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1 Introduction

1.1 From microscopes to metagenomics

Our planet is pervaded by hundreds of millions of microorganisms that are not visible

to the naked eye. These microorganisms, also known as microbes, include bacteria,

archaea, fungi, protists and viruses. They are ubiquitous in water, air, soil and in

our bodies, and they play a vital role in maintaining the balance of our ecosystem.

For example, half of the oxygen on Earth is produced by marine microbes [RLL+03],

and the human microbiome contains at least 100 times as many genes as our own

genome [GPD+06]. Therefore, studying these microorganisms and understanding

their impact on our life is essential.

The hypothesis of the existence of microorganisms dates back to many centuries.

However, the �rst actual observation of microbes was not before the invention of the

microscope in the 17th century. Since then, scientists worked relentlessly in order

to conquer and decipher this mysterious world.

The discovery of the DNA structure in 1953 revolutionized all life sciences. It an-

swered one of the most di�cult questions that haunted the scientists for a long time:

how genetic instructions are passed on from one generation to the next. The answer

fundamentally changed our understanding of genetics. It is the DNA that holds the

genetic instructions, not the proteins as it was thought before. Together with the

invention of DNA sequencing technology, they made a tremendous impact on mi-

crobiology. The microbiologists got a completely di�erent view on the microscopic

world. Previously, identi�cation of the microbes was only based on their phenotypic

characteristics (i.e., the observable characteristics such as morphology). Nowadays,

they can be accurately identi�ed based on their genotypic characteristics as well.

For example, the 16S rRNA can be used for identifying bacteria, as it is highly

conserved between di�erent bacterial species [WBPL91].

Genomics, which is the study of the structure and the functions of individual

genomes, has triggered a major advance in our understanding of microbes. The

microbial genomes studies started with sequencing Bacteriophage MS2 RNA in

1976 [FCD+76], and since that time a large number of microbial genomes were

sequenced and studied. Despite their essential role in microbiology, genomics solely

is not su�cient for understanding the microbial world, for important reasons. As a

matter of fact, microbes do not exist in isolatation. On the contrary, they live in

communities, and they interact with each others and with their host [SBT+13]. Such
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kind of interactions cannot be studied using clonal culturing. Moreover, the number

of microbial cells on Earth is estimated to be 1030 [TG08], and the majority of them

cannot be cultured in labs due to limitations in the current technology [ALS95].

In 1985, it was proposed for the �rst time to clone the DNA collected directly

from the environment [PSLO85]. This opened the doors for the emergence of a

new branch in bioinformatics called metagenomics (the term was coined in 1998

[HRB+98]). Metagenomics allows for the study of microbial samples collected di-

rectly from the environment without prior culturing in labs. Metagenomics studies

revealed the fact that there are numerous microbial organisms that we do not know

about. Those microbial organisms could not be captured using clonal culturing.

Thus, metagenomics proved to be a powerful tool that helps reveal the secrets of

the microbial world.

The invention of high-throughput sequencing (HTS) and the daily improvements in

sequencing techniques paved the way for huge advances in metagenomics. Nowa-

days, sequencing machines are capable of generating hundreds of millions of reads at

ever-dropping cost, which makes sequencing thousands of genomes in metagenomics

samples an easy task.

Metagenomics studies incorporates di�erent types of analysis, such as taxonomic

analysis (or community pro�ling), functional analysis, protein signature-based anal-

ysis, and comparative analysis [HMJ+12]. In this thesis, we focus on taxonomic

analysis, which is a crucial step in metagenomic analysis process. We explain what is

taxonomic analysis, why it is important, and we present MetaFlow, a new taxonomic

analysis tool for solving the community pro�ling problem using high-throughput se-

quencing data.

1.2 Metagenomics taxonomic analysis

A crucial step in metagenomics analysis is to unveil the structure of the micro-

bial community in a speci�c environment. This analysis provides valuable infor-

mation which can help solve challenging problems in di�erent domains like ecol-

ogy [RLY+11], agriculture [HTAC+07], and personalized medicine and public health [NW10].

For example, changes in human microbiota have been linked to obesity [BDW+04]

and Crohn's disease [MTS+12].

The goal of metagenomics taxonomic analysis is to estimate the species richness (i.e.,

the number of di�erent microbial species present in a given sample), and the species

abundances (i.e., their relative frequencies). Figure 1 shows the metagenomics tax-



3

Figure 1: Metagenomics taxonomic pro�ling steps.

onomic pro�ling steps. For many reasons, such as the genotypic similarity between

di�erent species (i.e., similarity between some regions in their genomes), sequenc-

ing biases and errors, and the incompleteness of the microbial genomes databases,

metagenomics taxonomic analysis is a challenging task.

2 Preliminaries

In this chapter, we explain the preliminary concepts required for understanding our

work. Our de�nitions of some biology-related concepts (e.g., sequence alignment)

are tailored to metagenomics for the purpose of understanding our work, and there

are broader de�nitions for those concepts.

2.1 DNA sequencing and sequence alignment

DNA sequencing is the process of determining the correct order of the four nu-

cleotides bases (thymine, adenine, cytosine and guanine) within a DNA molecule

(e.g., a bacterial or a human genome). The length of bacterial genomes ranges from

approximately 130 thousand base-pairs (bps) to 14 million bps [HLP+13], and the

human genome contains approximately 3 billion bps [VAM+01]. Due to limitations

in the current technology, DNA sequencing machines are incapable of generating the

sequence of a complete genome in one go. Instead, they generate short fragments

of DNA sequences called reads. Depending on the sequencing technology used, the

read length ranges from tens of bps to thousands of bps.

In metagenomics, the generated DNA reads are coming from multiple microbial

genomes and are mixed together. One method for identifying from which microbes

these DNA reads are coming from is to match the reads against a database of mi-
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Figure 2: Sequence alignment for a metagenomic sample. Genome 1, 2, and 3

represent a microbial genomes database. Read 1, 2, and 3 represent the DNA reads

in our metagenomic sample. BLAST will map read 1 to genome 1 since this is the

best match. It will map read 2 and 3 to genome 2 and 3, respectively.

crobial genomes. This process is called sequence alignment. There are many tools

for sequence alignment, e.g., BLAST [AGM+90]. BLAST can be used to align

the metagenomics reads, and to obtain a match between each read and one of the

genomes in the database (as shown in Figure 2). However, this method is not suf-

�cient for estimating the richness and the species abundances, since any read can

be perfectly aligned to multiple genomes due to the genotypic similarity between

di�erent species. In addition, the bacterial genomes databases are incomplete. As a

consequence, many reads will not be mapped to any genome. Furthermore, even if

we have a single perfect match, it does not mean it is the correct one since the read

might be originating from another species that does not exist in the database. As

we shall explain later, there are di�erent approaches for solving these problems.

2.2 Taxonomy classi�cation

Scientists classify biological organisms into groups based on some shared charac-

teristics and assign names to those groups. Similar organisms (e.g., L.acidophilus

& L.agilis) are grouped together into a taxon (e.g., Lactobacillus) and are given a

taxonomic rank (e.g., Genus); similar taxa at a given rank are further aggregated

to create a super taxon at a higher rank, thus forming a taxonomic hierarchy. One

way for de�ning the similarity between organisms is based on the similarity between
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Figure 3: An example for the taxonomy tree of some bacterial species. There are

seven taxonomic ranks (Species, Genus, Family, Order, Class, Phylum, and King-

dom). The bacterial species at species-rank are grouped together based on their sim-

ilarity to form a new taxon at genus-rank (e.g., species B.uniformis and B.vulgatus

are grouped together in the Bacteroides genus). Similar genera are grouped together

to form a new taxon at family-rank, and so forth.

their genetic characteristics. For example, species with very similar DNA will be

grouped together to form a taxon at genus-rank. Figure 3 shows an example for a

taxonomy tree.

In metagenomics, classifying the read at the species taxonomic rank is preferred over

classifying it at a higher taxonomic rank like genera or family. For example, specify-

ing that a DNA read is originating from (Kingdom: Bacteria, Phylum: Firmicutes,

Class: Bacilli, Order: Lactobacillales, Family: Lactobacillaceae, Genus: Lactobacil-

lus, Species: acidophilus) is better than (Kingdom: Bacteria, Phylum: Firmicutes,

Class: Bacilli, Order: Lactobacillales, Family: Lactobacillaceae), because it provides

more information for the microbiologists. There is a trade-o� between the speci�city

and the accuracy of prediction, and some tools choose lower speci�city ( i.e., classi�-

cation at a high taxonomic rank) if they cannot accurately estimate the abundances

at species-rank.
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2.3 Graphs and �ow networks

Our solution for the metagenomic pro�ling problem is based on �ow networks. We

model the problem as an optimization problem, speci�cally as a minimum-cost �ow

problem on a bipartite graph. In an optimization problem it is required to �nd a

solution which minimizes (maximizes) a certain cost (utility) among all possible

solutions of the problem. A �ow network is a directed graph where each edge has a

capacity, demand and cost, and receives a �ow. It is required to �nd an optimal way

of sending some content through this network, such that the amount of �ow on an

edge does not exceed the capacity of the edge. Flow networks can be used for solving

a wide variety of optimization problems, and they have been used to solve many

problems in bioinformatics. For example, in [TKRM13] �ow networks were used to

estimate transcript expression, and in [WAC+08] a network �ow based method was

used to assemble the HCV Quasispecies. Our tool is the �rst to apply �ow networks

to solve the metagenomic pro�ling problem. Below we give the de�nitions necessary

for understanding our work. The de�nitions 2.3.3 - 2.3.5 are from [MBCT15].

