. To assess the abundance of mussels on the algal substrates we placed a frame of
50x50 cm on the fucoids, took out all the algae and then separated a small tuft selected at ran-
dom. The tuft was weighted and so were the remaining algae from the core. The mussels from
the tuft were counted and measured. The total mussel abundance in the frame area was esti-
mated by multiplying the number of mussels from a selected tuft by the ratio of the total weight
of algae in the frame to the weight of the selected tuft alone.

Sample processing
Genotyping. Tissue samples for allozyme electrophoresis were taken from mussels that

had either been kept alive or stored at -80°C. All GDS mussels were scored at a set of four
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nearly diagnostic allozyme loci, which exhibit 70–95% allele frequency differences between ME
and MT: Est-D, Gpi, Pgm, Odh [15]. These loci were involved in the initial identification of the
species differentiation and diagnosis between MT and ME [5,6,33]. The previous study of the
White Sea mussels demonstrated good congruence between these allozymes and the PCR-
based markers most commonly used for identifying ME and MT [15]. The assay conditions
and nomenclature of alleles were as in [15].

Morphological measurements. Morphological analysis was performed for all MDS mus-
sels and for 1049 mussels from the GDS samples (shells from eight genotyped samples were
unavailable (see S1 Table), and some shells from the other samples were crushed during the
analysis). We focused on the character “dark strip under the ligament”. In some mussels the
light nacreous (or pearl) layer on the inner shell surface extends to the shell margin along the
ligament (upper shell on Fig 2A). In others the nacreous layer by the ligament is underdevel-
oped and the underlying dark prismatic layer extends along the ligament as a separate narrow
zone to make a broken or unbroken strip (Fig 2A, middle and lower shells). In highly pig-
mented shells this strip is very dark, nearly black in color. The following shell characteristics
were measured with calipers to the nearest 0.1mm on the right shell valve: shell length (L), the
distance from shell umbo to the posterior end of the ligament (l) and the distance from the
umbo to the anterior end of a dark strip under the ligament (a) (a = 0 in case of an uninter-
rupted strip) (Fig 2A). The Z-index, Z = a/l, was defined to express the relative length of the
dark strip under the ligament.

Population genetic analysis
Two mutually complementary approaches to the analysis of population genetic data were used.
First, the genotypic structure of individual populations was assessed using simple frequency
estimates and conventional allelic and genotypic correlation statistics (disequilibrium), with
reference to equilibrium expectations, and using a hybrid index approach based on direct allele
counts. For this, a compound bi-allelic data set was employed (cf. [9,15,41]). Second, for the
estimation of the genomic ancestries of individuals and classification of mussels into ‘purebred’
and ‘hybrid’ genotypic classes we also used the model-based Bayesian clustering method imple-
mented in the program STRUCTURE [42]. The method infers the population structure based
on multilocus genotype data on individuals, deriving their recent ancestry to a number of puta-
tive equilibrium parental populations each characterized by a set of allele frequencies at each
locus (i.e. using multiallele data). Individuals in the empirical data set are probabilistically
assigned to one of the parental populations or, in the case of admixed ancestry, jointly to paren-
tal populations.

Analysis of bi-allelic data. To obtain an informative bi-allelic data set, alleles at individual
loci were classified and pooled into compound MT and ME specific alleles (hereinafter T- and
E-alleles, correspondingly). Previously published data on pure MT populations from New
Brunswick, Canada, and pure ME from Varangerfjorden, NE Norway (populations Nos. 3 and
6 in [15]) were used as reference. Each individual was characterized by the “T-score”–the num-
ber of its T-alleles summed across the four genotyped loci (ranged from 0 to 8). Every sample
was characterized by the “T-frequency”: T-allele frequencies averaged over loci, scaled to the
interval from 0 to 1 between reference frequencies from pure parental species.

The conventional population-level genotypic disequilibrium measures FIS for individual loci
(“heterozygote deficit”, reflecting the relative lack of heterozygotes versus the expectation
under Hardy-Weinberg equilibrium) and R’ for pairs of loci (relative “linkage disequilibrium”,
reflecting the excess of two-locus heterozygotes versus random expectations) were calculated
for each population, and averaged over loci or pairs of loci, as in Nikula et al. [43]. In
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Fig 2. Mussel morphotypes and their distribution between different genotypes, and between algal and bottom substrates. (A). Mussel shells of
different morphotypes: T-morphotype with an unbroken prismatic dark strip under ligament (lower shell) and E-morphotypes with the dark strip broken
(middle) or absent (upper shell). Measurements indicated: L–total shell length, l–distance from shell umbo to the posterior end of the ligament, a–distance
from umbo to the anterior end of the dark strip. The index Z = a/l; values of Z corresponding to the different morphotypes are shown. (B). The kernel density
function of Z-values within the three genotypic classes (all samples pooled, the genotypic classes defined on the basis of STRUCTURE analysis, see text for
details). Yellow dots indicate the medians. (C). Mussels growing on different substrates: on bottom ground vs. fucoid thalli. (D). The mean frequencies of T-
morphotype (Z = 0) ± standard error on the algae (horizontal axis) plotted against that on the bottom in samples from 17 sites of MDS. If frequencies were
identical on both substrates, the dots would fall on the diagonal (black line).

doi:10.1371/journal.pone.0152963.g002
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equilibrium populations these statistics would equal zero while in mixed samples with an
excess of parental genotypes they have positive values, the maximum possible value being 1 in
the case of fully diagnostic loci. Since the loci studied were not fully diagnostic, we calculated in
each case the maximum values of FIS and R’ as expected in hypothetical mixtures of the non-
interbreeding ‘‘pure” taxa, which would have the same average allele frequencies (see [43] for
details).

The extent of hybridization in populations was further illustrated by the distributions of
individual T-scores. The observed distributions of T-scores in individual samples were com-
pared with the corresponding predicted distributions in panmictic populations with the same
average genetic composition on the one hand and in non-interbreeding mixed populations on
the other hand. Predicted distributions were calculated as in [15]. The chi-square statistic was
used as a measure of dissimilarity between observed and expected distributions and the Monte
Carlo simulations (2000 replications) of Fisher's exact test were used for statistical testing.

