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Abstract
Disturbances in the homeostasis of endoplasmic reticulum (ER) referred to as ER stress is

involved in a variety of human diseases. ER stress activates unfolded protein response

(UPR), a cellular mechanism the purpose of which is to restore ER homeostasis. Previous

studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is an

important novel component in the regulation of UPR. In vertebrates, MANF is upregulated

by ER stress and protects cells against ER stress-induced cell death. Biochemical studies

have revealed an interaction between mammalian MANF and GRP78, the major ER chap-

erone promoting protein folding. In this study we discovered that the upregulation of MANF

expression in response to drug-induced ER stress is conserved between Drosophila and
mammals. Additionally, by using a genetic in vivo approach we found genetic interactions

between Drosophila Manf and genes encoding for Drosophila homologues of GRP78,

PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regu-

lation of Drosophila UPR.

Introduction
The accumulation of unfolded or misfolded proteins causes disturbances in endoplasmic retic-
ulum (ER) homeostasis, a phenomenon referred to as ER stress. ER stress in turn activates the
unfolded protein response (UPR) (reviewed e.g. in [1–3]). In order to overcome ER stress, UPR
leads to attenuation of protein synthesis, enhancement of degradation of unfolded proteins,
and activation of specific signalling cascades. These events aim to reduce the overall protein
load in the ER and to enhance the protein folding capacity by selective transcription of chaper-
ones. UPR is activated through three signalling cascades by ER transmembrane sensor proteins
PERK (PRKR-like endoplasmic reticulum kinase), IRE1 (inositol requiring enzyme 1), and
ATF6 (activating transcription factor 6). All of these three proteins are maintained inactive in
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normal cellular status by binding to the major ER chaperone GRP78/BiP (Glucose-regulated
protein 78/Binding immunoglobulin protein). Upon ER stress, GRP78 is dissociated from the
sensor proteins which are subsequently activated. The most ancient of these signalling cascades
is mediated by IRE1, the sole branch of UPR identified in Saccharomyces cerevisiae. IRE1 has
kinase activity and endoribonuclease activity needed for degradation of mRNAs in order to
relieve the protein synthesis load. IRE1 is also responsible for the unconventional splicing and
thus activation of transcription factor XBP1 (X-box Binding Protein-1), a positive regulator of
ER chaperone and other UPR related gene expression. Activated PERK attenuates overall pro-
tein synthesis through phosphorylating and thus inhibiting EIF2α (eukaryotic translation initi-
ation factor 2, subunit 1 alpha). However, the decreased activation of EIF2α results in an
upregulated translation of specific target mRNAs including ATF4 (activating transcription fac-
tor 4) [4,5]. The third signalling pathway is mediated through ATF6, a transcription factor acti-
vated by its cleavage and translocation to the nucleus.

In Drosophila, both IRE1- and PERK-mediated UPR signalling cascades are conserved. The
amino acid sequence of the Drosophila homologue of ATF6 is highly similar to its mammalian
counterpart, but experimental evidence for its involvement in DrosophilaUPR is lacking [1,2].
Similar to mammals, the expression of Drosophila homologue of GRP78, Hsc3 (Heat shock
protein cognate 3), is upregulated upon induced ER stress in Xbp1-dependent manner [6–9]
but no biochemical data are available to show its association with ER stress sensor proteins.

The MANF/CDNF family of neurotrophic factors was first characterized based on its trophic
function on dopaminergic neurons in vitro and in vivo [10,11]. When injected into the brain,
recombinant mammalian MANF (Mesencephalic Astrocyte-derived Neurotrophic Factor) and
CDNF (Cerebral Dopamine Neurotrophic Factor) protect and repair dopaminergic neurons in
toxin-induced rodent models of Parkinson’s disease (PD) in vivo [11–13]. The sole Drosophila
homologue, DmManf, is expressed in and secreted from glial cells and supports the dopaminer-
gic system in non-cell-autonomous manner [14]. The role of MANF as an extracellular trophic
factor is further supported by the evidence that mammalian MANF is protective against ische-
mic injury in both neurons and cardiomyocytes [15,16]. However, the biology of MANF is not
thoroughly understood. Intriguingly, MANF localizes to the ER and has a protective role against
ER stress in vitro and in vivo [17–21]. Additionally, mammalian MANF binds GRP78 in Ca2+-
dependent manner in vitro and this binding may regulate MANF secretion [16]. MANF can be
retained in the ER by its C-terminal signal sequence, RTDL in human and RSEL in Drosophila
[16,22]. Experimental evidence suggests that mammalian MANF interacts with KDEL-R
[KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor] and that the C-
terminal RTDL sequence of MANF is responsible for this interaction [23]. The relevance of
KDEL-R as a mediator of the functions of MANF has not been explored in vivo, yet. Recently,
MANF was also shown to regulate the expression of ER-resident protein CRELD2 [24].

Both in vivo and in vitro studies have shown that MANF is upregulated after chemically
induced ER stress [17,18,25] and by misfolded mutant proteins accumulating in the ER
[17,26]. Mammalian MANF expression is activated upon ER stress by ATF6 and XBP1 through
an ER stress response element II found in the promoter region of MANF [17,27]. Based on a
knockout mouse model, MANF was found to be essential for the survival of pancreatic β-cells
and its loss resulted in severe diabetes due to reduction of beta cell mass and activation of UPR
in the pancreatic islets [21]. The protective role against 6-OHDA induced and ischemic neuro-
nal damage has been suggested to rise from the ER-related functions of MANF as these pro-
cesses have been shown to induce ER stress (reviewed in [28,29]) [17,30].

