

Agile Methodologies in Large Scale Information Systems Project

Context – A Literature Review and Reflections

Katri Aintila

MSc Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, May 22, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/78561463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HELSINGIN YLIOPISTO  HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta  Fakultet –Faculty

Faculty of Science
 Laitos  Institution  Department

Department of Computer Science
TekijäFörfattare  Author

Katri Aintila
Työn nimi Arbetets titel  Title

Agile Methodologies in Large Scale Information Systems Project Context – A Literature Review and

Reflections
Oppiaine  Läroämne  Subject

 Computer Science
Työn laji Arbetets art  Level

 M. Sc. Thesis
 Aika Datum  Month and year

22/5/2016
 Sivumäärä Sidoantal  Number of pages
50 pages + 7 pages of appendices

Tiivistelmä Referat  Abstract

Expected benefits from agile methodologies to project success have encouraged organizations to

extend agile approaches to areas they were not originally intended to such as large scale information

systems projects. Research regarding agile methods in large scale software development projects have

existed for few years and it is considered as its own research area. This study investigates agile

methods on the large scale software development and information systems projects and its goal is to

produce more understanding of agile methods suitability and the conditions under which they would

most likely contribute to project success. The goal is specified with three research questions; I) what

are the characteristics specific to large scale software engineering projects or large scale Information

Systems project, II) what are the challenges caused by these characteristics and III) how agile

methodologies mitigate these challenges?

In this study resent research papers related to the subject are investigated and characteristics of large

scale projects and challenges associated to them are recognized. Material of the topic was searched

starting from the conference publications and distributions sites related to the subject. Collected

information is supplemented with the analysis of project characteristics against SWEBOK knowledge

areas. Resulting challenge categories are mapped against agile practises promoted by Agile Alliance to

conclude the impact of practises to the challenges. Study is not a systematics literature review.

As a result 6 characteristics specific to large scale software development and IS projects and 10

challenge categories associated to these characteristics are recognized. The analysis reveals that agile

practises enhance the team level performance and provide direct practises to manage challenges

associated to high amount of changes and unpredictability of software process both characteristic to a

large scale IS project but challenges still remain on the cross team and overall project level.

As a conclusion it is stated that when seeking the process model with agile approach which would

respond to all the characteristics of large scale project thus adding the likelihood of project success

adaptations of current practises and development of additional practises are needed.

To contribute this four areas for adaptations and additional practises are suggested when scaling agile

methodologies over large scale project contexts; 1) adaptation of practises related to distribution,

assignment and follow up of tasks, 2) alignment of practises related to software development process,

ways of working and common principles over all teams, 3) developing additional practises to facilitate

collaboration between teams, to ensure interactions with the cross functional project dimensions and to

strengthen the dependency management and decision making between all project dimensions and 4)

possibly developing and aligning practises to facilitate teams’ external communication.

Results of the study are expected to be useful for software development and IS project practitioners

when considering agile method adoptions or adaptations in a large scale project context.

ACM Computing Classification System (CCS) 2012:

• Social and professional topics~Management of computing and information

systems • Software and its engineering~Software creation and management
Avainsanat – Nyckelord  Keywords

Large scale IS project, agile software development, large scale agile

Säilytyspaikka  Förvaringställe  Where deposited

Kumpula Science Library
Muita tietoja  Övriga uppgifter  Additional information

Table of Contents

List of Abbreviations i

1 Introduction 1

2 Foundations 5

2.1 Two Categories of Methodology Practise 5

2.2 Project success and Project Methodology as one of the Success or Failure

Factors 7

3 Large Scale Information System Projects 9

3.1 Aspects of Large Scale 9

3.2 Special Characteristics of Large Scale Information System Projects 9

3.3 Challenges Associated to the Features of Large Scale Projects Using Agile

Methodologies in Literature 12

3.4 Analysis of Impact of Large Scale to Software Engineering Project Related

Knowledge Areas 14

4 Agile Practises Response to Challenges of Large Scale 28

4.1 Agile Practises 28

4.2 Analysis of Agile Practises Impact to issues of Large Scale IS Projects 29

4.3 Analysis Results of Agile Practises Impact to issues of Large Scale IS Projects

 33

4.4 Summary of Analysis Results of Agile Practises Impact 38

5 Discussion 40

5.1 Conclusions 41

5.2 Validity and future work 44

6 Summary 46

References 48

Appendix 1. Categorization of Atomic Challenges of Large Scale Software

Engineering Project or IS Project 1

Appendix 2. Mapping of Problem Categories to SWEBOK Knowledge Areas and

Large Scale Project Features 1

i

List of Abbreviations

AgileUP Agile Unified Process

ATDD Acceptance Test Driven Development

BDD Behaviour Driven Development

CRC cards Class, Responsibilities, Collaborators

CSF Critical Success Factor

DSDM Dynamic System Development Method

ER Entity Relationships

FDD Feature Driven Development

ICB IPMA Competence Baseline

IPMA International Project Management Association

IS Information System

ISD Information System Development

PMBOK Guide to the Project Management Body of Knowledge

PMI Project Management Institute

PRINCE2 PRojects IN Controlled Environments

RUP Rational Unified Process

SAFe Scaled Agile Framework

SWEBOK Guide to the Software Engineering Body of Knowledge

TDD Test Driven Development

UML Unified Modelling Language

UX design User eXperience design

XP eXtreme Programming

1

1 Introduction

Fifteen years after agile manifesto agile software development methods are widely

adopted by software development organizations and agile methods are utilized in various

industries and various types of projects. Expected benefits from agile methods are attrac-

tive and there is evidence of the positive impact of agile methodologies to project success

in terms of efficiency and overall stakeholder satisfaction [SeP15].

For these reasons organizations have extended the use of agile approaches to areas they

were not originally designed to. Large scale software engineering projects or information

system projects are one such area. Large scale IS projects are often highly business critical

to the organization, their success is crucial since failing would have major impact on the

business performance and it is especially tempting to utilise promising methodologies in

such project contexts.

Agile methods in large scale projects have been recognized as a separate research area for

few years now. It has been workshop topic in International Conference on Agile Software

Development on years 2013 (XP2013) and 2014 (XP2014) and the Workshop on Large-

Scale Agile Development is on the agenda for coming XP2016 [DiM13, DiM14, Laa14].

Also educational publications about the topic exist [LaV09].

The goal of this study is to investigate benefits and challenges of agile methods on the

large scale software development and information systems projects. It aims on producing

more understanding and concrete suggestions regarding the usage of agile methods in

such contexts. Study includes analysis and resulting conclusions and propositions related

to expected benefits, challenges and adaptation needs of agile methods in large scale soft-

ware development or IS projects. It is targeted to software development and IS project

practitioners and results are expected to be useful when considering agile method adop-

tions or adaptations in a large scale project context.

The study does not limit to software engineering discipline or software development

lifecycle alone but is concerned of projects from the initiation to the project closure. It

also does not limit to software engineering projects but is concerned of Information Sys-

tems projects. In this study Information System is considered being any organized system

for processing information, which may or may not include technical components and soft-

ware. Information System project is project involving creation or modifying information

2

systems. While software engineering project can be considered limited to a software cre-

ation from the requirements definition to the complete installable software, Information

System project may include creation of software or other technical components but more-

over it may include other aspects such as modifying organizations processes and struc-

tures. Compared to software engineering project, Information Systems project includes

dimensions such as business process modelling and design, management of change in

terms of work instructions creation, trainings and communications, questions and answers

and rollout to operational organization, which the possible software engineering dimen-

sion of the project needs to support. While most agile methodologies noted in this study

are developed for the software engineering and the research literature inspected tends to

limit to the software engineering aspect of the projects the methodologies are commonly

used in the context of Information System project. For this both concepts are deliberately

included in this study.

For more concrete definition of the study goal three research questions were set:

I. What are the characteristics specific to large scale software engineering projects

or large scale Information Systems project?

II. What are the challenges caused by these characteristics?

III. How agile methodologies mitigate these challenges?

Figure 1 presents the mapping of research questions to the study structure.

As back ground material reviews and studies of projects or programs including agile

methodologies were searched from Scopus. Material was selected based on relevance es-

timated by reading the titles and/or abstracts, the focus being in articles addressing meth-

odology selection or projects success. In the beginning of the search literature published

after year 2000 was included, but the later selections limited to literature published after

2010 in order to both limit the search results and to concentrate on the most recent re-

search. Systematic reviews and studies including large material bases (multiple cases or

otherwise large samples of statistics) were preferred. Study is not a systematic literature

review.

To answer the research questions I) and II) recent research literature about agile develop-

ment methodologies in large scale contexts were inspected to find out what are different

definitions of large, the characteristics typical to large scale context and the problems

3

associated to these characteristics. The material search concentrated on the recent con-

ferences where the subject has been raised as a topic; International Conference on Agile

Software Development on years 2013 (XP2013) and 2014 (XP2014). Material was

searched from the conference distribution sites and conference publications, in addition

publications referred in the selected material were investigated as possible additional

sources. Amount of research papers found about scaling was scarce, which was also noted

in some of the papers included. To get more understanding complete analysis of the chal-

lenges was then done using SWEBOK knowledge areas [SWE14] as a framework against

which to consider found characteristics of large scale IS project. To answer research ques-

tion III) the challenges resulting from this analysis were then compared against agile prac-

tises to see how various agile practises used in different agile methodologies respond and

mitigate these challenges.

Scaling agility over large scale organization other than project context, e.g. scaling over

whole enterprise, is excluded from the study. This is also the reason why SAFe (Scaled

Agile Framework) is excluded from this study although it was considered as possible

methodology.

Figure 1: Research questions are addressed in chapters 3 and 4 and conclusions are explained in chapter

5.

Chapter 2 introduces core concepts and background from research regarding different

methodology approaches and project success and failure factors. Subchapter 2.1 explains

4

plan based and agile methodology approaches and their main differences. Subchapter 2.2

refers how project methodology is considered impacting to project success.