In the above analyses the three pairs of subsamples collected from different substrates were
analyzed both separately and pooled within the pairs to evaluate the influence of possible popu-
lation substructuring on the hybrid score distributions, FIS and R’.

Bayesian STRUCTURE analysis. For Bayesian assignment of the genotypic ancestries, the
total data set (multiallele genotype data, no reference populations) was analyzed in STRUC-
TURE under the two-population admixture model using default parameters, with no prior
information of the parental population identity; uncorrelated allele frequencies were assumed.
50000 MCMC replicates were conducted after discarding the first 30000 replicates as burn-in.
Program was run multiple times to assess the repeatability of the results (results were always
identical). The output was: (i) estimated allele frequencies in hypothetical parental populations
(i.e. “pure”MT and ME), (ii) genomic ancestries of individuals–the estimated proportion of
individual’s genotype inherited from parental populations (q-values, here called individual
STRUCTURE scores (ISS) and attributed to the genome fraction in a range from 0 to 1 inher-
ited fromMT), and (iii) the estimated proportion of the MT genome at the population (sam-
ple) level (here called population STRUCTURE scores (PSS), and obtained by averaging ISS
over a sample).

Classifying genotypes into purebred and hybrid classes. The inference of the hybrid vs.
purebred ancestry of individuals from a limited set of incompletely diagnostic loci in a system
where backcrossing may be extensive is necessarily subject to some uncertainty. Two pragmatic
approaches were used to classify individuals to genetic classes of different ancestry. The first
approach was based on T-scores. Considering the partially diagnostic nature of characters, we
assigned mussels with T-score of 0 or 1 to ME, those with T-score of 7 or 8 to MT, and those
with the intermediate T-scores (from 2 to 6) to hybrids. The performance of this procedure
was assessed using sets of simulated genotypes of “known” ancestry (see the details below), fol-
lowing the approach of Vähä & Primmer [44] in terms of three statistics: efficiency–the pro-
portion of individuals correctly assigned to a given ancestry class out of those actually
belonging to this class; accuracy–the proportion of individuals correctly assigned to an ancestry
class out of the total assigned to this class (correctly or incorrectly); and overall performance–
the mean efficiency (averaged over the three classes) multiplied by the mean accuracy.

Another approach was based on the distribution of Bayesian ISS estimates in simulated
samples of known ancestry (see S2 Fig and S3 Fig for details of the procedure and results). In
short, we simulated samples from populations of a mixed ancestry involving six genotypic clas-
ses (MT, ME, their first and second generation hybrids, and first generation backcrosses to
each species), composed so as to approximate their genotypic structure to the structure of
empirical samples with approximately equal ME and MT ancestries in terms of the T-scores
distributions and FIS and R’ estimates (see Results section and S2 Fig for details). These
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simulated data were then analyzed along with the empirical data in STRUCTURE runs, to
obtain distributions of ISS scores for “known” purebred and hybrid genotype classes in the
context of the true empirical genotypic data. Threshold ISS values to effectively delineate the
purebred vs. hybrid classes were then derived from these distributions by four alternative crite-
ria based on the concepts of efficiency and performance (see above; S3 Fig): the thresholds
between ancestry classes were adjusted so as to achieve 95% or 90% efficiency of identification
of purebreds, or 95% or 90% efficiency of identification of compound hybrids. Of these alterna-
tive threshold criteria, the one that provided the maximal overall performance was then chosen
and used for the assignment of the empirical mussels into putative ME, MT and compound
hybrid ancestry classes by their ISS. We did not try to classify the hybrid genotypes in more
detail since such a classification requires more loci [45].

Associations between individual genotype, shell size, morphotype and
substrate
We generally used a random-intercept, linear, mixed-effect model(LMM) [46] to assess associ-
ations between the measured genetic, morphological and ecological parameters. Samples in the
case of GDS or sites in the case of MDS were considered as random factors in the analyses. The
R programming language [47] with nlme-package [48] was used. Residuals plots were visually
inspected to check for any deviations from homoscedasticity and normality of residual distri-
butions. Wald Chi-square tests (Type II) implemented in the Anova-function in car-package
[49] were used to assess the statistical significance of the model parameters. In those cases
where ISS were used as dependent variables they were logit-transformed. In other cases where
proportional data (percentages) were used they were φ-transformed.

Genotype vs. size. The association between ISS and shell length (L) in each sample of GDS
was evaluated both with Pearson’s product-moment correlation (r) and, further, with LMM
(ISS as dependent variable and L as independent fixed predictor; hereinafter Model 1).

Genotype vs. size and substrate. Three samples (Um, Ry, Ch), each consisting of two sub-
samples collected from different substrates, were used in the analysis. ISS was the dependent
variable in LMM analysis and substrate type (Algae vs. Bottom), shell length L and their inter-
action were the independent predictors (Model 2).

Genotype vs. morphological character. Associations between ISS and the Z-index
(reflecting the dark shell strip), and between L and Z-index in samples of GDS were analyzed
using both Pearson’s r and LMM (Z as the dependent variable and ISS, L, and their interaction
as independent predictors; Model 3).

From the above analyses the Z-index ranges characteristic of MT and of ME could be identi-
fied (see Results). Thereafter we classified all mussels into ME-like (E-) and MT-like (T-) mor-
photypes on the basis of their Z-scores. In a simple regression analysis, the frequencies of T-
morphotypes in each sample were then regressed against the PSS of samples (Model 4).

The general performance of the classification of MT and ME by the morphological character
was further tested in terms of efficiency, accuracy and overall performance, in analogy with the
treatment of genetic ancestry classifications above.

Morphotype vs. substrate. The proportion of mussels with T-morphotype was calculated
in each sample of MDS and used as the dependent variable in LMM with the substrate type as
an independent predictor (Model 5).

