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A treatise is presented on solving the Takagi–Taupin equations in the case of a

strain field with an additional, spatially slowly varying component (owing to, for

example, heat expansion or angular compression). It is shown that such a

component typically has a negligible effect on the shape of the reflectivity curve

when considering the reflectivity of a microscopic surface area of the crystal.

However, it makes the centroid of that curve shift in terms of the wavelength (or

the incidence angle) as a function of the position of the mentioned area, which

alters the shape of the overall reflectivity curve integrated over the crystal’s

macroscopic surface. The validity of the method is demonstrated by comparing

computed reflectivity curves with experimental ones for bent silicon wafers. A

good agreement is observed.

1. Introduction

In the hard X-ray regime, the X-ray spectrometers with the

highest energy resolution are nowadays based on diffractive

crystal optics. In the sub-eV energy resolution range, bent

crystals are often used to yield an optimal collection solid

angle and a suitable bandwidth. There are numerous different

curved crystal geometries in common use, such as the Johann,

Johansson and von Hamos geometries (Johann, 1931;

Johansson, 1932; von Hamos, 1932). X-ray crystal spectro-

meters based on such designs are installed at various

synchrotron light sources worldwide (e.g. Itou et al., 2001;

Fister et al., 2006; Verbeni et al., 2009; Hiraoka et al., 2013;

Sokaras et al., 2013; Alonso-Mori et al., 2015; Rueff et al.,

2015).

To design the most precise instruments, one requires a solid

theoretical knowledge of the diffraction properties of crystals.

To this end, highly relevant for bent crystals is the theory of

dynamical X-ray diffraction in deformed crystals that was

developed independently by S. Takagi and D. Taupin (Takagi,

1962, 1969; Taupin, 1964). At the heart of the theory are the

so-called Takagi–Taupin (TT) equations, which describe the

wavefield in a (quasi)periodic medium. For the usual case of

two-beam diffraction, one obtains the X-ray reflectivity curve

of a crystal by solving a pair of partial differential equations.

When the strain field is solely depth dependent, these equa-

tions reduce to one ordinary differential equation. This is the

usual approach to modelling the X-ray reflectivity of bent

crystals, but it is not enough, for example, for spherically bent

crystals used in Johann-type spectrometers, owing to a

spatially slowly changing component of strain arising from so-

called angular compression (Verbeni et al., 2009; Honkanen

et al., 2014a,b). Accurate numerical methods have been

developed (Authier et al., 1968; Yan & Li, 2014), yet solving
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the general two-beam TT equations for a crystal wafer of a

typical size of�100 mm is a computational challenge. Another

important example of the situations that require solution of

the TT equations over a large crystal area is X-ray mono-

chromators with heat-load-induced deformations (Hoszowska

et al., 2001; Zhang et al., 2013).

In this paper, we examine the solutions of the TTequations

and as a result present an efficient method for computing the

reflectivity curve of a large deformed crystal. The method

applies to strain fields that can be decomposed into a sum of a

depth-dependent component that varies rapidly along the

path of the incident and the diffracted beams and a slowly

changing component that varies on the macroscopic scale. The

result generalizes our earlier procedure presented by

Honkanen et al. (2014b).

2. TT equations with a slowly changing strain
component

The Takagi–Taupin equations that describe two-beam

diffraction in a crystal are (Gronkowski, 1991)

@D0

@s0
¼ ��ik�0D0 � �ikC� �hhDh

@Dh

@sh
¼ ��ikC�hD0 þ 2�ik�hDh

8>><
>>:

ð1Þ

where D0 and Dh are the amplitudes of the incident and

diffracted waves inside the crystal, @=@s0 and @=@sh are deri-

vatives with respect to the directions of the forward diffracted

and diffracted waves, k is the wavenumber of the incident

wave, �0 and �h are the Fourier components of the suscept-

ibility corresponding to reciprocal lattice vectors 0 and h, and

C is the polarization factor. �h is given by

�h ¼
1

2

jkþ h� rðu � hÞj2 � k2

k2
� �0

� �
ð2Þ

¼ jhj2
2k2

þ k � h
k2

� �0

2
� 1

k

@ðu � hÞ
@sh

; ð3Þ

where k is the wavevector of the incident wave and u is the

displacement field. The reflectivity curve of an arbitrarily

deformed crystal is obtained by varying either the direction or

the length of k and solving the TT equations in the vicinity of

the Bragg condition.

