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Abstract
The threat of the new pandemic influenza A(H1N1)pdm09 imposed a heavy burden on the

public health system in Finland in 2009-2010. An extensive vaccination campaign was set

up in the middle of the first pandemic season. However, the true number of infected individu-

als remains uncertain as the surveillance missed a large portion of mild infections. We con-

structed a transmission model to simulate the spread of influenza in the Finnish population.

We used the model to analyse the two first years (2009-2011) of A(H1N1)pdm09 in Finland.

Using data from the national surveillance of influenza and data on close person-to-person

(social) contacts in the population, we estimated that 6% (90% credible interval 5.1 – 6.7%)

of the population was infected with A(H1N1)pdm09 in the first pandemic season (2009/

2010) and an additional 3% (2.5 – 3.5%) in the second season (2010/2011). Vaccination

had a substantial impact in mitigating the second season. The dynamic approach allowed

us to discover how the proportion of detected cases changed over the course of the epi-

demic. The role of time-varying reproduction number, capturing the effects of weather and

changes in behaviour, was important in shaping the epidemic.

Author Summary

In 2009, the threat of the new pandemic influenza A(H1N1)pdm09 (referenced in media
as ‘swine flu’) created a heavy burden to the public health systems wordwide. In Finland,
an extensive vaccination campaign was set up in the middle of the first pandemic season
2009/2010. However, the true number of infected individuals remains uncertain as the sur-
veillance missed a large portion of mild infections. We built a probabilistic model of influ-
enza transmission that accounts for observation bias and the possible impact of the
changing weather and population behaviour. We used the model to simulate the spread of
influenza in Finland during the two first years (2009-2011) of A(H1N1)pdm09 in Finland.
Using data from the national surveillance of influenza and data on social contacts in the
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population, we estimated that 9% of the population was infected with A(H1N1)pdm09
during the studied period. Vaccination had a substantial impact in mitigating the second
season.

Introduction
The threat of the pandemic influenza A strain, A(H1N1)pdm09 (‘swine flu’), imposed a huge
burden on the public health system in Finland in 2009 [1]. The first A(H1N1)pdm09 season
was part of the global pandemic and occurred from September 2009 through January 2010
with a major outbreak in November 2009. To mitigate the epidemic, a national vaccination
campaign was started in October 2009, and by February 2010 approximately half of the Finnish
population had been vaccinated against A(H1N1)pdm09. The second epidemic season
occurred a year later from November 2010 through April 2011. Only sporadic cases were
observed before the first epidemic season and between the two seasons.

It is well known that that laboratory-based surveillance of influenza misses the vast majority
of infections that occur in the population. Underreporting follows from asymptomatic or non-
diagnosed infection or incomplete reporting of influenza cases in primary and secondary
health care. More severe cases are diagnosed and reported with a higher probability. This was
true also for A(H1N1)pdm09, although special efforts were taken to record cases especially
during the early phases of the first season.

Bayesian methodology (evidence synthesis) has been used to analyse influenza outbreaks in
the presence of underreporting and mixed data sources. In general, the underlying epidemio-
logical models can be classified as static or dynamic. In static models, cases are typically aggre-
gated by season and the unknown true incidence is estimated as an attack rate (probability of
becoming infected during the season) [2–5]. In dynamic models, the process of spread of the
infection via transmission is modelled explicitly [6]. The static approach is simpler and requires
less computational resources while the dynamic model enables one to answer more complex
questions.

Based on a static model, we previously estimated that only 4% of the Finnish population
were infected with A(H1N1)pdm09 over the season 2009/2010 and an additional 1% during
the 2010/2011 season [2]. The most affected age groups were children and teenagers with
attack rates up to 10-12%. The attack rates were much lower in the second season, which was
likely due to the relatively high immunity due to natural infection or vaccination in the most
influential age groups. In particular, 74-81% of children aged less than 15 years had been vacci-
nated against A(H1N1)pdm09 before the second season.

However, a static model cannot address the impact of herd immunity induced by vaccina-
tion. To properly address the role of vaccination in mitigating the first-season epidemic and
lowering the transmission potential before the second season, a more dynamic (i.e. transmis-
sion) model is needed. A dynamic model can also address questions about which age groups
played the most important role in transmission or why there was a second season despite the
fact the influenza strain did not evolve considerably between the seasons to escape population
immunity [7]. The effect of time-varying conditions due to weather or public response to the
outbreak can also be inferred using a dynamic model [8].

In this study, we built a dynamic probabilistic model of influenza transmission and disease.
The model accounts for transmission of influenza in the population, the impact of vaccination,
outcomes with varying severity and imperfect detection of infection. We calibrate the model to
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data on A(H1N1)pdm09 cases and estimate the true incidence of A(H1N1)pdm09 of the first
two A(H1N1)pdm09 seasons in Finland.