We further tested whether the choice of substrate by one morphotype was independent of
the abundance of mussels of the other morphotype. The log-transformed densities of T- and E-
morphotypes (number of individuals per square meter) estimated from the MDS data were
used for the analysis. The density of the T-morphotype was used as the dependent variable and
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the substrate type, density of E-morphotype and their interaction as the fixed part of the LMM
(Model 6). The analysis was also performed using the density of E-morphotype as the depen-
dent variable (Model 7).

Results

Genetic ancestry of populations
Sample- and locus-wise allele frequencies, frequencies of compound E-/T-alleles and PSS are
presented in S1 Table. Estimates ofM. trossulus background in terms of T-frequencies varied
from 0.01 in Mp2 sample from the Umba area to 0.98 in the Top sample from the Kandalaksha
area. The allelic composition of the two parental populations estimated by STRUCTURE was
almost identical to that of the external reference MT and ME populations. The PSS values of
the studied samples varied from 0.02 in Mp3 to 0.93 in Top and were very similar to the T-fre-
quencies (S1 Table). Therefore we consider it sufficient to use the STRUCTURE score for
describing the basic spatial pattern of variation.

Overall, populations with high contributions of ME alleles (low PSS) dominated in the
material. High contributions of MT alleles (high PSS) however were found in populations from
the very top of the Bay, everywhere within and around the Kandalaksha harbor. MT genes
were also common locally in Umba and Chupa, also within or in the vicinity of harbors. In all
three geographical populations where subsamples from different substrates were treated sepa-
rately, mussels from the algal substrates were dominated by MT alleles and those from the bot-
tom by ME alleles. The absolute allele frequency differences were in tens of percent (Fig 1, pie
diagrams on Fig 3, S1 Table).

Genotypic structure of populations
The estimates of genotypic disequilibrium FIS and R’ (Fig 4, S1 Table) in samples with interme-
diate allele frequencies (PSS between 0.3–0.7) were always higher than 50% of the maximum
level expected in a situation of a non-interbreeding mixture of parental taxa (on average 87%
for FIS and 83% for R’), which indicates some but limited hybridization. The plots of T-scores
distributions also illustrated the limited hybridization. The distributions were bimodal, the
genotypes with low and high scores dominating over the intermediates. In the diagrams of Fig
3 (left panel) the empirical distributions are compared with the predictions in panmictic and
non-interbreeding mixture populations (see also S1 Table). Although the frequencies of inter-
mediate T-scores were always much lower than expected in panmictic populations, they were
nevertheless higher than expected in the mixtures of “pure” taxa with no interbreeding (S1
Table). In most comparisons the observed and predicted distributions were significantly differ-
ent at P = 0.05 (Fisher’s exact test, S1 Table). The subsamples of Um, Ry and Ch from different
substrates (A, B) showed no noticeable reduction of FIS and R’ in comparison with pooled Um,
Ry and Ch samples, indicating that microhabitat substructuring did not affect the ratios of
hybrids in pooled samples much (Fig 4, S1 Table).

Individual assignment
When classifying individuals by the direct allele count (T-scores), the percentage of putative
ME (T-scores 0–1) varied among samples from 0% to 95% with a median of 70%, and that of
putative MT (T-scores 7–8) varied from 0 to 78% with a median of 8%. The percentage of puta-
tive hybrids ranged from 5 to 38% with a median of 21% (S1 Table). Simulated genotypes were
classified by this method with the overall performance of 76% (efficiency of 93%, 85%, 81%
and accuracy of 96%, 97% and 72% for ME, MT and hybrids, correspondingly, see S3 Fig).
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ISS estimates (Bayesian assignment of individual ancestry) showed good correlations with
the T-scores within the samples (global Spearman’s r� 1; see S1 Table). The intra-population
ISS distributions were bimodal, dominated by scores close either to one or to zero; this is
reflected in s-shaped cumulative distributions (right panel of Fig 3). Individuals classified as
ME by their T-scores (0–1) had ISS less than 0.154, those classified as MT (7–8) had ISS higher
than 0.909.

In the exercise of classifying individuals into purebred and hybrid classes by their ISS, the
simulated purebred ME had ISS range of 0.011–0.125 (median 0.012), purebred MT– 0.651–
0.990 (median 0.987), simulated hybrids had ISS of 0.031–0.989 (median 0.521). Setting ISS
thresholds for practical classification, the best overall performance (82%) was obtained when
the criterion was to achieve 95% efficiency of identification of both MT and ME (efficiency of
identification of hybrids in this case was 83%, accuracy of identification of ME, MT and
hybrids—97%, 95% and 80%, correspondingly, see S3 Fig). The thresholds between ME and
hybrids, and between hybrids and MT were thus set at ISS values of 0.062 and 0.916, respec-
tively. With these limits, the percentage of ME in the empirical samples varied from 0% to 98%
(median at 74%), that of MT from 0% to 90% (median at 8%) and that of hybrids from 2% to
38% (median at 18%) (S1 Table). These values were close to those from the T-score approach.
ISS-based classification was further used for discrimination of the three genetic classes in all
the analyses below where ME, MT and hybrids were compared. Fig 5A shows the estimates of
the three ancestry classes in the empirical material. Frequencies of the two pure species are neg-
atively correlated and vary widely among samples, while the proportion of hybrids is almost
equal in all the samples and independent of the proportions of the two “parents”.

Associations between individual genotype, shell size, shell morphotype
and the substrate

Genotype vs. shell size. In most of samples the mean shell length of ME was on average
20% greater than that of MT, and the hybrids were intermediate in size (Fig 5B). Thus esti-
mates of correlation between ISS and shell length (L) were usually negative (S1 Table; for
pooled data r = -0.25, P<0.0001), as also reflected in the LMMmodel results (Table 1: Model
1).

Genotype vs. substrate. In all pairs of sympatric subsamples from alternative substrates,
mussels from algae (UmA, RyA, ChA) were dominated by MT alleles, but those from bottom
(UmB, RyB, ChB) by ME alleles. There was a significant association between ISS and the sub-
strate type (P = 0.029), with lower predicted ISS at bottom substrates than on algae (P<0.001).
The interaction between shell size and the substrate in predicting the genotype was not signifi-
cant (P = 0.306) (LMMModel 2, Table 1).