De�nition 2.3.1.

A graph, is a tuple G = (V,E) where where V is a set of vertices and E ⊆ {{u, v} :
u, v ∈ V } is a set of edges.

A graph is called a directed graph if the edges connecting the vertices are directed

from one vertex to another. If the graph has weights (e.g., integers) associated to

its edges, we call it a weighted graph. A directed graph without cycles (i.e., a walk,

determined by the direction of the edges, which starts and ends at the same vertex)

is called a directed acyclic graph.

De�nition 2.3.2. Bipartite graph

A bipartite graph is a graph G = (V,E) in which the vertex set V can be divided

into two disjoint subsets A,B such that every edge e ∈ E has one end in A, and the

other end in B.

De�nition 2.3.3. Flow network

A �ow network is a tuple N = (G, l, u, c, q), where

• G = (V,E) is a directed graph with a unique source s ∈ V (G) that has only

outgoing �ow, and a unique sink t ∈ V (G) that has only incoming �ow;

• l and u are functions assigning a non-negative demand and capacity, respec-

tively, to every arc;
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• c is a function assigning a cost per unit of �ow to every arc;

• q is the required value of the �ow.

A �ow over a �ow network is a function satisfying the �ow conservation property,

the demand and capacity constraints, and having a given value.

De�nition 2.3.4. Flow over a �ow network

A �ow over a �ow network N = (G, l, u, c, q) is a function f : E(G) → Q+ that

ful�lls the following conditions:

• Flow conservation: for every vertex x ∈ V (G) \ {s, t}, it holds that:∑
y∈N−(x)

f(x, y) =
∑

y∈N+(x)

f(x, y).

• Demand and capacity constraints: for every arc (x, y) ∈ E(G), it holds that:

l(x, y) ≤ f(x, y) ≤ u(x, y).

• Required �ow value q:∑
y∈N+(s)

f(s, y) =
∑

y∈N−(t)

f(x, t).

De�nition 2.3.5. Minimum cost �ow problem

Given a �ow network N = (G, , u, c, q), �nd a �ow f over N that minimizes:

cost(f) =
∑

(x,y)∈E(G)

c(x, y)f(x, y).

3 Related work

The selection of the approach and the tools for metagenomics taxonomic analysis

depends on the laboratory method used for collecting and sequencing the sample,

and the �nal goal of the analysis. There are two main methods for sequencing the

metagenomic samples: the shotgun sequencing and the 16S rRNA sequencing. Our

tool is designed for analyzing the shotgun sequencing samples, thus, after brie�y

explaining the di�erence between the two sequencing methods, we will focus on the

analysis approaches for shotgun sequencing.
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3.1 Shotgun sequencing versus 16S rRNA sequencing

In shotgun sequencing, the whole DNA materials in the sample are sequenced. On

the other hand, in 16S rRNA sequencing, only some phylogenetic marker genes,

which are conserved genes that can classify species at a speci�c taxonomic rank, e.g.,

16S rRNA genes, are extracted and sequenced. While shotgun sequencing generates

tens of millions of reads, 16S rRNA sequencing generates a much lower number

of reads, which is cheaper and faster to analyse. However, 16S rRNA sequencing

analysis does not provide accurate estimations at species-rank. Experiments showed

that the analysis results for 16S-rRNA metagenomic samples tends to overestimate

the species richness in the samples [RV11]. This is caused by several reasons, such

as high sensitivity to sequencing errors, chimeric databases for taxonomy-dependent

methods, and lab protocol-biases like primer biases and PCR biases [SID+15]. For

these reasons shotgun sequencing is preferred over 16S rRNA sequencing if the goal is

getting accurate estimation for the species richness and abundances at species-rank.

3.2 Taxonomy-dependent versus taxonomy-independent anal-

ysis

There are two main approaches for analysing the shotgun-metagenomics samples:

taxonomy-dependent approach and taxonomy-independent approach [MMG12]. In

taxonomy-dependent analysis, reads are mapped to a reference database of genomes,

marker genes, proteins or some compositional models (e.g., HMMs models for the

microbial genomes). Based on the mapping results, the richness and the abun-

dances are estimated. This approach can be further split into three main methods:

alignment-based, composition-based, and hybrid methods [MMG12]. We give a brief

description of these methods and the most popular tools adopting them.

Alignment-based methods

In alignment-based methods, the reads are mapped to some reference database (e.g.,

NCBI bacterial database [TCF+14], Pfam protein database [FCE+16], or a curated

database of phylogenetic marker genes), and the abundances are calculated based on

the mapped reads. Di�erent tools use di�erent techniques for deciding the quality of

the mapping, breaking the ties in mapping results, and �nding the outliers. For ex-

ample, MG-RAST server [MPD+08] uses BLAST to obtain an initial mapping, then

it assigns the read to the best BLAST hit or to the lowest common ancestor of the
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best BLAST hits. Other tools like MEGAN [HAQS07], SOrt-ITEMS [HGKM09],

DiScRIBinATE [GHM10], MARTA [HBB10] and MetaPhyler [LGGP10] adopt a

similar idea with di�erent heuristic algorithms for deciding how to select the best hits

and the taxonomic rank the reads should be assigned to. CARMA [KDG+08] uses

BLASTx to map the reads to the Pfam protein sequences database, and then assigns

the reads to a speci�c taxonomic rank based on the reconstruction of a phylogenetic

tree of each matching Pfam family. MetaPhlAn [SWB+12], mOTU [SMZ+13], and

GSMer [THZ14] map the reads to curated databases of marker regions (i.e., regions

in the genomes that can be used to unambiguously identify di�erent microbes at

some taxonomy rank). MetaPhlAn uses BLAST or BowTie to map the reads to

a curated database of clade-speci�c marker genes (a clade is a group of organisms

that consists of a common ancestor and all its lineal descendants). It assigns the

reads to a speci�c clade based on the mapping results, and estimates the relative

abundance based on read counts and clades size. In mOTU, hidden Markov models

(HMMs) are used for generating pro�les for universal marker genes and for aligning

the reads to those pro�les, while in GSMer the reads are aligned to a database of

genome-speci�c markers that are not restricted to coding regions.

Composition-based methods

Some genomic features can be used to distinguish between di�erent organisms. For

example, k-mer frequencies (the frequencies of all the possible subsequences of length

k) and GC-content (the percentage of DNA nucleotides that are either G or C) di�er

among di�erent organisms [Bir02]. Based on these features, compositional models

can be built from a reference database, and the reads can be classi�ed based on their

similarity to these models. Di�erent machine learning techniques are used to build

these models and to classify the reads. For example, Phymm [BS09] creates inter-

polated Markov models (IMMs) for the bacterial species in NCBI RefSeq database,

and maps the reads based on computed scores corresponding to the probability that

they were generated by these IMMs. NBC [RRR11] builds k-mer frequency models

from a reference database, and uses naive Bayes classi�er to assign the reads to these

models based on their log-likelihood scores. Phylopythia [MMT+07] uses support

vector machine (SVM) to build SVM binary classi�ers from the k-mer composi-

tion vectors of a reference database, then classi�es the reads using these classi�ers.

TACOA [DKG+09] builds 4-mer frequency models, and uses a k-nearest neighbor

algorithm to classify the sample reads.
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Hybrid methods

In hybrid methods, a combination of alignment-based and composition-based meth-

ods is used to improve the quality and (or) the speed of reads classi�cation. For

example, PhymmBL [BS09] uses an equation which incorporates BLAST output and

Phymm output to calculate the con�dence of read alignments. SPHINX [MGSM11]

utilizes a two-phases classi�cation approach. In the �rst phase, it maps the reads

to a 4-mer frequency model constructed from the reference database in order to

reduce the search space. In the second phase, a SOrt-ITEMS-like algorithm is used

to assign the reads to one of the candidate genomes chosen in phase one.

In taxonomy-independent analysis, there is no reference database, and usually an

unsupervised machine learning algorithm is used for clustering the reads based on

the similarity between them. For example, CompostBin [CYBE08] calculates the k-

mer frequencies for various k, uses dimensionality reduction techniques to reduce the

dimensionality of the compositional space, and then clusters the reduced vectors us-

ing clustering with normalized cut algorithm. MetaCluster [LYY+11] uses k-means

algorithm for clustering the data, and provides a two-round binning algorithm, which

separates the clustering of high-abundant species from the low-abundant ones. Other

tools like TETRA [TWL+04], and AbundanceBin [WY11] use some other machine

learning techniques for clustering the reads.

Both taxonomy-dependent and taxonomy-independent approaches have their own

limitations. One major limitation in the taxonomy-dependent methods is the incom-

pleteness of the reference databases. For example, only few thousands of bacterial

species have been fully sequenced [LHJ+15] . This has two important impacts on

the performance of the taxonomy-dependent tools. First, all tools fail to map a

large number of the reads coming from the species that do not exist in the database

(which we refer to as unknown species). Second a large number of reads coming from

these unknown species can be falsely mapped to some species in the database due to

their similarity with these species. On the other hand, most taxonomy-independent

tools do not perform well on samples with low-abundance and very-low abundance

species [WLYC12], and it is di�cult to accurately decide the number of clusters

(number of species in the sample) due to the high similarity between species in

some genera. For the reasons above, getting accurate estimations for species rich-

ness and abundances at species-rank is di�cult for both taxonomy-dependent and

taxonomy-independent tools. As far as we know, there has been no performance

comparisons between any taxonomy-dependent and taxonomy-independent tools,
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hence we can not clearly say which approach might be better than the other.