Methods

Data sources
In all datasets used in this study, information about individuals was aggregated into 16 age
groups: 0-4, 5-9, . . ., 70-74, 75+ years of age. Fig 1 presents the data on registered A(H1N1)
pdm09 cases and the coverage of vaccination in Finland 2009-2011. The population sizes were
obtained from Statistic Finland (www.stat.fi).

Severe cases. Weekly numbers of severe cases of A(H1N1)pdm09 were obtained from a
web-based notification system [1]. For the first season (2009/2010), the data comprise all hos-
pitalized cases, including those that required intensive care (IC) admission and cases with fatal
outcome. For the second season (2010/2011), only IC and fatal cases were recorded in this
system.

Mild cases. Weekly numbers of laboratory-confirmed cases of influenza A in the two sea-
sons were obtained from NIDR (surveillance system of the National Infectious Disease Regis-
try) [1]. Based on the high proportion of the A(H1N1)pdm09 strain among all tested A strains
(99% in the first season and 95% in the second season [9]), all A influenza cases were consid-
ered as A(H1N1)pdm09 cases. All cases included in NIDR but absent in the web-based system
were considered as non-hospitalized and therefore called as mild.

Vaccination. The numbers of individuals vaccinated against the A(H1N1)pdm09 strain
by week and age group were retrieved from a nation-wide register set up especially for the first
season. Before January 2010 the majority of vaccines were distributed among children 0-19
years old. (Fig 1E)

Contact rates. The rates of social contacts were estimated from the Finnish arm of the
Polymod survey data [10]. The dataset contains information about the daily contacts in a ran-
dom sample of Finnish residents.

Bayesian modelling was used to estimate a contact matrix C with elements Ca!b as the
mean numbers of potentially infectious contacts produced by a single individual from age
group a to individuals in age group b during one week. The posterior means of Ca!b (Fig 2)
were used in the further analysis. The estimation of the contact matrix is presented in S1
Appendix. All data is available in S1 Dataset.

Model of influenza transmission and disease
We built a discrete-time dynamical model of influenza transmission and disease in the Finnish
population. The time step was one week, corresponding to the resolution in the data. A period
of 113 weeks was modelled from week 15/2009 (one month before the first A(H1N1)pdm09
cases of were registered in Finland) through week 22/2011 (after the end of the second season).
Within the modelled period, two subperiods are referred to as the first epidemic season (weeks
37/2009 through 1/2010) and the second epidemic season (weeks 46/2010 through 17/2011).

Population structure. The model population was divided into n = 16 age groups: 0-4, 5-9,
. . ., 70-74, 75+ years of age. Each age group a consists of Na individuals. At each week t, there
are Sa,t susceptible and Ia,t infected individuals. We assumed that all infected individual are
infectious. At all times, Sa,t + Ia,t � Na. Fig 3 illustrates the relation between the different sub-
groups in the population. For simplicity, we assume there are no population dynamics during
the modelled period, i.e. no one is born, dies or grows older.

Infection and recovery. All individuals are considered to be susceptible at the first week of
the modelled period (Sa,0 = Na; Ia,0 = 0). All individuals that are susceptible at week t − 1 are
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Fig 1. A(H1N1)pdm cases in Finland (2009-2011) and the coverage of vaccination. Panels A and B: the numbers of detected (i.e. registered) cases per
week on the absolute and log scales. Panel C: the numbers of individuals vaccinated against A(H1N1)pdm09 per week. The shaded areas mark the first and
the second epidemic seasons. Panel D: the numbers of detected cases per age group in the first and second seasons. Panel E: population sizes and the
numbers of vaccinated individuals per age group.

doi:10.1371/journal.pcbi.1004803.g001
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Fig 2. Contact matrixC. Each element presents the estimated mean number of weekly social contacts from
individual of the column age group to the row age group.

doi:10.1371/journal.pcbi.1004803.g002

Fig 3. A scheme of possible transitions for an initially susceptible individual per one week. The heights
of the lines are indicative of the probabilities of each possible outcome but are not presented at the correct
scale.

doi:10.1371/journal.pcbi.1004803.g003
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exposed to the infection pressure and can acquire infection at week t with probability ra,t. Oth-
erwise, they can acquire immunity from vaccination with probability va,t. All individuals, infec-
tious at week t − 1 are recovered at week t. The recovered individuals are considered to be
immune and non-infectious for the rest of the studied period. The values of I and S for t> 0
are distributed according to the following rules:

Ia;t � BinomðSa;t�1; ra;tÞ;

ra;t ¼ 1� ð1� qaÞ 1� pa
Na

� �wt

P16

b¼1
Cb!aIb;t�1

;

Sa;t � BinomðSa;t�1 � Ia;t; 1� va;tÞ:

The probability of infection ra,t is expressed as the complement of the probability for an indi-
vidual to avoid infection from both within and outside the population. Here qa is the inflow of
infection (weekly probability to acquire infection from outside of the population); pa is the sus-
ceptibility (probability that the individual acquires infection per contact with an infectious

individual within the population)); wt

P16

b¼1 Cb!aIb;t�1 is the total number of infectious contacts

received by age group a; wt is a transmission random effect (autocorrelated multiplicative
noise; see section Prior specifications) and C is the contact matrix. The expression for va,t is
derived in the next paragraph.

Vaccination. We assumed that the A(H1N1)pdm09 vaccine was distributed randomly
within each age group, irrespective of the individuals’ current infection status. A vaccinated
individual was assumed to develop protective immunity in two weeks with probability 0.8 [11].
Therefore, the probability va,t of acquiring vaccine-induced protection at week t in age group a
for a still-susceptible individual was calculated as

va;t ¼ 0:8
Va;t�2

Na �
Pt�3

t¼0 Va;t

;

where Va,t is the registered number of individuals vaccinated at week t.
Severity. We assumed three severity classes of A(H1N1)pdm09 infection: (1) mild infec-

tion not requiring hospitalization, including asymptomatic cases; (2) infection requiring hos-
pitalization but not admitted to intensive care; and (3) infections admitted to intensive care

(IC), including lethal infections; Ia;t ¼ IðmildÞ
a;t þ IðhospÞa;t þ IðICÞa;t ; the latter two class are referred to

as severe infections IðsevereÞa;t ¼ IðhospÞa;t þ IðICÞa;t . An infected individual from age group a was

assumed to develop severe infection with probability sðsev=infÞa ; individual with severe infection

was admitted to IC with probability sðIC=sevÞa . The following equations summarise the severity
model:

IðsevereÞa;t � BinomðIa;t; sðsev=infÞa Þ;
IðICÞa;t � BinomðIðsevereÞa;t ; sðIC=sevÞa Þ:

Detection. Only a portion of infections becomes detected. We assumed that mild infec-

tions become detected with a time-varying autocorrelated probability dðmildÞ
t . Hospitalized

non-IC infections are detected with probability d(hosp) during the first season (first 60 weeks)
and 0 otherwise (as no hospitalized non-IC cases were recorded during the second season).

IC infections are always detected. Let Dðseverity classÞ
a;t denote the number of cases in the severity
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class in age group a at week t registered in the data. The following equations summarise the
detection model:

DðmildÞ
a;t � BinomðIðmildÞ

a;t ; dðmildÞ
t Þ;

DðhospÞ
a;t � BinomðIðhospÞa;t ; dðhospÞ1ðt < 60ÞÞ;
DðICÞ

a;t ¼ IðICÞa;t :

Simplifying assumptions. To improve the identifiability of the model parameters we
made the following simplifying assumptions. The four parameters (p, q, s(sev/inf), s(IC/sev))
were considered in 6 wider age strata: 0-4, 5-14, 15-19, 20-29, 30-64, 65+ years. We set pa =

pb, qa = qb, sðsev=infÞa ¼ sðsev=infÞb and sðIC=sevÞa ¼ sðIC=sevÞb if age groups a and b belong to the same
stratum. The infection model still has 16 age groups.

Reproduction numbers. The number of secondary infections produced by a single
infected individual in a totally susceptible population (basic reproduction number R0) in a dis-
crete-time model could be calculated as the largest eigenvalue of the next generation matrix
[12], the elements of which in our discrete-time model are approximated by NGMa,b � pa
Cb!a (see S2 Appendix). In the presented model, the contact matrix is additionally multiplied
by the time-dependent random effect wt with prior mean 1. The basic reproduction number at
any particular week t was therefore calculated as R0,t = wt R0.

The number of secondary cases produced by a single infected individual in age group a in a

totally susceptible population can be approximated by Ra ¼
P16

b¼1 pbCa!b. The effect of the
inflow of the infection is measured as the mean number of infections induced to a totally sus-
ceptible population during one week from the outside and is equal to Na qa.

Table 1 summarizes the unknown model parameters, while Table 2 summarizes all esti-
mated quantities. The combined model equations as well as the model DAG (directed acyclic
graph) are shown in Fig 4.

Prior specifications
The prior distributions of the model parameters are presented in Table 1. All parameters except
the age-dependent susceptibility p and transmission random effect wt were given informative

Table 1. Model parameters. The parameters are divided under four topics.