Genotype vs. morphotype. The Z-index showed a significant negative correlation with
ISS in most samples (S1 Table; for pooled data r = -0.77 P<0.001), and a positive correlation
with shell length L (S1 Table; for pooled data r = 0.28, P<0.001). Accordingly, LMM predicts a
strong negative dependence of Z on ISS and a weak but significant positive on L (Model 3,
Table 1).

Violin plots in Fig 2B show kernel density functions of Z-values within the three genotypic
classes. Putative ME were characterized by Z close to one, putative hybrids demonstrated the
whole range of Z, and putative MT most frequently had Z = 0. For further analysis mussels
with Z = 0 (an unbroken “dark strip”) were attributed to a “T-morphotype” while those with
Z> 0 (“dark strip” broken or absent), to an “E-morphotype”. A good correspondence between
the morphotype and genotype is illustrated on the diagrams in Fig 3 and in Fig 5C, and by a
strong correlation between the frequencies of T-morphotype and PSS (Model 4, Table 1).
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Mussels classified as MT had high percentages of T-morphotypes (50–100% in different popu-
lations, median 88%) and ME had low percentages (0–29%, median 0%). The percentages did
not vary much among samples with different genetic constitution (Fig 5C). The situation with
putative hybrids was different however. In predominantly MT samples (high PSS) the hybrids
were morphologically MT-like (percentage of T-morphotype up to 75%) while in ME-domi-
nated samples (low PSS) they were morphologically ME-like (low proportion of T-morpho-
type, down to 0%) (Fig 5C).

The efficiency of the MT–ME classification using the single morphological character was
80% and 97% for putative MT and putative ME, respectively, when calculated for the pooled
data. Thus 80% of the mussels genetically classified as MT have T-morphotype, while 97% of
the mussels genetically classified as ME have E-morphotype. The accuracy was 75% for MT
and 74% for ME, i.e. 75% of mussels with an unbroken dark strip were genetically classified as
MT and 74% of mussels without the strip were assigned by genetic data to ME. The overall per-
formance of the method was 66%.

Morphotype vs. substrate. In the non-genotyped MDS data set, the proportion of T-mor-
photypes was significantly related to the type of substrate (P<0.001, LMM, Model 5, Table 1):
T-morphotypes were more common on the algal substrates than on the bottom substrates (Fig
2C). The analysis of absolute abundances (Models 6 and 7, Table 1) corroborates this tendency:

Fig 3. Genetic composition of mussel samples from Chupa (Ch), Umba (Um) and Ryazhkov (Ry). Subsamples collected from different substrates (A–
algae, B–bottom) are treated separately. Left panel: Frequency distributions of individual T-scores (the sum of T-alleles across the 4 loci). Numbers of
individuals are plotted on the abscissas, with T-scores as ordinates. Dark and light bars indicate T- and E-morphotypes, correspondingly. Green lines display
the expected distributions under local randommating (dotted lines) and a mixture of parental genotypes without interbreeding (continuous lines). Central
panel: Pie charts in the middle illustrate T-frequencies (red sector) vs. E-frequencies (blue sector). The estimated PSS values and the disequilibrium
estimates R’ and FIS are shown. Right panel: ISS distributions. Each symbol represents an individual, ranked along the horizontal axis by ISS. Dark symbols
correspond to T-morphotypes, open symbols–to E-morphotypes. The shapes of the symbols reflect an individual T-score: circles– 0–1 (“ME”), triangular–
2–6 (“hybrid”), diamonds– 7–8 (“MT”). Horizontal lines reflect the thresholds chosen to delimit the genotype classes of ME (lower threshold) and MT (upper
threshold) on the basis of the analysis of simulated samples (see text, S2 Fig and S3 Fig for details).

doi:10.1371/journal.pone.0152963.g003

Fig 4. Distribution of genetic disequilibriummeasures in samples of different genetic composition. PSS, characterizing samples’ genetic
composition, are on abscissas, genotypic disequilibriummeasures are on ordinate axes: (A). Intra-locus heterozygote deficit FIS. (B). Average inter-locus
correlation R’. Green crosses correspond to empirical samples, orange crosses mark simulated mixed samples. Circles, squares and triangles mark Um, Ry
and Ch samples, correspondingly (small symbols correspond to subsamples from different substrates, large symbols to pooled samples). The curves show
the maximum disequilibrium in case of physical mixing without interbreeding. Expectations for equilibrium panmictic populations would be close to 0.

doi:10.1371/journal.pone.0152963.g004
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the density of T-morphotypes was lower on the bottom, whereas the density of E-morphotypes
was lower on the algae. Importantly, neither of these models revealed any significant interac-
tion between the substrate type and the abundance of mussels of the “alien”morphotype.

Discussion
This study characterized the geographical distributions of ME and MT in the Kandalaksha Bay
of the White Sea, documented a pattern of mutual microhabitat segregation of these cryptic
taxa by the type of substrate and confirmed the presence of a pronounced difference between
them in a single morphological character. We analyzed the structures of the mixed populations
and the extent of hybridization using a set of codominant marker genes, to achieve estimates of
the frequencies of purebred and hybrid individuals at these sites.

Extent of hybridization
In mixed populations purebred individuals always constituted the majority and putative
hybrids only the minority (2%–38% of individuals, median 18%, as classified by STRUCTURE
approach). This kind of distribution has been referred to as a bimodal hybrid zone [50]. Due to
the strong tendency to bimodality, the frequency of hybrids did not vary much while the fre-
quencies of parental forms varied strongly.