Our tool can be classi�ed as a taxonomy-dependent/alignment-based tool that works

for shotgun sequencing. It provides accurate estimation for the richness and the

abundances of the known species (species that exist in the reference database) at

species-rank. In our work, we compare between our tool and some marker-based

tools since they proved to achieve results better than the other tools.

3.3 Marker-based community pro�ling tools

Marker-based tools like MetaPhlAn and mOTU represent the current state-of-the-

art for taxonomy-dependent metagenomics community pro�ling. They estimate the

richness and the abundances at species-rank, they are very fast since they align

the reads against very small databases, and they have lower false positive rates

than other tools. However, the predicated abundances can be skewed, since they

calculate the abundances based on the coverage inside small regions instead of the

entire genome, and slight variations in the coverage in these regions can lead to

skewed results. Due to certain biases in sequencing library preparations protocols

and in sequencing machines, the coverage across the genome is not uniform [JHA+15,

LKZR13]. For example, some regions might be highly covered, others might be low-

covered, and some others might not be covered at all. Furthermore, the coverage

results di�er when we use di�erent sequencing technologies [HDP+10].

The main idea behind our tool is to take into account the distribution of the reads

across all genomes. By analyzing the coverage across entire genomes, we can �lter

out the outliers, and get a better estimation for the abundances, as shown in Figure 4.

4 MetaFlow: A taxonomy-dependent metagenomic

community pro�ling tool

MetaFlow is a taxonomy-dependent metagenomic community pro�ling tool, which

works for shotgun sequencing. It classi�es the metagenomic reads at species tax-

onomic rank, and estimates the species richness and abundances in metagenomic

samples.

The input to MetaFlow is a set of metagenomic reads, a database of reference

genomes, and an initial mapping between the reads and the reference genomes (e.g.,



12

60%

18%

22%

43%

42%

15%

29%

57%

14%

alignment to

genomic marke
rs

whole-genome alignment

Marker-based methods

BLAST alignments Coverage-sensitive mapping

metagenomic
reads

marker 1

marker 2

marker 3

Figure 4: In the yellow box, reads are aligned only to genomic markers, and the

relative abundances are highly skewed: marker 1 receives more false mappings (in

red) because it is similar with a subsequence of the second genome (gray); marker 2

has a drop in coverage due to a sequencing bias, and it is covered only by three reads

(orange); marker 3 is covered also by some reads sequenced from a species not in

the reference database (violet). In the green box, reads have whole-genome BLAST

alignments, but the relative abundances are still skewed: the tie in the alignment

of the red reads (either to marker 1, or to the similar gray sequence in the second

genome) is not resolved, and the violet reads from an unknown species aligning to

the third genome are not removed. In the blue box, the coverage-sensitive mapping

of the reads: the red reads are correctly aligned to the second genome (in the gray

sequence) and the violet reads from an unknown species are discarded from the third

genome. The abundances are relative to the known genomes [STM16].

a mapping obtained using BLAST). The output is an estimation of the richness and

the relative abundances of the known species. This is obtained by assigning each

read to exactly one reference genome, or marking it as originating from an unknown

species (a species not present in the database). The optimal reads assignment is

the one achieving the following three objectives: (I) for each reported genome, most

regions are covered by some reads; (II) for each reported genome, the resulting read

coverage across its regions is similar, up to some variation; (III) the total cost of

assigning the reads to their genomes (we convert BLAST scores into costs) is min-

imized. Objective (I) detects outlier genomes (i.e., false positives). The idea is if

a genome has only few regions covered, it is most likely to be an outlier, even if

there is a large number of reads mapped to these regions. Such abnormal cover-

age does not comply with the shotgun sequencing assumption that most genomic
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regions are sequenced if enough reads are sampled, and it happens most likely be-

cause genotypic similarity between di�erent species [STM16]. Objective (II) is for

breaking ties between read alignments with similar scores, and is also based on de-

tecting abnormal read coverage patterns. For example, if most regions of a genome

are covered, but some regions have abnormally high read coverage, then most likely

also these coverage peaks are false alignments. This happens because these regions

are similar to regions in the genomes from which the reads are truly sequenced, or

because of sequencing biases [STM16]. Finally, objective (III) gives more con�dence

in selecting the correct read alignments.

4.1 Problem formulation and computational complexity

Our problem formulation is inspired by [LKZB13]. We formulate the problem of

assigning the reads to their reference genomes as a minimum-cost �ow problem on

a bipartite graph, such that the reads form one part of the bipartition, the reference

genomes form the other part, and BLAST mapping forms the arcs between them.

The following detailed explanation of the problem formulation and the computa-

tional complexity are taken from our paper [STM16].

Assume that the reads have BLAST hits in the collection of reference genomes

G = {G1, . . . , Gm}. We partition every genome Gi into substrings of a �xed length

L, which we call chunks. Denote by si the number of chunks that each genome Gi

is partitioned into. We construct a bipartite graph G = (A ∪ B,E), such that the

vertices of A correspond to reads, and the vertices of B correspond to the chunks of

all genomes G1, . . . , Gm. Speci�cally, for every chunk j of genome Gi, we introduce

a vertex yij, and we add an edge between a read x ∈ A and chunk yij ∈ B if there

is a BLAST mapping of read x starting inside chunk j of genome Gi. This edge

is assigned the cost of the mapping, which we denote here by c(x, yij). In order to

model the fact that reads can originate from unknown species (whose genome is

not present in the collection G), we introduce an `unknown' vertex z in B, with

edges from every read x ∈ A to z, and with a �xed cost c(x, z) = γ, where γ is

appropriately initialized.

In the coverage-sensitive metagenomic mapping problem stated below, the tasks

are: �rst, for each Gi, to �nd the optimal number of reads mapping to it, which

we denote by ri (which is 0 if Gi is an outlier); second, to select an optimal subset

M ⊆ E such that for every read x ∈ A there is exactly one edge in M covering it (a

mapping of x). Objectives (I)-(III) guide these two tasks, as follows. Objective (I)
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will be achieved by �ltering out outlier genomes from the graph at each iteration.

Objectives (II) and (III) are achieved by minimizing the sum of the following two

costs:

(A) the sum, over all chunks of every genome Gi, of the absolute di�erence between

ri/si and the number of read mappings it receives from M (Objective (II));

(B) the sum of all edge costs in M (Objective (III)).

Our formal problem de�nition is given below. We use the following notation: n is

the number of reads, m is the number of di�erent genomes where the reads have

BLAST hits, si is the number of chunks of each genome Gi, i ∈ {1, . . . ,m}, and in

a graph G = (V,E), dM(v) denotes the number of edges of a set M ⊆ E incident to

a vertex v.

Coverage sensitive metagenomic mapping:

Input:

� a bipartite graph G = (A ∪ B,E), where A is the set of n reads, B =

{y11, . . . , y1s1 , . . . , ym1 , . . . , ymsm} ∪ {z} is the set of all genome chunks plus z,
the `dummy' node,

� a cost function c : E → Q,

� constants α ∈ (0, 1), β, γ ∈ Q+.

Tasks:

� �nd a vector R = (r1, . . . , rm) containing the number of reads mapping to

each genome Gi, i ∈ {1, . . . ,m},

� �nd a subset M ⊆ E such that dM(x) = 1 holds for every x ∈ A (i.e., each

read is covered by exactly one edge of M)

which together minimize:

(1− α)
∑

{x,y}∈M

c(x, y)+

+ α · β ·
m∑
i=1

si∑
j=1

∣∣∣∣risi − dM(yij)

∣∣∣∣+
+ γdM(z).
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Theorem 4.1.1. [STM16] The coverage-sensitive metagenomic mapping problem is

NP-hard for all α ∈ (0, 1).

Proof. We reduce from the exact cover with 3-sets (X3C) problem. In this problem,

we are given a collection S of 3-element subsets S1, . . . , Sm of a set U = {1, . . . , n},
and we are required to decide if there is a subset C ⊆ S, such that every element of

U belongs to exactly one Si ∈ C.
Given an instance of Problem X3C, we construct the bipartite graph G = (A∪B,E),
where A = U = {1, . . . , n} and B corresponds to S, in the following sense:

� si = 3, for every i ∈ {1, . . . ,m}

� for every Sj = {i1 < i2 < i3}, we add to B the three vertices yj,1, yj,2, yj,3 and

the edges {i1, yj,1}, {i2, yj,2}, {i3, yj,3}, each with cost 0.

For completeness, we also add vertex z to B, and edges of some positive cost between

it and every vertex of A.

We now show that for any α ∈ (0, 1), an instance for Problem X3C is a `yes' instance

if and only if the coverage-sensitive metagenomic mapping problem admits on this

input a solution set M ⊆ E of cost 0. Observe that in any solution M of cost 0, the

genome abundances are either 0 or 3, and that vertex z has no incident edges in M .