For solving the TTequations, �h is typically reformulated in

terms of the Bragg angle and the angular deviation from the

Bragg condition. However, as the Bragg angle is not defined

for wavelengths smaller than the backscattering wavelength,

this formulation ceases to be valid in near-backscattering

conditions (Caticha & Caticha-Ellis, 1982). In this paper, we

circumvent the arising problems by formulating (3) in terms of

the wavelength � and the incidence angle � so that

�h ¼
�2

2d2h
� �

dh
sin � � �0

2
� �

@ðu � hÞ
@sh

; ð4Þ

where dh stands for the separation of the diffractive Bragg

planes.

As one can see, the effect of the strain field comes into the

TT equations via parameter �h. Thus, the radiation propaga-

tion is identical in crystals with different strain fields if the �h

parameters are exactly alike. One can tune the value of �h by

changing the angle of incidence � or the wavelength � of the

radiation. This is approximately true even in the latter case,

even if a change of � affects the solutions of equations (1) in a

nontrivial way, since the relative shift of � owing to the strain is
practically negligible.

Let us consider the diffraction of a crystal in two different

cases. In the first case the displacement field is uI ¼ ufðzÞ,
which accounts for a rapid displacement of the depth-depen-

dent strain. In the other case the displacement field is

uII ¼ uf þ us, where the component of the strain described by

us ¼ usðx; yÞ is nearly linear in terms of sh on the microscopic

scale, thus representing the slowly varying component of the

strain. The coordinate system is chosen so that the z direction

is normal to the crystal surface, the positive direction being

outward from the crystal. The strain field of a spherically bent

crystal analyser serves as an example of the latter kind of

displacement field (Honkanen et al., 2014b). Subscripts I and

II, respectively, will be used throughout the article to refer to

the quantities relating to the diffraction of these cases.

Substituting uI and uII into (4) and taking their difference, we

get

��h ¼
�2
II � �2

I

2d2h
� �II

dh
sin �II �

�I

dh
sin �I

� �

� �II

@ðus � hÞ
@sh

� �II � �Ið Þ @ðuf � hÞ
@sh

: ð5Þ

On the basis of the earlier argument, the solution to the TT

equation is found to be equivalent in both cases if the simi-

larity condition ��h ¼ 0 holds. In the following, we show that

the condition is met via a constant change in the incidence

angle or wavelength under certain assumptions. The two cases

are examined separately and the results are applied to

compute the reflectivity curves.

2.1. Scanning the incident wavelength

Let us first examine the case of a varying wavelength. We

denote the difference of wavelengths between cases I and II

with �� � �II � �I. In this case the angle of incidence is kept

constant, i.e. �I ¼ �II � �.
Since the differences caused by us are small, we can make

the first-order approximation

�2
II ’ �2

I þ 2�I��: ð6Þ
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Figure 1
Relations of s0, sh, sk, s? and h to each other.
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Thus the similarity condition can be written as

�I��

d2h
� ��

dh
sin � � �I

@ðus � hÞ
@sh

� ��
@ðuII � hÞ

@sh
¼ 0: ð7Þ

We define a new basis with vectors sk and s?, respectively,
parallel and perpendicular to h, as shown in Fig. 1. The first

partial derivative in (7) can now be written as

@ðus � hÞ
@sh

¼ " sin � þ � cos �

dh
; ð8Þ

where " � @ðus � ĥhÞ=@sk is the normal strain in the direction of

h and � � @ðus � ĥhÞ=@s? is the shear strain in the sk–s? plane.

Substituting the former into (7) and neglecting ��@ðuII � hÞ=@sh
as second order, we get

1

dh
� sin �

�I

� �
��� " sin � � � cos � ¼ 0: ð9Þ

Since the diffraction takes place in the vicinity of the Bragg

condition, we can use Bragg’s law to express dh with high

accuracy in terms of �I and �I:

dh ¼
�I

2 sin �
: ð10Þ

Substituting the former into (9), the similarity condition

becomes

��=�I ¼ "þ � cot �: ð11Þ
Notably in the case of exact backscattering or when � ¼ 0 this

reduces to the result expected from Bragg’s law that was used

by Honkanen et al. (2014b).