The definition of “pure” populations is a complicated issue, which we addressed with vari-
ous pragmatic probability-related approaches. Employing the simulation data, pure ME and
MT from the 6 synthetic samples were characterized by the mean ISS of 0.019–0.021 and
0.970–0.979, correspondingly. The STRUCTURE procedure is inherently biased to estimate a
non-zero proportion of mixture even from by-definition-pure samples [51]. Accounting for
this, empirical populations with an estimated 2–3% contribution from the “alien” species
genome can be safely considered as pure. This applies to four of our White Sea samples, which
can thus be considered pure ME (Mp2, PSS = 0.019; Mp3, 0.017; St, 0.027; Ma, 0.030). No pure
MT samples were however found (the maximum PSS were 0.874 in Sal, 0.885 in Kan and 0.935

Fig 5. Taxonomic composition andmorphological features of putative purebred and hybrid mussels in samples of different genetic composition.
PSS on abscissas are plotted against: (A). frequencies of ME (blue symbols), MT (red symbols) and hybrids (green symbols) in samples; (B). ratios between
sample means of shell length L of MT and hybrids (red symbols) and ME and hybrids (blue symbols) in samples; (C). frequencies of T-morphotypes among
ME (blue symbols), MT (red symbols) and hybrid (green symbols) genetic classes in samples. Polynomial (A) or linear (B, C) functions were fitted to the data.
Groups of less than 4 genotypes are not included. Classification of genotypes to ancestry classes in all cases was ISS-based.

doi:10.1371/journal.pone.0152963.g005
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in Top). Since very few ME genotypes were recorded in the listed MT-dominated samples (S1
Table), we hypothesize that all MT populations in the area are introgressed.

It is difficult to compare the extent of hybridization in the White Sea with data from contact
zones of other regions since different markers and statistical methods were often employed.
The data of Väinölä & Strelkov [15] from a number of Fennoscandian populations are however
directly comparable (using the same loci and statistics), and demonstrate a geographical trend
in genomic mixing. This is reflected in the FIS and R’ disequilibrium estimates, which in mixed
samples from the White and Barents Seas (Russia) always exceeded 50% of the maximum,
were somewhat weaker (around 50%) more to the south in Norway, and only 10–20% at the
entrance to the Baltic Sea. Correspondingly, the distributions of individual T-scores changed
from strongly bimodal in the White and the Barents Seas to a flat one in the Baltic–North Sea
transition. Our broader data corroborate the inferences as regards the White Sea populations.
The mixed populations in Scotland and the Northwest Atlantic can be compared only in terms
of hybrid scores analogous to our T-scores. These suggest that 13–26% of individuals in North
America [52–55] and 44% in Scotland (Fig 1 in [16]) are putative hybrids, compared with

Table 1. Results of regression model fitting.

Model Dependent variable Fixed predictors Estimated parameters of
regression model

Random
factors

Wald
statistic

P-
level

1 ISS (logit) L -0.076 GDS sample
N = 26

55.442 <0.001

Intercept 0.218

2 ISS (logit) Substrate_bottom -4.11 GDS sample
N = 6

11.031 0.029

L -0.152 39.206 <0.001

L x Substrate_bottom 0.044 1.051 0.306

Intercept 5.766

3 Z-index L 0.005 GDS sample
N = 26

21.60 <0.001

ISS -0.558 706.081 <0.001

L x ISS -0.0029 2.7368 0.098

Intercept 0.693

4 Proportion of T-
morphotype

PSS 0.709 None 62.323 <0.001

Intercept -0.014

5 Proportion of T-
morphotype (arcsin)

Substrate_bottom -27.75 MDS site
N = 17

53.485 <0.001

Intercept 84.988

6 Density of T-morphotypes
(log)

Substrate_bottom -2.357 MDS site
N = 17

22.754 <0.001

Abundance of E-morphotype 0.572 19.102 <0.001

Substrate_bottom x abundance of E-
morphotype

0.175 0.914 0.339

Intercept 2.746

7 Density of E-morphotypes
(log)

Substrate_bottom 1.856 MDS site
N = 17

38.555 <0.001

Abundance of E-morphotype 0.374 19.004 <0.001

Substrate_bottom x abundance of E-
morphotype

-0.166 3.462 0.063

Intercept 4.405

doi:10.1371/journal.pone.0152963.t001
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5–38% (median of 21%) in our White Sea data. To sum up, hybridization between ME and MT
is limited in Northern Russia and NE North America, extensive at the Baltic entrance and
intermediate in Norway and Scotland (although only a few samples from the latter two regions
have been investigated).

The low frequency of hybrids suggests a presence of powerful but incomplete reproductive
isolation barriers between ME and MT in the White Sea. Theoretically, both prezygotic and
postzygotic barriers are expected to act in bimodal hybrid zones [50]. From studies of the con-
tact zone in the Northwest Atlantic several types of barrier have been suggested which could
potentially act in the White Sea too: (i) Hybrid unfitness. Larvae from experimental heterospe-
cific crosses show increased rates of abnormalities and increased mortality relative to conspe-
cific crosses [26,56]. (ii) Spawning asynchrony. There is partial non-overlap of ME and MT
spawning periods, as spawning of MT lasts longer [57,58]. (iii) Gamete incompatibility. In a
number of experiments some individuals demonstrated a very strong block to heterospecific
fertilization, while others were partially or completely compatible [25,26,55,59]. (iv) Habitat
specialization. Distributional data suggest that salinity (MT preferring more saline localities),
wave exposure (more exposed sites for MT) and depth (shallower littoral habitats for MT and
deep sublittoral for ME) may serve as possible factors of spatial segregation [31,53,54,60],
although the information is sometimes contradictory [23,61].

Microhabitat segregation might also act as an isolation barrier in mussels. In marine broad-
cast spawners the sperm retain fertilization capacity only for a few minutes. Therefore, depend-
ing on hydrodynamics, even distances as short as decimeters could be critical for fertilization
success [62,63]. However, there is little information on microhabitat segregation in mussels
([28], see also below).

Segregation by the type of substrate
Our results show that in the White Sea two basic types of mussel substrate, the algal (fucoid
thalli) and the bottom (mud, send or pebbles), are exploited differently: MT predominate on
the algae and ME on the bottom. To our knowledge this substrate hypothesis of ecological seg-
regation has never before been considered, even though habitat differences between ME and
MT have been addressed in many studies. There are however data on differences in some other
traits that seem consistent with such a microdistribution pattern. Firstly, MT are generally ligh-
ter and smaller, and have thinner and more fragile shells than ME [14,64–66]. We also noted
differences between ME and MT in the mean shell length in the White Sea (Fig 5B). Since mus-
sels with fragile shells appear to be more sensitive to the wave impact, the algal thalli could
serve as a shock-absorber for them. On the other hand, larger mussels with more massive
valves can be shaken off the algae or press the algae down to the bottom.

