
Date of acceptance Grade

Instructor

Event detection in interaction network

Han Xiao

Helsinki June 3, 2016

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/78561464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Han Xiao

Event detection in interaction network

Computer Science

June 3, 2016 52 pages + 3 appendices

graph mining, social-network analysis, temporal networks, event detection, graph summarization

We study the problem of detecting top-k events from digital interaction records (e.g, emails, tweets).
We first introduce interaction meta-graph, which connects associated interactions. Then, we define
an event to be a subset of interactions that (i) are topically and temporally close and (ii) correspond
to a tree capturing information flow. Finding the best event leads to one variant of prize-collecting
Steiner-tree problem, for which three methods are proposed. Finding the top-k events maps to
maximum k-coverage problem. Evaluation on real datasets shows our methods detect meaningful
events.

ACM Computing Classification System (CCS):
H.4 [Information Systems Applications],
H.2.8 [Database Applications],
G.2.2 [Graph Theory]

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Background 4

2.1 Discrete optimization . 4

2.2 Approximation algorithms . 5

2.3 Prize-collecting Steiner-tree problem and its variants 6

2.4 Problem relationships . 7

3 Model 9

3.1 Interaction network . 9

3.2 Interaction meta-graph . 10

4 Problem formulation 13

4.1 Finding the best event . 13

4.2 Finding the top-k events . 14

5 Algorithms 15

5.1 Finding the best event . 15

5.2 Finding the top-k events . 18

5.3 Root sampling strategy . 18

6 Experimental evaluation 21

6.1 Datasets and preprocessing . 21

6.2 Evaluation on synthetic datasets . 23

6.3 Parameter effects on real datasets . 25

6.4 Evaluation on sports tweet dataset 27

6.5 Case study in English Letter . 29

6.6 Case study in Enron dataset . 31

6.7 Case study in Twitter datasets . 32

iii

7 Discussion 36

7.1 Problem formulation . 36

7.1.1 Mixed topics . 36

7.1.2 Broken stories . 37

7.1.3 Alternative problem formulations 38

7.2 Interaction meta-graph construction 39

7.2.1 Similarity = causality? . 39

7.2.2 Self-talking problem . 39

7.3 Other interesting directions . 40

8 Conclusions 42

8.1 Contribution . 42

8.2 Related work . 43

8.2.1 Event detection . 43

8.2.2 Text summarization . 45

8.2.3 Information diffusion . 46

References 47

Appendices

1 NP-hardness of Problem 4

2 Code and scripts

1

1 Introduction

Event detection is a fundamental problem in data mining and numerous methods
have been applied to a variety of application areas, including detecting events in
time series and data streams [GS99], point clouds and vector spaces [BKNS00], and
networks [BGHS12]. In this paper we focus on the problem of event detection in
networks, in particular networks that contain both content and time information
about interactions between the nodes . We define an interaction (u, V, α, t) to be a
piece of information represented by a vector α sent by a node u to other nodes V
at time t. Examples of interaction networks include data communication networks,
such as email, Twitter, or online messaging systems.

At a high level, our goal is to summarize the network activity by finding the top-k
events that take place. We consider an interaction network H = (N, I) representing
a set of interactions I that take place among a set of nodes N . The interactions in I
are directed, annotated with content information, and time-stamped. We define an
event in the interaction graph H to be a subset of interactions, I ′ ⊆ I that are (i)
temporally close, (ii) topically similar, and (iii) correspond to a tree that captures
the information flow in the network.

We convert the interaction network H = (N, I) into a weighted interaction meta-
graph G = (I, E), that is, a graph whose vertices are the interactions I. Two
interactions i, j ∈ I are connected in G if it is possible to explain the information
flow between i and j. In particular, we consider three types of flow: broadcast,
relay and reply. The edge weights of the interaction meta-graph G measure the
topic dissimilarity between connected interactions. Our transformation from the
interaction network to the interaction meta-graph has the interesting property that
an event in the interaction graph H corresponds to a tree T in the interaction
meta-graph G. The root of the tree T is interpreted as the source of the event.
Downstream interactions that occur inside the tree are attributed to the information-
propagation mechanism.

We formalize the task of interaction-network summarization as the problem of find-
ing top-k trees in the transformed interaction meta-graph G = (I, E). We de-
compose our problem into two sub-problems. First, we find a set of independent
candidate events, which are temporally and topically coherent. Since our goal is to
summarize the interaction network we aim to find events that satisfy temporal and
topical coherence constraints while maximizing the number of event nodes. We show

2

this problem is the budget version of prize-collecting Steiner-tree (PCST) problem in
directed acyclic graphs. We provide three algorithms, the best performing of which
is one based on a greedy approach.

The second sub-problem is to select k events that maximize the overall node cover-
age. This task maps to the maximum k-coverage problem, and it can be approxi-
mated using a standard greedy algorithm. To further speed up the running time of
our algorithm, we also propose a search strategy that avoids evaluating candidate
events at all possible tree roots, but heuristically selects the most promising ones.

The problem defined in this paper can be applied to a variety of application scenarios,
such as online social media, bioinformatics, or political science. In our experimental
evaluation, we mainly focus on analyzing textual data in social media. We experi-
ment with one letter dataset, one email dataset and several Twitter-based datasets.
We provide a comparison of the different approaches, as well as several examples that
our methods discover meaningful events. As an example, we demonstrate discovered
events for two datasets in Figure 1.1. The first dataset contains tweets about one
football game. The second contains email records from Enron Corporation1. The
emails are mainly about energy crisis in California2 and Enron scandal3.

In the following sections, we will first give background on discrete optimization and
related problems in Section 2. In Section 3 and 4, we describe our model and problem
formulations respectively. Later in Section 5, corresponding algorithms are proposed
and analyzed. Then, experiment results on both synthetic and real datasets are given
in Section 6. Finally, we discuss possible improvements and conclusions in Section
7 and Section 8.

1https://en.wikipedia.org/wiki/Enron
2https://en.wikipedia.org/wiki/California_electricity_crisis
3https://en.wikipedia.org/wiki/Enron_scandal

3

(a)

Jun-00 Jul-00 Aug-00 Sep-00 Jan-01 Feb-01 Mar-01 Apr-01May-01 Jun-01 Jul-01 Aug-01 Sep-01 Oct-01 Nov-01 Dec-01

Blackout in Bay area
SDGE files a complaint

Blackout Blackouts affect 1.5 million customers.
Enron filed for bankruptcy

3, ees ect power market state california iso energy ferc
2, power state california energy davis electricity utilities gas billion

1, ees ect confidential power state california information energy
10, confidential information ferc enronxgate market california

(b)

Figure 1.1: Detected events by our methods. (a) the temporal volume of detected
events on tweets about a football match and (b) timeline description on Enron
email datasets . In (a), tweet frequency is plotted against time. Top-10 events as
well as non-event messages are colored. Manual annotation of the actual events
is displayed. In (b), external events (smaller black circles and labeled with italic
text) and extracted events in larger and red circles are plotted. Extracted events
are summarized by their top topic terms. (ees : Enron Energy Service, ect : Enron
Capital and Trade Resources, iso: California Independent System Operator, ferc:
Federal Energy Regulatory Commission, SDGE : San Diego Gas & Electri Company.)

4

2 Background

Before diving deeper, we first give the definition and examples of discrete optimiza-
tion, which lies at the heart of our methods. As many such problems are NP-hard,
we briefly describe approximation algorithms, which approaches NP-hard problems
faster but in sacrifice of optimality. We also give definitions to the prize-collecting
Steiner-tree problem and its variants. Last, we describe the relationships among a
list of discrete optimization problems related to this work.

2.1 Discrete optimization

According to the definition in [BV04], an optimization problem has the form:

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m

The vector x = (x1, · · · , xn) is the optimization variable. f0 : Rn → R is the objective
function to be optimized. fi : Rn → R, i = 1, · · · ,m are the constraint functions
and b1, · · · , bm are the limits for the constraints. A vector x∗ is optimal if it has the
smallest objective function value meanwhile satisfying all the constraints. Discrete
optimization problems refer to a subset of optimization problems where values for
x1, · · ·xn are discrete.

Example 1 Set Cover: given a set of ground elements, U = {u1, . . . , un} and S =

{Si ⊆ U | i = 1, . . . , n}, find a set S′ ⊆ S that minimizes
∣∣S ′∣∣ such that ∪

Si∈S′
Si = U

We denote xi = 1 if Si ∈ S
′ and 0 otherwise and have the following form for this

problem:

minimize
∑

i=1,...,m

xi

subject to
∑

Si:u∈Si

xi > 0 for u ∈ U

xi ∈ {0, 1}

5

2.2 Approximation algorithms

Many discrete optimization problems are NP-hard, therefore, unless P = NP, there
are no efficient algorithms solving those problems optimally with running time
bounded polynomially by the input size [WS11]. In this case, people usually re-
lax either of the following requirements, optimality or efficiency. For example, one
approach relaxes the efficiency requirement and is often successful if one puts more
values on optimality and is willing to pay time cost.

However, people are often daunted by the time cost which can be several days even
months. For tasks that need to be done in real-time, such as control system and
digital game, waiting several seconds is intolerable. The other approach relaxes
the optimality requirement meanwhile trying to find a “good enough” or even near-
optimal solution.

α-approximation algorithms belong to the latter approach and is defined in [WS11]
as:

Definition 1 An α-approximation algorithm for an optimization problem is a polynomial-
time algorithm that for all instances of the problem produces a solution whose value
is within a factor of α of the value of an optimal solution.

Intuitively, α measures how much the optimality requirement is relaxed. For ex-
ample, a 1

2
-approximation algorithm for a maximization problem always returns

a solution with value at least half of the optimal value. Note that for minimiza-
tion problems, α > 1 and for maximization problems α < 1 is used. By conven-
tion, the notion of an algorithm with approximation guarantee α is the same as
an α-approximation algorithm. α-approximation algorithms differ from heuristic
algorithms, such as simulated annealing and genetic algorithms, in that the former
provide approximation guarantee while the latter do not.

The study of approximation algorithms gives us the following benefits. First of all,
we need to solve many NP-hard problems in practice and in some cases, approxima-
tion algorithms give good even near-optimal results. Second, instead of evaluating
heuristics empirically, approximation factor gives a quantified approximation guar-
antee in a rigorous way. Last, it gives a way to measure how hard various NP-hard
problems can be approximated.