In Drosophila, the loss of DmManf is associated with upregulated expression of genes
involved in UPR [20]. Additionally, the overexpression of DmManf resulted in downregulation
of several UPR-related genes [20]. Here we show that, similar to mammalian MANF, the
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expression of DmManf is induced in response to ER stress in vitro. Further, we applied the
transgenic approaches for gene silencing in vivo to reveal genetic interactions between
DmManf and genes with known functions in the maintenance of ER homeostasis and in UPR.

Materials and Methods

Fly Strains
Fly stocks and crosses were maintained at 25°C. The following fly lines were used in the study:
w−, UAS-DmManf133 (line L3), UAS-DmManf135 (line L5) and DmManfΔ96/TM6 Tb Sb EYFP
[14], 69B-GAL4 (Bloomington Drosophila Stock Center (BDSC) #1774) [31], da-GAL4 (BDSC
#5460) [32], MS1096-GAL4 (BDSC #8860) [33], tub-GAL4/TM6 Tb Sb EYFP (BDSC #5138)
[34], UAS-mCD8-GFP (BDSC #5130) [34], UAS-Hsc3 (BDSC #5843) [35]. T(2;3)SM6a-TM6B
Tb translocation balancer (originating from pnutXP/T(2;3)SM6a-TM6B Tb, BDSC #5687) was
used in viability studies (referred as SM6-TM6). UAS-RNAi lines (listed in S1 Table) were
obtained from BDSC [36] and Vienna Drosophila RNAi Center [37]. Adult flies were imaged
with ProgRes SpeedXT camera (Jenoptik). Genes were annotated according to Flybase [38].

Cell Culture
Schneider 2 (S2) cells were cultured in M3-BPYE medium (Shields and Sang M3, 0.5 g/l
KHCO3, 1.0 g/l yeast extract, 2.5 g/l bactopeptone and 10% fetal bovine serum, pH 6.6) at
25°C. Cells were treated with DMSO, 1 μM thapsigargin (Molecular Probes), 1 mM DTT (Pro-
mega) or 10 μg/ml tunicamycin for 20 hours, collected and total RNA was extracted with
NucleoSpin1 RNA II (Macherey-Nagel). In-column DNase treatment was performed accord-
ing to manufacturer’s instructions. Samples were collected from three biological replicates. For
agarose gel electrophoresis analysis total RNA was extracted with the TRIZOL reagent (Gibco
BRL, Life Technologies).

Quantitative RT-PCR
Larvae were grown at 25°C on apple juice plates with yeast paste and collected 50–54 h after
egg laying (AEL) for 2nd instar larval samples or 20–26 h AEL for early 1st instar larval samples.
Five wandering larvae were collected for 3rd instar larval samples and each genotype was col-
lected as three biological replicates. Larvae were snap frozen and stored -80°C until RNA
extraction. NucleoSpin1 RNA II (Macherey-Nagel) was used in extraction and purification of
total RNA. In-column DNase treatment was performed according to manufacturer’s instruc-
tions. First strand cDNA was synthesized from total RNA (1 μg) using RevertAid Premium
Reverse Transcriptase (Thermo Scientific) and Oligo(dT18) primer at 53°C according to manu-
facturer’s instructions. Expression of DmManfmRNA was quantified by LightCycler1 480
Real-Time PCR System with Lightcycler 480 SYBR Green I master mix (Roche). Primer pairs
and their PCR efficiencies are presented in S2 Table. PCR efficiency (E) of each primer pair
was determined from a relative standard curve. Equation E-Cp in which Cp indicates a crossing
point was used to calculate relative concentration of mRNA in each sample. RpL32 was used
for normalization. Each sample was analysed as a duplicate.

Statistical Analysis
Microsoft1 Excel Analysis ToolPak (Microsoft1 Office Professional Plus 2010) was used for
all statistical analyses. For qPCR analyses, two-tailed Student’s t-test was used. For pupal viabil-
ity studies, Tb+ and Tb- pupae were counted, the number of Tb+ pupae was divided by the
number of all pupae and normalized to experimentally determined ratio from tub-GAL4/TM6
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Tb Sb EYFP crossed to wild type and to wild type balanced with SM6-TM6 translocation bal-
ancer (S3 Table). For preliminary analyses two vials were counted and statistical analysis was
done based on six vials with minimum of 40 pupae.

Results

DmManf Expression is Upregulated in Response to Drug-Induced ER
Stress in vitro
In mammals, MANF is upregulated after chemically induced ER stress [17,18]. To study
whether DmManf is involved in Drosophila ER stress, we used Schneider 2 cells and induced
ER stress by thapsigargin (TG), dithiothreitol (DTT) and tunicamycin (TM). TG depletes Ca2+