Secondly, ME and MT differ in their aggregation behavior: ME tend to live in clumps unlike
MT [28]. Aggregation behavior in mussels is thought to represent a complex adaptation that
promotes efficient occupation of solid surfaces, prevents dislodgement by water currents and
reduces predation risk in particular from sea stars [67,68]. Asterias rubens sea stars are indeed
among the main predators of mussels in the White Sea [69]. Hence ME with an aggregative
strategy would benefit from establishing clumps on the bottom surfaces. On the other hand,
for MT living on algae could reduce the risk of contact with a creeping predator. Lowen et al.
[70] demonstrated experimentally that MT are more vulnerable than ME to sea star and crab
predation, having weaker predator-induced defenses, such as weaker byssal attachment, a
smaller adductor muscle and absence of shell thickening in the presence of predators. The
algae that rise above the bottom level at high water may grant MT an asylum against the sea
stars.
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In all, considering the other biological differences documented between ME and MT, their
partial substrate-related segregation would most likely seem to be caused by wave exposure
and predator avoidance. Theoretically, selective larval settlement, post-larval active habitat
choice and direct selection by predators and/or by wave exposure could be the actual mecha-
nisms leading to the observed non-random mussel distribution. The relative importance of
these mechanisms cannot be judged from our results alone.

An interesting question still to be answered is whether MT and ME exploit algal and bottom
substrates differently in allopatry. From our preliminary observations, the choice of the sub-
strate by mussels of the E- or T-morphotypes does not depend on the abundance of mussels of
another morphotype. This can indicate that ME universally prefer the bottom substrates while
MT–the algal ones.

Regional distributional pattern
In the previous genetic survey of the White Sea mussels, with a broader overall geographic
extent but sparser sampling [15], just a single MT-dominated population was identified, in
Umba, and in other regions dominated by ME only scattered observations of MT or its genes
were made. We now find that MT occupies the whole brackish top of the Kandalaksha Bay,
and is also locally numerous in the Chupa and Umba areas, which are not brackish at all [34].
On the other hand, Kandalaksha, Chupa and Umba are all urban settlements and historically
important harbors (although there is now little shipping at the latter two localities). The con-
finement of MT to the historical harbor areas seems to support our hypothesis that MT has
been introduced into the White Sea–Barents Sea region and its further expansion within the
region facilitated by ships [15], even though the initial source of introduction remains
unknown. As with the White Sea, in the Barents Sea MT is also currently known mainly from
harbor areas ([15]; Fig 1A).

The proposition that MT has successfully invaded harbors in a region inhabited by a conge-
ner may indicate that MT is a more opportunistic species than ME. Indeed, some differences in
the life-history traits accord with this hypothesis. Apart from the differences in size and weight,
in the North American contact zone MT produce a larger amount of smaller eggs than ME
[57,71]. Therefore, MT would have a relatively high fecundity, a short generation time, and
high intrinsic rates of population increase–all features that are characteristic of opportunistic
species [72]. In this context the association of MT with the algal thalli could also be a manifes-
tation of its opportunistic life-strategy since intertidal algae make a relatively ephemeral and
unstable microhabitat, disturbed by storms, freezing and ice scrubbing.

Another intriguing question is whether the MT populations in Chupa, Kandalaksha and
Umba are genetically isolated or connected by gene flow over the intervening ME populations.
Since the estimated dispersal distance ofMytilus larvae is 20–50 km [73,74] and the straight-
line distances among the three towns are about 70–100 km (see Fig 1), we surmise that these
populations are only weakly connected if at all. Providing that other similar occurrences indeed
do not exist in the region, they are likely to be mutually independent or semi-independent
populations.

TheWhite Sea contact zone vs. otherMytilus contacts
The contact areas of MT and ME (orM. galloprovincialis) have mostly been considered as
hybrid zones (e.g. [9,33,53,75,76]). A basic (tension) hybrid zone model assumes that the zone
is maintained owing to a balance between the selection against hybrids vs. the continued dis-
persal of parental genotypes into the zone from the outside [77]. MostMytilus contact zones
are classified as mosaic hybrid zones [9,75,76,78,79]. In such zones the parental species inhabit
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separate habitat patches of a size larger than the scale of population dispersal, and hybridiza-
tion occurs at the boundaries of the patches or in intermediate habitats [80]. Nevertheless, any
hybrid zone model explicitly assumes that the system can exist only in a broader context of
parapatry, requiring an influx of parental species from the surrounding pure populations.

The patchy distribution of the White Sea MT is obvious, but does the pattern fit the hybrid
zone context? The area of co-occurrence near Kandalaksha would seem to be a hybrid zone
between the parapatric MT populations in the top of the Bay and ME populations in its open
parts (Fig 1D). However, in Umba we found a few patches of MT in the heart of an ME-domi-
nated area (Fig 1C), so that the spatial pattern seems more like sympatry than parapatry, taking
into consideration larval dispersal distance in mussels (see previous section). This pattern is
probably not unique but also encountered in otherMytilus contacts, such as that between ME
andM. galloprovincialis in France [27,78]. Nevertheless, regardless of whether the mixed ME–
MT populations always function as hybrid zones or not, the situation could alternatively be
described as one where two sympatric species capable of introgressive hybridization co-occur.
In such a case the species could evolve niche segregation which would then further promote
their reproductive and demographic independence; the White Sea ME and MT indeed demon-
strate such segregation by the type of substrate.