6

2.3 Prize-collecting Steiner-tree problem and its variants

Prize collecting Steiner tree problem (PCST) is one famous NP-hard discrete opti-
mization problem. It was first studied by Goemans et al. [GW95]. In the original
work, undirected graphs (thus unrooted) are studied. Without loss of generality, we
consider the rooted case in directed graphs.

In this problem, one is given directed graph G = (V,E), tree root r ∈ V , edge cost
function: c : E → R and node prize function: p : V → R. He needs to find a subtree
T = (V

′
, E

′
) rooted at r that minimizes

∑
e∈E′

c(e) +
∑
v 6∈V ′

p(v). In other words, the

optimal subtree should minimize the cost of edges in the tree plus the prizes of nodes
not covered by the tree.

There are several related variants to the original form:

• Net Worth Maximization: one is asked to find subtree T ′ rooted at r that
maximizes

∑
v∈V ′

p(v)−
∑
e∈E′

c(e).

• PCST-Quota: one is given quota Q and asked to find subtree T ′ rooted at r
that minimizes

∑
e∈E′

c(e) under the constraint
∑
v∈V ′

p(v) ≥ Q.

• PCST-Budget : one is given budget B and asked to find subtree T ′ rooted at r
that maximizes

∑
v∈V ′

p(v) under the constraint
∑
e∈E′

c(e) ≤ B.

Note that the original problem is the Lagrangian relaxation form for both PCST-
Quota.

A motivating application for PCST is the fiber-optic network design problem. Sup-
pose we want to lay a fiber-optic network along the roads in a neighborhood. The
street map corresponds to the graph, where graph node corresponds to road inter-
section or customer building. The prize corresponds to the estimated revenues we
can earn by connecting the node. Meanwhile, edge cost corresponds to the cost of
laying network cable along that edge.

The original version does not make much economical sense, while its variants suits
better for this application. For example, the Net Worth Maximization aims for
the most profitable network. For PCST-Quota, the network should cost as least
as possible while satisfying a minimum revenue requirement. For PCST-Budget ,
the goal is to maximize the revenue without surpassing a given budget for the
construction cost.

7

Though the original formulation is equivalent to the Net Worth Maximization prob-
lem in terms of optimization as the sum of their objective functions equal to the
prize sum of all nodes. However, they differ in terms of approximation. For ex-
ample, Goemans [GW95] proposes 2− 1

|V |−1 algorithm for the original formulation.
However, [FPS00] proved there is no constant α-approximation algorithm for the
Net Worth Maximization problem unless P=NP.

2.4 Problem relationships

Several problems directly relate to PCST-Budget in a way that one can be reduced to
another or approximated using another. In this part, we describe the relationships
between these problems. Specifically, we consider k-minimum spanning tree (k-
MST), Steiner-Tree (Steiner-Tree), PCST-Budget and PCST-Quota and show how
one can be reduced to or approximated using another. The results are summarized
in Figure 2.1.

Figure 2.1: Existing problems related to PCST-Budget and their relationships.

Problem 1 k-minimum spanning tree(k-MST): Given an directed graph G =

(V,E) with edges cost: c : E → R, r ∈ V and an integer k, find a spanning tree
T = (V

′
, E

′
) rooted at r with

∣∣V ′∣∣ = k that minimizes
∑
e∈E′

c(e)

k-MST reduces to PCST-Quota when p : V → 1. In this case, k in k-MST maps to
Q in PCST-Quota.

For Steiner-Tree problem, we use the definition in [CCC+99].

8

Problem 2 Steiner Tree: Given a directed graph G = (V,E), r ∈ V , a set of
terminal nodes: X ⊆ V , edges cost: c : E → R and an integer k, find a subtree
T = (V

′
, E

′
) rooted at r such that

∣∣V ′ ∩X
∣∣ = k and

∑
e∈E′

c(e) is minimized.

k-MST is a special case of Steiner-Tree when X = V . Therefore, α-approximation
algorithm for Steiner-Tree (such as [CCC+99]) also applies for k-MST .

Algorithms for PCST-Quota can be used to approximate PCST-Budget . Johnson et
al. [JMP00] propose (5+ε)-approximation algorithm for PCST-Budget in undirected
graph. The (5+ε) factor is derived by reduction from k-MST to PCST-Budget . The
algorithm repeatedly calls algorithm for k-MST using binary search on Q. If the
resulting subtree violates the budget constraint in PCST-Budget , then Q is divided
by 1 + ε to a smaller value. Otherwise, Q is multiplied by 1 + ε to a larger one.
Finally, the output tree using Q has total edge cost smaller than B while the tree
using (1 + ε)Q has cost larger than B.

For directed graph, a similar binary search procedure can be used to approximate
PCST-Budget . Even though there is an α-approximation algorithm [CCC+99] for
PCST-Quota in directed graph, to our knowledge, there does not exist any approx-
imation guarantee for the corresponding PCST-Budget .

9

3 Model

An interaction network is represented by a list of interactions, each consist of a
sender, one or more recipients, a content vector and timestamp information. We
propose a transformation of an interaction network into an interaction meta-graph,
which captures temporal and topical association as well as the information flow
in the network. This transformation helps to provide a cleaner abstraction to the
event-detection problem.

3.1 Interaction network

An interaction network H = (N, I) consists of a set of n nodes, N and a set of
m time-stamped interactions, I between one sender node and a set of recipient
nodes. We assume that interactions are annotated with textual content. In all our
experiments we apply text modeling techniques, such as Latent Dirichlet Allocation
(LDA) [BNJ03], on all the available text in the network to learn global topic-to-token
probability for L topics. Therefore, each interaction is associated with a topic vector.
We note that the topic-modeling choice is independent to our main methodology; in
practice any text-representation scheme can be used, such as, simple bag-of-words
representation.

The set of interactions I in the network is represented as

I = {(ui, Vi, αi, ti)} , with i = 1, . . . ,m, such that ui ∈ N, Vi ⊆ N, ti ∈ R, αi ∈ RL,

indicating that nodes ui interacts with Vi at time ti, and the content of their in-
teraction is described by the vector αi. We consider that interactions are directed.
In other words, more than one interaction may take place between a pair of nodes,
with different time stamps. Conversely, more than one interaction may take place
at the same time, between different nodes. Online communication networks, such as
email networks, Facebook networks are examples of interaction networks. In these
networks, interactions correspond to messages being sent and where one message can
have multiple recipients, e.g, |Vi| > 1. Letter networks is another example, where
there is usually one recipient for each interaction, e.g, |Vi| = 1.

10

3.2 Interaction meta-graph

Given an interaction network H we construct a directed weighted interaction meta-
graph G = (I, E, c). The vertices of I in G correspond to the interactions I in H.
There is an edge from vertex i = (ui, Vi, αi, ti) ∈ I to a vertex j = (uj, Vj, αj, tj) ∈ I
if the following holds:

1. Interaction i takes place before interaction j (time comprehension): ti < tj.

2. Information comprehension takes place in one of the following ways:

(a) interactions i and j share the same sender node in N : ui = uj (broadcast);

(b) the recipient nodes of the interaction i contain the sender node of the
interaction j and the recipient nodes of j is not the sender node of i:
uj ∈ Vi and ui 6∈ Vj (relay);

(c) the recipient nodes of an interaction i contain the sender node of an
interaction j and the recipient nodes of j contain the sender node if i:
uj ∈ Vi and ui ∈ Vj (reply).

Example 2 A synthetic interaction meta-graph (Figure 3.1): The edges be-
tween (d, f), (a, b), (b, c) (Figure 3.1 (c)) are the examples of three edge types re-
spectively (broadcast, relay, reply). Two main events are happening: (1) progress:
CEO asked PM about project progress in interaction a, which is forwarded to T1 and
T2 in interaction b. Later, T1 reported back to PM in c. Last, PM reported to CEO
in d. The information flow in this event is a → b → c → d. (2) T2 came up with
some suggestion and reported it to PM in e. The PM found the suggestion useful
and later forwarded to CEO in f . The information flow in this event is e → f . g
is not in the top-2 events as the topic is different from the top-2 and it is the only
football-related interaction. Note that due to time comprehension, G is a DAG.

For the edges of the interaction meta-graph G, we assign weights to measure the
topical dissimilarity between interactions. Given two interactions (ui, Vi, αi, ti) and
(uj, Vj, αj, tj) connected by an edge in G, our edge-weighting function c : E → R is
a distance function between the topic vectors αi and αj.

Finally, given a meta-graph G = (I, E, c) and a time interval [s, f] we define the
time-induced meta-graph G([s, f]) = (I([s, f]), E, c), where I([s, f]) are the interac-
tions that occur in [s, f]

I([s, f]) = {(u, V, α, f) ∈ I | s ≤ t ≤ f} .

11

(a)

Id Sender Recipients Time Topic

a CEO [PM] Mon progress
b PM [T1, T2] Tue progress
c T1 [PM] Wed progress
d PM [CEO] Thu progress
e T2 [PM] Wed suggestion
f PM [CEO] Fri suggestion
g T2 [T1] Thu football

(b)

a

b

relay

d

f

c

reply

e

g

relay

relay

(c)

Figure 3.1: A synthetic example of company email network. (a) is the interac-
tion network. Each edge corresponds to one interaction/email, which is labeled
by (interaction id, message topic, timestamp). (b) lists the individual inter-
actions. All interactions happen within the same week. (c) is the corresponding
interaction meta-graph, in which edges that correspond to the true information flow
are colored by the corresponding events.

12

The motivation for defining G([s, f]) is that we are interested in interactions that
occur within a bounded time interval.

13

4 Problem formulation

We aim at detecting the top-k events that are (1) topically and temporally coherent
individually and (2) together cover interactions as many as possible.

We define an event to be a rooted subtree T of the interaction meta-graph G. An
event naturally has a source vertex (or interaction) and is spread in the temporal
network H by propagation mechanism that corresponds to information flow along
the edges of G. We are interested in events that have high volume, which translates
to the number of interactions included into tree T . We are also interested in events
in which the interactions are temporally close and topically coherent. Finally, we
are interested in finding the top-k events that cover as many interactions as possible.
Note that events might overlap in their covered interactions.

To simplify the problem of finding the top-k events, we decompose the main task
into two sub problems: (1) finding a set of independent candidate events that satisfy
topic and time constraints and maximize coverage of interactions, and (2) selecting
the top-k events to maximize total coverage.