For the forward implication, let C be an exact cover with 3-sets. We assign the

abundances c1, . . . , cm as follows:

cj =

3, if Sj ∈ C
0, if Sj /∈ C

and we construct M as containing, for every Sj = {i1 < i2 < i3} ∈ C, the three

edges {i1, yj,1}, {i2, yj,2}, {i3, yj,3}. Clearly, this M gives a solution of cost 0 to the

coverage-sensitive mapping and abundance estimation problem.

Vice versa, if the coverage-sensitive mapping and abundance estimation problem

admits a solution M of cost 0, in which the genome coverage are either 0 or 3 and z

has no incident edges, then we can construct an exact cover with 3-sets C by taking:

C = {Si | dM(yi,1) = dM(yi,2) = dM(yi,3) = 1}.
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Due to the hardness result from Theorem 4.1.1, we opt for the common iterative re-

�nement strategy, akin to the strategy behind k-means clustering [Ste56], or Viterbi

training strategies with Hidden Markov Models [DEKM98]. In Section 4.3 we present

the details of this approach, but the main ideas are:

1. If the unknown vector R = (r1, . . . , rm) is �xed to some value R = (a1, . . . , am),

then �nding only the optimal mapping M can be solved in polynomial-time

with minimum-cost �ows. We show this in Section 4.2.

2. For �nding the optimal R, we start with a vector R0 = (a1, . . . , am), where ai

equals the number of reads with BLAST hits to Gi. We repeat the following

process, until the vector R converges to a stable value. For each iteration j:

(a) compute the optimal mapping M j with minimum-cost �ows, using Rj as

input;

(b) update Rj to Rj+1, a vector whose i-th component equals meani ·si; here
meani is the 20%-trimmed mean read coverage of the chunks of genome

Gi, obtained from M j.

4.2 The reduction to a minimum-cost �ow problem

The reduction to minimum-cost �ow is taken from our paper [STM16]. Given an

input graph G = (A∪B,E) for the coverage-sensitive metagenomic mapping prob-
lem, with a �xed vector Rj = (a1, . . . , am) of read mappings to the m genomes (at

an iteration j), we construct a �ow network N = (G∗, `, u, c, q) (see Figure 5(b)).

Here, `, u : E(G∗) → N are the demand and capacity of every arc, respectively;

c : E(G∗) → Q is the function giving the cost per unit of �ow for every arc of G∗;

q is the required value of the �ow, that is, the value of the �ow that must exit the

unique source of G∗, which equals the value of the �ow that must enter the unique

sink of G∗.

The construction of G∗ starts with G, and orients all its edges from A toward B,

and sets their demand to 0, their capacity to 1, and their cost as in the input

metagenomic mapping instance, multiplied by (1 − α). We add a global source s∗

with arcs toward all vertices in A, with demand and capacity 1, and 0 cost. Since

we pay the �xed penalty α · β for every read below or above the given coverage of

each genome chunk yij, we add the following arcs:
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Figure 5: Figure 5(a): A bipartite graph G = (A ∪ B,E), whose edges are labeled
with costs. The costs of the edges incident to z are not drawn, and they all equal

γ = 4. An optimal solution for the coverage-sensitive metagenomic mapping is

shown (highlighted edges). The optimal read mappings toG1 andG2 are r1 = r2 = 2,

and the optimal value of the objective function is (1−α)12+αβ(1−1+1−1+1−1+
1− 1)+ γ = 10. Figure 5(b): A subpart of the �ow network N constructed from G,

corresponding to the vertices x1, y
1
1, y

2
1. The arcs with �ow value 1 are highlighted.

The demands and capacities of an arc (u, v) are indicated as [`(u, v)..u(u, v)] and its

cost as $c(u, v).

� an arc from yij to a global sink t∗ with `(yij, t
∗) = u(yij, t

∗) = ai/si, and

c(yij, t
∗) = 0;

� an arc from yij to t
∗ with `(yij, t

∗) = 0, u(yij, t
∗) =∞, and c(yij, t

∗) = α · β;

� an arc from s∗ to yij with `(s
∗, yij) = 0, u(s∗, yij) = ai/si and c(s

∗, yij) = α · β.

We also add arcs from every vertex x ∈ A to the unknown vertex z ∈ B, with

demand `(x, z) = 0, u(x, z) = 1, and cost c(x, z) = γ. From z we add an arc to t∗

with `(z, t∗) = 0, u(z, t∗) =∞, c(z, t∗) = 0.

Finally, we set q = n+
∑m

i=1 ai, and also add the arc (s
∗, t∗) with 0 demand and cost,

and in�nite capacity. The optimal matching for the coverage-sensitive metagenomic

mapping problem consists of the edges of G whose corresponding arcs in G∗ have

non-zero �ow value in the integer-valued minimum-cost �ow over N . See Figure 5

for an example.
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The correctness of this reduction can be seen as follows. As long as a genome chunk

yij has exactly ai/si reads mapped to it, then no cost is incurred; this is represented

by the arc (yij, t
∗) with demand and capacity ai/si, and 0 cost. If yij receives more

reads than ai/si, then these additional reads will �ow along the parallel arc (yij, t
∗)

of cost α ·β. If yij receives less reads than ai/si, then some compensatory �ow comes

from s∗ through the arc (s∗, yij), where these �ctitious reads again incur cost α · β.
We set the capacity of (s∗, yij) to ai/si since at most ai/si �ctitious reads are required

to account for the lack of reads for genome chunk yij.

Requiring �ow value q = n +
∑m

i=1 ai ensures that there is enough compensatory

�ow to satisfy the demands of the arcs of type (yij, t
∗). Having added the arc (s∗, t∗)

with 0 cost ensures that there is a way for the exogenous �ow not needed to satisfy

demand constraints to go to t∗, without incurring an additional cost.

4.3 Implementation details

Our practical implementation is divided into �ve stages. They depend on some

parameters explained in Appendix 1, where also the input and output format, and

other features of the tool are explained. The �ve stages are explained below, and

are shown in Figure 6.

Stage 1: Removing outlier species

In this stage, we remove each outlier genome and the reads that have BLAST hits

only to it. A genome Gi ∈ G is considered an outlier if at least one of the following

conditions holds.

� The average read coverage of Gi (i.e., the number of reads with BLAST hits

to Gi multiplied by the average read length and divided by the length of Gi)

is lower than a given parameter.

� The average read mapping per chunk (i.e., the number of reads with BLAST

hits to Gi divided by si) is lower than a given parameter.

� The percentage of chunks without any BLAST hit is more than a given pa-

rameter.

Stage 2: Breaking ties inside each genome

A read can have BLAST hits to di�erent chunks of the same genome. In this stage,

for each read remaining after Stage 1, we select only one BLAST hit in each genome,
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as follows. For each remaining genome Gi ∈ G, we create a sub-problem instance

G = (A ∪ B,E) where A consists only of the reads that have BLAST hits to Gi,

and B consists only of the chunks of Gi (excluding the unknown vertex z, which

will be dealt with in Stage 4). We �x the one-element vector R of read mappings as

|A|, and solve this sub-problem using the minimum-cost �ow reduction described in

Section 4.2. After this stage, every read has at most one hit to each genome, but it

can still have hits to multiple genomes.

Stage 3: Breaking ties across all genomes

A read can be mapped to di�erent species, due to the similarity between their

genomes. In order to select only one read mapping across all genomes, we solve the

coverage-sensitive metagenomic mapping problem on a graph G = (A ∪ B,E), as
follows. The set A consists of all remaining reads, and the set B of all chunks of

the remaining genomes. The set of edges E is the one obtained by the �ltration

done in Stage 2. Since this problem is NP-hard, we employ the iterative re�nement

strategy, coupled with minimum-cost �ows, mentioned at the end of the previous

section. After each iteration j, we use the resulting mapping M j to remove outlier

genomes, as in Stage 1. After this stage, each read is mapped to exactly one genome,

and to only one of its chunks.

Stage 4: Identifying reads from unknown genomes

In this stage we identify reads originating from species whose reference genomes

are not present in the reference database. We run the same minimum-cost �ow

reduction as in Stage 2, to which we add the unknown vertex z. If a read is mapped

to z, then it will be marked as coming from an unknown genome and removed from

the graph. Finally, we again remove outlier genomes, as in Stage 1.

Stage 5: Estimating richness and relative abundances

For every genome Gi, we compute its average read coverage read_coverage(i), and

its relative abundance rel_abundance(i) as: read_coverage(i) = ri · R/length(i),
rel_abundance(i) = read_coverage(i)/

∑m
j=1 read_coverage(j), where ri is the

number of reads mapping to Gi after Stages 1-4, R is the average read length,

and length(i) is the length of Gi.
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Figure 6: MetaFlow stages

5 Experiments and results

In order to evaluate the performance of MetaFlow, we ran a set of extensive ex-

periments on simulated metagenomics data, in addition to one real metagenomics

dataset, and we compared our results against BLAST, MetaPhlAn, mOTU and

GSMer.

5.1 Experimental setup

Synthetic datasets

The simulated data were created using Metasim [ROA+08]. We used 817 bacte-

rial genomes extracted from the NCBI microbial genome database [PBH+14], from

which we created 48 di�erent datasets using the default 454-pyrosequencing error

model (with mean=250 and standard deviation=1). The species abundances inside

each simulated dataset followed a log-normal distribution with mean=1, and stan-

dard deviation=1. The 48 datasets were divided into two groups: a) Low-complexity

datasets (LC), which had 30 datasets, each one of them contained 4 million reads

sampled from 15 di�erent species, and b) High-complexity datasets (HC), which had

18 datasets, each one of them contained 40 million reads sampled from 100 species.