Chapter 3 and its subchapters contain the recognition of the large scale project character-

istics, the associated challenges and their categorization. Subchapter 3.1 explains differ-

ent views on how large scale is understood in the literature, the characteristics and chal-

lenges of large scale projects collected from the literature are presented in subchapters

3.2 and 3.3. Subchapter 3.4 contains analysis of the impact of large scale project charac-

teristics to software engineering project related knowledge areas. The analysis of agile

practises impact to challenges of large scale IS projects is described in chapter 4 and its

subchapters. Subchapter 4.1 presents the agile practises used in the analysis. Impact of

agile practises to challenges in large scale projects is analysed in chapter 4.2 and the anal-

ysis results are explained in chapter 4.3. Results are summarised in Chapter 4.4 and fur-

ther explained, concluded and discussed in chapter 4.5. Final conclusions are presented

in chapter 5.

5

2 Foundations

Following chapters present the core concepts; plan based and agile methodology ap-

proaches, project success and failure factors and impact of methodology on the project

success or failure as it is argued on the existing research literature.

2.1 Two Categories of Methodology Practise

Two major categories can be recognised from the current vendor communities of meth-

odology practise related to software development projects; traditional plan-based and ag-

ile [ACD15]. Plan-based and agile approach differ greatly in terms of life cycle model,

level of uncertainty and attitude towards changes. Plan-based approaches usually accom-

modate lifecycle models which are linear sequential or incremental and phased by scope,

rely on pre-established plan and expect conformance to it considering changes as excep-

tions and disturbance that should be prevented. Instead agile approaches utilise iterative

and adaptive lifecycle with short time boxes to allow learning from the feed-back and

reprioritization. Since change is expected planning is kept short term and future features

are not prepared in advance, modifying previous work and reprioritizing is allowed

[ACD15, BTB03, DyD08]. Comparison of the two methodology categories is presented

in Table 1.

Notable communities representing plan-based approaches are for example Project Man-

agement Institute (PMI), which publishes PMBOK®, International Project Management

Association (IPMA), publishing IPMA Competence Baseline framework and PRINCE2®

(Projects IN Controlled Environments), originally established by Office of Government

Commerce UK, now days de facto standard developed and used extensively by the UK

government, a registered trade mark of AXELOS Limited [PMB13, ICB06, MSP09].

PMBOK Guide fifth edition includes also Software Extension, developed jointly with

IEEE Computer Society concentrating on management of software development projects,

which is stated to bridge the gap between traditional and iterative e.g. agile approaches

[SEP13]. Agile development principles and practises are promoted by Agile Alliance for

the most [GtA15].

6

 Traditional Plan Based Agile

Life cycle model
Linear sequential or incremental and
phased by scope

Iterative and adaptive lifecycle with
short time boxes

Level of uncer-
tainty

Pre-established plan
Conformance to plan expected

Learning from the feedback expected,
modifying previous work and repriori-
tizing is allowed

Attitude to-
wards change

Considering changes as exceptions and
disturbance that should be prevented

Change is expected, planning kept
short term, future features are not pre-
pared in advance

Software devel-
opment process
methodologies

For example RUP

Scrum, XP, Scrum/XP Hybrid,
Scrumban, Kanban, Iterative Develop-
ment, Lean Development, Agile Model-
ling, Feature Driven Development
(FDD), DSDM/Atern, XP, Agile Unified
Process (AgileUP), Crystal, Custom Hy-
brid (multiple methodologies)

Guiding Princi-
ples

Plan based project management princi-
ples and guiding documents such as:
Prince2® (Projects IN Controlled Envi-
ronments)
PMBOK® (Project Management Body of
Knowledge)
ICB (IPMA Competence Baseline)

Agile principles in Agile Manifesto

Table 1: Comparison of two categories of methodology practise.

It is to be noted that PMI PMBOK® and PRINCE2® are concentrating on project man-

agement process level, which are in software development context used together with the

selected suitable software development process, (for example RUP, Rational Unified Pro-

cess). In addition different software development related techniques (e.g. modelling lan-

guages; ER, process flow diagrams, UML) can be used on top of selected project man-

agement methodology and software process methodology. Instead, agile methodologies

represented in the literature usually are software development methodologies which con-

tain aspects of both project management level (for example dividing work into time-boxes

impacts the schedule management on project management level, monitoring the work

using burn down charts impacts on the scope, budget and schedule management) and

development related techniques (documenting requirements as user stories). Agile meth-

ods focus on different aspects of the software development lifecycle such as management

of the development, defining the development process or the practises and work products

within the process, and they may cover different parts of the lifecycle [ASR02]. Most of

the agile methodologies do not consider project management as a whole or cover other

project areas such as project initiation, subcontracting, solution rollout and handover

which are outside of the software development.

7

According to recent mapping study from Diebold and Dahlem, around 20 different agile

or lean methodologies can be recognised but only small number of them are really used,

most common being scrum and XP [DiD14]. State of the agile survey separates 11 agile

methodologies; Scrum/XP Hybrid, Custom Hybrid (multiple methodologies), Scrumban,

Kanban, Iterative Development, Lean Development, Agile Modelling, Feature Driven

Development (FDD), DSDM/Atern, XP, Agile Unified Process (AgileUP) [SoA16]. In

addition to these at least Crystal methodology family has been mentioned in the back-

ground material of this study [ChC08].

2.2 Project success and Project Methodology as one of the Success or

Failure Factors

Definition of project success has evolved over time. Traditionally project success has

been seen as conformance to a project plan, typically measured with attributes like budget,

schedule and requirements [Yeo02] or similarly scope, time, cost and quality [ChC08]. In

later studies this has been categorised as project management success [SAR12] or project

process performance [ACD15]. Performance and quality of the product delivered as an

outcome of the project have also been considered as attribute of the project success (cat-

egorized as project product performance) [ACD15]. Current studies related to software

development projects state that there is no overall agreement over definition of success

or universal success criteria that would be suitable for all projects [ACD15]. Project goals

and expectations of different stakeholders impact on the perception of the project success

and success criteria are therefore considered dependent on the project type and stake-

holder perspective. For example customer satisfaction, short term business success (sup-

pliers profit) and long term business success (future business, including good relations

with customer) have been recognized as types of project success from software supplier

perspective while meeting the planning goals (project management success), end user

benefits (success from end user perspective) and contractor benefits (commercial success

and potential for future revenue) have been recognized as success for research and devel-

opment projects [SAR12].

Project success (Critical Success Factor, CSF) and failure factors are elements that are

considered increasing the likelihood of success or failure [SAR12]. Project success/fail-

ure factors have been studied in both agile and traditional plan based methodology con-

texts.

8

Different sources or categories for success or failure factors have been proposed. For ex-

ample Yeo has grouped failure factors as process driven (including business planning,

project planning and project management/control related issues), context driven, (such as

corporate culture, corporate management, users and politics related issues) and content

driven (issues related to information technology, business process and system design,

IT/IS professionals and knowledge sources in the project domain) [Yeo02].

Examples of success factors found in the agile project contexts are similar. For example

Chow and Cao have proposed five different success factor categories [ChC08]; In their

study of success factors contributing success attributes quality, scope, time and cost on

agile project contexts they found evidence that technical and people factors (agile soft-

ware techniques, delivery strategy and team capability and customer involvement) have

heavy impact on project success and process and organizational factors (project manage-

ment and project definitions process, management commitment, organizational environ-

ment and team environment) have some impact on project success but they found no

evidence on project factors (project nature, project type and project schedule related fac-

tors) impacting to project success [ChC08].

As in these examples, project management methodology has been considered as one of

the elements that have impact on project success in both agile and traditional project con-

texts. There are claims that choosing the appropriate project management approach is

amongst the most critical success/failure factors. One of the recent studies on this area

states that even though the categories are similar the actual success factors differ greatly

and are even opposite for agile and plan based projects [ACD15]. For example factors

like project planning, requirements and specifications changes, project team general ex-

pertise and monitoring and controlling have different role and meaning in plan based than

in agile contexts which explains why they may be contributing the success in one ap-

proach but not in the other. Hence universal set of critical success factors across all meth-

odologies is unlikely, the importance of each CSF varies for each methodology and the

selected project process itself impacts on the success. Methodology should therefore be

selected based on identified CSFs and the conditions on which the methodology would

be likely to succeed. [ACD15]. Project characteristics impact on the suitability of devel-

opment methodologies and management structures has been widely recognized and re-

search of the area includes studies, tools and framework proposals for aiding on the se-

lection of the appropriate process model [GuD15, Kel05].

9

3 Large Scale Information System Projects

Following subchapters explain different aspects of large scale software development or

IS projects, the special characteristics of such projects and the categorized challenges

associated to the characteristics.

3.1 Aspects of Large Scale

In the information systems project related literature large scale usually refers to the size

of the application domain impacted (e.g. enterprise application projects where develop-

ment scope includes several applications of the enterprise application domain) [VlV15,

RaA14], size of project organization (or large development organization for product line)

[TRA15, DyD15, RaA14, SHK14, PaP14, DFI14] or time scale of the project (projects

taking several years) [DyD15]. In many cases these different aspects are related. It is

common for example in the enterprise application domain that separate teams work with

different applications causing larger organizational set up. When the application domain

is wide, using large organization does not usually shorten the development time. Large

development organizations are also often meant to stay long since the cost (effort and

time) of setting up large organization and getting it properly working is usually high.

While large scale software engineering projects have been recognized as separate research

area, literature is still scarce and the criteria for considering project being large are not

commonly well defined. Dingsøyr, Fægri and Itkonen [DFI14] have proposed a taxonomy

with three levels from small scale (1 team) to large scale (2-9 teams) and very large scale

(10+ teams) development projects based on the amount of teams and their impact to the

coordination approaches required. They also state that costs, code size or number of re-

quirements are not suitable criterion for determining whether project is large or not, since

they are often dependent on the domain, tools and technology used, reusable code base

and length of the project and therefore are not comparable measures between projects.