4.1 Finding the best event

We give the formal definition of the problem of finding the best event:

Problem 3 Given an interaction meta-graph G = (I, E, c), a root vertex r ∈ I, a
time budget I, and a dissimilarity budget B, find a directed subtree T = (Ve, Ee) ⊆ G,
rooted at r, which maximizes the number of vertices

|Ve|

while satisfying the constraints∑
e∈Ee

c(e) ≤ B and (max
i∈Ve

ti −min
j∈Ve

tj) ≤ I

Note that the time constraint can be omitted, if we restrict the input graph to be
induced by the time interval [tr, tr + I], where tr is the root node’s time-stamp.

We observe that Problem 3 is a special case of PCST-Budget when p(v) = 1. In
addition, the input graph is DAG. Overall, our problem can be written as follows.

14

Problem 4 Given a weighted directed acyclic graph G([s, f]) = (I([s, f]), E, c), a
root vertex r, and cost budget B, find a subtree T = (Ve, Ee) ⊆ G([s, f]), rooted at
r, that maximizing the number of vertices

|Ve|

while satisfying

∑
e∈Ee

c(e) ≤ B

.

Despite being a special case to PCST-Budget , Problem 4 is NP-hard. The proof of
the following proposition is given in Appendix.

Proposition 1 Problem 4 is NP-hard.

4.2 Finding the top-k events

As the interaction network is likely to contain more than one event, we are interested
in finding k events that describe different aspects of the whole network while covering
as many interactions as possible. This is captured in the following.

Problem 5 Given an interaction meta-graph G = (I, E, c) and k ∈ N, find a set
of k trees T = {T1, . . . Tk}, with each event tree T = (Ve, Ee) ∈ T to be a subgraph
of G rooted in some ri ∈ I, such that the total number of spanned interactions
| ∪T=(Ve,Ee)∈T Ve| is maximized.

It is easy to observe that this problem is equivalent tomaximum k-coverage problem,
which is NP-hard.

Problem 6 Maximum k-coverage: Given a set of ground elements, U = {u1, . . . , un},
S = {Si ⊆ U | i = 1, . . . , n} and k ∈ Z, find a set S ′ ⊆ S that

∣∣S ′∣∣ = k and ∪
Si∈S′

Si

is maximized.

Proposition 2 Problem 5 is NP-hard. [Vaz13]

15

5 Algorithms

In this section we present a list of algorithms for problems defined previously. For
Problem 4, there are no existing α-approximation algorithms. We propose three
algorithms: a greedy algorithm, a dynamic-programming algorithm, and an adap-
tation to an existing approximation algorithm.

5.1 Finding the best event

To find the best tree, as defined by Problem 4, we consider three algorithms.

Greedy tree growing: The greedy algorithm (Algorithm 1) starts from the root
and builds the event tree by adding one vertex (interaction) at a time. At each step
the algorithm selects the edge with the minimum cost (topic dissimilarity) from the
cutset of the current tree. This choice aims to maximize the topical coherence of
the event discovered. The running time is O(|I|2).

Algorithm 1: Greedy growing tree algorithm
Data: G,B, r
Result: T rooted at r

1 T = (Ve, Ee), Ve = {r}, Ee = {};
2 (i, j) = argmin

(i′ ,j′)∈cutset(T,G)

c(i
′
, j

′
) ;

3 while c(T) + c(i, j) ≤ B do
4 Ve = Ve ∪ {j} ;
5 Ee = Ee ∪ {(i, j)} ;
6 (i, j) = argmin

(i′ ,j′)∈cutset(T,G)

c(i
′
, j

′
) ;

7 return T ;

Directed Steiner-tree algorithm (DST): This algorithm (Algorithm 2) directly
relates to the background material in Section 2.4. We illustrate the relationship
in Figure 5.1. In this case, we approximate PCST-Budget via binary search using
k-MST on k.

It’s easy to see that the larger k is for k-MST , the larger cost the resulting tree
should have (and vice versa). We initially run algorithm for k-MST with k = |G.I|,
the largest possible value and see if the produced tree cost c(T) exceeds B. If so,

16

Figure 5.1: Problems related to Problem 4 and their relationships. Problem 4 is
added, compared to Figure 2.1. We use algorithm for Steiner-Tree, for its special
case, k-MST , to approximate Problem 4. The approximation is done via binary
search.

a new run on k-MST with k halved is performed. Otherwise, k is doubled. This
process is repeated until the largest possible k which produces a feasible solution for
Problem 4 is found.

There is a special treatment as k is integer. In the end, we need to test if setting
k = ku gives feasible solution because the algorithm has not evaluated such case
when it quits the while loop.

We use the algorithm by Charikar [CCC+99], CharikarDST , for k-MST as k-MST
is a special case of Steiner-Tree which CharikarDST approximates. In our case,
CharikarDST takes five arguments as input: G, r, X, k and `. X are the terminal
node set. k is the minimum number of terminal nodes to cover in the returning
tree. ` controls the recursion depth of the algorithm. The deeper the recursion, the
better approximation guarantee, however, the longer computational time. Thus, `
is a parameter that provides a quality-of-approximation vs. efficiency trade-off. The
output of CharikarDST is one feasible solution. We assume the edge cost function
c is included as attribute in G.

The running time for CharikarDST is O(|I|`|X|2`). In our case, X = I, thus the
running time is O(|I|3`). We use ` = 1 but still the algorithm is mainly of theoretical
interest and not practical for large datasets.

Unlike [JMP00], which gives approximation ratio for PCST-Budget in undirected
graph, we are not able to derive any non-trivial approximation guarantee for Algo-

17

rithm 2, even though CharikarDST provides approximation guarantee.

Algorithm 2: Binary search using Charikar’s DST algorithm
Data: G, r,B, `
Result: T rooted at r

1 kl = 1, ku = |G.I|;
2 while kl < ku − 1 do
3 k = bkl+ku

2
c;

4 T = CharikarDST (G, r,G.I, k, `);
5 if c(T) > B then
6 ku = k − 1;
7 else
8 kl = k;

9 T = CharikarDST (G, r,G.I, ku, `) ;
10 if c(T) ≤ B then
11 return T ;
12 else
13 return CharikarDST (G, r,G.I, kl, `);

Dynamic programming algorithm (DP): The third algorithm we present is
inspired by the idea that when the input DAG is a tree with integer edge cost, the
problem can be solved optimally by using a simple dynamic programming approach.

Each node u ∈ V has one hash table Au. Au[i] = j denotes the total prize of the
optimal tree rooted at u using budget i. Initially for each node, u ∈ V , Au[0] = p(u).

Au[i] = j is defined recursively in the following ways:

1. If u has only one child v and c(u, v) ≤ B, then Au[k] = Av[k− c(u, v)] + p(u).

2. If u has two children v, w, we can choose the subtree rooted at either of its
children or both but using different budgets. This structure can be defined
recursively:

Au[k] = max

max{Av[i] + Aw[j] + p(u) | i+ j + c(u, v) + c(u,w) = k}

Av[k − c(u, v)] + p(u)

Aw[k − c(u,w)] + p(u)

(1)

18

Without loss of generality, we assume the input tree is binary.

Note that the DAG version (Problem 4) is NP-hard. We investigate a way to adapt
this algorithm for general (non-tree) DAGs in sacrifice of optimality. Specifically, we
first transform the input DAG into a tree by using the single-source shortest paths
from r of G. The shortest paths can be calculated by Dijkstra’s algorithm [Joh73]
and then apply the dynamic-programming algorithm. For integer edge weights and
a tree input, the running time of the DP algorithm is O(|I|B2). In our case, edge
weights are real numbers. So we discretize the weights to some decimal points.

Algorithm 3: Dynamic programming algorithm for PCST-Budget : preprocessing
by Dijkstra and edge-weight discretization is performed. p is the decimal point for
weight discretization.
Data: G,B, r, p
Result: T

1 T ′ = dijkstra(G, r) ;
2 T

′′
= discretize_edge_weights(T ′, p) ;

3 return DP (T
′′
, B, r) ;

5.2 Finding the top-k events

Once we have computed a set of candidate event trees using any algorithm for
Problem 4, we need to select k event trees from the candidate set so that vertex
coverage is maximized. This is essentially the maximum k-coverage problem. A
standard greedy algorithm gives approximation ratio 1 − 1

e
[Vaz13]. The running

time is O(|I|2).

5.3 Root sampling strategy

Ideally, we calculate candidate trees rooted at all nodes and use them as the input to
greedy maximum k-coverage algorithm discussed above. However for practical pur-
poses, this leads to an inefficient scheme, as finding the best event for a given inter-
action as the root is itself an expensive computational task and real-world networks
consist of millions of interactions. To overcome this issue and speed up the algo-
rithm for finding top-k event trees, we propose a simple root-sampling strategy that
ranks roots according to how promising they are with respect to the node-coverage

19

Algorithm 4: Greedy algorithm for maximum k-coverage problem (Problem 5)
Data: T ′

, k

Result: T
1 T = {} ;
2 V = {} ;
3 while |T | < k do
4 T = argmax

T ′∈T ′
|T ′.V − V| ;

5 T = T ∪ T ;
6 V = V ∪ T.V ;

7 return T ;

objective function. In practice, roots with very little promise will be excluded from
evaluation.

The idea of our sampling scheme is to propose a fast-to-calculate measure that gives
an upper bound on the candidate tree size before actually calculating the tree (using
any of the algorithms in Section 5.1). We use this upper bound as the score to rank
the roots and decide which one to evaluate next. The higher the score, the more
likely the root is selected for actual calculation.

This upper bound measure basically answers the following question: given G =

(V,E), root r ∈ V and budget B, what’s maximum number of nodes that a feasible
solution of Problem 4 can cover?

We define the minimum in-edge of u ∈ V as

e∗(G, u) = argmin
e′∈δ+(G,u)

c(e′),

where δ+(G, u) = {e ∈ G.E | e.i = u}.

Ranked minimum in-edges of V ′ ⊆ G.V is defined as:

RMIE(G, V
′
) =

{
e∗(G, v1), . . . , e

∗(G, v|G.V |)
}
,

where v1, . . . , v|V ′ | ∈ V
′ and c(e∗(G, vi)) ≤ c(e∗(G, vi+1)). Note that RMIE(H,V

′
)

is an ordered set. The top-k elements in RMIE(G, V
′
) is RMIE(G, V

′
, k).

Given B, the budgeted ranked minimum in-edges is defined as:

20

B-RMIE (G, V
′
, B) = RMIE(G, V

′
, k),

where k satisfies:

∑
i=1,...,k

c(e∗(G, vi)) ≤ B and
∑

i=1,...,k+1

c(e∗(G, vi)) > B.