Topic Parameter Meaning Prior Source

Susceptibility: pa Probability for a susceptible in age group a to acquire infection
per contact with an infectious host within the population

Uniform(0, 1) Uninformative

qa Inflow of infection (probability to acquire infection from outside
the population per week) in age group a

Beta(0.1, 1) Assumed to be small

Transmission: wt Transmission random effect at week t 2 LogitNormal(0.5, 1)* Uninformative

Severity: sðsev=infÞa Hospitalization/infection ratio in age group a LogitNormal(0.01, 0.1) [13]

sðIC=sevÞa IC/hospitalization ratio in age group a LogitNormal(0.1, 0.1) [13]

Detection: dðmildÞ
t

Mild case detection probability at week t LogitNormal(0.01, 0.01)* [14][15][16]

d(hosp) Hospitalized non-IC case detection probability LogitNormal(0.75, 0.1) Expert opinion

Here the LogitNormal(x, y) means a distribution of a random variable for which the logit transformation has a normal distibution with mean logit(x) and

variance y.

* An autocorrelated prior is constructed for both wt and dðmildÞ
t ; see Prior specifications

doi:10.1371/journal.pcbi.1004803.t001
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Fig 4. DAG of the model.Circles represent model unknowns, rectangles known or fixed values. The plates
highlight the values specified for each week and/or age group. Dotted circles are used to show the relations
between strata. Smaller rectangles with “prior” sign point out those model parameters with specified prior
distributions. Stochastic relations are indicated with solid lines, deterministic with dashed lines. Complex
relations are shown as black rectangles: 1—infection process, 2—detection process.

doi:10.1371/journal.pcbi.1004803.g004

Table 2. Latent variables and estimated quantities.

Topic Quantity Meaning

Incidence: Ia,t True number of infections in age group a at week t

∑t2T Ia,t/Na Attack rate during period T in age group a

Transmission: R0,t = R0 wt Basic reproduction number at week t

Ra = ∑b pb Ca!b Reproduction number for age group a

qa Na Effect of the inflow

Detection: ∑a,t2T Da,t/∑a,t2T Ia,t Detection ratio during period T

doi:10.1371/journal.pcbi.1004803.t002
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priors. The severity parameters s(sev/inf) and s(IC/sev) were centred around 1% and 10%, respec-

tively. The detection probabilities dðmildÞ
t and d(hosp) were centred around 1% and 75%, respec-

tively. These priors were consistent with the ones used in our earlier analysis of the same data
[2]. The inflow of infection q was assumed to be extremely small.

Prior for the temporal correlation. The time-dependent transmission random effect wt

represents a combination of time-dependent factors affecting the spread of infection but not
accounted for by the transmission model (e.g. air temperature, humidity, population response

to the epidemic, public holidays). The time-dependent mild case detection probability dðmildÞ
t

represents a combination of factors affecting the detection of mild cases (e.g. the changes in
reporting policies for A(H1N1)pdm09 in Finland, changes in public concerns about the epi-
demic which could affect the individual’s willingness to seek medical care).

A priori we believe that parameters wt and d
ðmildÞ
t are autocorrelated (but independent of

each other). To represent this, we construct them as realisations of logistic-transformed multi-
variate T-dimensional (T = 113) normal random variables ε and σ, with the covariance defined
by kernel K:

wt ¼ 2 logisticðεtÞ;
dðmildÞ
t ¼ logisticð ffiffiffiffiffiffiffiffiffi

0:01
p

st þ logitð0:01ÞÞ for t 2 0 � � �T � 1;

ε; s � N ð0; 0 � � � 0Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
T

;K

0
@

1
A;

Ki;j ¼ exp ð�ði� jÞ2=52Þ þ 0:01� 1ði ¼ jÞ for i; j 2 0 � � �T � 1:

Here T = 113 is number of weeks in the modelled period and 1ði ¼ jÞ is 1 if i = j and 0 otherwise.
The marginal prior distribution of εt and σt isNð0; 1:01Þ, therefore the marginal prior distribu-

tion of wt is concentrated around 1 and distributed in the interval [0, 2] while the prior of d
ðmildÞ
t

is concentrated around 0.01 for every t and distributed in the interval [0, 1] (see Table 1).
The prior values of εt correlate within few months. For example, the prior correlation

between εi and εj is 0.98 for |i − j| = 1 week, 0.5 for |i − j| = 6 weeks, 0.06 for |i − j| = 12 weeks.
The same applies for σ.