From equation (11) we now see that the change of the

wavelength shift �ð��Þ relative to the width of the diffraction

peak ��I is

�ð��Þ=��I ¼ "þ � cot �; ð12Þ

which is typically <� 10�4 supposing we are not close to

grazing-incidence conditions. This means that the effect of the

additional strain components " and � present in case II can be

accounted for by simply shifting the reflectivity curve of case I

in the wavelength domain by an amount dictated by

equation (11).

The validity of the derivation was studied using a one-

dimensional TT solver implemented in Python/SciPy. The

solver is freely available under MIT license at https://

github.com/aripekka/pytakagitaupin. The derivation of the

depth-dependent equation was according to Gronkowski

(1991), with the exception of using (4) as the form of �h in the

derivation. The reflectivity curve for the symmetric 660

reflection of silicon was computed at incidence angles of 85,

75, 65 and 55� (approximate photon energies of 9.72, 10.02,

10.68 and 11.82 keV, respectively) for a set of constant strains "
varying from 0 to 10�3. � was set to zero. The thickness of the

crystal was set to 3 mm in order to get rid of the thickness-

related oscillations in the reflectivity curve which interfere

with the accurate determination of the curve width. The shift

of the reflectivity maximum and FWHMs as a function of "
were computed and the results were compared with the

theoretical predictions of equations (11) and (12).

The relative shift in the wavelength as a function of strain "
is presented in Fig. 2, with the theoretical prediction. As one

can see, the predicted shift is found to be in good accordance

with the simulations and follows the behaviour expected

simply from Bragg’s law. The shape and the width of the

reflectivity curve have a much weaker dependence on the

strain, as shown in Fig. 3 for the FWHM. As in the case of the

wavelength shift, the simulated results are found to follow the

theoretical result.
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Figure 2
Simulated and theoretical shifts in the wavelength as a function of strain
component " at different incidence angles for the symmetrical Si(660)
reflection. Some of the data points are not visible owing to their overlap.

Figure 3
Simulated and theoretical changes in the FWHM of the reflectivity curve
as a function of strain component " at different incidence angles for the
symmetrical Si(660) reflection. Some of the data points are not visible
owing to their overlap.
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2.2. Scanning the incidence angle

Another approach is offered by a variation of the beam’s

angle of incidence with respect to the crystal surface. We

denote the difference of incidence angles between cases I and

II by �� � �II � �I. In this case the wavelength is kept constant,
i.e. �I ¼ �II � �. From equation (5), the similarity condition

now becomes

1

dh
sin �II � sin �Ið Þ þ @ðus � hÞ

@sh
¼ 0: ð13Þ

Acknowledging that the angles in equation (8) correspond to

case II, we obtain by substitution

sin �II � sin �I þ " sin �II þ � cos �II ¼ 0: ð14Þ
By making the Taylor expansion in terms of �� and retaining

only the first-order terms we obtain for the similarity condition

�� ¼ �" tan �I � �: ð15Þ
The change in the incidence angle shift �ð��Þ relative to the

angular width of the diffraction��I is found by differentiation
of equation (15):

�ð��Þ
��I

¼ � "

cos2 �I
: ð16Þ

As seen in the case of wavelength, the shift in the angle of

incidence is again found to be linear in terms of the strain

components " and �. However, in this case the first-order

expressions diverge when � ¼ 90�. In addition, since (16)

grows faster than (15) when � approaches 90�, the change in

the width of the rocking curve can not be necessarily

neglected. In the vicinity of backscattering, one should

consider a higher-order expansion of equation (14) in terms of

��. This is, however, out of the scope of this work as the

situation becomes more complicated owing to the symmetry of

the reflection at angles above 90�.
The validity of the derivation was examined using the one-

dimensional TT solver as for the wavelength. The Si(660)

reflection was studied at photon energies of 9.72, 10.02, 10.68

and 11.82 keV, corresponding approximately to the incidence

angles of 85, 75, 65 and 55�, respectively. The constant strain

component " was varied from 0 to 10�3 and � was set to zero.