Denote all feasible solutions of Problem 4 as T (G, r,B) , then we have the following:

Proposition 3 ∀T ∈ T (G, r,B), |T.V | ≤ |B-RMIE (G,G.V − {r} , B)|+ 1

Proof : assume there is a feasible solution T ′ such that its size is greater than the
upper bound:

∣∣T ′∣∣ > |B-RMIE (G,B)| + 1. Then according to the definition of
B-RMIE , c(T ′

) > B, which is a contradiction.

As a conclusion, our root sampling strategy first ranks all the vertices by the upper
bound (defined by B-RMIE) in descending order. Then it sequentially selects
vertices from this list.

21

6 Experimental evaluation

We evaluate our methods on both one synthetic dataset and 3 types of real datasets,
letter, email and tweet. Because of insufficient ground truth data, we mainly use
synthetic datasets as the ground truth to evaluate different algorithms’ performance.
We also evaluate the results on real datasets both qualitatively and quantitatively.

6.1 Datasets and preprocessing

Synthetic data. We generate synthetic datasets in two steps: (1) we generate
ground truth event trees; (2) we inject noise interactions. For event generation, we
use the tree generation model by Kumar et al. [KMM10]. Initially, the event topic
vector α̃ is generated by randomly setting one of its elements to 1 and the rest to 0.
At each iteration, a new interaction, i = (u, V, α, r) is created and linked randomly
to one of the nodes in the constructed tree. u and V are randomly selected from
a global participant set under the interaction meta-graph requirement (Section 3).
We consider the case where there is only one recipient for each interaction: |V | = 1.
α is generated by adding small amount of random noise to α̃. For t, we add a small
time difference to the timestamp of the interaction that i connects to.

Noise interactions are independently generated by randomly and independently sam-
pling a topic vector, a sender, a recipient and a timestamp.

Real-world data. We evaluated our methods on four real-worlds datasets (statis-
tics given in Table 6.1):

English letter : named as Corpus of Early English Correspondence Extension (CEECE).
4. This dataset contains 4945 personal letters by 315 unique persons from 1620 to
1800. Each letter maps to an interaction in our model.

Enron: the original dataset contains the email communication records of Enron
Corporation. In this experiment, we use a preprocessed version of the original one5.
This version contains 882 unique messages sent by 133 email addresses during 1999-
9-6 to 2002-2-13. Each email maps to an interaction in our model.

Tweets by hashtag : we use three sub datasets, in each of which contains only tweets
that contain a specific hashtag. The hashtag for each sub dataset is #beefban,
#baltimore and #ukraine respectively. For example, in #beefban, all tweets contain

4http://ota.ox.ac.uk/desc/2510 Spelling variations have been normalized to modern English.
5http://bailando.sims.berkeley.edu/enron_email.html

22

hashtag #beefban. We include only tweets that contain at least one mention 6,
which serve as the recipients. Each tweet is considered an interaction.

#beefban contains mainly tweets about Indian president signing the bill to ban
beef in state Maharashtra7. #baltimore is mainly about Baltimore protests8 in
2015. #ukraine is on the Ukrainian crisis 9 and its political relation with Russian
Federation. All three datasets are provided by Garimella et al. [GDFMGM16].

Sports tweets : We tracked live Twitter stream on a UEAF football game between
Real Madrid and Manchester City (football) 10. The tracking aligns with the start
and finish of game, including the intermission period. This dataset differs from the
previous one on Twitter as it serves as the ground truth for evaluation.

Table 6.1: Network statistics on real datasets. For interaction network, both sender
and recipients are considered nodes. Singleton interactions in the interaction meta-
graph are removed.

Datasets Interaction networks Interaction meta-graphs
#nodes #edges #nodes #edges Period

Letter 723 820 3720 6745 1680 - 1800
Enron 1144 2106 812 21297 1998-10-30 - 2002-02-13

#beefban 11895 33584 26317 75870 2015-03-03 - 2015-03-05
#ukraine 16218 59096 46540 142746 2015-02-27 - 2015-03-03
#baltimore 38541 102139 61501 132012 2015-04-26 - 2015-04-28
football 76205 103592 16035 17261 2016-05-04 (21:00 - 22:59)

Preprocessing. We observe the phenomenon that the same person sends the same
(or very similar) messages multiple times (e.g, >100). This phenomenon is especially
remarkable for controversial topics such as Indian beef ban and Baltimore riots, for
which certain people tend to repeatedly state their stances using the same messages.

Our methods are easily misled by the sheer amount of redundant messages. To avoid
this problem, we merge similar messages of the same sender into one. We consider

6https://support.Twitter.com/articles/14023
7http://indianexpress.com/article/india/india-others/beef-banned-in-maharashtra-5-yrs-jail-

rs10000-fine-for-possession-or-sale/
8https://en.wikipedia.org/wiki/2015_Baltimore_protests
9https://en.wikipedia.org/wiki/Ukrainian_crisis

10http://www.uefa.com/uefachampionsleague/season=2016/matches/
round=2000637/match=2015785/index.html

23

two messages similar if (1) they are sent by the same user, (2) the Levenshtein
edit distance [BM00] between their content is below some given threshold (we use
10%) (3) their time distance is relatively small (e.g., one day). In the newly-merged
message, the text content and timestamp are copied from the earliest message. Then,
recipients are the conjunction of all original messages’ recipients.

We take different approaches for vectorizing interaction content in emails/letters
and tweets. For emails/letter, whose body are usually much longer than tweets, we
train topic model using Mallet11. We then assign a topic vector for each node in G
and use cosine distance to compute edge weight.

Measuring tweet similarity is an open challenge due to its short length, conciseness
and spelling variations. We took an ensemble approach where the vector represen-
tation comes from several models. Besides topic vectors, we use also (i) bag-of-word
(BoW) with tf-idf re-weighting and (ii) hashtags collected for each tweet. For BoW
and hashtag representations, we use cosine and Jaccard distance for weight assign-
ment respectively. Last, we sum up the three distances in a weighted manner. The
weights for topic vector, BoW and hashtag are 0.4, 0.4, 0.2 respectively for tweet-
related experiments.

For topic modeling, for Enron, Letter and tweet-related datasets, we use 50 topics,
run it for 200 iterations.

6.2 Evaluation on synthetic datasets

We evaluate five different algorithms for finding the best event (Problem 4): (1)
greedy tree growing (greedy), (2) binary search using Charikar’s DSP algorithm
(binary_search), (3) dynamic programming without Dijkstra preprocessing (DP),
(4) dynamic programming with Dijkstra preprocessing (DP+dij), and (5) random
tree growing (random) as a baseline. The random algorithm mimics the greedy
excepts that it selects a random edge to grow at each step.

We compare the performance of the algorithms under (1) different noise levels and
(2) different event sizes. Noise level is defined as the ratio of the number of noise in-
teractions over the total number of interactions of ground truth events. For example,
if the noise level is 10.0 with one event of size 10, there are 100 noise interactions.
Event size is the number of nodes in the ground truth event tree.

11http://mallet.cs.umass.edu/topics.php

24

For the DSP algorithm we set ` = 1, as we empirically encounter insufficient memory
for larger values.

(a)

(b)

Figure 6.1: (a) Performance of algorithms under different noise levels from 0 to
100 at step size 0.5. Results are averaged over 50 experiments. (b) Performance of
algorithms under different event sizes from 10 to 100 at step size 10. Noise level is
fixed to 20.0. Measurement values are averaged from 50 experiments.

Different noise levels. To compare the capability of the algorithms in finding one
best event, we generate a sequence of datasets with increasing noise levels and only
one event of size 20 (containing 20 nodes). To solve Problem 4, we provide as input
the ground truth values of I, B, r. We consider three types of measurements: (1)
precision, recall, and F1 over the ground truth even interactions and the extracted

25

interactions by the algorithms, (2) the objective function value of Problem 4, and
(3) running time. Log scale is applied to running time as we observe magnitudes of
difference among the algorithms.

In Figure 6.1 (a), we see that all our algorithms beat the trivial random baseline.
Though greedy is a simple heuristic, its performance is among the top. Dijkstra
preprocessing proves helpful for DP in both improving F1 and saving computation
time. binary_search seems to be unnecessary as it consumes much more time,
even though it is among the best in other measurements. Notice that random
achieves high precision because it easily selects a wrong edge that violates the budget
constraint at the first few steps, causing the algorithm to terminate.

Different event sizes. We also study how the algorithms compare in extracting
events of different sizes. The experiment setting is similar to the above except that
noise level is held fixed to 20 while the event size varies. In Figure 6.1 (b), greedy ,
binary_search are among the best in terms of precision, recall, F1 and set cover
objective, whereas DP+dij is slightly worse. Again, preprocessing for DP proves
useful. Running time comparison gives consistent results to the previous case.

6.3 Parameter effects on real datasets

We evaluate the effects of (1) different B values using the algorithms of Problem 4
(2) different sampling schemes on the objective functions in Problem 4 and Prob-
lem 5. In addition, we demonstrate the difference of event trees produced by different
algorithms of Problem 4.

Effect of B. We evaluate the effect of topic dissimilarity budget B on the tree size
objective in Problem 4. We randomly sample 100 roots for each dataset. B varies
from 0 to 100 at a step size of 5.0. Time budget I is set to 1 day and 4 weeks
for Twitter-related datasets and Enron respectively. We take the median size of all
trees returned by each algorithm (Figure 6.2).

In Enron, we observe a converging effect on both objectives as the dataset is rela-
tively small, while this is not the case in all Twitter datasets. In practice, greedy is
the best performing algorithm, as it is both competitive in maximizing the objective
function and it is computationally efficient.

Sampling scheme comparison. We compare two sampling schemes in real data
setting: (1) random root sampling (random) as the baseline, (2) ranking roots by

26

Figure 6.2: Effects of B on the median of tree sizes using different algorithms.
For #ukraine, DP fails to complete experiments with B > 25 where it consumes
excessive memory.

event size upperbound defined by B-RMIE in Section 5. For each scheme, the set
cover objective is stored at each iteration.

As we can see in Figure 6.3, the event size upper-bound heuristic helps to discover
better solutions, especially for #baltimore and Enron.

Trees by different algorithms. We compare the behaviours of the algorithms for
Problem 4 in real-world datasets. In Figure 6.4, the trees are produced by greedy ,
and DP+dij are given the same root and budget. The greedy algorithm avoids
selecting heavy edges with weights larger than 0.8 due to its local search strategy
whereas DP+dij achieves larger tree by selecting a few heavy edges. Therefore we
expect greedy to produce more topically-coherent events as the pairwise dissimilarity
between nodes tend to be smaller.