Computational method
We estimated the joint posterior distribution of the model parameters and latent variables
using Markov chain Monte Carlo computation (MCMC) with particle Gibbs sampler step [17].
In addition, we applied exact approximate MCMC [18] targeting a smoothed marginal poste-
rior of the model parameters, p(parameters|data)1/25 and p(parameters|data)1/5, to ensure that
the peak area of the target posterior is unimodal and well-behaving. Details are provided in S3
Appendix.

Posterior predictive checks were used to to explore how well the model describes the
observed data. Sensitivity analysis was performed by comparing the posterior modes (i.e. maxi-
mum a posteriori estimates) under different prior settings. Details are provided in S5
Appendix.

Results
If not otherwise stated, the results will be presented in terms of 90% posterior intervals (i.e. the
5th and 95th percentiles) of the estimated quantities. Additional results are presented in S4
Appendix. Exact numerical estimates are presented in S2 Dataset.
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Incidence
The estimated true numbers of A(H1N1)pdm09 infection are shown in Fig 5A and 5B. Fig 6A
presents the attack rates, i.e. the numbers of infected per population size. We estimated that
440 000 – 550 000 individuals in total (8.2 – 10.4% of the population, posterior mean 500 000,
9.3%) were infected in Finland during the modelled period. Specifically, the numbers infected
were 270 000 – 360 000 (5.1 – 6.7%, posterior mean 320 000, 5.9%) and 140 000 – 190 000
(2.5 – 3.5%, posterior mean 160 000, 3.0%) during the first and the second A(H1N1)pdm09
epidemic seasons, respectively. Only a minor portion of infections (0.3 – 0.4%) occurred out-
side the two epidemic seasons. In both seasons, the attack rate decreased with age. It was largest
in the youngest age group (14 – 19% during the first and 5.5 – 7.6% during the second epidemic
season) and smallest in the oldest (5.0 – 6.6% and 4.6 – 6.4%).

Fig 5C presents the cumulative age composition of the infected population per week. The
mean age of infection increased with time. Before the peak of the first season, approximately
half of all infections occurred among less then 15 years olds. During the second epidemic sea-
son only 25% of infections belonged to this age group. The oldest (65+ years) never accounted
for a significant portion of the infected population.

Susceptibility
Fig 7A shows the posterior distribution of susceptibility p (probability of acquiring infection
per contact with an infectious individual) and inflow q (probability of acquiring infection from
outside the population). Susceptibility decreased with age: children aged less than 5 years had a
5-fold greater chance to acquire infection per contact than the oldest individuals. Individuals
aged 20-29 years were most likely to acquire infection from outside the population.

Severity
Fig 7B shows the posterior distributions of the severity parameters s(sev/inf) and s(IC/sev). The
hospitalization/infection ratio had a V shape, the infection being more severe among the youn-
gest (s(sev/inf) = 0.7 – 0.9%) and the oldest (1.3 – 1.7%). Children aged 5-14 years had the small-
est probability of severe disease per infection (0.3 – 0.4%). The IC/hospitalization ratio did not
vary much across age groups, almost repeating the prior information. It was smallest among
the youngest (s(IC/sev) = 7 – 8%) and largest (8 – 11%) for those over 30 years.

Transmission and seasonality
In our model, influenza transmission, including the outbreaks and periods between epidemic
seasons, is modulated by a time-varying reproduction number R0,t = R0 wt (Fig 5E). Before
June 2009, R0,t rose above 1 allowing for the minor pre-seasonal outbreak. A significant
increase in R0,t in the autumn of 2009 marked the onset of the first epidemic season. After the
peak of the first season (November 2009) R0,t dropped below 1 leading to the end of the first
outbreak.

By the end of the first epidemic season about 22% of the population were vaccine-protected
(Fig 5D), especially in the youngest age groups (53% in<20 year olds, 14% in 20-64 olds, and
11% in>65 olds). This induced herd immunity in the population, so R0,t could raise above 1
without causing an outbreak. By the second epidemic season, 41% of the population acquired
immunity from vaccination (posterior mean 52%, 34%, and 47% of individuals aged 0-19, 20-
64 and older than 64 years, respectively) and 5 – 7% acquired immunity from infection.

Revealing the True Incidence of Pandemic Influenza in Finland
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Fig 5. Posterior distribution of time-dependent unknowns. Panels A and B: the true incidence in absolute and log scales. The detected numbers are
shown for reference. Panel C: the cumulative age distribution of infected individuals. Panel D: the estimated number of immune individuals per week. Panel
E: the basic reproduction number R0,t = R0 wt per week. Panel F: the probability of detecting mild infection per week dðmildÞ

t . The full posterior distributions are
visualized, with more probable values represented by darker color. In addition, a few samples from the posterior are shown. The shaded areas mark the
epidemic seasons.

doi:10.1371/journal.pcbi.1004803.g005
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Around October 2010 R0,t started gradually increasing, reaching its maximum in November
2010 and then slowly decreased. For the period November 2010—January 2011, the reproduc-
tion number was above 3. This marked the second epidemic season.