from the ER by inhibiting Ca2+ ATPase [39], DTT reduces the disulphide bridges leading to
accumulation of unfolded proteins [40], and TM inhibits N-linked glycosylation [41]. The
induction of ER stress was monitored by measuring the mRNA levels of Drosophila GRP78
homologue Hsc3 and Xbp1 [total (Xbp1t) and spliced (Xbp1s) forms separately] by qPCR anal-
ysis and by evaluating the proportions of unspliced and spliced transcripts of Xbp1 (Xbp1u and
Xbp1s, respectively) by agarose gel electrophoresis. In agreement with previous studies [6,8],
we detected the upregulation of Hsc3 in response to TG, TM and DTT indicating that ER stress
was indeed induced (Fig 1A). Under the control conditions, the Xbp1u transcript was prevalent
(Fig 1B). TG and DTT treatment induced the splicing of the Xbp1 transcripts (Fig 1B). The
splicing of Xbp1 was also detected by qPCR analysis (S1A Fig). While total amount of Xbp1
(Xbp1t) was unaltered, the level of Xbp1s was increased. Additionally, the ratio of Xbp1s to
Xbp1t (Xbp1s:t), a commonly used readout of UPR induction, was increased. To study whether
the expression of DmManf was altered in response to drug-induced ER stress in vitro we mea-
sured DmManfmRNA levels by qPCR analysis. We found that DmManfmRNA levels were
increased in response to drug-induced ER stress (Fig 1A). These data demonstrated that upre-
gulation of MANF mRNA in response to drug-induced ER stress is conserved between mam-
mals and Drosophila.

Overexpression of DmManf Induces Unconventional Splicing of Xbp1
but does not Alter Hsc3 Expression
Next, we examined whether altering DmManf expression level induces ER stress in vivo. The
abolishment of both maternal and zygotic DmManf results in lethality at the end of embryo-
genesis before hatching [14]. Zygotic DmManfΔ96 mutants die during first larval molt due to
the persisting maternal contribution of DmManf which promotes the survival of the larvae
[14]. In this work, we extracted RNA from larvae at their first larval molt and measured Hsc3
and Xbp1mRNA levels by qPCR. In the zygotic DmManfΔ96 mutant larvae, bothHsc3 and
Xbp1s expression was slightly decreased suggesting that UPR was not induced (Fig 1C). The
level of Xbp1t was not changed.

We also tested if the overexpression of DmManf would affect the mRNA expression ofHsc3
and Xbp1. UAS-DmManf construct was driven with ubiquitous tub-GAL4 and wandering 3rd

instar larvae were collected to gain more long-term DmManf overexpression. Overexpression
of DmManf did not alterHsc3 or Xbp1t expression levels, but did increase the amount of Xbp1s
(Fig 1D). Thus, the Xbp1s:t ratio was increased as well. This suggests that overexpression of
DmManf induces UPR similar to drug-induced ER stress in vitro (S1A Fig). However, the
mRNA level ofHsc3 was not altered suggesting that the transcriptional regulation via Xbp1s
was not activated.
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Fig 1. Drug-induced ER stress upregulatesDmManf expression. A–B) In Schneider 2 (S2) cells, ER stress was induced by thapsigargin (TG),
tunicamycin (TM) and dithiothreitol (DTT). DMSOwas used as a control treatment. A) The mRNA levels of DmManf andHsc3were analysed by qPCR,
values were normalised to control treatment (DMSO). B) RT-PCR and agarose gel electrophoresis analysis revealed two transcripts of Xbp1, unspliced
(Xbp1u) and spliced (Xbp1s). RpL32was used as a loading control. C–D) qPCR analysis of Hsc3 and Xbp1 expression in DmManfmutant (C) and DmManf
overexpressing (D) larvae. Expression of Hsc3was not altered but Xbp1smRNA level was increased in response to overexpression of DmManf. The
overexpression of DmManf resulted in 165-fold increase in DmManfmRNA level (±23, P<0.001, not shown). Xbp1t, total amount of Xbp1; Xbp1s, spliced-
specific transcript of Xbp1; Xbp1 s:t, proportion of Xbp1s out of Xbp1t. OE, overexpression. Average ± standard deviation. *, P<0.05; **, P<0.01; ***,
P<0.001 versus control, Student’s t-test.

doi:10.1371/journal.pone.0151550.g001
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To monitor the extent of overexpression by UAS/GAL4 system, we measured the level of
DmManfmRNA by qPCR and found massive upregulation of DmManf transcript (Fig 1D).
Since DmManf enters the secretory pathway, it is possible that any observed effects of DmManf
overexpression might be due to increased overall protein synthesis load in the ER and not spe-
cifically induced by DmManf. Thus, we used GFP protein with a membrane-directing tag
(UAS-mCD8-GFP) as a control for a protein synthesized in the ER. The expression of UAS-
mCD8-GFP with tub-GAL4 did not increase the expression levels of Hsc3, Xbp1t or Xbp1s (Fig
1D). This suggests that the alterations caused by overexpression of DmManf were not because
of the increased overall protein load in the ER but related to DmManf activity.

DmManfGenetically Interacts with Genes Involved in the ER Stress and
UPR
To study further whetherDmManf interacts with genes involved in theDrosophilaUPR, we used
targeted UAS-RNAi transgenes to inactivate a selected set of genes with known function inDro-
sophila ER and ER stress (Fig 2A). Based on our previous studies, we selected semi-ubiquitous
69B-GAL4 driver [20,31] to knock down target genes for two reasons. First, ectopic DmManf in
the 69B-GAL4 expression pattern is sufficient to substitute for the loss of endogenous DmManf
protein [14]. Second, by comparing the transgene expression in ubiquitous da-GAL4 and semi-
ubiquitous 69B-GAL4 pattern we were able to reveal the significance of mutations in theDmManf
gene for rescuingDmManfΔ96mutant lethality [22]. In addition to semi-ubiquitous 69B-GAL4
driver, we also wanted to have a more specific expression pattern for the knockdown experiments
and used wing driver MS1096-GAL4 [33,42]. We compared the observed phenotypes in wild type
and DmManf-overexpressing backgrounds to detect whether abundant DmManf expression
would affect the knockdown of target genes. The UAS-RNAi lines with distinct phenotypes in
these backgrounds were further analysed with ubiquitous tub-GAL4 driver to knock down the
selected genes with and withoutDmManf overexpression (S3 Table). To verify the specificity of
DmManf overexpression on the observed genetic interactions, we used UAS-mCD8-GFP con-
struct as a control for overexpression of a protein processed in the ER. In our previous and current
work, we have never detected any obvious phenotypes in flies overexpressingDmManfwith a
variety of GAL4 drivers in wild type background (Fig 2B and S2A Fig, [20,43]). Surprisingly,
simultaneous overexpression of DmManf strongly enhanced the phenotypes caused by knock-
down ofHsc3, PEK (pancreatic eIF-2alpha kinase, homologue to human PERK), Xbp1 and sip3
(septin interacting protein 3) (Fig 2A, these results are described in detail below).