3.2 Special Characteristics of Large Scale Information System Projects

Even though the definition of large scale is not clear or unified, common characteristics

can be recognized from the research of large scale information systems projects. Six typ-

ical characteristics presented in the following chapter were identified from the literature

included in this study.

10

Large scale project set up is usually a multi-team system. Multi-team setup was referred

to in all eight source articles about large scale development in agile context [GBT15,

DFI14, DyD15, Pap14, RaA14, SHK14, Tra15, VlV15]. In software engineering research

this usually means that project includes several development teams, e.g. scrum teams due

to the amount of product areas and features. Organizational project context may also en-

force multi-team set up, for example in enterprise application domain applications usually

have dedicated development teams which may be outsourced to vendors and if the scope

includes several applications, it naturally includes several teams. In addition large scale

projects often include other areas than just software development, such as rollout, train-

ings, business transformation management etc. which are also represented in the organi-

zational set up and need to interact with the development teams, this is common for ex-

ample business transformations and architecture consolidation and replacement projects.

This was the most commonly mentioned feature in the reviewed literature.

Distributed teams are very typical to large scale projects with multi-team settings. This

was mentioned in five articles out of eight [GBT15, Pap14, RaA14, Tra15, VlV15]. Large

organization may not easily fit into same premises. In addition enterprise application

maintenance and development is often at least partially outsourced to application specific

vendors. Usually in large enterprise application projects (business transformations, sys-

tems consolidations or replacements) at least part of the project is outsourced to an exter-

nal software vendor which uses its own premises for development work.

It is common to large scale development that the scope contains features spanning over

several systems and development teams. Two of the included articles specifically referred

to large features split and distributed to different teams [Tra15, VlV15], in addition coor-

dination of dependencies is brought up in one source study [SHK14]. In the enterprise

application domain it is common that the business functionality is implemented by inter-

acting features in several applications. Therefore business process changes, new business

functionalities or replacement of applications usually require development in several in-

teracting applications often managed by separate development teams. The occurrence of

this kind of requirements is especially high in large scale development projects in the

enterprise application domain, but there is similarity also for example to embedded sys-

tems development projects where there are dependencies to features developed to infra-

structure by external parties.

11

Large scale projects are usually also alive long time. Large problem domain naturally

takes long time to be covered and completed but there are also often lots of other areas in

addition to the software development, such as pre-study and initiation activities and ac-

ceptance, deployment, transition and rollout activities, that may be needed prior or after

the development activities, which may impact the project total timeline. Scaling over time

is mentioned in two studies included in the source material of features of large scale pro-

jects [GBT15, DyD15].

Some characteristics specific to information systems projects in general can be expected

to gain even more significance in large scale context and are therefore also worth men-

tioning.

In large scale environment information system architecture and software can have unlim-

ited complexity, revisibility, flexibility and nonlinear behaviour. Capturing and modelling

every possibly condition that may impact the behaviour of system (system including all

interacting applications and other actors) is impossible in large scale context. Software

development and especially problem solving process are unpredictable by nature. In the

context of large scale environment the problem is rarely fully understood from the begin-

ning and may be changing or more of it is gradually revealed while more details are un-

covered and some parts of the problem solved. It is common that the problem is fully

understood and the requirements fully defined only when the solution is defined and until

that it may be impossible to say how close to completion the solution is. Complexity of

IS architecture and software as a product and unpredictability of development process are

both mentioned in two separate articles [DyD15, SHK14].

Features of large scale IS projects are presented in the table 2.

Features of Large scale IS projects Research articles where occur

Multiple teams
[GBT15, DFI14, DyD15, Pap14, RaA14,

SHK14, Tra15, VlV15]

Distributed teams [GBT15, Pap14, RaA14, Tra15, VlV15]

Large features spanning over several systems

and teams

[SHK14, Tra15, VlV15]

Long timespan [GBT15, DyD15]

Complexity of IS architecture and software as a

product

[DyD15, SHK14]

Unpredictable nature of development process [DyD15, SHK14]

Table 2: Features of large scale information systems project.

12

3.3 Challenges Associated to the Features of Large Scale Projects

Using Agile Methodologies in Literature

The challenges associated to agile methodologies used in multi-team setup are related to

cross-team coordination [DFI14, DyD15, Pap14]. Additional forums (such as multiple

scrum of scrums) are needed to ensure the coordination between teams which causes co-

ordination overhead. When organization hierarchy deepens risk of knowledge silos in-

creases [DFI14]. Added organizational structures contradict with the agile principles and

careful balancing of additional and adapted methodologies is needed to keep benefits of

agile methodologies still real. Concrete decisions and questions to be resolved are related

practises such as what would be the optimal organizational design, whether to have multi-

team or multiple backlogs, should all participate on multiple meetings or only single rep-

resentatives, selecting suitable tools for large scale setting, and ensuring the organiza-

tional agility of the operational environment [Pap14]. While agile methodologies prefer

and rely on organic and cognitive coordination types, in a large multi-team setups mech-

anistic coordination is needed. Cognitive coordination (share mental models and transac-

tive memory systems) cannot be established in multi-team system without help of other

types of coordination. Pure organic (mutual adjustment via interaction) coordination re-

quires excessive amount of communication between all members of multi-team system

and the communication overhead would make it impossible which is the reason for scrum

of scrums settings. Choosing the coordination strategy and optimal mixture of different

coordination types is needed in multi-team systems [SHK14].

Distribution of teams increases the challenges of multi-team system. Lacking face-to-face

communication and physical access added with time zone differences means that even

basic information sharing require using communication technologies. More sophisticated

tools and working environment is needed to support distributed development and in the

same time vulnerability of the infrastructure and development environment increases in-

creasing the risk of environment related quality problems [RaA14]. Depending on the

organizational setting and the distribution model the challenges concentrate on different

areas of the project organization. In settings where the development teams are geograph-

ically distributed from product owners (outsourcing) the collaboration between product

owners and development teams is challenging and needs additional supportive practises

13

[Tra15]. Choosing optimal collaboration model (e.g. collaboration via scrum of scrums

or cross functional teams of which members are distributed geographically) for teams in

distributed context needs to be resolved [VlV15].

Large features spanning over architecture need to be split and distributed to different de-

velopment teams causing interdependencies between teams. Dependencies increase the

need of coordination to align priorities, schedules, working practises and deliverables.

Amount of dependencies have high impact on the predictability of delivery. All involved

teams need to deliver on time and failure to do so impacts the work of all teams in next

iteration (causing re testing of something implemented in the previous), having significant

impact also on time to market and costs. Coordination and sharing the goals and policies

between teams is not supported in the agile methodologies and does not happen naturally

in multi-team environment and therefore additional mechanisms are needed. Typically

agile teams such as scrum focus on internal backlog instead of the end to end features and

may therefore have mismatching priorities. Alignment of working processes and policies

(such as definition of done, start, finish and duration of the increments, test activities and

test results are needed to accomplish end to end features. Visibility to the status of other

teams work is required and preferably automated [VlV15]. In addition to inter-team co-

ordination the visible progress of full end to end feature is often slow and visibility over

progress and possible problems is easily lost. Large end to end features may block the

development pipeline unnecessarily when several teams are engaged to it but waiting

other teams to complete. Splitting the features properly to manageable size while keeping

the dependencies in minimum needs to be resolved [Tra15].

Challenges associated to time aspect and project length are related to changes. Changes

in the environment, market conditions, customer requirements and project goals are nor-

mal in the information systems projects. While project size and length increases, changes

accumulate over time and over the large problem domain so high amount of change is

expected in the large scale project. It is common that even requirements of already imple-

mented features may change and for large features which take long time to be completed

changes may come even during implementation. In the information system projects taking

several years the future is uncertain and because of the changes relying on past experi-

ences is not reliable [DyD15].

Complexity of IS architecture and software as a product in large scale contexts poses also

challenges related to changes. While it is not possible to model all requirements/design

14

in advance or to build a models which produce accurate results about the system's quali-

ties, ability to adapt changes and roles and techniques oriented toward flexibility and

learning are needed [DyD15]. The complexity of large scale software development prob-

lem domain produces incomplete and changing requirements and it also hosts complex

interdependencies between the requirements and existing infrastructure and software

stack [SHK14].

The unpredictable nature of problem solving and information systems development pro-

cess makes advance planning difficult. It is impossible to reliably plan all task durations

and schedules of complex problem solving cases or details of the solution in advance in

all circumstances. Therefore flexibility and ability to adapt is highly needed [DyD15].

3.4 Analysis of Impact of Large Scale to Software Engineering Project

Related Knowledge Areas

Since the evidence found in the literature review in previous sections about the impact of

large scale to information systems projects is little, more complete analysis was done

using SWEBOK knowledge areas [SWE14] as a framework against which to consider

each characteristics of large scale IS project.

The knowledge areas of Computing foundations, Mathematical foundations and Engi-

neering foundations were left out from the analysis by default. These knowledge areas

have more to do with the project content and information systems solutions in the project

scope than the process of developing which is the scope of this study.

Since this study is concentrating on project aspect of the software engineering Software

maintenance knowledge area was considered only in the context of an ongoing large scale

project, not as a continuous process outside of development project.

Moreover, Software engineering process knowledge area was not separately considered.

More complete analysis on relation of large scale characteristics and software engineering

process is expected as a result of this study and including it to the analysis as such would

create a self-reference to the expected results.

Column “Other” was added to capture possible other considerations related to software

engineering knowledge areas in a large scale project context not directly associated to

characteristics found on the literature. Breakdown of analysis of SWEBOK knowledge

areas against the characteristics of large scale projects is presented in the table 3.

15

SWEBOK

Knowledge

Areas

Features of large scale software engineering or IS projects

Multiple teams Distributed teams Large & span-

ning features

Long time span Software / IS

complexity

Problem solving

process nature

Other

Software

requirements

Agreeing on com-

mon definitions

(cross team),

Deciding the best

organization struc-

ture for reqs defi-

nition process

Reqs negotiation,

communicating re-

quirements.