The complexity here refers to the number of species in the sample. Our experimental
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setup was in line with the previous study [SWB+12]. We used the 48 datasets to run

4 di�erent experiments, which we called LC-Known, HC-Known, HC-Known and

HC-Unknown. These experiments were designed to separately measure the e�ect

of the following on performance of the competing tools: 1) the degree of genotypic

similarity between microbial species, 2) incomplete databases, and 3) the complexity

of the microbial samples.

LC-Known: The goal of the LC-Known experiment was to evaluate the perfor-

mance of MetaFlow in situations where all sample's species exist in the reference

database. We call these species known species. This perfect information scenario

could be an unrealistic situation in metagenomics analysis, nonetheless, we used

it as a lower bar for the comparison between all tools. In addition, we wanted to

measure the e�ect of genotypic similarity between microbial species on the results.

Similarity between bacterial species is one of the reasons that metagenomics pro�l-

ing is a challenging task. The higher the degree of similarity between the species,

the more di�cult it is to �nd the correct mapping, and to �lter the outliers out. In

this experiment, we used 15 LC datasets. These datasets were constructed by vary-

ing the degree of genotypic similarity between the species selected in each dataset,

which we measured using the genomic-distance index given by MUMmer [DPCS02].

Table 1 covers the LC datasets in more details.

LC-Unknown: In this experiment we evaluated the performance of MetaFlow in

situations where some sample's species do not exist in the reference database, which

is closer to a real-life scenario. At the moment, the microbial databases are far from

being complete, and we are capturing only a very tiny piece of the microbial species

diversity. The 15 LC datasets used before in LC-Known were also used in this ex-

periment with one modi�cation. For each dataset, we randomly chose 3 species, and

replaced them with another 3 species that did not exist in our reference database.

These species were selected from the NCBI microbial genome database published

after 2014, and we called them unknown species.

HC-Known: This also was a perfect information scenario. Our objective here was

to evaluate the robustness of the tool when the complexity increases. For that, we

used 9 HC datasets. The species in �rst eight datasets HC1:HC8 were randomly

chosen, while the species in the last dataset HC9 were selected from 15 genera with

di�erent degree of similarity between their species.

HC-Unknown: This is supposed to be the closest to a realistic scenario in metage-

nomics analysis (high complexity, large number of reads, and the sample contains

unknown species). To construct the HC-Unknown datasets, we took the HC-Known
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datasets, randomly chose 15 species from each dataset, and replaced them with an-

other 15 from the unknown species.

Real metagenomics data

We also tested MetaFlow using real metagenomics data. For that, we merged 6

G_DNA_Stool samples of a female from the Human Microbiome Project (acces-

sion numbers SRX877403, SRX877395, SRX877412, SRX024197, SRX025210 and

SRX877173). Five samples were generated using Illumina, and one sample using

LS454. The read length was normalized to 100bps for all reads. The total num-

ber of reads from all samples was 287,565,377, out of which 98,223,162 BLAST

mapped to one or more species. Only alignments with identity ≥ 97% were se-

lected as an input for MetaFlow. In addition to the full reference genomes in

NCBI's bacterial database, we added two other reference genomes: a supercon-

tig of B.uniformis (accession number NZ_JH724260.1), because B.uniformis was

previously reported as most abundant in fecal samples [QLR+nt]; and the longest

sca�old of B.plebeius (accession number NZ_DS990130.1) because MetaPhlAn and

mOTU reported B.plebeius as most abundant in this sample.

Evaluation method

We used the following measures in order to evaluate the goodness of the richness

estimations: sensitivity (true positive rate), precision, and the harmonic mean of

sensitivity and precision. The harmonic mean is also called F-score. To evaluate

the goodness of the relative abundances prediction, we measured the `1-norm of

between the true and predicted abundances. Table 2 shows the de�nition of these

measures.

We compared the performance of our tool against GSMer [THZ14], mOTU [SMZ+13],

MetaPhlAn [SWB+12] and BLAST [AGM+90]. In BLAST analysis, we always se-

lected the best alignment. In case of multiple equally good alignments, we ran-

domly selected one of them; species with coverage ≤ 0.3 were considered outliers

and removed from the results. GSMer does not provide relative abundances, so we

compared only the accuracy of the richness estimations. For mOTU, some known

species did not exist in its database, so in our evaluation it received full marks on

these species. On the other hand, some of the unknown species (in LC-Unknown and

HC-Unknown experiments) already existed in mOTU's database. For these species,

we removed mOTU's correct prediction.
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Dataset Similarity Description

LC1, LC2, LC3,

LC4
Very low-similarity

Each species was selected from a di�er-

ent genus.

LC5, LC6, LC7,

LC8
Very low-similarity

Randomly selecting all species, two

species might come from same genus.

LC9 Low-similarity
1 species from Lactobacillus genus, and

the rest randomly selected.

LC10 Low-similarity
3 species from Lactobacillus genus, and

the rest randomly selected.

LC11 Medium-similarity
1 species from Shigella genus, and the

rest randomly selected.

LC12 Medium-similarity
3 species from Shigella genus, and the

rest randomly selected.

LC13 High-similarity
1 species from Brucella genus, and the

rest randomly selected.

LC14 High-similarity
3 species from Brucella genus, and the

rest randomly selected.

LC15 High-similarity

Randomly selecting 15 species from

only 3 genera, Streptococcus, Brucella

and Bacteroides.

Table 1: LC-known datasets

5.2 Results

Synthetic datasets

Figure 7 shows a comparison between the sensitivity and accuracy results for the

simulated data, and Table 3 shows the average F-score and `1-norm results for the

same data. As shown in Figure 7, BLAST achieves the best score for the sensi-

tivity measure. The result is expected since BLAST reports all species with good

alignments. However, this comes with a big decrease in precision, because BLAST

does not have a strategy for removing outliers or breaking the ties between align-

ments with similar scores. Both MetaPhlAn and mOTU have better precision and

F-score than BLAST, which con�rms that using marker regions is a good strat-

egy for distinguishing between similar species and removing outliers. MetaFlow

achieves the best precision and F-score which con�rms our hypothesis that consid-

ering the coverage across the entire genome gives more accurate estimation than
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Evaluation Measures

sensitivity =
number of correctly identi�ed species

actual number of species in the sample

precision =
number of correctly identi�ed species

number of predicted species

F-score= 2 ·
sensitivity · precision
sensitivity + precision

`1-norm=
∑k

i=1 |True abundancei − Predicted abundancei| , for i ∈
{true species in the sample ∪ predicted species}

Table 2: Evaluation measures for the results

marker-based methods. This is explained by the fact that marker regions are much

shorter compared to the genome length, and any slight variations in coverage in

these regions can easily skew the abundance estimation. On the simulated data

MetaFlow gives a much better abundance estimation than marker-based methods,

with an improvement of 2-4× in average `1-norm. Using our strategy for �ltering

out outlier species and false alignments, MetaFlow also achieves better abundance

estimation than BLAST. The variance in sensitivity of the marker-based methods

in our experiments suggests that such an approach is not always accurate in identi-

fying all species present in the sample. For example, MetaPhlAn's sensitivity is not

maximum in the LC12,LC13,LC14-Known datasets, even though these are perfect-

information scenarios.

The results also show that MetaFlow is robust with the increase in sample size. The

same good results are also obtained in the HC scenario. Finally, the datasets with

high genotypic homogeneity (LC13-LC15) show that this scenario remains a di�cult

one: even though MetaFlow improves both the richness and abundance estimation

over the competing methods, its precision drops to an average of 0.85 and its `1-

norm increases to an average of 40. We give the complete results for the LC-Known

and LC-Unknown experiments in Appendix 2.

Finally, the results are better on the HC datasets than on the LC datasets for

all tools. The reason is that LC datasets were constructed by including di�erent

level of similarity between their species. On the other hand HC datasets were

all selected randomly except HC9 dataset. Also LC-Unknown datasets had 20%

unknown species, while HC-Unknown had only 15%. In addition, since the number

of species in LC datasets in much smaller than in HC dataset, errors in predictions
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are more likely to be more severe in LC datasets than HC datasets.

Real dataset

Figure 8 shows the phylogenetic tree for the species found by MetaFlow in the real

sample. The most abundant species reported by MetaFlow is B.uniformis (23.6%

relative abundance), which was also reported as the most abundant species in human

gut [QLR+nt]. This is also supported by the fact that 15,418,699 reads are mapped

by BLAST only to B.uniformis. Out of these, 10,721,492 are �nally assigned by

MetaFlow to B.uniformis, because of the uneven read coverage. This corresponds

to an average read coverage of 220. To put this number into perspective, the 10th

most abundant species according to MetaFlow, A.shahii, has relative abundance

2.3% and average read coverage 21. MetaPhlAn and mOTU assign to B.uniformis

abundances 1.7% and 6.4%, respectively. The second most abundant species re-

ported by MetaFlow is B.vulgatus, another common species in human gut [QLR+nt].