DmManf Interacts with Hsc3, Drosophila Homologue ofGRP78
Knockdown ofHsc3 in the wing with MS1096-GAL4 driver in wild type background resulted
in severely malformed wings (Fig 3A). This wing phenotype was further worsened when
DmManf was simultaneously overexpressed whereas it was not affected by simultaneous
expression of UAS-mCD8-GFP (Fig 3A). The knockdown of Hsc3 with semi-ubiquitous
69B-GAL4 and ubiquitous tub-GAL4 drivers was lethal in both wild type and DmManf-over-
expressing backgrounds (Fig 2A and S3 Table).

To investigate whether silencing of Hsc3 affected endogenous DmManf expression, we
knocked down Hsc3 and analysed DmManfmRNA levels by qPCR analysis. The knockdown
ofHsc3 with tub-GAL4 resulted in lethality prior to 2nd instar larval stage (S3 Table). Thus, we
analysed the DmManfmRNA levels at the early 1st larval stage and selected the semi-ubiqui-
tous 69B-GAL4 driver instead of ubiquitous tub-GAL4. Although the UAS/GAL4 system is
activated [31] and gene expression silenced by UAS-RNAi only from the embryonic stage 9
onwards, we detected a notable decrease in Hsc3mRNA levels. The mRNA levels of DmManf
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Fig 2. Overview of genetic interactions betweenDmManf and selected ER- and UPR-related genes. A) UAS-RNAi lines were crossed to
MS1096-GAL4 and 69B-GAL4 driver lines in wild type and DmManf-overexpressing backgrounds. The observed phenotypes of knockdown flies in DmManf-
overexpressing background (OE vs. wt) were compared to the phenotype of knockdown flies in wild type background. Yellow (stronger phenotype)
represents affected phenotypes. Light gray (no phenotype in either background), gray (phenotype similar in both backgrounds) and dark gray (lethal
phenotype in both backgrounds) represent cases where the overexpression of DmManf did not affect the phenotype caused by knockdown of target gene.
As a comparison, results from our previously published microarray analysis (MAA) [20] are presented; red and blue indicate up- and down-regulation of the
target gene, respectively. Mutant larvae stands for zygotic DmManfΔ96 mutant larvae, OE larvae for 69B-GAL4>UAS-DmManfL3 larvae, and mutant embryos
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showed a 1.5-fold increase (Fig 3B) indicating that the knockdown of Hsc3 resulted in upregu-
lation of DmManf expression. These data demonstrated that the genetic interaction between
MANF and Hsc3/GRP78 is conserved between Drosophila and mammals.

DmManf and Hsc3 do not Complement each other
Ubiquitous knockdown ofHsc3 in wild type background was lethal before 50 hours AEL (S3
Table) and this lethality was not rescued by simultaneous overexpression ofDmManf (S3 Table).
To further study the genetic interaction between DmManf andHsc3, we used a UAS-Hsc3 con-
struct to overexpressHsc3 [35]. Ubiquitous overexpression ofHsc3 with tub-GAL4 driver in wild
type background did not affect overall viability and no obvious phenotypes were detected in the
adult flies (S2A–S2C Fig). Furthermore, simultaneous overexpression ofHsc3 andDmManf did
not affect viability and showed no obvious phenotype in the emerged adults (S2A–S2C Fig).

The loss of zygotic DmManf results in lethality at early larval stage [14]. To examine
whether overexpression of Hsc3 could complement for the lack of DmManf, we crossed UAS-
Hsc3; DmManfΔ96/SM6-TM6 males to da-GAL4 DmManfΔ96 /TM6 females. We could not
detect homozygous DmManfΔ96 mutant pupae or adults (number of pupae analysed = 141).
Thus, the ubiquitous overexpression of Hsc3 failed to rescue DmManfΔ96 mutant lethality.
Taken together, these data indicate that both Hsc3 and DmManf are necessary for fly viability
but unable to complement each other.