Splitting large fea-

tures to smaller

sub-features

and making archi-

tectural decisions

impacting widely

in the system land-

scape

Recognition of de-

pendencies and

boundaries regard-

ing split features

Long time span in-

creases the amount

of changing reqs

Information sys-

tem inherent com-

plexity causes in-

complete and

changing reqs

Due to unpredicta-

ble nature of prob-

lem solving pro-

cess requirements

may stay incom-

plete and changing

and requirements

engineering activ-

ity can't be com-

pleted before late

in the development

phase.

Large amount of

requirements and

requirements

sources/stakehold-

ers that need to be

involved and satis-

fied

Software

design

Agreeing on com-

mon principles,

Distribution of de-

sign tasks

Communicating

design with dis-

tributed teams,

Design of inter-

faces/interactions

related to split fea-

tures. Communi-

cating the design

regards to split

features and archi-

tecture decisions,

Synchronizing the

design work of

split features

During long time

span changes may

be inflicted to de-

signed or com-

pleted features

Incomplete and

changing reqs

cause design

changes

Due to unpredicta-

ble nature of prob-

lem solving, re-

quirements defini-

tion, design and

implementation

are intertwined and

can't be completed

before completion

of development

and approval of

the feature

-

Software

construction

Agreeing on the

coding standards

Dividing the im-

plementation work

to teams

- Synchronizing the

implementation

work of split fea-

tures

Integration and in-

tegration testing of

split features

During long time

span changes may

be inflicted to de-

signed or com-

pleted features

Incomplete and

changing reqs

cause changes

during implemen-

tation time

Due to unpredicta-

ble nature of prob-

lem solving, devel-

opment comple-

tion time may be

difficult to predict

before it's com-

Validating ad con-

firming the results

with many stake-

holders

16

SWEBOK

Knowledge

Areas

Features of large scale software engineering or IS projects

Multiple teams Distributed teams Large & span-

ning features

Long time span Software / IS

complexity

Problem solving

process nature

Other

pleted with verifi-

cation and ap-

proval. Even after

approval defects

can be found caus-

ing changes to the

design and imple-

mentation

Software

testing

Distribution of

testing responsibil-

ities over teams

and to common

testing organiza-

tion.

Agreeing on the

approval and com-

pletion criteria for

deliverables

Communicating

requirements,

Communicating

test results/inci-

dents with distrib-

uted teams

Following up and

coordinating com-

pletion of split fea-

tures for testing,

Organizing E2E

testing of large

split features in-

volving experts of

multiple teams

Keeping require-

ments up to date

during long time

span

Defining verifica-

tion and approval

criteria for reqs

changing during

the time span

Keeping require-

ments up to date

during long time

span

Defining verifica-

tion and approval

criteria for chang-

ing reqs

Since not all con-

ditions can be

tested, it is diffi-

cult to decide read-

iness for approval

Keeping require-

ments up to date

during long time

span

Defining verifica-

tion and approval

criteria for chang-

ing reqs.

Time and needed

test rounds for fea-

ture can't be pre-

dicted, scheduling

the approvals are

difficult.

Validating ad con-

firming the results

with many stake-

holders

Software

maintenance

- - Agreeing the inci-

dent management

and maintenance

responsibilities

over large features

involving several

subsystems and

possibly several

maintenance or-

ganizations

Long development

project may be still

ongoing while

maintenance pro-

cess needs to be

set up and the in-

teraction between

these two needs to

be planned (in re-

- - -

17

SWEBOK

Knowledge

Areas

Features of large scale software engineering or IS projects

Multiple teams Distributed teams Large & span-

ning features

Long time span Software / IS

complexity

Problem solving

process nature

Other

gards to function-

alities changed in

both work streams

and timing of

changes near re-

leases)

Creating the docu-

mentation for

maintenance when

lots of content

from long develop-

ment project and

changes still com-

ing.

Software

configuration

management

Coordinating sw

configuration sta-

tus with multiple

teams

Communicating

software configu-

ration status to dis-

tributed teams

Keeping the de-

pendencies when

planning releases

and managing

builds including

large split features.

Keeping software

configuration

working in situa-

tions involving

split features

Planning timing

and meaningful

content for re-

leases.

Planning timing

and meaningful

content for re-

leases while

changes to imple-

mented features

may already be

known

Due to late finali-

zation of require-

ments release con-

tent may not be

fixed until nearly

release time

Due to late finali-

zation of require-

ments release con-

tent may not be

fixed until nearly

release time

-

Software

engineering

management

Defining organiza-

tional setting

which facilitates

Ensuring

knowledge sharing

Coordinating

schedules and de-

liverables over

Expected changes

during long time

span lower the

Due to IS domain

complexity Final

solution can't be

Due to unpredicta-

ble nature of soft-

ware development

-

18

SWEBOK

Knowledge

Areas

Features of large scale software engineering or IS projects

Multiple teams Distributed teams Large & span-

ning features

Long time span Software / IS

complexity

Problem solving

process nature

Other

engineering pro-

cesses and coordi-

nation over func-

tional areas.

Organizing deci-

sion making and

right participants

over multiple

teams.

Ensuring

knowledge shar-

ing. Monitoring

the total progress.

over distributed

teams

Coordination of

the distributed

teams regards

common mile-

stones and target

schedules. Com-

municating the

progress of distrib-

uted teams.

split features.

Monitoring pro-

gress and comple-

tion of split fea-

tures and comple-

tion of the feature.

credibility of the

plans created in

the initiation phase

Changes during

long time span

cause lots of re-

planning.

Measuring success

of project after lots

of changes is diffi-

cult

fully defined in the

initiation phase

hence not all com-

ing activities are

known in initial

planning phase,

causing incom-

plete plans (sched-

ule estimates, re-

source needs, rec-

ognised work

packages and

tasks, etc). Incom-

plete plans require

updating and re-

planning.

work (problem

solving) all activi-

ties needed in the

design and imple-

mentation phases

can't be recognized

in the initial plan-

ning causing in-

complete plans. In-

complete plans re-

quire updating and

re-planning.

Software

engineering

process

Selection and tailoring of processes and lifecycle models to support features of large scale project

Software

engineering

models and

methods

Agreeing on com-

mon modelling

languages and

methods to needed

extent between

teams

Tool support for

sharing models

and other delivera-

bles with distrib-

uted teams

Shared models

over split features

and their bounda-

ries required.

Need to recognize

what must what is

critical to under-

stand and be mod-

elled

Updating and com-

municating up-

dated shared mod-

els after changes

 Updating and com-

municating up-

dated shared mod-

els after changes

-

Software

quality

Agreeing and shar-

ing the same crite-

ria and standards

Agreeing and shar-

ing the same crite-

ria and standards

- - - Deciding when

and how to meas-

ure quality when

Validating ad con-

firming the results

with many stake-

holders

19

SWEBOK

Knowledge

Areas

Features of large scale software engineering or IS projects

Multiple teams Distributed teams Large & span-

ning features

Long time span Software / IS

complexity

Problem solving

process nature

Other

for quality over

teams

for quality over

teams

end results and re-

quirements are not

known/fixed until

late stage

Software

engineering

professional

practice

- - - Personnel changes

likely during long

time span, learning

time and group dy-

namics aspects

may have impact

when personnel is

changing.

- - -

Software

engineering

economics

Making prioritiza-

tion and scoping

decisions and

tools/component

selections which

have different im-

pacts over multiple

teams

Need to make de-

cisions over off-

shoring/outsourc-

ing

Prioritization of

split features in the

context of each

part

Changing business

goals and priorities

are possible during

long time spans

which impact the

project feasibility,

scope and success

IS complexity and

inability to model

everything adds

uncertainty in de-

cision making

Unpredictable na-

ture of software

development adds

uncertainty in de-

cision making

Decision making is

difficult with vari-

ous stakeholders

having contradict-

ing objectives

Computing

foundations

Mathematical

foundations

Engineering

foundations

Table 3: Analysis of SWEBOK knowledge areas against the characteristics of large scale IS projects.

20

In the analysis, all topics under the each SWEBOK knowledge area were reviewed and

the impact of each feature of large scale projects is considered. For example first topic of

SWEBOK Software Requirements knowledge area is “Requirements Fundamentals”,

having sub-topics: “Definition of a Software Requirement”, “Product and Process Re-

quirements”, “Functional and Nonfunctionl Requirements”, “Emergent Properties”,

“Quantifiable Requirements”, “System Requirements and Software Requirements”. The

impact of large scale project feature multiple teams to this topic is that all teams must

understand the requirements fundamentals similar way in order to be able to contribute

to or use the same requirements base, hence there is need to agree a common definitions

between teams. Second topic in Software Requirements knowledge area is the “Software

Requirements Process”. Impact of multiple teams to this topic depends on how the teams

are organized and whether the requirements process includes interactions between teams

or is something within the team. So the challenge of deciding the best organization struc-

ture for requirements definition is recognized. The challenges or needs recognized in this

way are then grouped under common problem categories.

Detailed grouping of atomic challenges to groups is presented in the table 8 (Appendix

1). Mapping of problem categories to SWEBOK Knowledge Areas and large scale project

features is presented in table 9 (Appendix 9).

Found problem categories are summarized in the table 4 and the mapping of the categories

to features of large scale IS projects is presented in table 5.

Problem category

1. Sharing the same understanding across large organization

2. Setting roles and responsibilities over multiple teams

3. Distributing and assigning tasks for multiple teams

4. Decision making over multiple teams

5. Communication over multiple / distributed teams

6. Coordination and dependency management over multiple / distributed teams

7. Dealing with changes and unpredictability

8. Dealing with large amount of "customers"/stakeholders

9. Interacting with parallel software maintenance (or other organizational pro-

cesses)

10. Personnel/human resources and sourcing decisions e.g. offshoring/outsourcing

and personnel changes

Table 4: Categories of problems associated to large scale information systems projects.

21

Features of

large scale IS

projects

Challenges associated

Multiple teams

(1) Sharing the same understanding cross multiple teams

(2) Setting roles and responsibilities over multiple teams.