The estimates of R0,t outside the epidemic seasons are uncertain, as scarce data are available
for these periods. Overall, the product R0,t = R0wt was estimated with smaller uncertainty than
wt and R0 individually (see S4 Appendix).

Fig 6. Posterior distribution of derived quantities (Table 2). Panel A: the attack rates per season and age group. Panel B: basic reproduction numbers R0.
Panel C: the effect of the inflow of infection per age group. Panel D: detection ratios. The full posterior distributions are visualized, with more probable values
represented by darker color.

doi:10.1371/journal.pcbi.1004803.g006
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The largest number of potential infections was produced by individuals from age groups
5-14 years old (3.5 – 5.6 infections) (Fig 6B). The smallest number was produced by the oldest
age group (0.4 – 0.5 infections). On average, only few infections per week were introduced

from outside the population (Fig 6C). The random effect wt and the detection probability dðmildÞ
t

increased simultaneously during the early phases of the epidemic seasons. However, for any

time (t20, . . ., T − 1), the variables wt and d
ðmildÞ
t did not have strong posterior correlation (see

S4 Appendix).

Detection
Fig 6D shows the number of detected cases per the number of infected (detection ratio;
Table 2). We estimated that 2.1 – 2.7% of all A(H1N1)pdm09 infections were detected (specifi-
cally 2.5 – 3.3% during the first epidemic season, 1.2 – 1.6% during the second and 1.5 – 2.0%
outside seasons). The detection ratio varied by age with posterior means ranging from 3.7% to
1.9%.

We estimated that the detection probability of the mild cases dðmildÞ
t reached its maximum

before the peak of the first season and decreased subsequently during the outbreak (Fig 5F).
During November 2009, the observed numbers of mild infections decreased much faster than
the observed numbers of hospitalized cases. According to the model, however, the true num-
bers of mild and severe infections decreased at the same speed and the observed difference was

Fig 7. Posterior distributions of model parameters (Table 1). Panel A: the susceptibility p and the inflow
of infection q. Panel B: severities s(sev/inf) and s(IC/sev). The full posterior distributions are visualized, with more
probable values represented by darker color. The prior distributions of these parameters are shown for
reference.

doi:10.1371/journal.pcbi.1004803.g007
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thus explained by the decline in dðmildÞ
t . The posterior of the detection probability of hospitalized

cases d(hosp) followed the prior closely.

Effect of the vaccination campaign
Wemeasured the impact of the vaccination campaign as the number of cases prevented. To
estimate this number, we simulated the incidence of infection, using parameter values sampled
from the posterior and assuming that no one was vaccinated (va,t = 0). According to this analy-
sis (Fig 8), the second season could have started earlier and caused a larger outbreak, leading to
4-8 times more infections overall (total attack rate would have been 38 – 78%). By contrast,
vaccination did not affect the first epidemic season.

We also estimated the impact of the vaccination under a scenario where vaccines were dis-
tributed in the same amount but independent of age (va,t = vb,t for all age groups a, b). In this
situation our model predicts about twice as many infections overall (total attack rate would
have been 15 – 26%).

Discussion
Using a dynamic transmission model, we estimated that 5.9% (90% credible interval 5.1 – 6.7%)
of the Finnish population was infected during the first year of the pandemic A(H1N1)pdm09
strain of influenza in 2009/2010. There was a second season a year later with an attack rate of
3.0% (2.5 – 3.5%) of the population. The vaccination campaign launched in the middle of the
first epidemic epidemic season was essential in mitigating the size of the second season, but

Fig 8. Simulated scenarios. The numbers of infections per week in simulations in absolute (panel A) and log (panel B) scales. Orange colour—scenario
with no vaccination. Magenta colour—scenario with vaccines equally distributed among age groups. The posterior distribution of incidence is shown in black
for reference. The full probability distributions are visualized, with more probable values represented by more concentrated color. In addition, a few samples
are shown.

doi:10.1371/journal.pcbi.1004803.g008

Revealing the True Incidence of Pandemic Influenza in Finland

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004803 March 24, 2016 14 / 19



occurred too late to have an impact on the first season. In both seasons, the proportion of the
infected population decreased with age, with the youngest being at least an order of magnitude
more likely to be infected than the oldest.