MetaFlow's predicted abundance is 22.3% (average read coverage 208), which is in

line with MetaPhlAn's prediction of 17.7% and, to an extent, mOTU's prediction

of 11.9%. In Table 5 we give the list of the top 10 prediction of MetaFlow, and

their abundances reported by MetaPhlAn and mOTU. Four species out of the top

six species have also been reported by [QLR+nt] as predominant in human gut, and

they constitute 59% of the sample according to MetaFlow (relative to the species

known to MetaFlow in this experiment). It is important to note that our abundance

calculation is relative to the known genomes only, and 62 of the species reported by

MetaPhlAn are not available in our BLAST database. As a consequence, the actual

relative abundance for B.uniformis might be lower than 23.6%, however, it cannot

be signi�cantly lower than B.vulgatus, as MetaPhlAn and mOTU predicted.

Running time

As shown in Table 4, the running time for MetaPhlAn, mOTU and GSMer is bet-

ter than MetaFlow because they use a small curated databases of markers, while

MetaFlow uses the complete genomes. One way to improve the running time of

MetaFlow is to randomly select small regions of the microbial genomes instead of

using the complete genomes, however we have not tested this method.

6 Conclusion

Microbes play an indispensable role in our life, and it is essential for us to understand

their world. Metagenomics proved to be a powerful tool for unveiling the secrets
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LC-Known LC-Unknown

F-score `1-norm F-score `1-norm

MetaFlow 0.971 10.41 0.825 17.87

MetaPhlAn 0.946 26.42 0.770 31.48

BLAST 0.909 12.46 0.745 21.47

GSMer 0.218 N/A 0.163 N/A

mOTU 0.924 36.31 0.780 43.74

HC-Known HC-Unknown

F-score `1-norm F-score `1-norm

MetaFlow 0.976 4.86 0.883 8.01

MetaPhlAn 0.958 18.61 0.844 19.13

BLAST 0.920 5.94 0.809 11.25

GSMer 0.327 N/A 0.259 N/A

mOTU 0.949 10.55 0.847 18.73

Table 3: Average over the F-score and `1-norm in each experimental scenario. The

15 LC datasets contain 4M reads from 15 species, and the 9 HC datasets contain

40M reads from 100 species.

of the microbial world. Metagenomics community pro�ling, which is estimating the

richness and the abundances of the species in metagenomics samples, is a crucial

step in metagenomics analysis. Due to some limitations in the current sequenc-

ing technology, high similarity between microbial species and the incompleteness of

the microbial databases, metagenomics community pro�ling remains a challenging

problem. At the time being, it is hard to accurately estimate the richness and the

abundances of all the species inside metagenomics samples, and what we can opt

for is to reveal part of the complexity inside the samples. There are di�erent tools

for solving the metagenomics community pro�ling problem and they have their own

advantages and drawbacks. The current state-of-the-art for taxonomy-dependent

community pro�ling is to use a curated database of markers which can uniquely

identify microbes at species taxonomic rank. Marker-based methods calculate the

abundances based on small regions instead of the entire genome, and slight variations

in the coverage in these regions can lead to skewed results. We showed that taking

into account the distribution of reads across the whole genome landscape provides

more information which can improve the results over the marker-based methods. We

introduced MetaFlow, a new tool for solving the metagenomics community pro�ling

problem using high-throughput sequencing data. We also proved that coverage-
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4M reads 40M reads 280M reads

MetaFlow 28 459 2025

MetaPhlAn 14 132 387

BLAST 243 1572 3696

GSMer 42 364 N/A

mOTU 9 84 380

Table 4: Average running time in minutes in each experimental scenario.

MCF MetaPhlAn mOTU

Bacteroides uniformis 0.269 0.026 0.140

Bacteroides vulgatus 0.255 0.260 0.261

Eubacterium rectale 0.118 0.136 0.082

Bacteroides xylanisolvens 0.105 0.061 0.066

Bacteroides plebeius 0.059 0.365 0.344

Bacteroides thetaiotaomicron 0.057 0.002 0.011

Faecalibacterium prausnitzii 0.042 0.056 0.018

Parabacteroides distasonis 0.039 0.001 0.027

Akkermansia muciniphila 0.032 0.061 0.032

Alistipes shahii 0.026 0.030 0.020

Table 5: A comparison between the relative abundance of the top 10 species reported

by MetaFlow and their relative abundance as reported by MetaPhlAn and mOTU

(normalized by the sum of relative abudances of these 10 species). B.uniformis is re-

ported as the most abundant species by MetaFlow, which is aligned with [QLR+nt],

while it was reported as low abundant by MetaPhlAn and mOTU.

sensitive metagenomic mapping problem is NP-hard, and showed how network �ows

can be used for solving the problem. Finally, for metagenomics community pro-

�ling based on reference databases, perhaps a mixture between coverage-sensitive

metagenomic mapping and marker-based methods can lead to even better results.
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Figure 7: Results of the tools on all simulated datasets. The x-axis is the sensitivity

and the y-axis is the precision; each circle is one experiment; inside each plot,

the size of the circles is proportional with the `1-norm (smaller is better). In LC-

Known dataset: 15 datasets, each with 4M reads from 15 species, all known. In

LC-Unknown: 15 datasets, each with 4M reads from 15 species, out of which 3 are

unknown. In HC-Known: 9 datasets, each with 40M reads from 100 species, all

known. In HC-Unknown: 9 datasets, each with 40M reads from 100 species, out of

which 15 are unknown. The unknown species are among 31 bacterial species from

the NCBI microbial genome database, published after 2014. GSMer's results are not

included in the �gures, since its precision and sensitivity were always much lower

than the other methods (see Table 3).
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Figure 8: The species found by MetaFlow in the real sample obtained by merging 6

G_DNA_Stool samples from the Human Microbiome Project (287M reads out of

which 57M BLAST mapped to some species). The size of the circles is proportional

to the relative abundance at that taxonomic level. NCBI's bacterial database of

reference bacterial genomes was used by MetaFlow.
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Appendix 1. MetaFlow in practice

Here we describe how MetaFlow can be used in practice. We explain what are

the input �les, output �les, and the con�guration parameters for the tool. The

description is taken from our paper [STM16].

Input �les

MetaFlow is a Linux-based C++ tool which runs from the command line. There

are two input �les for the tool:

A mapping �le: This is the aligner's output �le transformed into another format

suitable for MetaFlow. We provide a python script which converts BLAST's output

into our mapping �le. If the user wishes to use another aligner, she/he should

transform the aligner's output into our mapping �le format.

A species database �le: A �le contains the name and the genome length for all

the species in the database used by the aligner. We provide a default �le created

from NCBI bacterial database [PBH+14]. A tutorial that explains the format of

these �les and how to create them exists in our tool documentation.

Output �les

MetaFlow generates di�erent output �les. All the �les are in CSV format to make

any further analysis easy. Table 6 lists the output �les and their description.

MCF.con�g con�guration �le

We provide a set of con�guration parameters which can be used to tune the behavior

of our model for �nding the approximated relative abundance, and to control the

running time of the tool. The MCF.con�g is a con�guration �le that contains these

parameters. The parameters are new line-separated, whereas the parameters and

their values are tab-separated. Here, we list these parameters, their description and

default values.

CHUNK_SIZE: Each genome is split into chunks of equal sizes, into which the

reads are mapped based on their mapping position given by the aligner. If the

chunk size is too large, e.g. 50,000, then the uniformity assumption in read



coverage is not fully exploited. On the other hand, if it is too short, e.g. 500,

then the running time becomes unfeasible. The chunk size should be decided

based on the average read length. For example, it can be selected to be ten

times the average read length (default=2000).

ALPHA (α): The weight of the uniform distribution constraint in the optimization

problem explained in the main paper. If α is too small, the aligner mapping

score will dominate, and the uniform distribution constraint will be almost

neglected. If α is too large, uniform distribution constraint will dominate, and

the mapping score will be almost neglected (α ∈ [0, 1], default=0.9).

TRIMMING_PERCENTAGE (TR): As explained in the main paper, we iterate

the minimum-cost �ow algorithm, at each step updating the solution vector

Rj of read mappings inside each genome to Rj+1, using the TR-trimmed mean

read coverage of the chunks of each genome Gi, obtained fromM j. TR is thus

the trimmed mean value (0 ≤ TR ≤ 0.5, default=0.2). A trimmed mean with

value TR = 0.2 is calculated by trimming 40% of the chunks (the lowest 20%

and highest 20% based on their coverage), and calculating the mean for the

rest 60%. If TR = 0, then the required abundance per chunk in Gi will be the

mean coverage for all chunks. If TR = 0.5, the required abundance per chunk

will be the median coverage of the chunks.

In practice, it is not true that the read coverage of each base (in our case, of

each chunk) is the same across each reference genome, but it follows a distribu-

tion. The are various proposals for this distribution, for example the negative bi-

nomial [MHCM11] or gamma [HDP+10], or mixtures of distributions [LKZR13]. In

order to achieve a better approximation for the true distribution, we introduce two

parameters for relaxing the objective function∣∣∣∣read_mappings(i)si
− dM(yij)

∣∣∣∣
of the coverage-sensitive metagenomic mapping problem and allowing for a more

practical formulation.

SPLIT_ARCS (SA): A boolean value (0 for false and 1 for true) allows for switch-

ing between a strict and a relaxed uniform distribution constraint. If SA = 1,

the uniform distribution constraint is relaxed, allowing chunks to have cover-

age higher or lower than the required coverage based on the value of the pa-

rameter NUM_OF_READS_WITH_LOWER_COST. This is achieved by



these variations less than the default coverage penalty. If SA = 0 any variations from the required
coverage will be penalized the default penalty, which makes the uniform distribution constraint strict
(default=1).