(4) Decision making over multiple teams.

(5) Communication over multiple / distributed teams.

(6) Coordination and dependency management over multiple /

distributed teams

Distributed teams

(1) Sharing the same understanding cross multiple teams:

(5) Communication over multiple / distributed teams

(6) Coordination and dependency management over multiple /

distributed teams

(10) Personnel/human resources and sourcing decisions e.g.

offshoring/outsourcing and personnel changes

Large features

spanning over

several systems

and teams

(1) Sharing the same understanding cross multiple teams

(4) Decision making over multiple teams:

(6) Coordination and dependency management over multiple /

distributed teams

(9) Interacting with parallel software maintenance (or other

organizational processes)

Long timespan

(1) Sharing the same understanding cross multiple teams:

(7) Dealing with changes and unpredictability

(9) Interacting with parallel software maintenance (or other

organizational processes)

(10) Personnel/human resources and sourcing decisions e.g.

offshoring/outsourcing and personnel changes

Complexity of IS

architecture and

software as a

product

 (7)Dealing with changes and unpredictability

Unpredictable

nature of devel-

opment process

(1) Sharing the same understanding cross multiple teams:

(7) Dealing with changes and unpredictability

Other (8)Dealing with large amount of "customers"/stakeholders

Table 5: Problem categories mapped to the features of large scale IS projects.

The challenges recognized in the analysis can be grouped to 10 problem categories. First

category (table 4) “Sharing the same understanding across large organization” repre-

sents the challenge of aligning the mental model over large organization so that shared

information is understood similar way. Correct interpretation of information requires hav-

ing shared common language and culture. In the context of software engineering this

means for example common definitions and terminology used in the requirements defini-

tion, preferred design principles, coding standards, approval and completion criteria for

deliverables, common modelling languages and methods, shared quality criteria and

22

standards and so on. These conventions are easily shared within small team and easily

clarified within occasional face to face discussion but within large organization agreeing

interpretation each time would cause excessive amount of additional communication and

to avoid that distribution of shared conventions over large organization require facilita-

tion.

Recognizing things which need to be shared between teams, how sharing is established

and what can be left as internal to team are needed and depend on the organization struc-

ture and distribution of work. Shared understanding is especially critical over the deliv-

erables related to features that are split to different teams and their boundaries. Also up-

dating and communicating updated shared models after changes needs to be ensured dur-

ing long project.

Second category “Setting roles and responsibilities over large organization" (table 4) is

related to the challenge on defining the optimal organization setting to facilitate all the

project dimensions, such as software engineering process selected, software delivery

pipeline all the way to delivery to use, business and end user/customer rollout and to

enable division and coordination of project content over application domain and func-

tional areas developed. It is common that in a large scale information system project dif-

ferent dimensions may proceed with different pace. E.g. transition to use and to mainte-

nance process may have different process cycle and timing constraints than the imple-

mentation, and this needs to be enabled in the project organization. So dividing the large

project organization to teams and dividing the work processes within the project (such as

software development, enterprise architecture definition and management, release man-

agement, testing) across the teams is a challenge that needs to be resolved when setting

up a large scale project. Especially setting up parts of organization which execute pro-

cesses common for all teams, such as acceptance testing, production deployments, train-

ings etc. may be problematic. The selected methodologies, development processes and

how the project scope is defined impacts to the optimal organization.

Third category (in table 4) “Distributing and assigning tasks for multiple teams” is re-

lated to second category (Setting the roles and responsibilities over large organization).

The view point in this category is more about the division of design and development

work tasks to teams than about working processes and team boundaries. Distribution of

work to teams has a relation to workload and working capacity and hence it will impact

the schedules of completing deliverables in the project scope. On the other hand there

23

may be dependencies and constraints in the project application domain that state how the

tasks can be assigned to specific teams. Division to functional areas together with tech-

nical dependencies may lead to uneven distribution of work and waiting time in some

teams.

Category “Decision making over multiple teams” (in table 4) groups challenges that are

related to making decisions which have wide impact in a large scale organization. Deci-

sions which impact over several project dimensions may not be naturally facilitated by

the project working processes. Examples of such things are prioritizations (for example

over features split to several development teams), scoping decisions and tools/component

selections that impact multiple development teams, negotiations and decisions over ar-

chitecture (where to implement features that can be resolved multiple ways), configura-

tion changes or exceptional activities in shared environments which may impact all de-

velopment teams and different levels of testing etc. In hierarchical organization decision

making can usually be passed to level in the command chain common to all stakeholders

of specific decision but in the flat large scale organization with autonomous teams there

may not be a common decision making forum for all necessary participants. Recognizing

the impacts of decisions and correct stakeholders and participants to the decision making

in any kind of the large scale organization can be difficult and enforcing the decision in

cases when there are conflicting goals and interests and no central ownership or authority

over the problem is a challenge. Recognizing most common decision cases and facilita-

tion of decision making needs to be designed as part of large scale project set up and it’s

dependent on the project structure and project processes.

Category five “Communication over multiple or distributed teams” (in table 4) is close

to first category “Sharing the same understanding across large organization”. While the

first category is about sharing the terminology, conventions and common mental model,

the category five is more about ensuring the communication in the first hand. When the

organization gets larger, information sharing requires facilitation, tools and processes to

reach all necessary receivers. Especially in the case of distributed teams tools and com-

munication media come to important role and processes should ensure using them timely.

Information sharing between teams is needed for example in requirements negotiation,

when communicating design, test results and incidents, configuration status, progress etc.

between different dimensions of project and in knowledge sharing in the transitions from

one organizational unit to other. Also communicating deliverables between teams usually

24

requires tools or some kind of media.

Sixth category “Coordination and dependency management over multiple or distributed

teams” (in table 4) groups multitude of challenges that large scale IS projects have related

to management of dependencies and coordination of interactions between teams.

Activities requiring several teams’ participation need interaction and coordination be-

tween teams. Such activities are for example splitting large end to end features to smaller

sub-features and deciding the solution over systems landscape, making architectural de-

cisions impacting widely in the system landscape, recognition and minimization of de-

pendencies and boundaries of resulting such sub-features, designing interfaces/interac-

tions and communicating them, agreeing deliverables over such split features from one

team to another and organizing testing of end to end features involving experts of multiple

teams.

In addition to shared tasks, synchronization of schedules and monitoring the status of

individual teams tasks is often needed. For example completion and delivery of design

and implementation deliverables related to split features to the counterpart teams need to

be synchronized to avoid delays in other teams work. Also following up completion of

sub-features to end to end features for integration, integration testing and end to end test-

ing is needed in order to plan and activate next activity. Following up deliverables of

multiple teams from software configuration perspective is needed to keep the configura-

tion status up to date.

Mutual adjustment of schedules and deliverables may be needed in order to keep the soft-

ware configuration working and to keep the dependencies when managing builds and

releases including end to end features. Also aligning testing activities with software con-

figuration status and environments (e.g. what can be tested, what deliveries may be miss-

ing, what are the statuses of the applications/systems in the test environment) may be

needed especially in the end to end testing of processes and large features.

Dependencies need to be considered and understood when planning timing and meaning-

ful content for releases to end users/customers and overall coordination of the teams to-

wards common milestones and target schedules is needed to reach such targets.

Multiple challenges caused by high amount of changes and unpredictability of software

engineering problems in a complex and large scale program are grouped under category

seven “Dealing with changes and unpredictability” (table 4).

25

Problem solving process unpredictable nature and software product or IS complexity in a

large scale project context added with the long life time of a large scale development

project lead to high amount of incomplete requirements and changes to features in all the

development process stages and project phases. Requirements stay open long time and

changes can occur to finalized requirements, completed design, even completed features

and all the way to delivered and accepted features in case project delivery is phased and

project is still responsible of these delivered components. This leads to situation where

even in the late development or start of testing there may be parts of the requirements

incomplete and under investigation, making project phasing difficult. While requirements

engineering, design, development and testing are intertwined, requirements engineering

activity cannot be ceased before end of project and it is extremely difficult to predict

development completion time before everything is delivered and approved. Changes in

the requirements mean changes in the individual verification criteria of features and de-

ciding when and how to test and accept features while end results and requirements are

not known and fixed until late stage is challenging. Also keeping requirements up to date

during long time span of project is needed.

Planning timing and meaningful content for releases while changes to implemented fea-

tures may already be under development is also challenging. Due to late finalization of

requirements release content may not be fixed until nearly release time. It is also difficult

to decide release package readiness for approval. While not all conditions can be tested

in a large scale contexts due to its complexity, it is difficult to decide how much testing is

enough. Readiness of testing depends on the amount and frequency of findings during the

testing phase, so time and needed test rounds for set of feature can't be predicted well in

advance making scheduling of the approvals more difficult.

While final solution can't be fully defined or possible problem cases predicted all coming

activities can’t be recognized in the initiation phase of the project which makes creation

of complete plans (schedule estimates, resource needs, recognised work packages and

tasks, etc.) in advance impossible. Expected high amount of changes during long lifecycle

of the project makes the plans created in the initiation phase even more uncertain the

further to the future they reach. Changes during long time span cause lots of re-planning.

Unpredictability and inability to model scenarios completely add uncertainty to the deci-

sion making in different project activities and in planning and management of the project.

26

Finally changes in business goals and priorities are also possible during long project life-

time which may impact project feasibility, scope and success. Measuring success of pro-

ject after lots of changes is challenging.

Challenges in category eight (table 4) “Dealing with large amount of "customers"/stake-

holders” is recognized outside of the large scale project characteristics collected from the

literature.

Large scale IS project typically has large amount of requirements and requirements

sources and stakeholders which need to be involved and satisfied. With multiple “cus-

tomers” the needed interactions and communication and often also time required to set

and analyse the requirements and validate and confirm the results is multiplied. Decision

making and prioritization become difficult with various stakeholders having contradicting

objectives.