Alternative to the hypothesis of post-contact evolution of niche segregation (e.g. as an out-
come of competition and(or) selective reinforcement of prezygotic barriers to avoid investment
to unfit hybrids) the ecological differences in MT–ME contact zones could represent specializa-
tion that already evolved during the isolation of the lineages when they diverged in allopatry,
prior to the invasion of the Pacific MT to the Atlantic basin. Distinguishing these hypotheses is
fundamental to the understanding of the nature of ecological differences that maintain the
zones. In the latter case the habitat specialization of lineages should be similar in different con-
tact zones, but in the former case not necessarily so.

Pronounced differences between different ME–MT contact zones are exemplified in a com-
parison between the two best studied zones, those in the Baltic Sea and in the northeastern
North America. At the entrance to the Baltic Sea, ME and MT are geographically segregated by
salinity along a strong environmental gradient, the area of ongoing hybridization is narrow,
hybridization is extensive (a situation that fits the basic hybrid zone model well [33]) and so is
introgression ([9,15] and references therein). (Yet to note, recent genomic data [17,18] suggest
that the extent of nuclear introgression into the Baltic MT is substantially lower than was previ-
ously suspected on the basis of data on fewer DNA markers [9]). By contrast, in the Atlantic
North America the two lineages are distributed in a mosaic fashion. Mixed and pure popula-
tions of both species alternate at regional and local scales, no clear segregation of lineages by
salinity is observed, hybridization is limited and introgression is negligible ([9] and references
therein). With respect to the extent of hybridization and the regional spatial organization, the
White Sea contact zone seems to be more similar to the North American one ([15]; this study).
It rather seems that the Baltic–North Sea cline is not typical as a marine contact zone, in con-
trast to the North American and White Sea zones, and probably to the Norwegian and Scottish
ME-MT contacts too [14,15]. Nonetheless, without direct comparative data it is not yet safe to
extrapolate our findings on ecological assortment of ME and MT in the White Sea to the Amer-
ican, Norwegian or Scottish populations, or vice versa.

“Dark strip”, a nearly diagnostic character
Morphological differences between ME and MT have been addressed in many investigations
[13,19,65,81]. Although some characters, e.g. hinge plate length, anterior adductor scar length,
and shell proportions show some statistical differentiation, the differences between ME and
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MT in particular morphological characters are small and much less reliable than genetic mark-
ers [19]. Interestingly, shell shape differences were more pronounced in ME and MT growing
under artificial conditions of suspended aquaculture [14,82]. Therefore morphological species
identification has mostly been considered based only on multivariate techniques [13,83].

The “dark strip” was first mentioned as a typical character of Pacific MT in the 1980s [36],
and has since then been used as a diagnostic quantitative [37] or qualitative [38] character to
distinguish MT vs.M. galloprovincialis in the Russian Far East. However, its utility for discrim-
ination of these species from other geographical regions and between these species and ME has
remained hypothetical. This hypothesis was partly supported in a study of small (N = 10) sam-
ples of genotyped mussels from allopatric populations [84]. Yet no attempts to apply this trait
to discrimination of mussels of known genotypic ancestry from zones of sympatry have been
made.

Our data suggest a strong diagnostic capacity of the character: T-morphotype was found in
80% of MT and only in 3% of ME. As far as we know, there is no other single qualitative mor-
phological character with such a strong discriminative power in any sympatric MT–ME popu-
lations. However, it remains unclear whether the “dark strip” can be used to discriminate
between ME and MT in geographical regions other than the White Sea.

The adaptive significance of the character, if any, is also unknown. The absence of the white
nacreous layer along the ligament exposing the underlying dark prismatic layer is possibly
associated with a weak development of the nacre in the whole shell. Nacre plays an important
role in ensuring strength and resilience of shells [85]. Its underdevelopment might be the rea-
son of both the extension of prismatic layer along the ligament and the relative fragility of MT
shells.

Consistently separable biological entities
With the progress in molecular systematic techniques and the parallel advances in biodiversity
theory, we have become aware that much of the true biotic diversity has been hidden at the
level of (pseudo)sibling species, which are easier to recognize by molecular than by morpholog-
ical characters (e.g. [2]). It has also become evident and generally accepted that many “good”
species do undergo introgressive hybridization without broader harm to their taxonomic iden-
tity or integrity (e.g. [86]), and that the geographical distributions of many species are now
influenced by humans rather than solely by climate, geography and other natural factors [87].

ME and MT in the White Sea are a good example of the veracity of these three tenets. They
do hybridize, with hybrids constituting about 1/5 of individuals in mixed populations. On the
other hand, this rate does not seem excessive since many contact zones between well-defined
species are dominated by hybrids rather than parents (cf. [50]). ME and MT have rather similar
shell morphologies and the best taxonomic character known to date, the “dark strip” [38], dis-
criminates purebred ME and MT from mixed populations with an efficiency of 97% and 80%
and an accuracy of 74%, 75% for ME and MT, correspondingly. Regional distribution of MT is
probably governed not so much by natural ecological factors as by the marine traffic. Actually,
MT in the White and Barents Seas stands out as a “harbor mussel”, which has presumably been
distributed by ships ([15]; this study).

Being ecologically close species a fortiori capable of limited hybridization but still consis-
tently retaining their identities, ME and MT should somehow divide resources and space in
sympatry and possess some habitat post-zygotic isolation barriers. In sedentary organisms
such as mussels, the substrate of attachment is the critical element of habitat. Indeed, ME and
MT are segregated by the type of substrate, with MT being more common on algal and ME on
bottom substrates. We may expect that the White Sea ME and MT will also show many other
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inconspicuous phenotypic and ecological differences both in natural habitats and in aquacul-
ture, as indeed has been demonstrated for some characters in other mussel contact zones (see
references above).

In conclusion, ME and MT are here shown to represent clearly distinguishable genetic, eco-
logical and morphological entities in the White Sea, even if not fully discrete. This taxonomic
dualism of the “common mussel” should henceforth be recognized in any mussel-oriented
studies in the area of distributional overlap. So far not a single one out of the 13 papers on the
ecology and physiology of the Kandalaksha Bay mussels published since 2012 even mentions
MT (the presence of which was first internationally published in 2011 [15]; paper count based
on a Scopus database search, cf. S1 Fig).