The age distribution of the infected population evolved over time. Before the peak of the
first season most infected individuals were children aged less than 15 years. According to the
social mixing matrix, estimated from the available data, this age group forms the core group of
transmission for infections that spread through droplets in close contact. After the end of the
first season, as many as 72% of children aged less than 15 years either had had natural infection
(18%) or had been vaccinated (55%) so that the importance of this age group in the chain of
transmission decreased. During the second epidemic season, the mean age of infected individu-
als was higher.

The posterior mean severity of influenza infection, as measured by the hospitalization/infec-
tion ratio (parameter s(sev/inf)), was 0.7% when averaged over all age groups and had a clear V
shape with the youngest and oldest requiring hospitalization more often. The IC/hospitaliza-
tion ratio (parameter s(IC/sev)) was driven almost entirely by prior information (around 8%
across all age groups).

We estimated that only 2.4% (90% credible interval 2.1 – 2.7%) of infections were recorded
by surveillance, i.e. there were 40 – 50 unobserved A(H1N1)pdm09 infections for each detected
case. The detection probability peaked early during the first epidemic season, with a clear
decline towards the end of the season (Fig 5F). This could reflect the public and governmental
concerns increasing initially and then declining as the awareness of the relatively mild impact
of the novel A(H1N1)pdm09 virus was revealed. The detection ratio in the second epidemic
season was smaller than in the first one. Similar patterns in the detection rates occurred in the
UK during the first two years of the pandemic [19].

In our model, the spread of infection is modulated by four quantities: susceptibility to infec-
tion (parameter p), the pattern of contacts (contact matrix C), the time varying reproduction
number (R0,t) and the rate of inflow of infection (q). Susceptibility to infection was estimated to
decrease with age, which is likely to reflect higher levels of pre-existing immunity among older
individuals [7]. The contact matrix was based on a survey of daily social contacts in
Finland [10].

The standard deterministic SIR model assumes that outbreaks only stop by depletion of the
pool of susceptibles. In particular, a second season would be impossible unless the virus evolves
to escape the prevailing immunity in the population. Although this is known to happen for sea-
sonal influenza [20], the virus did not change much during the first two years of the pandemic
[7]. Vaccination alone cannot explain the observations, as the first season ended in the popula-
tion with 20% vaccine-induced protection while the second season started with 40%. Therefore,
stochasticity in transmission and other mechanisms may be called for.

We applied a time-varying reproduction number (R0,t) of influenza transmission, capturing
the impact of changing population behaviour or weather conditions as a stochastic process. In
particular, cold and dry weather has been suggested as one of the drivers of influenza transmis-
sion [21] and the public behaviour may have changed as the epidemic appeared to be relatively
mild. We estimated that R0,t changed markedly with time (Fig 5E).

The model explains the appearance of the second epidemic season when almost half of the
population was immune with extraordinary transmission circumstances: the reproduction
number was very large (R0,t > 3) for a period October 2010 through January 2011, possibly
reflecting a seasonal (weather) effect. Dorigatti et al. [19] reported a similar finding regarding
the 3rd wave of A(H1N1)pdm09 in the UK, one year after the 1st and 2nd waves. They inferred
that the basic reproduction number increased to 1.5 before the 3rd wave and concluded that
this was likely due to the combination of favourable weather conditions and possible evolution
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of the virus. Of note, we did not factor the possibility of waning immunity in the analysis and,
should it have occurred, our estimate of R0,t would be too high.

The rate of introduction of infection to the population (parameter q) mainly plays the role
of a primer that initiates the outbreaks. Its influence during the outbreaks (epidemic seasons)
was insignificant. Its role was to add stochasticity to the onsets of influenza seasons, thus
removing the need to introduce index cases at any fixed time. The estimates of q were notable
only for age group 15-29 years, reflecting the fact that the first detected cases in the country
belonged to these age groups.

According to our analysis, vaccination played an important role in mitigating A(H1N1)
pdm09 transmission in the second season. By the start of the second season, 41% of the popula-
tion were vaccine-protected while less than 5 – 7% had acquired immunity from infection. We
estimated that in the absence of vaccination the affected population would have been about
4 – 8 times larger. It should be noted, however, that these predictions rely heavily on the poste-
rior estimate of the transmission random effect (wt), which in turn may be strongly dependent
on the conditions and data in the 2010/2011 season.

In a previous analysis of the same data set [2], we assumed that vaccination did not affect
the first season at all, which agrees with the current estimates. Given the two weeks period
needed to develop protective immunity after vaccination, it is likely that an effective proportion
of immune individuals was only obtained after the end the first epidemic outbreak (Fig 5D). In
this study we modelled the vaccine as having a 80% chance to induce complete immunity
against the infection. This efficacy was based on a cohort study conducted in a sub-sample of
the same population during the same time (i.e. the first season of A(N1H1)pdm09) [11].