NUM OF READS WITH LOWER COST (Nlc): The number of reads per each chunk that will be penalized
less in case of coverage lower or higher than the required one (Nlc 2 N0 , default=5). Fig 1 gives an
example of how these two parameters relax the uniform distribution constraint.
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Fig. 1. Comparison between the strict and relaxed uniform distribution requirments. The strict uni-
form distribution requirment (in red) requires all chunks to be covered with 10 reads. The re-
laxed uniform distribution requirement (in blue) also requires all chunks to be covered with 10
reads. However, the parameter NUM OF READS WITH LOWER COST=5 allows for some chunks
to have coverage 5, and some other chunks for have coverage up to 15. Also, the parameter RE-
QUIRED MAX PER OF EMPTY CHUNKS allows for having completely empty chunks. This allows
for a better approximation for the true distribution of the reads.

Deciding whether a species is an outlier or not is based on the absolute abundance of the species, and
on the coverage of its chunks. For example, if the absolute abundance of a species is 0.1, then with high
probability it is an outlier, and should be removed from the sample. We use the following parameters for
deciding whether a species is an outlier or not. The user can choose to relax or tighten their values based
on her knowledge about the input same.

REQUIRED MIN ABUNDANCE (rel abundancemin): For any species, if the absolute abundance is lower
than rel abundancemin, then the species is considered an outlier and will be removed (rel abunda-
ncemin 2 [0, 1], default=0.7).

REQUIRED AVERAGE CHUNKS COVERAGE (Coverageavg): For any species, if the average coverage of
chunks (number of reads/number of chunks) is lower than Coverageavg, then the species is consid-
ered an outlier and will be removed (Coverageavg 2 N, default=6).

REQUIRED MAX PER OF EMPTY CHUNKS (Chunksemp): For any species, if the ratio between number
of chunks not covered by any read and the total number of chunks is more than Chunksemp, then
the species will be considered an outlier and will be removed (Chunksemp 2 [0, 1], default=0.3).

The size of the flow network (number of nodes, and number of arcs) affects the running time for the
MCF solver. The following parameters are used for controlling the number of arcs in a flow network.

MAX SCORE DIFFERENCE (Sdiff ): For each read, if the difference between the score of the best hit and
any other hit is larger than Sdiff , remove this hit (Sdiff 2 N, default=0).

MAX NUMBER OF ARCS: If the number of arcs in a flow network is larger than this value, randomly
remove arcs with higher mapping cost until the number of arcs less than this (default=5,000,000).

4

Figure 9: Comparison between the strict and relaxed uniform distribution re-

quirments. The strict uniform distribution requirment (in red) requires all chunks

to be covered with 10 reads. The relaxed uniform distribution requirement (in

blue) also requires all chunks to be covered with 10 reads. However, the parameter

NUM_OF_READS_WITH_LOWER_COST=5 allows for some chunks to have

coverage 5, and some other chunks for have coverage up to 15. Also, the parameter

REQUIRED_MAX_PER_OF_EMPTY_CHUNKS allows for having completely

empty chunks. This allows for a better approximation for the true distribution of

the reads.

penalizing these variations less than the default coverage penalty. If SA = 0

any variations from the required coverage will be penalized the default penalty,

which makes the uniform distribution constraint strict (default=1).

NUM_OF_READS_WITH_LOWER_COST (Nlc): The number of reads per

each chunk that will be penalized less in case of coverage lower or higher than

the required one (Nlc ∈ N0 , default=5). Fig 9 gives an example of how these

two parameters relax the uniform distribution constraint.

Deciding whether a species is an outlier or not is based on the absolute abundance

of the species, and on the coverage of its chunks. For example, if the absolute

abundance of a species is 0.1, then with high probability it is an outlier, and should

be removed from the sample. We use the following parameters for deciding whether

a species is an outlier or not. The user can choose to relax or tighten their values

based on her knowledge about the input same.

REQUIRED_MIN_ABUNDANCE (rel_abundancemin): For any species, if the



absolute abundance is lower than rel_abundancemin, then the species is con-

sidered an outlier and will be removed (rel_abundancemin ∈ [0, 1], default=0.3).

REQUIRED_AVERAGE_CHUNKS_COVERAGE (Coverageavg): For any species,

if the average coverage of chunks (number of reads/number of chunks) is lower

than Coverageavg, then the species is considered an outlier and will be removed

(Coverageavg ∈ N, default=2).

REQUIRED_MAX_PER_OF_EMPTY_CHUNKS (Chunksemp): For any species,

if the ratio between number of chunks not covered by any read and the total

number of chunks is more than Chunksemp, then the species will be considered

an outlier and will be removed (Chunksemp ∈ [0, 1], default=0.4).

The size of the �ow network (number of nodes, and number of arcs) a�ects the

running time for the MCF solver. The following parameters are used for controlling

the number of arcs in a �ow network.

MAX_SCORE_DIFFERENCE (Sdiff): For each read, if the di�erence between

the score of the best hit and any other hit is larger than Sdiff , remove this hit

(Sdiff ∈ N, default=0).

MAX_NUMBER_OF_ARCS: If the number of arcs in a �ow network is larger

than this value, randomly remove arcs with higher mapping cost until the

number of arcs less than this (default=5,000,000).

As explained before, �nding an approximation for the optimum abundance is achieved

by running the minimum-cost �ow algorithm iteratively. The following parameters

are used for controlling the running time.

MAX_COST_DIFFERENCE (Cdiff): For any two consecutive iterations itrk, itrk+1

with solution values Ck, Ck+1, if |Ck − Ck+1| ≤ Cdiff , terminate the loop and

return the solution of itrk+1 as the approximated abundance (Cdiff ∈ N, de-
fault=1).

MAX_READS_DIFFERENCE (Rdiff): For any two consecutive iterations, if

the di�erence between the total number of reads remained after each itera-

tion is larger than Rdiff , terminate the loop and return the current solution

(Rdiff ∈ N, default=0).



File Description

abundance.csv
The main output �le. Contains the �nal estimation of

the species richness and abundances.

dist.csv
Contains the �nal distribution of the reads over the

genomes' chunks.

step0.abundance.csv Contains the estimation of the richness and the abund-

step1.abundance.csv ances before starting, and after stages 1, 2, and 3 respec-

step2.abundance.csv tively.

step3.abundance.csv

step0.dist.csv Contains the distribution of the reads over the genomes'

step1.dist.csv chunks before starting, and after stages 1, 2, and 3 res-

step2.dist.csv pectively.

step3.dist.csv

.log The running log �le.

Table 6: Application output �les

MAX_NUMBER_OF_LOOPS (Nloops): The total number of iterations for �nd-

ing the approximated abundance. If the number of iterations exceeded this

value, terminate the loop and return the current solution as the approximated

abundance (Nloops ∈ N+, default=10).

MAX_RUNNING_TIME: If the running time (in minutes) for �nding the ap-

proximated abundance exceeded this value, terminate the loop and return the

current solution as the approximated abundance (default=300).

MAX_NUMBER_OF_ARCS: If the number of arcs in a �ow network larger

than this, randomly remove arcs with higher score until the number of arcs less

than this (default=5000000). This is for controlling the number or arcs in the �ow

networks.

Lemon library

Lemon library[DJK11] is an open source C++ library, which provides implementa-

tions for di�erent data structures and algorithms. It provides an implementation of

the network simplex algorithm [Orl97] which was used to solve our minimum cost

�ow problem.



Appendix 2. LC-Known and LC-Unknown results

The complete results for LC-Known and LC-Unknown experiments are shown in

Table 7 and 8.