Genetic Interaction between DmManf and ER Stress Sensor PEK
Knockdown of PEK with MS1096-GAL4 showed more severe wing phenotype together with
DmManf overexpression in comparison to wild type background (Fig 4A). With semi-ubiquitous

for maternal and zygotic DmManfΔ96mzmutant embryos. B) Overexpression of DmManf by UAS-DmManfL5 with either semi-ubiquitous 69B-GAL4 or with
wing driver MS1096-GAL4 did not result in any obvious phenotypes in adult flies. In MS1096-GAL4 line, we detected a weak GAL4 expression in CNS as
well presenting a probable reason for the lethal phenotypes we observed in our knockdown experiments. However, for screening we only monitored the adult
wing phenotype. ER, endoplasmic reticulum; ERAD, ER associated degradation; ERSS, ER stress sensor protein; MAA, microarray analysis; OE,
overexpression.

doi:10.1371/journal.pone.0151550.g002

Fig 3. DmManf genetically interacts withHsc3, theDrosophila homologue of the mammalian ER chaperone GRP78. A) In wild type background,
silencing ofHsc3 by UAS-RNAi construct with the wing driver MS1096-GAL4 resulted in smaller and strongly curled wings. Simultaneous overexpression of
DmManf (+ DmManfOE) enhanced this phenotype and led to a complete disruption of the wings. The simultaneous expression of UAS-mCD8-GFP
(+ mGFP) did not alter the phenotype. Scale bar 1 mm. B) Knockdown of Hsc3with the 69B-GAL4 driver upregulated DmManfmRNA expression in early 1st

instar larvae determined by qPCR analysis. Expression level of Hsc3was decreased indicating successful silencing of the gene. KD, knockdown; OE,
overexpression. Average ± standard deviation. **, P<0.01 versus control, Student’s t-test.

doi:10.1371/journal.pone.0151550.g003
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69B-GAL4 driver, the knockdown of PEK was viable in wild type background (Fig 4B). However,
together withDmManf overexpression the knockdown of PEK with 69B-GAL4 was lethal at
pupal stage (Fig 4B). In wild type background the ubiquitous knockdown of PEK was viable
(S2D and S2E Fig, S3 Table). Interestingly, simultaneous overexpression of DmManfworsened
the ubiquitous knockdown of PEK to lethality at larval stage (S2D Fig, S3 Table). Simultaneous
expression of UAS-mCD8-GFP did not affect the PEK knockdown either by MS1096-GAL4,
69B-GAL4 or tub-GAL4 drivers (Fig 4A and 4B, S3 Table) indicating that the observed changes
caused by overexpression of DmManf were due to increased DmManf activity.

To verify the knockdown of PEK expression by UAS-PEK-RNAi construct, we measured
the PEK transcript levels by qPCR analysis in ubiquitous PEK knockdown larvae 50–54 hours
AEL. Indeed, the expression level was significantly decreased (S1B Fig). To further elaborate

Fig 4. PEK genetically interacts withDmManf. A–B) The knockdown of PEKwith the wing driver MS1096-GAL4 (A) and semi-ubiquitous driver 69B-GAL4
(B) resulted in stronger phenotype when DmManfwas simultaneously overexpressed (+ DmManfOE) in comparison to wild type background. UAS-
mCD8-GFP (+ mGFP) did not affect PEK knockdown. Scale bar 1 mm. C) Quantitative RT-PCR analysis of knockdown of PEK with ubiquitous tub-GAL4
driver in 50–54 h AEL larvae. Knockdown of PEK resulted in increased DmManfmRNA levels. KD, knockdown; OE, overexpression. See also S2 Fig for
further data. Average ± standard deviation.

doi:10.1371/journal.pone.0151550.g004
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the genetic interaction of DmManf with PEK, we investigated the effect of ubiquitous knock-
down of PEK on DmManf expression by analysing DmManfmRNA levels in PEK knockdown
larvae. Interestingly, ubiquitous knockdown of PEK increased the mRNA levels of DmManf
(Fig 4C). This qPCR analysis together with the in vivo phenotypic data indicates genetic inter-
action between DmManf and PEK, the functionally conserved Drosophila homologue of mam-
malian UPR transducer PERK.

Overexpression of DmManf Alters Xbp1 Knockdown Phenotype
In wild type background, the knockdown of Xbp1 with either wing driver MS1096-GAL4 or
semi-ubiquitous 69B-GAL4 showed barely notable phenotype in adult wings (Fig 5A and 5B).
When Xbp1 was knocked down with these drivers together withDmManf overexpression, the
adults showed clearly stronger wing phenotypes (Fig 5A and 5B). In wild type background the
ubiquitous knockdown of Xbp1 with tub-GAL4 was partially lethal at larval stage (S2D and S2E
Fig, S3 Table). InDmManf-overexpressing background, ubiquitous knockdown of Xbp1 resulted
in complete larval lethality (S2D Fig, S3 Table). Simultaneous expression of UAS-mCD8-GFP
did not alter Xbp1 knockdown with any of the GAL4 drivers used (Fig 5A and 5B, S3 Table).

Again, we quantified by qPCR the expression level of DmManf, Hsc3 and Xbp1mRNAs in
ubiquitous Xbp1-knockdown larvae. Both total amount and spliced form of Xbp1mRNA
showed severely reduced expression level indicating a successful knockdown by UAS-Xbp1-
RNAi transgene (Fig 5C). The ubiquitous knockdown of Xbp1 with tub-GAL4 only slightly
reduced the DmManf andHsc3mRNA levels (Fig 5C). However, overexpression of DmManf
in wild type background resulted in increased level of Xbp1s transcript (Fig 1D). Thus, the data
presented in this study strongly indicated that DmManf and Xbp1 interact with each other.

Upon UPR, the splicing of Xbp1 is carried out by Ire1, one of the ER stress sensor proteins.
In our study, we also examined the genetic interaction between DmManf and Ire1. The knock-
down of Ire1 with MS1096-GAL4, 69B-GAL4 and tub-GAL4 did not show any obvious pheno-
type in the adult flies either in wild type and DmManf-overexpressing backgrounds (Fig 2A).
The Ire1mutant larvae die prior 72 h AEL [44]. Most likely, the knockdown by UAS-Ire1-
RNAi construct was insufficient to reduce the Ire1 expression level enough to detect any
genetic interactions in this study.