For decades it has remained intriguing that ME and MT are morphologically so close and
yet so indeterminate in respect to the pattern and extent of habitat specialization in their con-
tact zones, in spite of representing independent evolutionary lineages of considerable age [9].
Our study introduces an alternative question: why are they so consistently different in the
White Sea? Were the basic morphological and habitat differences revealed in our study over-
looked in other populations and contact zones, or have we described a locally restricted phe-
nomenon? Until parallel morphological and ecological analyses in other contact zones are
undertaken, it would be prudent to avoid simplistic extrapolation of the White Sea results to
contact zones and other populations in other geographical regions.

Supporting Information
S1 Fig. Scientific names applied to the BalticMytilus trossulus in the non-genetic papers
focused on mussels in recent years.OX–year of publication, OY–number of papers. Four cate-
gories of names are depicted: "blue mussel", "Mytilus edulis", "Mytilus trossulus" and "complex
names" (Mytilus sp.,Mytilus spp.,Mytilus edulis trossulus,Mytilus trossulus xM. edulis). The
graph is based on the results of a search in Scopus for papers with words “Baltic ANDMytilus
OR mussel” in title, abstract or key words, published through 1998–2014; only non-genetic
papers dealing with blue mussels from the Baltic Sea excluding Kattegat, the Straits and the
Kiel Bay (areas dominated byM. trossulus, e.g. Väinölä & Strelkov 2011, Zbawicka et al. 2014).
There is a significant negative trend in the frequency of the use of the nameM. edulis as com-
pared to other taxonomic (Latin) names with time (Spearman's r = -0.65, p = 0.006).
(TIF)

S2 Fig. Genotype distributions of six simulated mixed samples: procedure and results.
Mixed samples of known genotypic ancestry were constructed for a reference to test and refine
methods of a-posteriori assignment of individuals to purebred and hybrid classes in the empiri-
cal data. The procedure was as follows: (1) Using the allele frequencies in parental populations
as reconstructed by STRUCTURE, and a custom script to sample random multilocus geno-
types, simulated samples were obtained separately from each of the six genotypic classes: MT,
ME, their first and second generation hybrids, and first generation backcrosses to each species
(similar to Nielsen et al. 2006, Molecular Ecology Notes 6(4):971–973). (2) Simulated samples
of mixed ancestry and limited interbreeding (N = 200, six replicates) were constructed by mix-
ing randomly chosen simulated individuals of the six genotype classes in proportions
80:80:10:10:10:10 (i.e. 40% each purebred, 20% various hybrids). These proportions were cho-
sen to approximate the structure of simulated samples to the empirical samples with approxi-
mately equal ME and MT ancestries, as reflected in their T-score distributions and FIS, R’
estimates. (3) The simulated samples were analyzed in STRUCTURE runs together with the
empirical data set. In each of six replicate runs, a different simulated sample was analyzed
along with the empirical data (the set of simulated specimens added should be limited to exert
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the least influence on the classification of data in the analysis). From the analyses, distributions
of estimated ancestries (individual STRUCTURE scores, ISS) for simulated individuals of
known hybrid/non-hybrid ancestry were obtained, in the settings of the true data set. (4) From
the simulated ISS distributions (data from the six runs pooled) thresholds for classifying the
empirical individuals into purebreds vs. hybrids were derived using the procedure in S3 Fig.
The figure displays the structure and statistics for each of the six simulated mixed samples, and
the application of the classification criterion (see S3 Fig for details) to these data. Three dia-
grams are shown for each sample (cf. Fig 3 in the main paper): (1) The left panel shows the fre-
quency distribution of the T-score, i.e. numbers of individuals with different number of T-
alleles in their genotype. Colors represent the genetic ancestry classes in each column (see leg-
end). (2) In the middle panel, the pie charts illustrate the composite T-frequencies (red) vs. E-
frequencies (blue) in the samples. PSS, R’ and FIS estimates are also indicated. (3) The right
panel shows ISS distributions. Each symbol corresponds to an individual simulated genotype,
ranked along the horizontal axis by ISS. Blue circles–ME, red diamonds–MT, yellow-green tri-
angles–compound hybrids. Colored lines mark the operational thresholds for pure species/
hybrid discrimination accepted according to the chosen criterion (see S3 Fig for the details).
(TIF)

S3 Fig. Comparison of different methods of classifying individuals into purebreds and
hybrids. The figure shows the estimates of: (A) efficiency; (B) accuracy and overall perfor-
mance of different methods which assigned simulated genotypes of initially known ancestry to
putative MT (red symbols), ME (blue symbols) and hybrids (green symbols). “Efficiency” is the
proportion of individuals correctly assigned to a given ancestry class out of those actually
belonging to this class; “accuracy”–the proportion of individuals correctly assigned to an ances-
try class out of the total assigned to this class (correctly or incorrectly); and overall perfor-
mance–the mean efficiency (averaged over the three classes) multiplied by the mean accuracy
(cf. Vähä & Primmer 2006, Mol. Ecol.15(1):63–72). The five methods of classification (on
abscissa) differed as follows:Method 1: Classification was based on T-scores. Individuals with
T-scores of 0–1 were assigned to ME, those with T-scores of 7–8 to MT, and the rest to hybrids.
Methods 2–5 used criteria based on the ISS (individual STRUCTURE scores). The threshold
values of the scores were chosen so as to achieve a certain level of efficiency, either for the pure-
breds (MT, ME) or for hybrids (compound of 4 hybrid ancestry classes, see S2 Fig legend):
Method 2–95% efficiency for assignment of purebreds.Method 3–95% efficiency for assign-
ment of hybrids.Method 4–90% efficiency for assignment of purebreds.Method 5–90% effi-
ciency for assignment of hybrids. The classification method (criterion) demonstrating the best
overall performance (black solid line, method 2) was used for further assignment of empirical
genotypes.
(TIF)

S1 Table. Sampling localities and samples information for genetic data set (GDS).
(XLSX)

S2 Table. Sampling localities and samples information for morphological data set (MDS).
(XLSX)
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