Challenges regarding software maintenance in category nine (table 4) “Interacting with

parallel software maintenance (or other organizational processes)” are associated to long

lifetime of and complex end to end features which are characteristic to large scale pro-

jects.

In large scale software engineering project it is common that the solution is taken into use

during the project while there still are further development and releases coming. Separa-

tion between the software maintenance process and the development project may be dif-

ficult to define and there may be confusion over what activities are on project responsi-

bility and what on the maintenance organization responsibility, especially regards

fixes/patches needed to production software. Interaction between these two streams needs

to be carefully planned, e.g. responsibilities over version control, creating, deploying and

testing maintenance fixes to project side software branch and controlling changes near

new project releases. Also handing over released functionality from development project

to maintenance organisation with necessary documentation and trainings may be difficult

when changes are expected in near future.

In a large scale IS landscape the maintenance process may be divided to different vendors

per applications and it is common that the different support lines may involve different

organizations or vendors. Agreeing and setting up maintenance in such large scale envi-

ronment is big effort in itself. Especially defining and agreeing incident management pro-

cess and responsibilities over large end to end processes or features involving several

27

applications and therefore several maintenance organization may be complex task.

Finally category ten (table 4) “Personnel/human resources and sourcing decisions e.g.

offshoring/outsourcing and personnel changes” includes challenges in the human re-

sources area. Large scale IS project involves lots of personnel and human resources and

sourcing issues are have major impact on the project performance. Personnel offshor-

ing/outsourcing are often considered and (customer) organization policies which are out-

side of the project may impact on the decisions. Personnel changes are also likely during

long project and introducing new people to project require special attention (such as train-

ings) and learning time before performing fully. Also group dynamics aspects impact on

project performance.

28

4 Agile Practises Response to Challenges of Large Scale

Following chapters present the agile practises that represent the agile methodologies in

the analysis, the analysis of agile practises impact on the challenges related to large scale

software development or IS projects as presented in chapter 3, the results of the analysis

and the discussion of the results.

4.1 Agile Practises

Agile methodologies differ from each other in the process details, they have both similar

elements and differences. To get results how agile methodologies as an overall group of

methodology practise respond to challenges of large scale IS projects, analysis needs to

be done in more granular level than methodologies. Three possible sources for the analy-

sis was recognised during the literature study for chapters 2 and 3.

Agile Alliance’s Guide to Agile defines 60 agile practices at the time of this analysis

[GtA15]. Practices described in the Agile Alliance site are in different levels, many of

them very atomic and variations of same practise are listed as separate practises. E.g.

“Three Questions” used in the daily meeting are one practice while the “Daily Meeting”

itself is one practise.

State of the agile survey [SoA16] on the other hand defines 25 agile techniques which

correspond to practises recognized by Agile Alliance. State of the agile is not a scientific

resource and the summary report does not give explanation of the origins of techniques

in State of agile –survey. It is also possible that techniques not reported as used by re-

spondents may have been omitted from the survey.

Agile practises have been recognised also in the scientific research literature. Diebold and

Dahlem have listed unique 18 agile practises in their mapping study regarding agile prac-

tices usage [DiD14]. Their study gathers practises from different agile methodologies un-

der common nominators but the study does not include explanations to the named prac-

tices.

Practises from Agile Alliance were chosen to basis for this analysis mainly because the

original descriptions of each practise are available and there is no risk of misunderstand-

ing or wrong interpretations of the practises. While Agile Alliance is not a scientific

source it is anyhow global organization representing a world-wide community of agile

29

practitioners committed to advancing Agile development principles and practices and can

hence be considered as standard source of agile practises in use.

4.2 Analysis of Agile Practises Impact to issues of Large Scale IS

Projects

Each listed agile practise was considered against each of the 10 challenges resulting from

the analysis in previous chapters to determine whether the practise has a mitigating impact

on the particular challenge. This was done by reviewing the description of each practise

in order to detect any impact regarding the challenges in the specific problem category.

For example following citations can be found of the definition of the first practise “Ac-

ceptance Testing” [GtA15]: “An acceptance test is a formal description of the behaviour

of a software product…” and “For many Agile teams acceptance tests are the main form

of functional specification…” Also in the benefits section of the description it is men-

tioned that acceptance testing is “…encouraging closer collaboration between developers

on the one hand and customers, users or domain experts on the other, as they entail that

business requirements should be expressed…” and “…providing a clear and unambigu-

ous "contract" between customers and developers…” Based on these statements ac-

ceptance testing is considered impacting the problem categories 1 and 5 related to shared

understanding and communications. Result of analysis is presented in the table 6.

30

Agile

practises

Problem categories of large sale software engineering or IS project
co

u
n

t
Sharing

the same

under-

standing

across

large or-

ganization

Setting

roles and

responsi-

bilities

over multi-

ple teams

Distrib-

uting and

assigning

tasks for

multiple

teams

Decision

making

over multi-

ple teams

Communi-

cation over

multiple /

distributed

teams

Coordina-

tion over

multiple /

distributed

teams

Dealing

with

changes

and unpre-

dictability

Dealing

with large

amount of

"custom-

ers"/stake-

holders

Interacting

with paral-

lel software

mainte-

nance (or

other or-

ganiza-

tional pro-

cesses

Person-

nel/HR and

sourcing

decisions

Acceptance testing P O O O P O O O O O 2
ATDD P O O O P O O O O O 2

Automated build O O O O O O O O O O 0

Backlog grooming O O O O O O P O O O 1

Backlog P O P O P O P O O O 4

BDD P P O O P O O O P O 4

Burndown chart O O O O P O O O O O 1

Collective owner-

ship
O O O O O O O O O O 0

Continuous deploy-

ment
O O O O O O O O O O 0

Continuous integra-

tion
O O O O O O O O O O 0

CRC cards O O O O O O O O O O 0

Daily meeting O O O O O O O O O O 0

Definition of Done O P O O P O O O O O 2

Definition of Ready O P O O O O O O O O 1

Estimation O O O O O O O O O O 0

Exploratory testing O O O O O O O O O O 0

Facilitation O O O O O O O O O O 0
Frequent releases O O O O O O P P O O 2

Given - When -

Then
P O O O O O O O O O 1

Heartbeat retro-

spective
O O O O O O O O O O 0

31

Agile

practises

Problem categories of large sale software engineering or IS project
co

u
n

t
Sharing

the same

under-

standing

across

large or-

ganization

Setting

roles and

responsi-

bilities

over multi-

ple teams

Distrib-

uting and

assigning

tasks for

multiple

teams

Decision

making

over multi-

ple teams

Communi-

cation over

multiple /

distributed

teams

Coordina-

tion over

multiple /

distributed

teams

Dealing

with

changes

and unpre-

dictability

Dealing

with large

amount of

"custom-

ers"/stake-

holders

Interacting

with paral-

lel software

mainte-

nance (or

other or-

ganiza-

tional pro-

cesses

Person-

nel/HR and

sourcing

decisions

Incremental devel-

opment
O O O O O O P O O O 1

Information radia-

tors
O O O O P O O O O O 1

Integration O O O O O O O O O O 0

Invest P O O O O O O O O O 1

Iteration O O O O P O O O O O 1

Iterative develop-

ment
O O O O O O P O O O 1

Kanban board O O O O P O O O O O 1

Lead time O O O O O O O O O O 0
Milestone retro-

spective
O O O O O O O O O O 0

Mock objects P O O O O P O O O O 2

Niko-niko calendar O O O O O O O O O O 0

Pair programming O O O O O O O O O O 0

Personas O O O O O O O O O O 0

Points (estimates in) O O O O O O O O O O 0

Planning poker O O O O O O O O O O 0

Project chartering P O O O O O O O O O 1
Quick design ses-

sion
O O O O O O O O O O 0

Refactoring O O O O O O O O O O 0

Relative estimation O O O O O O O O O O 0

Role-feature-reason P O O O O O O O O O 1

32

Agile

practises

Problem categories of large sale software engineering or IS project
co

u
n

t
Sharing

the same

under-

standing

across

large or-

ganization

Setting

roles and

responsi-

bilities

over multi-

ple teams

Distrib-

uting and

assigning

tasks for

multiple

teams

Decision

making

over multi-

ple teams

Communi-

cation over

multiple /

distributed

teams

Coordina-

tion over

multiple /

distributed

teams

Dealing

with

changes

and unpre-

dictability

Dealing

with large

amount of

"custom-

ers"/stake-

holders

Interacting

with paral-

lel software

mainte-

nance (or

other or-

ganiza-

tional pro-

cesses

Person-

nel/HR and

sourcing

decisions

Rules of simplicity O O O O O O O O O O 0
Scrum of Scrums P P P P P P O O O O 6

Sign up for tasks O O P O O O O O O O 1

Simple design O O O O O O P O O O 1

Story splitting O O O O O O O O O O 0

Story mapping O O O O O P O O O O 1

Sustainable pace O O O O O O O O O O 0

Task board O O O O P O O O O O 1

TDD O O O O O O O O O O 0

Team O P O O O O O O O O 1
Team room O O O O O O O O O O 0

Three C's O O O O O O O O O O 0

Three questions O O O O O O O O O O 0

Timebox O O O O P O O O O O 1

Ubiquitous lan-

guage
O O O O O O O O O O 0

Unit testing O O O O O O O O O O 0

Usability testing O O O O O O O O O O 0

User stories P O O O P O O O O O 2
Velocity O O O O O O O O O O 0

Version control O O O O O O O O O O 0
Count 11 5 3 1 13 3 6 1 1 0

Table 6: Mapping of agile practises impacting challenges of large scale projects (P=has partial impact, O=has no impact).

33

4.3 Analysis Results of Agile Practises Impact to issues of Large Scale

IS Projects

Challenge groups that were impacted most based on the analysis were: 5) “Communica-

tion over multiple or distributed teams” (impacted by 13 of the 60 practises), 1) “Sharing

the same understanding across large organization” (11 of the 60 practises) and 7) “Deal-

ing with changes and unpredictability” (6 of the 60 practises).