27

Figure 6.3: Performance of different sampling schemes on real datasets. For Twitter,
B = 15.0, I = 1 day. For Enron, B = 10.0, I = 4 weeks. 100 unique roots are
selected based on the sampling scheme. greedy is used. Top-10 events are selected.

6.4 Evaluation on sports tweet dataset

For football dataset, we obtain the ground truth events from ESPN12. Each ground
truth event (different from our “event” definition) has a timestamp, a label from one
of the 4 categories: substitution, yellow card, red card or goal, and information about
the main participants (for example, who made a goal).

We mark a detected event as correct if it aligns with any of the ground truth events
in both time and topic terms (to the event label). The result is given in Table 6.2.
We observe two of the true events are detected: one substitution and one goal (the
only one). Besides the event about goal, which is naturally the most important one,
we highlight the detected substitution. In the real event, captain of Manchester
City, Vincent Kompany, got injured and was substituted off. In fact, this injury
was considered a turning point for the team and was heatedly discussed on Twitter.
We also observe mixture of topics in the detected events. For example, the 4th
event contains tweet corresponding to the yellow card at 83’ and comments on the

12http://www.espnfc.us/gamecast/447230/gamecast.html

28

(a) (b)

Figure 6.4: Algorithm comparison in terms of tree shapes. Trees are computed from
#beefban given fixed root by greedy (a) and DP+dij (b), which achieves tree size 46
and 57 respectively. B = 30 and I = 1 day are the same for both algorithms. Edges
with weight ≥ 0.8 have wider stroke. No edges with weight ≥ 0.8 are selected by
greedy . Nodes are colored by senders and edges are colored by its type (broadcast:
blue, relay: green, reply: orange)

Figure 6.5: Tweet volume against time for football dataset. Both the first goal and
substitution are detected, while the events by the end of the game are not. During
the intermission, heated discussion (event 5, 7, 8) are observed.

previous goal.

In Figure 6.5, we observe that during the intermission there is heated discussion

29

Table 6.2: Evaluation result for football dataset. Successful detected events are com-
mented with the relevant terms. The top-10 detected events are used for evaluation.
mcfc means “Manchester City Football Club”.

Time Ground truth event Detected? Comment

10’ Substitution 3 kompany, injured
20’ Goal 3 mcfc, goal, bale
30’ Yellow card 7

55’ Substitution 7

61’ Substitution 7 mixed in event 2
69’ Substitution 7

71’ Yellow card 7

83’ Yellow card 7 mixed in event 4
88’ Substitution 7

90’ Yellow card 7

covering many aspects of the game, such as game status report and detailed statistics
of the first half. Also we found the detected events at the tail of the game aligns
well with the ground truth in time. However, as those true events are close in time
(seen in Table 6.2), our methods are not able to distinguish them apart.

6.5 Case study in English Letter

We sample 1000 nodes using upperbound scheme and applied greedy algorithm with
B = 20, I = 1 year. Besides the requirements in Section 3, two letters are connected
if the time difference is smaller than 90 days. The intuition is two letters are not
very likely to relate to each other if they span a long time period.

For the extracted events, we observe difficulty in interpreting the events based solely
on terms, therefore we summarize the events by manually checking the actual doc-
ument content. The extracted events with manual summarization is given in Table
6.3.

For example, the 1st detected event centred around Samuel Johnson, an English
writer. The period stars from the beginning of 1784 to the end of this year. Inter-
estingly, Johnson died in December of the same year and one aspect of the event
is Johnson’s description about his health conditions. However, we observe mixing

30

Table 6.3: Top-5 events from Letter dataset: description is manually compiled.

Id Main people Period Description

1
Samuel Johnson,
Charles Burney

1784
Johnson talks about
book publishing and
his health condition

2
Daniel Fleming,
his son, James and
his cousin, Henry Brougham

1694 - 1695
Fleming’s ask his cousin to
help on his sons’ education

3
Daniel Fleming,
his sons, George and James

1696 - 1697
George’s tuition fee for school
and James’s acceptance into Oxford

4
William Pitt and
his future wife Hester Grenville

1754 - 1754 Love letters

5
Mary Montagu,
Edward Montagu and
Philippa Massingberd

1711 - 1712
Mary’s courtship by
Edward and Philippa

(a) (b)

Figure 6.6: (a) Part of the interaction network covering the participants of main
events. Nodes are colored by the event ids and labeled by the participant names.
(b) The whole interaction network.

of topics, where Johnson also had discussion about book writing with his acquain-
tances. We also noticed that discussion by Fleming family on the children’s educa-
tion are prevalent in the final result (the 2nd and 3rd events). Note that the King

31

of Britain actually had letters in this dataset, however, according to our problem
formulation, those letters are not selected as events.

As an interesting by-product, Figure 6.6 gives the corresponding interaction network
with the event participants highlighted.

6.6 Case study in Enron dataset

Jun-00 Jul-00 Aug-00 Sep-00 Jan-01 Feb-01 Mar-01 Apr-01May-01 Jun-01 Jul-01 Aug-01 Sep-01 Oct-01 Nov-01 Dec-01

Blackout in Bay area
SDGE files a complaint

Blackout Blackouts affect 1.5 million customers.
Enron filed for bankruptcy

3, ees ect power market state california iso energy ferc
2, power state california energy davis electricity utilities gas billion

1, ees ect confidential power state california information energy
10, confidential information ferc enronxgate market california

Figure 6.7: Timeline with extracted events (larger red circle) and publicly recog-
nised events (smaller grey circle with italic label) for Enron: events on Enron’s
energy scandal and bankruptcy are highlighted. Event 3, 2, 1 and 10 are displayed.
The larger the circle, the larger the event size. For each event, top topic terms are
displayed. ees : Enron Energy Service, ect : Enron Capital and Trade Resources, iso:
California Independent System Operator, ferc: Federal Energy Regulatory Commis-
sion. SDGE : San Diego Gas & Electri Company.

We sample 50 nodes using upperbound scheme and applied greedy algorithm with
B = 10 and I = 28 days. First, we observed that the events can be grouped into two
topics: (1) California Energy Crisis,13 (2) investigation into Enron’s scandal.14 In
Figure 6.7, we anchored the actual important events (gray circle with italic labels)
about the crisis happening during the timespan of the dataset. We found shortly
after each major blackout, there is at least one extracted events about the blackout.
And before Enron filed bankruptcy, Federal Energy Regulatory Commission (FERC)
investigated Enron’s illegal operations, which corresponds to the 10th event in the
figure. Second, in Figure 6.8, extracted events tend to occur at the peak of the
volume plot. Last, we noticed the address steven.kean@enron.com (Enron’s former
chief of staff15) sends more than 90% of the emails in the top-5 events. However,

13https://en.wikipedia.org/wiki/California_electricity_crisis
14https://en.wikipedia.org/wiki/Enron_scandal
15http://www.nbcnews.com/id/3606477/ns/business-corporate_scandals/t/lay-skilling-linked-

32

Figure 6.8: Stacked area graph of interaction frequency against time for Enron.
Top-10 events are visualized.

this is understandable as the same address sends around 55% of emails for the whole
dataset.

6.7 Case study in Twitter datasets

We use the same parameters for all three datasets as they have similar size and
timespan. Events are extracted by selecting 100 roots using upperbound and using
greedy algorithm with B = 50 and I = 1 day.

#ukraine. Ukraine crisis arouses media war on Ukraine and Russia.16 We observe
some detected events align well topically and temporally with the actual events in
Figure 6.9. We also detected other related events such as argument and discussions
on other issues. However, topics are mixed inside events. For example, topics on
both freeing Ukrainian pilot and march in memory of murdered Boris Nemstsov are

enron-failure
16https://en.wikipedia.org/wiki/Ukrainian_crisis. This dataset spans the time when two impor-

tant event happens: 1) the continuing detention of Ukrainian pilot Nadiya Savchenko by Russian
government, 2) the murder of Boris Nemtsov in Moscow

33

Feb-25 Feb-26 Feb-27 Feb-28 Mar-1 Mar-2 Mar-3 Mar-4 Mar-5

3, #russia #crimea #mariupol
1, #antifa #naf #rada

2, #freesavchenko #nemtsov #russia

4, #russia #nemtsov #putin

Continued detention of Savchenko
Savchenko awarded of Hero of Ukraine

Savchenko ends hunger strike

Thousands march in Moscow for Boris Nemtsov murder

Murder of Boris Nemtsov

Figure 6.9: Timeline for #ukraine. Top-4 events are displayed with the top-3 hash-
tags by frequency. Event 2 and 4 map to the murder of Boris Nemstsov (#nem-
stsov), while event 4 also contains tweets on freeing the Ukrainian pilot, Savchenko
(#freesavchenko). Event 1, 3 talks about other related political issues (#antifa:
Anti-fascism, #crimea: the annexation of Crimea).

detected in event 2. This is expected due to the local similarity measurement in
Problem 4.

government is against all kinds of roasts.
why stop at beef? u should ban milk too.
those for #beefban should stop wearing leather

this is why bjp will never win in kerala

(a)

why beef and not rice? both are living organisms.
sir thanks 4 #beefban! u hv proven u can take tough step

good news: beef banned in maharashtra, 5 yrs jail

(b)

Figure 6.10: 1st and 2nd event tree extracted from Indian #beefban. Nodes (the
tweets/interactions) are colored by the sender. The largest node is the root. Ex-
ample tweets are displayed and colored by the sender and the corresponding tree
node (interaction) is enlarged. (a) demonstrates sign of opinion propagation among
different users. (b) contains mixing of support and opposition, though support is
more dominant.

34

Figure 6.11: Stacked area graph of interaction frequency against time for #beefban.
Top-5 events are displayed.

#beefban. India’s new law on banning on beef is a controversial topic [GDFMGM16].
17 Results demonstrate clear separation of opinions among events. For example in
Figure 6.10, the 1st and 2nd event represents opinions opposing and supporting the
law. However, we are not able to interpret any temporal pattern in the extracted
events due to the short timespan (3 days).

We observe the following interesting phenomenon. First, one event (in Figure 6.10
(a)) display evidence of information propagation. For example, opposing opinions
spreads along the user network and affected users also express their objection. Sec-
ond, another event (in Figure 6.10 (b)), there is one dominant user who sent more
than half of the tweets. This indicates there are often some enthusiastic who ex-
press their opinions frequently for controversial topics. Third, we observe events
with mixed opinions (Figure 6.10 (b)), which contains argument between users with
distinct opinions. Last, our method tends to discover events at the “peak” as the set
cover objective is better than the “bottom” shown in Figure 6.11.