We used a discrete-time SIR model with a one-week time step to correspond to the available
data. However, a shorter time step would have been more realistic for capturing the dynamics
of influenza for which the infectious period is known to last less than a week [6]. In this case,
each infection generation in our model likely reflects several actual generations, therefore the
basic reproduction number R0,t is an overestimate of what would have been obtained with a
smaller time step or a continuous model.

The estimability of model parameters was constrained by the amount of available data. We
used informative priors on all of the model parameters except the susceptibility p and the trans-
mission random effect wt and set a strong smoothness constraint on the time-varying processes

of transmission (wt) and detection (dðmildÞ
t ). We conducted several sensitivity analyses to study

the impact of the choice of the prior distributions (S5 Appendix). We found that increasing the
variance of the prior distributions leads to smaller attack rates and vice versa. The prior of the

detection probability for mild cases dðmildÞ
t was the most influential one. Some estimated quanti-

ties were more robust to prior specification. The detection probability dmild
t was always esti-

mated to increase before the outbreak of the first season. The estimated trends, e.g. the
decreasing susceptibility with age and the V shape in the age-specific severity, were also
immune to the choice of the prior. The reproduction number R0,t always increased before the
seasonal outbreaks.

In our previous study [2] we analysed the same period of the two first years of pandemic
influenza in Finland using a static model. A dynamic approach allowed us to take into account
the available time-series data to learn about trends in transmissibility and detection. The pre-
sented model estimated the total incidence to be 1.5 times higher (see Table 3). A dynamic
model also produced larger estimates of the impact of vaccination as it is able to take into
account herd immunity effects. Using a static model, we estimated previously that without vac-
cination the overall attack rate would increase only by 0.8 percentage points.
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The attack rates and severity of A(H1N1)pdm09 varied considerably by geographical region
(see Table 3). Such variation may be partly due to lack of precision, based on the differences in
data availability and in the methods of analysis. Nevertheless, the estimated attack rate in Fin-
land was still smaller than found in other studies. Because of the high per-population risk of
hospitalization in Finland (0.06%), the severity of infection (hospitalization/infection ratio)
was higher in Finland than elsewhere, probably reflecting differences in the health care system
and surveillance. Such differences emphasise the need to calibrate transmission models in each
particular setting to best address questions about the performance of surveillance and the
impact of influenza seasons.
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Table 3. Estimates of the attack rates and severity of the pandemic A(H1N1)pdm09 influenza in different regions.

Region and time Data type Model Attack rate Severity

Finland 2009/2010 and 2010/
2011 (the current study)

Laboratory-based surveillance of
cases over time; coverage of
vaccination over time

Dynamic 5.9% and 3.0% during the
two seasons (17% and
3.5% in age group 10-14
years)

Hospitalization/infection ratio 0.7%
(0.4% in age group 5-14 years);
intensive care/hospitalization ratio
8%

Finland 2009/2010 and 2010/
2011 (the same data as in the
current study) [2]

Laboratory-based attack rates per
season; coverage of vaccination

Static 3.9% and 1% during the
two seasons (11% and
2.4% in age group 10-14
years)

Hospitalization/infection ratio 1.1%
(0.3% in age group 5-14 years);
intensive care/hospitalization ratio
10%

London, two outbreaks, August
2009 and Sep-Dec 2009 [6]

Laboratory-based surveillance of
cases over time; incidence of
influenza-like illness over time;
seroconversion rates

Dynamic 9% and 10% during the
outbreaks (22% and 30%
in age group 5-14 years)

Not estimated

Several regions, 2009/2010 [3] Pre- and post-pandemic sera Static 24% in 2009/2010 (meta-
analysis); 46% in age
group 5-19 years

Symptomatic disease/infection ratio
1/3, fatal cases/infection ratio 0.02%

UK, three waves: summer 2009,
autumn and winter 2009/2010,
autumn and winter 2010/2011
[4]

Laboratory-based surveillance of
cases per wave; incidence of
influenza-like illness; serological
surveys

Static 5%, 10% and 15% in three
waves. 10%, 20% and
10% in age group 5-14
years

Hospitalization/infection ratio 0.2%;
intensive care/infection ratio 0.03%

Netherlands, a single season in
autumn-winter 2009 [5]

Laboratory-based surveillance;
serological surveys pre- and post
season 2009/2010

Static 8%, with 35% in age group
5-19

Hospitalization/infection ratio 0.14%;
intensive care/infection ratio 0.017%

The attack rate refers to the (estimated) proportion of infections occurring during one epidemic season. Definitions of severity vary according to study,

based on different types of data. For convenience, the estimates from the current study are shown on the first row.

doi:10.1371/journal.pcbi.1004803.t003
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