DmManf Interacts with sip3, a Gene Encoding for a Component of
ER-Associated Degradation (ERAD)
The simultaneous overexpression of DmManf also affected the knockdown of sip3 (septin
interacting protein 3) (Fig 2A). sip3 encodes for the Drosophila homologue of human synovio-
lin/HRD1, an ER resident E3 ubiquitin ligase with specific function in ERAD. In wild type
background, the knockdown of sip3 with wing driver MS1096-GAL4 showed subtly uneven
wing phenotype (S2F Fig). The simultaneous overexpression of DmManf enhanced this pheno-
type to mildly wrinkled wings (S2F Fig). Co-expression of UAS-mCD8-GFP did not affect the
sip3 knockdown phenotype (S2F Fig). The ubiquitous knockdown of sip3 with tub-GAL4
resulted in lethality prior to pupal stage in both wild type and DmManf-overexpressing back-
grounds (S3 Table). In our previous study we found that sip3 was downregulated in
DmManfΔ96 mutant larvae. Taken together, these data demonstrated a genetic interaction
between DmManf and sip3.

DmManf does not Genetically Interact with the ER Stress Sensor Atf6
Previous studies on mammalian systems have suggested an interaction between MANF and
ATF6, one of the three ER stress sensor proteins [17,27]. In the current study, we found a
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genetic interaction between DmManf and PEK, a gene encoding for another ER stress sensor
protein. We did not detect any phenotype in the Atf6 knockdown flies by either
MS1096-GAL4, 69B-GAL4 or tub-GAL4 drivers (Fig 2A). Simultaneous overexpression of
DmManf did not affect Atf6 knockdown by MS1096-GAL4 or 69B-GAL4 drivers (Fig 2A). We
also measured the Atf6mRNA levels by qPCR in DmManfmutant (S1C Fig) and overexpres-
sing (S1D Fig) larvae and could not detect alterations in the Atf6 expression. Further, we ana-
lysed the DmManfmRNA level by qPCR analysis in ubiquitous Atf6 knockdown larvae. The

Fig 5. Xbp1 is a genetic interactor ofDmManf. A–B) The knockdown of Xbp1with wing driver MS1096-GAL4 (A) and semi-ubiquitous 69B-GAL4 driver
(B) resulted in stronger phenotype when DmManfwas simultaneously overexpressed (+ DmManfOE) in comparison to wild type background. Simultaneous
expression of UAS-mCD8-GFP (+ mGFP) did not affect the Xbp1 knockdown phenotypes. Scale bar 1 mm. C) Quantitative RT-PCR analysis of knockdown
of Xbp1with ubiquitous tub-GAL4 driver in 50–54 h AEL larvae. Knockdown of Xbp1 showed minimal decrease in DmManfmRNA level and small decrease
inHsc3 levels. The amounts of both total and spliced Xbp1 transcripts were clearly decreased indicating a successful knockdown of Xbp1 gene. KD,
knockdown; OE, overexpression. See also S2 Fig for further data. Average ± standard deviation.

doi:10.1371/journal.pone.0151550.g005
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DmManf expression level was not altered while Atf6 expression level was decreased (S1C Fig).
Taken together, our data suggest that there is no genetic interaction between DmManf and
Atf6 in this experimental setup.

Discussion
Increasing evidence indicates that ER stress and UPR play a major role in variety of human dis-
eases including diabetes mellitus and neurodegenerative disorders (reviewed e.g. in [3,45]).
MANF is a secreted protein [14,30], but also localizes to the ER and has a role in mammalian
UPR [17–20]. In this study, we examined the role of DmManf in UPR in the Drosophilamodel.
We show that the upregulation of MANF mRNA expression by ER stress-inducing agents is
conserved in Drosophila S2 cells. Additionally, we found genetic interaction between DmManf
and genes known to function in the ER and UPR. A schematic presentation of the interactions
discovered is presented in Fig 6.

One of the interacting partners was Hsc3, the Drosophila homologue of mammalian chaper-
one GRP78. The silencing ofHsc3 in the wing resulted in an abnormal wing phenotype in wild
type background. This wing phenotype was stronger in DmManf-overexpressing background.
In cultured mammalian cells MANF has been shown to bind GRP78 in Ca2+-dependent man-
ner and the loss of interaction between mammalian MANF and GRP78 was associated with
increased secretion of MANF [16]. In line, the knockdown of Hsc3 could lead to increased
secretion of DmManf and lead to deprivation of intracellular DmManf. In our previous study,
we noticed that the deletion of ER retention signal RSEL increased the secretion of DmManf in
S2 cells and decreased its functionality in rescue experiments in vivo [22]. Based on the physical
interaction found between mammalian MANF and GRP78, the simultaneous overexpression
of DmManf and knockdown of Hsc3 could also result in the abundant DmManf binding the
residual Hsc3 and preventing other important cellular functions of Hsc3. Alternatively, the loss
ofHsc3 could lead to decreased protein folding capacity in the ER and activation of UPR. The
vast amount of DmManf protein could exhaust this already disturbed cellular state.