The results are presented in Figs. 4 and 5. As in the case of

wavelength, the simulated �� follow the theoretical prediction

(15) with high precision and the general shape of the curve

appears to be independent of ". Also, the FWHMs of the

rocking curves are in good accordance with equation (15). At

a higher Bragg angle at 9.72 keV, the simulated values begin to

deviate from the theory as " tan �I and " cos2 �I become larger.

Apart from the nonlinear regime, the theory holds well for the

smaller values of ".

3. Efficient computation of the reflectivity curves

From the results of the previous section, the effect of a slowly

changing strain field can be taken into account locally by a

simple shift of the solution to the TT equations on either the

wavelength or the incidence angle scales. The width of the

curve is also altered slightly, but as the relative change is

expected to be <1%, it can be neglected in most cases. The

reflectivity curve of the whole crystal is then obtained by

summing the reflectivities of infinitesimal areas over the

crystal surface. Since solving the TT equations can be

computationally demanding for a macroscopic crystal, the

derived results offer an intriguing method of computation in

cases where a suitable strain component is present.

The reflectivity curve of a macroscopic crystal can be solved

as follows. The TT equations (1) are solved in their one-

research papers
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Figure 4
Simulated and theoretical shifts in the incidence angle as a function of
strain component " for different photon energies for the symmetrical
Si(660) reflection. The data are divided by � tan � for clarity. Some of the
data points are not visible owing to their overlap.

Figure 5
Simulated and theoretical changes in the FWHM of the rocking curve as a
function of strain component " for different photon energies for the
symmetrical Si(660) reflection. The data are multiplied by � cos2 � for
clarity. Some of the data points are not visible owing to their overlap.
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dimensional form for the depth-dependent displacement

component uf as a function of � or �. The slowly changing

component us is used to compute the �� or �� distribution over
the crystal surface using equation (11) or equation (15),

respectively. The reflectivity curve of the crystal is then

obtained by convolving the TT curve with the �� or ��
distribution. Other contributions, such as the bandwidth of the

X-rays or geometric factors, are convolved with the result as

needed.

4. Experimental verification

We applied the method to compute the reflectivity curve of an

anodically bonded spherically bent Si(660) analyser with the

geometry presented in Fig. 6 at an incidence angle of 88.7�.
The bending radius of the crystals was 1 m and the thickness of

the wafers was 300 m. The strain field of the wafer was

calculated according to Honkanen et al. (2014b). The ��
distribution was computed using equation (11), omitting the

term containing � as we are close to backscattering. The depth-
dependent TT curve was convolved with the �� distribution

and a Gaussian with an FWHM of 235 meV to take into

account the bandwidth of the incident radiation in the

experimental setup. We compared the theoretical prediction

with the experimental curves of two such analysers measured

at the inelastic X-ray scattering beamline ID20 at the ESRF.

The details of the experimental setup are presented by

Honkanen et al. (2014a).

The comparison between the theory and the experiment is

presented in Fig. 7. The intensities of the curves are normal-

ized with respect to the integrated intensity. The horizontal

axis is the energy difference between the incident photon

energy and the centroid of the measured reflectivity curve.1As

it is seen, a good agreement is found between the theory and

the experiment. For comparison, the red dashed curve shows

the predicted reflectivity when the slowly changing strain

component owing to angular compression is neglected. It is

evident that the slowly changing component changes the

shape of the curve to such an extent that it cannot be simply

overlooked in the case of a macroscopic analyser crystal. It has

a tendency to increase the spectral weight at the energy gain

side (negative energy shift) of the spectrum, and hence creates

an apparent shift of the reflectivity curve in this example by

�0.5 eV.

5. Conclusions

In this paper we have examined how solutions of TTequations

behave in the presence of a slowly varying component of the

strain field. We applied the results to construct an efficient

semi-analytical method to compute the X-ray reflectivity of

deformed crystal with a slowly varying strain component.

We used the method to compute the reflectivity curve of an

Si(660) analyser cut in a specific way. When this curve is

compared with the measured reflectivity curves, a precise

correspondence is found. Such an agreement found in the case

of the examined nontrivial geometry speaks for the predictive

power of the presented method, which offers an appealing

alternative for effective computation of the reflectivity curves

of large deformed crystals.
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