Practises that were least impacted were 4) “Decision making over multiple teams” (1

practise of 60), 8) “Dealing with large amount of "customers"/stakeholders” (1 of 60),

9) “Interacting with parallel software maintenance (or other organizational processes)”

(1 of 60) and 10) “Personnel/human resources and sourcing decisions e.g. offshoring/out-

sourcing and personnel changes” (no impacting practises recognised).

As the challenge categories 5) “Communication over multiple or distributed teams” and

1) “Sharing the same understanding across large organization” were related to each

other, they are also mitigated with some of the same practices. Acceptance Tests used in

“Acceptance Testing” and in “ATDD” (Acceptance Test Driven Development) can be

considered a form of documentation of the requirement. Formal documentation assists

communication also between multiple and distributed teams. “BDD” (Behaviour Driven

Development) defines the notation used between developers, domain experts and testers

and facilitates the communication between the mentioned roles. Tools designed for BDD

usage usually include features to automatically create documentation of the designed fea-

tures. Both ADD and BDD also contribute on sharing the same understanding over the

criteria of completed deliverables related to requirements definition or development.

These practises are typically used within members of the same team, and not directly

designed to be used between teams, but the deliverables and conventions are valid also in

inter-team communication. Common “Backlog”, if it is shared between all teams, works

as a single source defining the work to be done in a form of “User Stories” which both

serves the communication and sharing understanding of the project scope. Although a

decision needs to be made whether to have one common backlog for all teams or team

internal backlog? “Scrum of Scrums” can be used as a both communication forum and

final forum where mismatches of understanding recognized during the project activities

can be raised and alignment actions made, it is the only actual practise intended to address

cross team issues.

34

Practises that are designed to communicate things inside the team can also contribute to

communications between teams mitigating the challenges in category 5) “Communica-

tion over multiple or distributed teams”. For example “Burndown Charts” can be used to

communicate status also to other teams, if they are clarified with the shared “Definition

of Done” over teams and used in a context of “Iteration” or “Time-Box” known or com-

mon to other teams. “Information Radiators” may communicate information to other

teams, more so if they are made available over digital media, but they are primarily tar-

geted for internal purposes and nothing ensures information is received by others (infor-

mation radiators can either be seen only by accident or other teams must intentionally

seek the information). Also “Kanban (board)” or “Task Board” may communicate infor-

mation of team internal status and scope to other teams as well, but like Information Ra-

diators, they are intended primarily as team internal tool.

Practises that set common conventions over requirements or acceptance tests definition

also contribute on sharing the same understanding, language and terminology over mul-

tiple or distributed teams therefore impacting challenges in category 1) “Sharing the same

understanding across large organization”. Usage of common templates and formulas

“Given-When-Then”, “Role-Feature-Reason” and “Invest” are such practises. Further-

more “Mocks” can also be used as form of agreement and definition over interfaces if

developed and kept up to date as per common agreement. If “Project Charter” is com-

monly created by and shared over all teams it can unify the understanding of project goals,

though Project Charter is intended to be “known and approved by all members of the

team” and is by definition internal to team. Even though team internal Project Charter can

be information radiator visible to other teams and therefore may contribute on sharing the

same understanding.

Total of six practises was recognized mitigating the challenges in category 7) “Dealing

with changes and unpredictability”. Even though the amount was less than for the two

previous most impacted categories, the mitigating impact of these practises is clearer. This

is mainly because challenges in this category are not related to the organization but more

for the large application domain scope and long lifetime of large scale IS project.

Using “Backlog” as evolving and hierarchical specification gives a tool to manage the

project scope, priorities and scope changes. With “Backlog Grooming” technique scope,

goals and priorities can be kept up to date and so called scope creep prevented even while

changes occur. “Frequent Releases” together with “Incremental Development” gives

35

mechanism to deal with changes and unpredictability; while planning only short term and

expecting feedback before planning next release, re-planning far in the future is avoided.

Frequent Releases also prevent scope creep and changes and problems accumulating and

causing delay that is revealed only late in the project schedule. Incorporating changes to

already developed content is enabled with “Iterative development”. Finally “Simple De-

sign” principle supports incremental development and responses to unpredictability by

aiming for avoiding unnecessary costs of preparing for something that is not needed after

all.

Five practises were recognized having some impact over challenges in category 2)”Set-

ting the roles and responsibilities over large organization, two of them more directly ad-

dressing the question of organizational setting of large organization and three impacting

the role definitions within the software development process.

Practise of “Team” directs the organization set up to construct teams of all necessary

technical (programming, designing, testing) or business (domain knowledge, decision

making ability) competencies. “Scrum of Scrums” guides the organization setting to di-

vide the large groups into agile teams of 5-10 and to have additional daily meetings with

ambassadors of all teams. In addition to these organizational practises “Definition of

Done” and “Definition of Ready” both communicate the limits of the role and responsi-

bilities of the person to whom the task is assigned to before reaching the status ready or

done in task lifecycle, helping define the boundaries of e.g. requirements definition re-

sponsibilities and developer role. Similarly “BDD” (Behaviour Driven Development”

guides the conversation between developers, domain experts and testers. These practises

doesn’t consider other roles than directly development oriented, such as how to organize

roles related to trainings, rollout, release and deployment management for example or

guidance over competence area across teams (e.g. architecture decisions). The latter prac-

tises do not actually guide the organizational structure and set up to teams but they clarify

the role boundaries internal to teams if teams are set according to the “Team” practise.

For category 3) “Distributing and assigning tasks for multiple teams”, only three prac-

tises where recognised which to some extent address how the tasks are assigned between

teams. “Backlog” can be used to define only tasks assigned to team in which case mech-

anism is needed to decide the division to backlogs. Agile Alliance does not define a prac-

tise for this. Common way to do this is the division to product areas (not included in the

practises) or per applications in an enterprise application domain, but this does not ensure

36

even work distribution over teams. Practise “Sign up for task” means that individual team

members can then choose a task from the team backlog to work with. It is also possible

to have shared “Backlog” and in that case “Sign up for task” would mean individual as-

signing the task to himself and to the team he belongs to at the same time. In that case the

only forum to negotiate these choices between other teams would be “Scrum of scrums”.

Challenges in category 6) “Coordination and dependency management over multiple or

distributed teams” were mitigated with three practises also. “Scrum of scrums” is only

actual coordination forum for dependency management listed in the practises. Using

“Mock Objects” in the development and system testing can hide the dependencies during

development and unit/system testing time, but for integration, acceptance testing and re-

lease of end to end features real objects are needed. Anyhow responsibilities over creation

of Mock Objects need to be agreed, the definition and creation of objects coordinated as

well as the changes that occur during the time, which in turn adds the need for interaction

and coordination before and during the development. So the decoupling impact of this

practise regarding the dependencies is only temporary and does not remove the need of

coordination over multiple teams although it changes the timing of the needed coordina-

tion. “Story mapping” technique may be useful on the recognition of the dependencies,

even though the real intent is to help designing feature increments. Management of tech-

nical dependencies is not possible without support of working “Version Control”, but

Version Control alone does not solve the dependency management problem. This was not

considered as mitigating practise, since it is more a requirement than enabler. Possibility

of using practise “Collective (code) Ownership” to mitigate dependency management

challenges was also considered during the analysis. With Collective Ownership defined

so that all teams can change all components in the system landscape, such dependencies

where multiple teams contribute to same end to end feature could be avoided. On the

other hand, this kind of collective ownership will not remove physical dependencies and

need to synchronize the deployment, testing and release schedules of these components.

Without having those coordinated as well, collective code ownership over whole land-

scape would not be possible. Such setting would also require large set of different skills

(needed to develop any system in the landscape) from all teams, which is uncommon.

Since such practises are not defined, Collective Ownership was not considered as miti-

gating practise for coordination and dependency management.

The only facilitating practise for making decisions over teams is “Scrum of scrums”, so

37

this is the only practise directly mitigating challenges in category 4) “Decision making

over multiple teams”. Shared “Project Charter” could unify priorities over teams easing

decision making in a conflict situation, but as stated before, Project Charter is intended to

be internal to team and creating shared Project Charter would require additional collabo-

ration mechanisms over teams. The activity of creating a shared Project Charter as in-

tended in this practice could be very difficult task in itself since it would need to involve

the whole project organization. In addition, project charter only guides in the decision

making, but does not really facilitate it and not all decisions are directly related to content

of project charter. Project Chartering was not counted as mitigating practise for decision

making over teams since it is defined to be team internal activity.

Only one practise could be considered mitigating challenges in category 8) “Dealing with

large amount of "customers"/stakeholders”. Using practise of “Frequent Releases” makes

it possible to demonstrate value and get feedback from customers early. This strategy

doesn’t have impact on situations multiple customers having conflicting objectives and

priorities but it may raise these situations into awareness more quickly. Frequent releases

can also include beta releases to targeted user groups.

Also category 9) “Interacting with parallel software maintenance (or other organiza-

tional processes)” is impacted only one practise. If “BDD” (Behaviour Driven Develop-

ment) tools are used, they usually offer also automated creation of end user documenta-

tion which is useful also in the transition situation.

No practise was recognised directly impacting the category 10) “Personnel/human re-

sources and sourcing decisions e.g. offshoring/outsourcing and personnel changes”. Alt-

hough all communication and all shared understanding may speed up learning of new

personnel during the project therefore having mediated impact. Usage of “Collective

Code Ownership” practise usually implies that code is well documented and easy to com-

prehend which also helps new developers, in addition support from other team members

may be easier to get when everyone has responsibility over the code.

The single practise that had the most impact on the challenges was Scrum of Scrums. It

was recognised to have mitigating impact on 6 of the 10 challenges. Scrum of Scrums is

the only practise designed on scaling agile methodologies to larger contexts.