#baltimore. We discovered two types of events. Certain events contain more emo-
tional tweets showing anger towards the riot, while other events are more descriptive
(such as news), they tend to report the current situation (Table 6.4).

Compared to #beefban, information relay tends to be more extensive as shown in
17http://indianexpress.com/article/explained/explained-no-beef-nation/

35

Table 6.4: Emotional and descriptive events for #baltimore: tweets show different
types of information in different events.

Emotional (1st event)

the lawlessness in #baltimoreriots is definit...
maybe white people should just start burning...
people are justifying the violent looting of ...
only one? #baltimoreriots
alright. don’t come crying to me if you get ...

Descriptive (3rd event)

smashing windows at an office and subway and...
#mondawminmall mall now being looted. no polic...
local hospitals have received about 15 injured...
#breaking: crews battling a fire at a cvs...
people are driving up to and running in to ...

Figure 6.12. We suspect because of the protest’s high burstiness, people are more
likely to share status update or spread their opinions. Meanwhile, we didn’t observe
the sign of dominant speakers for each events, which is not the case in #beefban.

(a) (b)

Figure 6.12: Participant graph of the 1st event extracted from #beefban (a) and
#baltimore (b), where nodes are Twitter users and there is a edge between two
users if they interact with each other. Though the corresponding event in (a) and
(b) have similar sizes(41 and 48), they show different participant graphs.

36

7 Discussion

Though meaningful events can be detected at the macro level, we empirically ob-
served several problems in the micro level. These problems are related to (1) how we
formulate the problem and (2) how we construct the interaction meta-graph. In this
section, we show concrete examples to illustrate those problems and suggest possible
improvements. We use results from Letter dataset as a demonstration. Note that
the problems described in the following also apply to other datasets.

7.1 Problem formulation

We observe two major problems in the Letter dataset: mixed topics and broken
stories. For mixed topics, two different topics occur in the same event. For broken
stories, two detected events can actually be merged into one. These two observations
suggest future improvement for our problem formulation.

7.1.1 Mixed topics

Table 7.1 shows two different topics expressed in the 1st event of the Letter dataset.
In this case, letters of distinct topics are in the same event for two reasons: First,
they are all sent by the same person, Samuel Johnson and within a relatively short
time (e.g, 1 year). Thus they are connected in the interaction meta-graph. Second,
the way we model topic constraint is two-fold. We assign pair-wise topic distance
between two letters to their connecting edge and a event is topically-coherent if the
sum of its edge weights is smaller than given threshold B. Hence, when solving
Problem 4, off-topics letters can still be included to the current event (even if the
edge cost is large) as long as (i) it’s connected to the main event (ii) there is extra
budget to do so.

This suggests two problems on the way of modeling topic divergence. First, local
pair-wise topic distance introduces mixed topic. Even if the drift is small individu-
ally, a long path that connect many letters will accumulate the difference. In this
case, two ends of the long chain can talk about totally different topics. Second, edge
weight sum is inappropriate for measuring topic divergence. As is shown above,
off-topic nodes can be added as long as there is enough budget.

37

Table 7.1: Two different topics, health and book writing, observed in 1st event from
Letter dataset: typical sentences for each topic from different letters are manually
selected. All sentences are written by the same author.

Topic 1: health

My breast is now covered with a blister.

The asthma has been for some time very considerably relieved.

My breath is tolerably easy, and since the remission of asthma...

Topic 2: book writing

I know not in what state Dr. Edwards left his book.
I had ceased to write because, respecting you I had no
more to say, and respecting myself could say little good.
I suppose no man but himself, could assign all the parts
of the ancient universal history to their proper authors.

7.1.2 Broken stories

A broken story refers to the case where multiple small events can actually be merged
into a larger, more complete and more intuitive one. For example, event 2 and 3 in
Table 6.3 can be merged because: (1) they are temporally close (event 2 is from Nov,
1694 to Nov, 1695, event 3 is from Mar, 1696 to Mar, 1697). (2) they are topically
coherent as they are both about Danial Fleming’s concern on his sons’ education.
Note that extracted events need to satisfy the time constraint (1 year). Thus, both
event 2 and 3 span almost (and shorter than) 1 year. As a result, the natural 2-year
event is split into two 1-year events by our method.

One straight-forward fix for this problem is increasing I. However, assuming one
event with shorter time span and lower topic divergence (relative to the given bud-
get), this fix will include off-topic interactions if there is any. Therefore, we argue
that the problem with the time constraint is jointly produced by the topic constraint
formulation.

38

7.1.3 Alternative problem formulations

Based on the above observations, we provide a few alternatives for problem formu-
lation. All alternatives have the same objective function as in Problem 4, however
with different constraints.

One way to deal with mixed topic problem is by defining topic coherence based on
topic centroid, the mean of topic vectors of event interactions. For example, we
can constrain T = (Ve, Ee) with 1

|Ve|
∑
i∈Ve

c(i.α, α̃(Ve)) ≤ I , where the centroid topic

α̃(Ve) =
1
|Ve|

∑
i∈Ve

i.α.

By leveraging the topic centroid, event topic is constrained on the global scale, in
contrast to local approach in our current formulation.

On the other hand, mixed topic is a necessary by-product of information propaga-
tion, especially in the era of online social network where information exchange is
rapid. In other words, we cannot totally get rid of mixed topic if one of our goals is
to model information flow.

In the second alternative, we keep the pair-wise edge cost but apply edge weight
threshold on each edge of the event. More formally, the constraint is: c(i, j) ≤ I,
for (i, j) ∈ Ee. In this way, off-topic interactions (connected by large weight edges)
are less likely to be included.

We find this problem optimally solvable by modifying shortest-path problem and Di-
jkstra algorithm. In the modified problem, the shortest path in the original problem
maps to the path in which the weight corresponding to heaviest edge is minimized.
Meanwhile, the modified algorithm updates the distance table using the new “short-
est path” definition.

For both options, dropping time constraint is reasonable. First, different events have
different time span. A fixed maximum time span doesn’t apply to all events.

Second, it’s intuitive to think that topic coherence implies temporal coherence. Usu-
ally, people talk about certain topics only during a certain period. Thus, the two
above formulations can automatically narrow down the time span using the topic
information.

39

7.2 Interaction meta-graph construction

During the interaction meta-graph construction process, we use topic dissimilarity
as edge weight aiming to model topic coherence as well as information flow. In
the ideal case, our method should be able to extract topically coherent events and
meanwhile reconstruct information flow in the event tree. However in practice, we
fail to consistently observe meaningful information flow patterns in the extracted
events.

7.2.1 Similarity = causality?

Information flow can be treated as causality relationship among the interactions.
For example, two interactions that correspond to a reply relationship should get
connected if the information flow is correctly reconstructed. However in practice,
we observe the wrong connection between interactions in the extracted event, which
implies similarity doesn’t necessarily imply causality.

For example in Figure 7.1 letter B is actually a reply to letter C. However, A
incorrectly gets connected to B in the final event. The correct one is not selected
because its edge weight is larger than that of A to B.

One way to address this issue is assigning better edge weights. Beside topic dissim-
ilarity, other factors, such as time difference between the two interactions, can be
considered. In addition, as demonstrated by the letter content in Figure 7.1, deeper
text analysis can be applied to infer whether a letter is a reply or relay to another
one. This problem relates to a broader category, network reconstruction, which is
studied in various domains [GRLK12,SGR14,LV12,WH14].

7.2.2 Self-talking problem

For various datasets, we observe interactions sent by the same participant get con-
nected in the final events. We refer this as self-talking problem. For example in
Figure 7.2, the majority of the messages are sent by Samuel Johnson. Meanwhile,
one cannot easily interpret the links in the event tree. Those interactions get linked
simply because they share the same sender and they are sent during a short period.
Again, the problem is related to the way we construct the interaction meta-graph.

40

Figure 7.1: Example of incorrect interaction meta-graph construction: three letters
are displayed. Letter A gets connected to B incorrectly by our method. However,
by inferring from the letter content, the correct edge should be C to B. Edge weights
are also displayed.

Figure 7.2: Example of self-talking problem: most the messages are sent by the
same person. Event tree of 1st-event in Letter dataset is displayed, where nodes are
colored by the sender. The orange node corresponds to Samuel Johnson.

7.3 Other interesting directions

One interesting direction is assigning different importance scores to messages. Cur-
rently, our method assumes interactions are of equal importance, which is not always

41

true. For example, we find there are letters written by the King of United King-
dom. Intuitively, letters related to him should be more interesting because of his
high social rank. Also note in Figure 7.3, some “important” nodes with large size
(corresponding to large PageRank [PBMW99] scores) are not selected in the main
event.

As another example, tweets are of different importance as they receive different
amounts of attention, reflected by the number of likes or retweets. It’s reasonable
to prefer tweets with larger like/retweet counts.

Figure 7.3: Interaction network of Letter dataset. George William Frederick, King
of United Kingdom (colored in red) is excluded from the top-5 events (participants
in other colors). Node sizes are determined by the PageRank scores.

It would also be useful to apply multi-documents summarization techniques [IK11,
Wan07] on top of the extracted events. Currently, our method addresses the summa-
rization problem at a higher level, without looking deeper into the actual sentences
or words in documents.

42

8 Conclusions

We defined the problem of summarizing top-k events in an interaction network. Our
approach consists by first transforming the input data into an interaction meta-
graph and then defining two optimization problems: budgeted version of PCST
and maximum set cover. We offer three algorithms for the former problem. Our
experiments show that the greedy approach is more lightweight and performs as
good as or even better than other more sophisticated counterparts.

8.1 Contribution

The contributions of this paper are summarized as follows:

• We propose a novel formulation for the problem of discovering events that
are temporally and topically coherent in interaction networks, such as, online
communication networks.

• We present a transformation of the interaction network to an interaction meta-
graph, which captures temporal and topical association of interactions as well
as the information flow in the network. This transformation helps to provide
a cleaner abstraction to the event-detection problem.

• For the problem of finding high-volume events while satisfying constraints of
temporal and topical coherence we present and we evaluate three different
algorithms: a greedy approach, a dynamic-programming algorithm, and an
adaptation to an existing approximation algorithm.

• We address the problem of finding the top-k events that summarize the network
activity. The classic greedy algorithm is the standard way to approach this
problem, but here, to speed-up computation, we also propose and evaluate
a search strategy that avoids evaluating candidate events at all possible tree
roots, but adaptively selects the most promising ones.

• We compare and analyze our algorithms in both synthetic and real datasets,
such as twitter and email communication. We show that our methods are able
to detect meaningful temporal events.