Sample ID Tool TP FP FN Sensitivity Precision F-measure

LC1 MetaFlow 15 0 0 1.000 1.000 1.000 0.72

15 1 0 1.000 0.938 0.968 5.01

BLAST 15 0 0 1.000 1.000 1.000 0.44

GSMer 7 31 8 0.467 0.184 0.264 N/A

mOTU 15 1 0 1.000 0.938 0.968 7.43

LC2 MetaFlow 15 0 0 1.000 1.000 1.000 0.66

15 2 0 1.000 0.882 0.938 13.74

BLAST 15 5 0 1.000 0.750 0.857 8.33

GSMer 8 36 7 0.533 0.182 0.271 N/A

mOTU 14 3 1 0.933 0.824 0.875 54.06

LC3 MetaFlow 14 1 1 0.933 0.933 0.933 2.12

15 1 0 1.000 0.938 0.968 37.2

BLAST 15 2 0 1.000 0.882 0.938 1.98

GSMer 9 45 6 0.600 0.167 0.261 N/A

mOTU 14 1 1 0.933 0.933 0.933 5.61

LC4 MetaFlow 15 0 0 1.000 1.000 1.000 1.71

15 1 0 1.000 0.938 0.968 11.54

BLAST 15 3 0 1.000 0.833 0.909 3.99

GSMer 8 58 7 0.533 0.121 0.198 N/A

mOTU 15 2 0 1.000 0.882 0.938 20.29

LC5 MetaFlow 15 0 0 1.000 1.000 1.000 1.19

15 1 0 1.000 0.938 0.968 23.04

BLAST 15 4 0 1.000 0.789 0.882 12.2

GSMer 9 5 6 0.600 0.643 0.621 N/A

mOTU 15 1 0 1.000 0.938 0.968 35.22

LC6 MetaFlow 15 0 0 1.000 1.000 1.000 0.48

15 0 0 1.000 1.000 1.000 23.63

BLAST 15 0 0 1.000 1.000 1.000 0.13

GSMer 8 13 7 0.533 0.381 0.444 N/A

mOTU 15 0 0 1.000 1.000 1.000 2.13

LC7 MetaFlow 15 0 0 1.000 1.000 1.000 0.49

15 2 0 1.000 0.882 0.938 18.31

BLAST 15 1 0 1.000 0.938 0.968 0.54

GSMer 8 52 7 0.533 0.133 0.213 N/A

mOTU 14 0 1 0.933 1.000 0.966 11.84

LC8 MetaFlow 15 0 0 1.000 1.000 1.000 1.09

15 0 0 1.000 1.000 1.000 2.76

BLAST 15 0 0 1.000 1.000 1.000 0.7

GSMer 6 103 9 0.400 0.055 0.097 N/A

mOTU 15 0 0 1.000 1.000 1.000 2.29

LC9 MetaFlow 15 0 0 1.000 1.000 1.000 0.49

15 1 0 1.000 0.938 0.968 3.2

BLAST 15 0 0 1.000 1.000 1.000 0.15

GSMer 13 20 2 0.867 0.394 0.542 N/A

mOTU 14 1 1 0.933 0.933 0.933 27.46

LC10 MetaFlow 15 0 0 1.000 1.000 1.000 0.88

15 0 0 1.000 1.000 1.000 16.74

BLAST 15 3 0 1.000 0.833 0.909 1.88

GSMer 11 91 4 0.733 0.108 0.188 N/A

mOTU 15 1 0 1.000 0.938 0.968 17.45

LC11 MetaFlow 15 1 0 1.000 0.938 0.968 9.74

15 1 0 1.000 0.938 0.968 56.09

BLAST 15 7 0 1.000 0.682 0.811 17.48

GSMer 11 70 4 0.733 0.136 0.229 N/A

mOTU 13 2 2 0.867 0.867 0.867 56.61

LC12 MetaFlow 15 2 0 1.000 0.882 0.938 13.9

14 4 1 0.933 0.778 0.848 26.77

BLAST 15 5 0 1.000 0.750 0.857 20.78

GSMer 9 81 6 0.600 0.100 0.171 N/A

mOTU 12 1 3 0.800 0.923 0.857 98.17

LC13 MetaFlow 15 3 0 1.000 0.833 0.909 40.81

14 2 1 0.933 0.875 0.903 56.72

BLAST 15 7 0 1.000 0.682 0.811 41.04

GSMer 8 62 7 0.533 0.114 0.188 N/A

mOTU 14 1 1 0.933 0.933 0.933 54.81

LC14 MetaFlow 15 3 0 1.000 0.833 0.909 60.74

13 3 2 0.867 0.813 0.839 64.94

BLAST 15 5 0 1.000 0.750 0.857 60.4

GSMer 7 67 8 0.467 0.095 0.157 N/A

mOTU 12 1 3 0.800 0.923 0.857 104.94

LC15 MetaFlow 15 2 0 1.000 0.882 0.938 21.19

15 2 0 1.000 0.882 0.938 36.74

BLAST 15 3 0 1.000 0.833 0.909 16.99

GSMer 8 102 7 0.533 0.073 0.128 N/A

mOTU 10 1 5 0.667 0.909 0.769 46.43

l1-norm

MetaPhlAn

MetaPhlAn

MetaPhlAn

MetaPhlAn

MetaPhlAn

MetaPhlAn
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MetaPhlAn

MetaPhlAn

MetaPhlAn

MetaPhlAn

MetaPhlAn

MetaPhlAn

MetaPhlAn

MetaPhlAn

Table 7: Detailed results on the LC-Known datasets. Sample descriptions are in

Table 1. Best results are shown in bold. TP = true positives, FP = false positives,

FN = false negatives.



Sample ID Tool TP FP FN Sensitivity Precision F-measure

LC1 MetaFlow 12 4 3 0.800 0.750 0.774 6.33

12 2 3 0.800 0.857 0.828 5.51

BLAST 12 7 3 0.800 0.632 0.706 6.44

GSMer 8 22 7 0.533 0.267 0.356 N/A

mOTU 12 2 3 0.800 0.857 0.828 11.36

LC2 MetaFlow 12 1 3 0.800 0.923 0.857 15.26

12 5 3 0.800 0.706 0.750 38.01

BLAST 12 1 3 0.800 0.923 0.857 19.44

GSMer 5 28 10 0.333 0.152 0.208 N/A

mOTU 12 1 3 0.800 0.923 0.857 29.06

LC3 MetaFlow 12 1 3 0.800 0.923 0.857 3.37

12 2 3 0.800 0.857 0.828 15.97

BLAST 12 2 3 0.800 0.857 0.828 3.55

GSMer 6 38 9 0.400 0.136 0.203 N/A

mOTU 11 1 4 0.733 0.917 0.815 10.73

LC4 MetaFlow 12 0 3 0.800 1.000 0.889 1.68

12 1 3 0.800 0.923 0.857 12.19

BLAST 12 2 3 0.800 0.857 0.828 3.90

GSMer 4 57 11 0.267 0.066 0.105 N/A

mOTU 12 1 3 0.800 0.923 0.857 7.35

LC5 MetaFlow 12 0 3 0.800 1.000 0.889 1.18

12 5 3 0.800 0.706 0.750 29.54

BLAST 12 8 3 0.800 0.600 0.686 17.01

GSMer 8 12 7 0.533 0.400 0.457 N/A

mOTU 12 4 3 0.800 0.750 0.774 42.09

LC6 MetaFlow 12 0 3 0.800 1.000 0.889 0.51

12 2 3 0.800 0.857 0.828 27.65

BLAST 12 1 3 0.800 0.923 0.857 3.81

GSMer 8 1 7 0.533 0.889 0.667 N/A

mOTU 12 1 3 0.800 0.923 0.857 22.56

LC7 MetaFlow 12 2 3 0.800 0.857 0.828 20.24

12 4 3 0.800 0.750 0.774 27.29

BLAST 12 3 3 0.800 0.800 0.800 23.23

GSMer 8 46 7 0.533 0.148 0.232 N/A

mOTU 11 1 4 0.733 0.917 0.815 25.34

LC8 MetaFlow 12 0 3 0.800 1.000 0.889 1.15

12 2 3 0.800 0.857 0.828 7.28

BLAST 12 1 3 0.800 0.923 0.857 4.95

GSMer 7 121 8 0.467 0.055 0.098 N/A

mOTU 12 1 3 0.800 0.923 0.857 26.80

LC9 MetaFlow 12 1 3 0.800 0.923 0.857 7.36

12 4 3 0.800 0.750 0.774 13.12

BLAST 12 2 3 0.800 0.857 0.828 9.65

GSMer 7 13 8 0.467 0.350 0.400 N/A

mOTU 11 2 4 0.733 0.846 0.786 31.78

LC10 MetaFlow 12 5 3 0.800 0.706 0.750 17.92

12 3 3 0.800 0.800 0.800 22.51

BLAST 12 11 3 0.800 0.522 0.632 19.86

GSMer 6 116 9 0.400 0.049 0.088 N/A

mOTU 12 3 3 0.800 0.800 0.800 31.94

LC11 MetaFlow 12 6 3 0.800 0.667 0.727 37.97

12 3 3 0.800 0.800 0.800 67.58

BLAST 12 15 3 0.800 0.444 0.571 46.94

GSMer 11 89 4 0.733 0.110 0.191 N/A

mOTU 10 4 5 0.667 0.714 0.690 79.81

LC12 MetaFlow 12 2 3 0.800 0.857 0.828 15.18

11 8 4 0.733 0.579 0.647 31.62

BLAST 12 8 3 0.800 0.600 0.686 25.77

GSMer 7 108 8 0.467 0.061 0.108 N/A

mOTU 9 4 6 0.600 0.692 0.643 113.43

LC13 MetaFlow 12 3 3 0.800 0.800 0.800 53.04

11 2 4 0.733 0.846 0.786 72.58

BLAST 12 7 3 0.800 0.632 0.706 53.10

GSMer 5 64 10 0.333 0.072 0.119 N/A

mOTU 11 2 4 0.733 0.846 0.786 72.70

LC14 MetaFlow 12 3 3 0.800 0.800 0.800 59.75

10 7 5 0.667 0.588 0.625 66.82

BLAST 12 6 3 0.800 0.667 0.727 63.36

GSMer 7 82 8 0.467 0.079 0.135 N/A

mOTU 9 3 6 0.600 0.750 0.667 110.04

LC15 MetaFlow 12 3 3 0.800 0.800 0.800 27.11

12 6 3 0.800 0.667 0.727 34.64

BLAST 12 4 3 0.800 0.750 0.774 21.09

GSMer 5 125 10 0.333 0.038 0.069 N/A

mOTU 8 1 7 0.533 0.889 0.667 41.17

l1-norm
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Table 8: Detailed results on the LC-Unknown datasets. Best results are shown in

bold. TP = true positives, FP = false positives, FN = false negatives.