Fig 6. A simplified presentation of UPR and genetic interactions (coloured in orange) discovered for
Drosophila Manf. ER stress sensor proteins IRE1, PERK and ATF6 reside on ERmembrane. The role of
ATF6 in Drosophila UPR is uncharacterised (in gray). Upon ER stress, transcription factor XBP1 is spliced by
IRE1 and activated. XBP1 directs expression of chaperones, including GRP78. In cultured mammalian cells,
XBP1 is also suggested to regulate MANF expression. HRD1, an ER resident E3 ubiquitin ligase, functions in
ERAD, a process in which terminally misfolded proteins are degraded in the cytosol. In this study, we found
that DmManf genetically interacts with Hsc3/GRP78, Xbp1, Pek/PERK and sip3/HRD1 but the functional role
of DmManf in DrosophilaUPR remains to be solved in future. In blue lines are presented the regulatory
genetic interactions our data suggest. Dashed lines indicate speculative interactions.

doi:10.1371/journal.pone.0151550.g006
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In previous studies, mammalian MANF has been suggested to have chaperone-like func-
tions, e.g. by binding unfolded proteins in vitro [46] but the putative chaperone activity
remains unconfirmed [17,46]. The major ER chaperone Hsc3 and DmManf clearly have dis-
tinct roles as either the overexpression or the loss of one could not complement for the loss of
the other. However, our study indicates that the interaction between MANF and GRP78 [16] is
conserved. In future, the functional significance of this intriguing interaction deserves to be
addressed in detail.

We also found that DmManf genetically interacted with PEK/PERK, an ER stress sensor
protein. Similar to the silencing ofHsc3, we found that simultaneous overexpression of
DmManf worsened the phenotypes observed in PEK knockdown flies. Previous studies have
indicated functional conservation of PERK in Drosophila and mammals (reviewed in [1,2]).
The Drosophila homologue to ATF4, the downstream target of activated PERK and selectively
upregulated by UPR, showed no genetic interaction with DmManf in our study (Fig 2A). We
have previously shown that the abolishment of both zygotic and maternal DmManf resulted in
increased phosphorylation of eIF2α, another molecular marker used for detecting ER stress
[20]. In this study, we abolished only the zygotic DmManf while maternal DmManf was still
present. The loss of zygotic DmManf alone did not induce UPR when evaluated by other read-
outs, i.e. increased Hsc3mRNA level and splicing of Xbp1. Although the zygotic DmManfΔ96

mutant larvae show only low amount of persisting maternal DmManfmRNA and protein (Fig
1C and [14]), it could be sufficient to prevent the induction of UPR.

Additionally, we discovered a genetic interaction between DmManf and Xbp1, a transcrip-
tion factor mainly responsible for the regulation of UPR-induced genes. Upon UPR, the
mRNA of Xbp1 is spliced by IRE1 and translated into a transcriptional activator of chaperone
expression in response to the increased protein folding demand [47,48] (reviewed e.g. in [49]).
According to previous studies, the spliced form of Xbp1 could mediate the UPR-induced upre-
gulation of MANF in mammals [27,50,51]. MANF has been suggested to have protective role
against ER stress [15,16,18,21,30,46]. During normal development, ER stress is detected in the
secretory cells and the silencing of Xbp1 disturbs this developmental ER stress [44,52–54]. Both
mammalian and DrosophilaMANF has been shown to have especially high expression levels in
secretory tissues [14,17,20,30]. We found that overexpression of DmManf increased Xbp1s
mRNA level but the knockdown of Xbp1 did not affect DmManf expression levels. Also, the
mRNA levels of Hsc3 were not upregulated in Xbp1 knockdown larvae. This could indicate the
lack of transcriptional activation of DmManf and Hsc3 expression by Xbp1s in Xbp1-knock-
down larvae. Therefore, knockdown of Xbp1 could compromise the regulation of DmManf
expression in the developmental ER stress and deteriorate its function in the secretory cells.

ERAD is a cellular process aiming to clear out the unfolded and misfolded proteins from the
ER (reviewed e.g. in [55]). According to our previous transcriptome analysis, sip3 was downre-
gulated in DmManfΔ96 mutant larvae [20]. In this study, we also found a genetic interaction
between DmManf and sip3. Sip3 encodes for a homologue to mammalian ER resident E3 ubi-
quitin ligase synoviolin/HRD1 with specific function in ERAD. Mammalian MANF is upregu-
lated by ERSE-II (ER stress response element II) found in its promoter region [17].
Interestingly, ERSE-II is also found in ERAD-related components HERPUD1 (homocysteine-
inducible, ER stress-inducible, ubiquitin-like domain member 1, also known as HERP) [56]
and VIMP (VCP-interacting membrane protein, also known as selenoprotein S) [57]. ERSE-II
has been hypothesized to regulate the protein quality control and degradation of misfolded
proteins during ER stress suggesting that MANF could also have a role in these functions [17].

Surprisingly, we discovered that the overexpression of DmManf led to enhanced phenotypes
in flies of which a UPR-related gene was knocked down. Thus far, overexpression of DmManf
with any GAL4 driver we have tested has never resulted in a detectable phenotype or altered
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viability (Fig 2B, S2A Fig, [20,43]). According to our previous microarray analysis, DmManf
overexpression led to downregulation of UPR-related genes [20]. This suggests that the overex-
pression of DmManf would disturb UPR signalling. Hypothetically, in wild type background
cells would be able to deal with the increased DmManf expression and the subsequent downre-
gulation of UPR-related genes whereas the additional knockdown of an important component
of UPR, e.g. Hsc3, PEK or Xbp1, could compromise the cell homeostasis.