43

8.2 Related work

Three lines of work are related to this paper: event detection, text summarization
and information diffusion. Our work is closely related to studies on event detection.
The main difference between ours and this line lies in (i) whether information flow
process is considered and (ii) the modeling of topical coherence. Also, our work
is related to extractive text summarization. First, one of our goals, maximizing
node converge, is about the coverage sub task in extractive summarization. Second,
both problems select a subset of data. In extractive text summarization, words,
phrases or sentences are selected. However in our case, interactions are selected.
Last, we attempt to model information flow in the event, which is similar to studies
in information diffusion.

8.2.1 Event detection

The definitions of event detection vary in different contexts. In temporal/spatial
data analysis, event refers to sub group of data (e.g, spatial area, time duration)
with severity/magnitude information (alarm level) [NHkW09]. Usually, the goal is
to detect anomalous events that rarely occur, for example disease outbreak [CN14],
water pipe breaks [ASA] and anomaly detection for remote sensor data [DD11].
The goal is often early and accurate detection of negative events so that in-time
prevention can be taken.

In social media and online communication context, an event often refers to a sudden
burst of public discussion on certain topics, for example World Cup game [MNR+15],
earthquake outbreak [SOM10] or political campaign [RCM+11]. There has been
extensive studies for this context. However, they differ in various dimensions, such as
computation demand (real-time or off-line), event representation (words, documents,
etc) and types of information being used (text content, location, social network),
which is summarized in Table 8.1.

Real-time event detection is actively studied due to the large volume of online per-
sonal content produced every day. As real-time computation depends on several
practical aspects such as band-width, engineering optimization and machine num-
ber for distributed computing, these works are distinguished by whether data is
processed in one-pass (so called stream processing) or not. In [MK10, CDCS10,
SOM10,POL10,BNG10,BNG11,AS12], algorithms are designed in a one-pass fash-
ion. In [RCM+11,ZC14,MNR+15], multiple-pass processing is allowed. In our work,

44

we aim to understand what is happening for the whole network, therefore one-pass
constraint is not imposed.

Event representation varies in different ways. Besides time span information, rep-
resentative words are used to describe events in [MK10, CDCS10]. On the other
hand, [POL10,BNG10,BNG11,ZC14] select representative documents to represent
events. The above design choices are combined in [SHM09,ZC14], where event con-
sists of a set of words as well as one or a few representative documents. In some
application-specific works, other information is used. In [SOM10] about earthquake
detection, an event is a spatial/temporal region where earthquake happened. For
online political abuse detection [RCM+11], participant identity, memes and the as-
sociated interactions are used. In our case, we use a set of interactions.

Types of information that are utilized in this line of work also differ. Besides textual
content, spatial information such as tweets’ location is used for either application-
specific purpose [MK10] or document similarity measure [SOM10,BNG10]. Social
network information such as tweets’ author identity is used for feature design in sim-
ilarity measure [BNG11,AS12] or event classification [RCM+11]. In contrast, social
network information is fundamental for both our model and problem formulation.

Information flow is rarely considered except in [RCM+11]. In their work, information
flow patterns are used to design features for truthy event identification. In our case,
information flow is a natural “by-product” from our problem formulation.

Topic coherence is considered in some of the works, however approached in different
ways. Graph-based approach is applied in [SHM09,CDCS10,MNR+15] and interest-
ingly, all operate on notion of word-graph. However, the actual definition on word-
graph varies. [SHM09,CDCS10] treat an event as a set of nodes in a word-graph and
detect events through community detection algorithms. In [MNR+15], graph degen-
eracy algorithm is used to detect sets of words of large k-core number as events.
Statistical and feature-based methods are used in [MK10, BNG10, AS12]. [MK10]
utilizes co-occurrence statistics between bursty keywords. [BNG10, AS12] perform
online clustering using feature-based document similarity metric, whereas they differ
in the specific features. In both [ZC14] and our work, hard constraints are imposed.
The difference is: [ZC14] imposes maximum dissimilarity for each pair of documents
for one event, while we treat event’s topic dissimilarity as the sum of topic dissimi-
larity from the event’s edges.

45

Event representation L N S F Topic coherence
[SHM09] words, documents community detection
[MK10] words co-occurrence
[CDCS10] words connected component
[SOM10] region
[POL10] document
[BNG10] documents online clustering
[RCM+11] users, memes, interactions
[BNG11] documents online clustering
[AS12] interactions online clustering
[ZC14] documents constraint on doc pair
[MNR+15] words, document graph degeneracy
Ours interactions constraint on sum

Table 8.1: Comparisons of different works on event detection. Acronyms: L: use
location?, N: use social network?, S: imposes single-pass processing?, F: models
information flow?

8.2.2 Text summarization

Text summarization aims at reducing the content of document(s) to a brief summary
that concisely covers the most important aspects. Our work is related to it because
one of our goals is to cover as much interactions as possible.

Text summarization can be categorized into two approaches: extractive summa-
rization and abstractive summarization. The first approach [Mih04,CHT11,ER04,
FdSCL+13] attempts to select a subset of sentences to concisely and coherently
summarize articles. Usually, sentences are assigned scores and the higher score
sentences/words are included in the summary. For example in TextRank [Mih04],
sentences are connected into a graph and edges are assigned similarity score. Graph
ranking methods such as PageRank [PBMW99] are used to infer the importance
scores for each sentence. This approach is purely unsupervised and uses no deep
linguistic analysis.

In addition to sentence-level extraction, word-level method is studied in [GZH10].
The author claims that sentence-level method fails to summarize redundant opinions
(high overlapping of information). Therefore, they aim at constructing summary

46

sentences from individual words that cover large portions of the redundancy. In
their work, graph approach is used, where graph takes individual words as nodes,
an edge from one word to another if they appear adjacently in at least one of the
sentences. Under this definition, the goal becomes finding a path that is a valid
sentence and have high redundancy score.

Our work is similar to extractive summarization in that both also perform some type
of subset selection. We perform the extraction at document level whereas extractive
summarization methods usually extract finer units such as sentences and words.
Meanwhile, for some of those works, temporal information is not used. As a future
direction, we plan to perform deeper text analysis (e.g, at the sentence level).

Using temporal information is gaining more attention in text summarization com-
munity. Following the work of TextRank [Mih04], [Wan07] proposes TimedTextRank,
where a time decay term that considers temporal difference between two sentences
is added during the graph construction process. [GK12] uses temporal scores on top
of scores from traditional summarization methods. In their work, sentences are clus-
tered using temporal event clustering. The score is calculated based on properties
of its assigned cluster (such as size)

Our model and problem formulation are conceptually different with this line of
works.

8.2.3 Information diffusion

Information diffusion process has been studied in different contexts, e.g, word-of-
mouth effect in marketing [KKT05], spread of news and opinions [GGLNT04] and
epidemics [Het00]. One important question is given the times when particular nodes
are infected, can we infer which nodes infected them?

Gomez-Rodriguez et al. [GRLK12] attempt to infer the propagation flow as a tree
among infected nodes in contagion networks. They first give the probability of
observed contagion spreading according to a hypothetical tree using a generative
model. In this model, each edge in the tree is generated independently and the
individual edge generation probability is measured by the temporal closeness. Then
the inference problem is defined as finding the tree that maximizes the probability.
Compared to this work, our work has two major differences. First, we are dealing
with event detection, in which the reconstructed network can be seen as a byproduct.
Thus, our problem formulation is conceptually different. Second, edge strength is

47

measured using topic similarity.

References

AS12 Aggarwal, C. C. and Subbian, K., Event detection in social streams.
Proceedings of the 2012 SIAM International Conference on Data Min-
ing, 2012, pages 624–635, URL http://epubs.siam.org/doi/abs/10.

1137/1.9781611972825.54.

ASA Asce, F., Soibelman, L. and Asce, M., Detection of patterns in water
distribution pipe breakage using spatial scan statistics for point events
in a physical network.

BGHS12 Boden, B., Günnemann, S., Hoffmann, H. and Seidl, T., Mining coher-
ent subgraphs in multi-layer graphs with edge labels. Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, New York, NY, USA, 2012, ACM, pages
1258–1266, URL http://doi.acm.org/10.1145/2339530.2339726.

BKNS00 Breunig, M. M., Kriegel, H.-P., Ng, R. T. and Sander, J., Lof: Iden-
tifying density-based local outliers. Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’00, New York, NY, USA, 2000, ACM, pages 93–104, URL
http://doi.acm.org/10.1145/342009.335388.

BM00 Brill, E. and Moore, R. C., An improved error model for noisy channel
spelling correction. Proceedings of the 38th Annual Meeting on Asso-
ciation for Computational Linguistics. Association for Computational
Linguistics, 2000, pages 286–293.

BNG10 Becker, H., Naaman, M. and Gravano, L., Learning similarity metrics
for event identification in social media. Proceedings of the Third ACM
International Conference on Web Search and Data Mining, WSDM ’10,
New York, NY, USA, 2010, ACM, pages 291–300, URL http://doi.

acm.org/10.1145/1718487.1718524.

BNG11 Becker, H., Naaman, M. and Gravano, L., Beyond trending topics real-
world event identification on twitter. International AAAI Conference
on Web and Social Media, 2011.

48

BNJ03 Blei, D. M., Ng, A. Y. and Jordan, M. I., Latent dirichlet allocation.
Journal of Machine Learning Research, volume 3. JMLR. org, 2003,
pages 993–1022.

BV04 Boyd, S. and Vandenberghe, L., Convex Optimization. Cambridge Uni-
versity Press, New York, NY, USA, 2004.

CCC+99 Charikar, M., Chekuri, C., Cheung, T.-y., Dai, Z., Goel, A., Guha, S.
and Li, M., Approximation algorithms for directed steiner problems.
Journal of Algorithms, volume 33. Elsevier, 1999, pages 73–91.

CDCS10 Cataldi, M., Di Caro, L. and Schifanella, C., Emerging topic detection
on twitter based on temporal and social terms evaluation. Proceed-
ings of the Tenth International Workshop on Multimedia Data Mining,
MDMKDD ’10, New York, NY, USA, 2010, ACM, pages 4:1–4:10, URL
http://doi.acm.org/10.1145/1814245.1814249.

CHT11 Celikyilmaz, A. and Hakkani-Tür, D., Discovery of topically coherent
sentences for extractive summarization. Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human
Language Technologies, volume 1. Association for Computational Lin-
guistics, 2011, pages 491–499.

CN14 Chen, F. and Neill, D. B., Non-parametric scan statistics for disease
outbreak detection on twitter. Online Journal of Public Health Infor-
matics, 6,1(2014).

DD11 Dereszynski, E. W. and Dietterich, T. G., Spatiotemporal models for
data-anomaly detection in dynamic environmental monitoring cam-
paigns. ACM Trans. Sen. Netw., 8,1(2011), pages 3:1–3:36. URL
http://doi.acm.org/10.1145/1993042.1993045.

ER04 Erkan, G. and Radev, D. R., Lexrank: Graph-based lexical centrality as
salience in text summarization. J. Artif. Intell. Res. (JAIR), volume 22,
2004, pages 457–479.

FdSCL+13 Ferreira, R., de Souza Cabral, L., Lins, R. D., e Silva, G. P., Freitas,
F., Cavalcanti, G. D., Lima, R., Simske, S. J. and Favaro, L., Assessing
sentence scoring techniques for extractive text summarization. Expert
Systems with Applications, 40,14(2013), pages 5755–5764.

49

FPS00 Feigenbaum, J., Papadimitriou, C. and Shenker, S., Sharing the cost
of muliticast transmissions (preliminary version). Proceedings of the
thirty-second annual ACM Symposium on Theory of Computing. ACM,
2000, pages 218–227.

GDFMGM16 Garimella, K., De Francisci Morales, G., Gionis, A. and Math-
ioudakis, M., Quantifying controversy in social media. Proceedings of
the Ninth ACM International Conference on Web Search and Data Min-
ing, WSDM ’16, New York, NY, USA, 2016, ACM, pages 33–42, URL
http://doi.acm.org/10.1145/2835776.2835792.

GGLNT04 Gruhl, D., Guha, R., Liben-Nowell, D. and Tomkins, A., Information
diffusion through blogspace. Proceedings of the 13th International Con-
ference on World Wide Web. ACM, 2004, pages 491–501.

GK12 Gung, J. and Kalita, J., Summarization of historical articles using tem-
poral event clustering. Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguis-
tics, 2012, pages 631–635.

GRLK12 Gomez-Rodriguez, M., Leskovec, J. and Krause, A., Inferring net-
works of diffusion and influence. ACM Trans. Knowl. Discov. Data,
5,4(2012), pages 21:1–21:37. URL http://doi.acm.org/10.1145/

2086737.2086741.

GS99 Guralnik, V. and Srivastava, J., Event detection from time series data.
Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’99, New York, NY,
USA, 1999, ACM, pages 33–42, URL http://doi.acm.org/10.1145/

312129.312190.

GW95 Goemans, M. X. and Williamson, D. P., A general approximation tech-
nique for constrained forest problems. SIAM Journal on Computing,
volume 24. SIAM, 1995, pages 296–317.

GZH10 Ganesan, K., Zhai, C. and Han, J., Opinosis: a graph-based approach
to abstractive summarization of highly redundant opinions. Proceedings
of the 23rd International Conference on Computational Linguistics. As-
sociation for Computational Linguistics, 2010, pages 340–348.

50

Het00 Hethcote, H. W., The mathematics of infectious diseases. SIAM review,
42,4(2000), pages 599–653.

IK11 Inouye, D. and Kalita, J. K., Comparing twitter summarization algo-
rithms for multiple post summaries. Inernational Conference on Social
Computing (SocialCom). IEEE, 2011, pages 298–306.

JMP00 Johnson, D. S., Minkoff, M. and Phillips, S., The prize collecting steiner
tree problem: theory and practice. Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial
and Applied Mathematics, 2000, pages 760–769.

Joh73 Johnson, D. B., A note on dijkstra’s shortest path algorithm. Journal
of the ACM (JACM), 20,3(1973), pages 385–388.

KKT05 Kempe, D., Kleinberg, J. and Tardos, É., Influential nodes in a diffusion
model for social networks. In Automata, Languages and Programming,
Springer, 2005, pages 1127–1138.

KMM10 Kumar, R., Mahdian, M. and McGlohon, M., Dynamics of conversa-
tions. Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2010, pages 553–562.

LV12 Liemhetcharat, S. and Veloso, M., Modeling and learning synergy for
team formation with heterogeneous agents. Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Sys-
tems, volume 1. International Foundation for Autonomous Agents and
Multiagent Systems, 2012, pages 365–374.

Mih04 Mihalcea, R., Graph-based ranking algorithms for sentence extraction,
applied to text summarization. Proceedings of the ACL 2004 on Interac-
tive Poster and Demonstration Sessions. Association for Computational
Linguistics, 2004, page 20.

MK10 Mathioudakis, M. and Koudas, N., Twittermonitor: Trend detection
over the twitter stream. Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’10, New York,
NY, USA, 2010, ACM, pages 1155–1158, URL http://doi.acm.org/

10.1145/1807167.1807306.

51

MNR+15 Meladianos, P., Nikolentzos, G., Rousseau, F., Stavrakas, Y. and Vazir-
giannis, M., Degeneracy-based real-time sub-event detection in twitter
stream. International AAAI Conference on Weblogs and Social Media,
2015.

NHkW09 Neill, D. B., Heinz, H. J. and keen Wong, W., Tutorial on event detec-
tion kdd 2009, 2009.

PBMW99 Page, L., Brin, S., Motwani, R. and Winograd, T., The pagerank ci-
tation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999. URL http://ilpubs.stanford.

edu:8090/422/. Previous number = SIDL-WP-1999-0120.

POL10 Petrović, S., Osborne, M. and Lavrenko, V., Streaming first story detec-
tion with application to twitter. Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Associ-
ation for Computational Linguistics, HLT ’10, Stroudsburg, PA, USA,
2010, Association for Computational Linguistics, pages 181–189, URL
http://dl.acm.org/citation.cfm?id=1857999.1858020.

RCM+11 Ratkiewicz, J., Conover, M., Meiss, M., GonÃ§alves, B., Flammini, A.
and Menczer, F., Detecting and tracking political abuse in social media.
International AAAI Conference on Web and Social Media, 2011.

SGR14 Su, H., Gionis, A. and Rousu, J., Structured prediction of network
response. Proceedings of the 31st International Conference on Machine
Learning, 2014, pages 442–450.

SHM09 Sayyadi, H., Hurst, M. and Maykov, A., Event detection and tracking
in social streams. In Proceedings of the International Conference on
Weblogs and Social Media (ICWSM 2009). AAAI, 2009.

SOM10 Sakaki, T., Okazaki, M. and Matsuo, Y., Earthquake shakes twitter
users: Real-time event detection by social sensors. Proceedings of the
19th International Conference on World Wide Web, WWW ’10, New
York, NY, USA, 2010, ACM, pages 851–860, URL http://doi.acm.

org/10.1145/1772690.1772777.

Vaz13 Vazirani, V. V., Approximation algorithms. Springer Science & Business
Media, 2013.

52

Wan07 Wan, X., Timedtextrank: adding the temporal dimension to multi-
document summarization. Proceedings of the 30th annual international
ACM SIGIR Conference on research and Development in Information
Retrieval. ACM, 2007, pages 867–868.

WH14 Wang, Y. R. and Huang, H., Review on statistical methods for gene
network reconstruction using expression data. Journal of Theoretical
Biology, volume 362. Elsevier, 2014, pages 53–61.

WS11 Williamson, D. P. and Shmoys, D. B., The design of approximation
algorithms. Cambridge university press, 2011.

ZC14 Zhou, X. and Chen, L., Event detection over twitter social media
streams. The VLDB Journal, 23,3(2014), pages 381–400. URL http:

//dx.doi.org/10.1007/s00778-013-0320-3.

Appendix 1. NP-hardness of Problem 4

We want to prove Problem 4 is NP-hard. We induce Problem 4 from minimum set
cover problem.

We define minimum set cover as a decision problem, SC(S, C, k). Given S =

{s1, . . . , sn} , C = {C1, . . . , Cm}, Ci ⊆ S, i = 1, . . . ,m, k ∈ Z, we are asked if there is
C ′ ⊆ C such that ∀s ∈ S, s ∈ ∪C∈C′C and

∣∣C ′∣∣ ≤ k.

We define the decision problem of P4 as P4(G, r,B,W). Given directed graph
G = (V,E), c : E → R, p : V → 1, r ∈ V , budget B ∈ R and W ∈ R, we are asked
if there exists a subtree T = (V

′
, E

′
) ⊆ G rooted at r such that c(T) =

∑
e∈E′

c(e) ≤ B

and p(T) =
∑
v∈V ′

p(e) ≥ W .

Consider SC(S, C, k), where S = {s1, . . . , sn} , C = {C1, . . . , Cm}. Construct a di-
rected graph G = (V,E) where:

• V = {r, C1, . . . Cm, s1, . . . sn}

• E = {(r, Ci) | Ci ∈ C} ∪ {(Ci, sj) | sj ∈ Ci, Ci ∈ C}

• ∀Ci ∈ C, c(r, Ci) = N

• ∀(Ci, sj) ∈ C × S, c(Ci, sj) = 1

• N > n

Lemma 1 If SC(S, C, k) holds, P4(G, r, kN + n, k + n+ 1) holds.

Without loss of generality, let C ′
= {Cq1 , . . . , Cqk} be the set cover for S. We can

construct a tree T = (V
′
, E

′
) such that p(T) > k+ n+ 1 and c(T) ≤ kN + n in the

following way:

• V ′
= {r} ∪ C ′ ∪ S

• (r, Ci) ∈ E
′ if Ci ∈ C

′

• (C1, sj) ∈ E
′ if sj ∈ C1

• (Ci, sj) ∈ E
′ if sj ∈ Ci \

⋃
i=1...j−1

Cqi

It is easy to see T makes P4(G, r, kN + n, k + n+ 1) hold.

Lemma 2 If P4(G, r, kN + n, k + n+ 1) holds, SC(S, C, k) holds.

Denote the tree corresponding to P4(G, r, kN+n, k+n+1) as T = (V
′
, E

′
), then one

set cover for SC(S, C, k) to hold is C ′
= V

′∩C. This can be proved by contradiction.

On on hand, if C ′ is not a set cover, then ∃s ∈ S, s 6∈ V ′ . Then some C ′ ∈ C needs to
be included in C ′ to satisfy p(T) ≥ k+n+1, . In this case c(T) ≥ (k+1)N > kN+n,
which is a contradiction.

On the other hand, if
∣∣C ′∣∣ > k, then c(T) ≥ (k + 1)N > kN + n, which is a

contradiction.

Therefore, Problem 4 is NP-hard.

Appendix 2. Code and scripts

We host all the code and scripts for this work on Github: https://github.com/

xiaohan2012/lst