An alternative explanation for our observations in interaction studies between UPR genes
and DmManf would be that DmManf is actually a substrate for UPR. Then, the abundant
expression of DmManf by UAS/GAL4 would rather model the effects of increased overall pro-
tein synthesis in ER than indicate specific ER-related functions for DmManf. DmManf enters
the secretory pathway [14] and its ectopic expression may cause stress to the protein folding
machinery in the ER. Although the Xbp1smRNA level was increased, the expression ofHsc3
was not altered indicating that overexpression of DmManf induces mild UPR. However, we
did not see similar effects with overexpression of membrane-directed GFP suggesting that the
observed phenomena were specific for DmManf.

In our previous microarray study, we found that the total loss of DmManf is associated with
upregulated expression of genes involved in UPR [20]. However, in the current study we found
that the mRNA levels of Hsc3 and Xbp1 were mildly decreased in DmManfmutant larvae. In
the previous study, transcriptome analysis was done from the embryonic DmManfmutants
lacking both maternal and zygotic DmManf. In the current study, we collected RNA from
zygotic DmManfmutants with the persisting maternal DmManfmRNA and protein [14]. The
maternal DmManf is apparently sufficient to prevent induction of UPR and upregulation of
UPR related genes.

This work provides evidence for the contribution of DmManf in Drosophila UPR. Further
biochemical studies on the interaction between DmManf and UPR genes in Drosophila are
needed to elucidate the details of this process.

Supporting Information
S1 Fig. Additional qPCR analyses. A) In Schneider 2 (S2) cells treated with ER stress-inducing
drugs thapsigargin (TG), tunicamycin (TM) and dithiothreitol (DTT) the mRNA level of
Xbp1s is increased while Xbp1t remains unaltered resulting in increase of Xbp1 s:t ratio. Xbp1t,
total amount of Xbp1; Xbp1s, spliced-specific transcript of Xbp1; Xbp1 s:t, proportion of Xbp1s
out of Xbp1t. B) In ubiquitous PEK knockdown larvae, mRNA level of PEK was decreased. C)
The Atf6mRNA level was not altered in zygotic DmManfmutants. Ubiquitous knockdown of
Atf6 showed decreased expression level of Atf6 but did not alter DmManfmRNA expression.
D) In 3rd instar wandering larvae, ubiquitous DmManf overexpression did not affect Atf6
expression. KD, knockdown. Average ± standard deviation. �, P<0.05; ��, P<0.01; ���,
P<0.001 versus control, Student’s t-test.
(TIF)

S2 Fig. Phenotypic analyses of DmManf genetic interactors. A–C) Ubiquitous overexpres-
sion ofHsc3 does not affect fly viability. A) Overexpression of DmManf orHsc3 with tub-
GAL4 showed no phenotype in adult flies. B–C) Viability of Hsc3 overexpression pupae (B) or
adults (C) was not affected by overexpression of DmManf. D–E) Ubiquitous knockdown of
PEK and Xbp1 with tub-GAL4 was viable (PEK) and only partially lethal (Xbp1) at pupal stage
(D). Knockdown of PEK was also partially viable at adult stage (E). With DmManf overexpres-
sion, the ubiquitous knockdown of both PEK and Xbp1 was completely lethal at larval stage. F)
Knockdown of sip3 with wing driver MS1096-GAL4 results in wrinkled wing phenotype in
DmManf-overexpressing background. Scale bar 1 mm (in A and F). Amount of pupae analysed
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in B–C and D–E are presented in S3 Table. Proportion of Tb+ pupae was normalized to experi-
mentally determined proportion of Tb+ pupae (see S3 Table, wild type and wild type/
SM6-TM6). OE, overexpression.
(TIF)

S1 Table. List of UAS-RNAi lines used in the study. Symbols used: Tf ID, transformant line
identification; Collection, RNAi library where GD = Vienna Drosophila RNAi Center (VDRC)
GD library, KK = VDRC KK library, BL = TRiP-3 collection available in Bloomington Dro-
sophila Stock Center. According to the VDRC datasheet, the UAS-Xbp1-RNAi construct in
transformant line 109312 targets both unspliced and spliced Xbp1 transcripts.
(DOCX)

S2 Table. List of primer pairs used in the qPCR analysis and their PCR efficiencies (E).
Hsc3 and Pek primers were designed with FlyPrimerBank (http://www.flyrnai.org/
FlyPrimerBank) [58]. DmManf and RpL32 were adopted from [20], Xbp1t from [59], Xbp1s
from [60] and Atf6 from [61].
(DOCX)

S3 Table. Results from ubiquitous knockdown studies of UAS-RNAi lines. tub-GAL4/TM6
Tb Sb EYFP females were crossed to UAS-x-RNAi (wild type background), UAS-x-RNAi;
UAS-DmManf-OE/SM6-TM6 (+ UAS-DmManf-OE) or UAS-x-RNAi; UAS-mCD8-GFP/
SM6-TM6 (+ UAS-mCD8-GFP) males. Since UAS-Hsc3-RNAiBL construct was inserted in 3rd

chromosome and the insertion was lethal, UAS-Hsc3-RNAiBL/SM6-TM6 and UAS-DmManf-
OE; UAS-Hsc3-RNAiBL/SM6-TM6 males were used. Columns: Tb+ and Tb-, amounts of Tb
+ and Tb- pupae in crosses; Pupae, normalized proportion of Tb+ of all pupae, wild type or
wild type/SM6-TM6 were used to normalize proportions; Adults, proportion of emerged adults
out of Tb+ pupae. OE, overexpression; ND, not determined. n of analysed vials = 6 (except 1,
n = 2 vials).
(DOCX)
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