From the analysis it can be found that 33 of the 60 listed agile practises have no mitigating

impact to the challenges related large scale IS project. These practises were Automated

38

Build, Collective Code Ownership, Continuous Deployment, Continuous Integration,

CRC cards, Daily Meetings, Estimation, Exploratory testing, Facilitation, Heart Beat Ret-

rospective, Integration, Lead time, Milestone Retrospective, Niko-Niko Calendar. Pair

Programming, Personas, Points (estimates in), Planning Poker, Quick Design Sessions,

Refactoring, Relative Estimations, Rules of Simplicity, Story Splitting, Sustainable Pace,

TDD, Team Room, Three C's, Three Questions, Ubiquitous Language, Unit Testing, Us-

ability Testing, Velocity and Version Control

4.4 Summary of Analysis Results of Agile Practises Impact

No practises were recognised aiming to communication between teams except Scrum of

Scrums. Several practises were found to facilitate team internal communication which

can by accident also aid the external communication. Found communication related prac-

tises cover only software development from requirements to testing, not the cross-func-

tional project dimensions. Development related conventions can unify the understanding

and hence also ease communication if they are common for all project across the teams.

Six practises recognised related to coping with frequent changes and unpredictability are

independent of the organization size and therefore suitable also in large scale context.

Only two practises were found to guide the organizational setting. These practises do not

address the cross functional project dimensions, but are concentrated to the software de-

velopment aspect. In addition to these, three practises were recognized impacting role

boundaries within the software development (requirements definition to testing) dimen-

sion.

Backlog and sign up for tasks are the only practises related to distributing and assigning

tasks. These practises do not define how to actually divide the work to teams but consider

about individual team member aspect of the task assignment. Scaling these practises in a

multi-team context is not defined in the practises and requires adapting the practises.

Only practise recognised to facilitate coordination over multiple teams was Scrum of

Scrums, in addition two practises was recognised related to dependency management, the

other for temporarily loosening the dependencies and the other for dependency recogni-

tion.

Scrum of scrums was also found to be the only practise facilitating decision making over

multiple teams. One practise (frequent releases) was found facilitating having large

39

amount of customers or stakeholders and similarly only one practise was recognized im-

pacting positively in the situation where software maintenance is working in parallel with

the project. No practises was found to facilitate resolving conflict situations with multiple

customers having contradicting priorities. Also no practises was found related to person-

nel management or sourcing decisions.

40

5 Discussion

Three research questions were set to define the study goal and guide the analysis.

I. What are the characteristics specific to large scale software engineering or In-

formation Systems project?

II. What are the challenges caused by these characteristics?

III. How agile methodologies mitigate these challenges?

To answer the research question I) existing research literature was investigated and char-

acteristics of large scale IS projects were collected. Six characteristics were recognized;

Multiple teams, Distributed teams, Large features spanning over several systems and

teams, Long timespan, Complexity of IS architecture and software as a product and Un-

predictable nature of development process.

For research question II) challenges associated to characteristics of large scale software

development or IS projects where first recognised from the literature and then comple-

mented with the analysis against SWEBOK knowledge areas. Analysis resulted ten prob-

lem categories; 1) Sharing the same understanding across large organization, 2) Setting

roles and responsibilities over multiple teams, 3) Distributing and assigning tasks for

multiple teams, 4) Decision making over multiple teams, 5) Communication over multi-

ple/distributed teams, 6) Coordination and dependency management over multiple/dis-

tributed teams, 7) Dealing with changes and unpredictability, 8) Dealing with large

amount of "customers"/stakeholders, 9) Interacting with parallel software maintenance

(or other organizational processes) and 10) Personnel/human resources and sourcing de-

cisions e.g. offshoring/outsourcing and personnel changes.

Challenges found are aligned with research challenges 1-5 and 7 suggested as a result of

International Conference on Agile Software Development on year 2013. These research

challenges were “Inter-team coordination”, “Large project organization / portfolio man-

agement”, “Release planning and architecture”, “Scaling agile practices”, “Customer col-

laboration” and “Knowledge sharing and improvement”. In addition, suggested research

agenda included two other topics: “Large-scale agile transformation” and “Agile con-

tracts” [DiM13]. Revised research agenda from International Conference on Agile Soft-

ware Development on year 2014 included also similar slightly refined five topics match-

ing to the challenges presented in this study; “Organisation of large development efforts”,

41

“Inter-team coordination”, “Knowledge sharing and improvement”, “Release planning

and architecture”, “Customer collaboration” and “ Scaling agile practices”. In addition

revised research agenda suggests five topics not present in the challenge categories listed

in this study; “Agile contracts”, “Agile transformation”, “UX design”, “Key performance

indicators in large development efforts” and “Variability factors in scaling“[DiM14].

To address research question III) agile practises defined by Agile Alliance were selected

to represent overall group of agile methodology practise instead of considering each

method separately. Each agile practise was considered against each problem category in

order to decide whether it has mitigating impact on the issues within category. Results of

the research question III) and conclusions are presented in the following subchapter.

5.1 Conclusions

As a result of the analysis of agile practises mitigating impact on the challenges of large

scale IS projects it was found that:

Changes and unpredictability are directly addressed by 6 of 60 practises promoted by

Agile Alliance. Practises facilitating communication and shared understanding were well

present, but even though it was not always directly stated, it was clear from the definition

and considering the context (and co-existence with other practises) that recognised prac-

tises were mainly designed to be utilized within team. 13 practises which could have pos-

itive impact also to communication challenges between teams if utilized in certain way

were recognized out of 60, similarly 11 practises could possibly impact also to shared

understanding between teams. These results are aligned with agile principles “Individuals

and interactions over processes and tools” and “Responding to change over following a

plan”

Only 5 out of 60 practises were recognized having partial impact on setting the roles and

responsibilities within software development process. 3 practises were found having im-

pact on distributing and assigning tasks, of which 1 related to the negotiations over tasks

and 2 were on team member level but possibly scalable over teams by adapting practises.

3 practises were related to coordination over multiple teams, 1 of them directly related to

coordination and 2 related to dependency recognition and removal of technical depend-

encies that would require coordination. In addition only 1 practise was found having par-

tial impact on issues related to decision making over multiple teams, 1 on large amount

42

of stakeholders and 1 on parallel software maintenance. No practises facilitating conflict

resolving in situations with multiple customers having contradicting priorities was found

and no practises were recognised related to personnel and sourcing issues in large scale

projects.

All practises were defined in individual team member level or as team internal practises.

Practises were considered having only partial or moderated impact as such, or possibly

having impact if adapted and scaled to be utilized as inter-team practises.

Only practise designed to scale agile methodologies over larger organizational setting is

Scrum of Scrums. No other practises intended to facilitate collaboration between teams

was found. All practises are primarily targeted to facilitate work within team.

All found practises were targeting only software development process roles and activities.

Presented practises do not address the cross functional project dimensions (trainings, re-

lease planning, deployments and rollouts of business functionalities, transitions to mainte-

nance organizations etc. requiring interaction with the software development pipeline,

such as knowledge transfers, environment set ups, deployments, fixing the late bugs).

Based on the analysis agile practises will benefit large scale software development and IS

projects in the team level by enhancing the team level performance and in mitigating the

challenge of dealing with changes and unpredictability. Challenges related to large scale

project context still remain cross teams and overall project level.

Following needs for adaptation, alignment over teams and additional practises were rec-

ognised from the analysis results. Results are also summarised in the table 7.

Adaptations of practises related to distribution, assignment and follow up of tasks e.g.

Backlog and Sign up for tasks are needed in order to scale the practises to be used over

large scale project.

Practises related to software development process, ways of working and common princi-

ples should be aligned over teams. For example testing related practises (to some extent)

ATDD, BDD, Acceptance Tests, requirements definition related practises such as User

Stories, Given-When-Then, Role-Feature-Reason and Invest, process boundaries related

practises like Definition of Done and Definition of Ready and timing related practises

like Iteration and Time-Box. Also a techniques used in dependency management like

Story Mapping and Mocks need alignment over teams.

43

If team internal mechanisms are used also for external communication additional aligned

practises are needed in order to publish and make the information available, this could be

considered for example Burndown Charts, Information Radiators, Kanban (boards), Task

Boards and Project Charters.

Additional practises are needed to facilitate collaboration between teams, address inter-

actions with the cross functional project dimensions and strengthen the dependency man-

agement and decision making. Single Scrum of Scrums meeting is not enough to cover

large scale project cross team coordination needs, so some adaptation or additions are

likely to Scrum of Scrums practise as well. Also practises to manage large amount of

"customers"/stakeholders and personnel/human resources and sourcing issues need to be

considered.

Problem category Practises

directly

mitigating the

challenges

Practises

which impact

but need

adaptation to

scale

Practises

which need to

be aligned over

teams

Additional

practises

especially

needed to

mitigate

challenges

(1) Sharing the same un-

derstanding across large

organization

- Scrum of

Scrums

- Backlog

- Acceptance

testing

- ATDD

- BDD

- Given - When

- Then

- Invest

- Mock objects

- Project

chartering

- Role-feature-

reason

- User stories

-

(2) Setting roles and re-

sponsibilities over multi-

ple teams

- Scrum of

Scrums

- Team

- - BDD

- Definition of

Done

- Definition of

Ready

-

(3) Distributing and as-

signing tasks for multiple

teams

- Scrum of

Scrums

- Backlog

- Sign up for

tasks

- -

(4) Decision making over

multiple teams

- Scrum of

Scrums

- - - Additional

practices

needed

(5) Communication over

multiple / distributed

teams

- Scrum of

Scrums

- Backlog

- Acceptance

testing

- ATDD

- BDD

- Burndown

chart

- Definition of

Done

- Information

- Additional

practises

needed for

communicating

with other

project

dimensions

than direct

software

44

Problem category Practises

directly

mitigating the

challenges

Practises

which impact

but need

adaptation to

scale

Practises

which need to

be aligned over

teams

Additional

practises

especially

needed to

mitigate

challenges

radiators

- Iteration

- Kanban board

- Task board

- Time-box

- User stories

engineering

(6) Coordination and de-

pendency management

over multiple / distributed

teams

- Scrum of

Scrums

- - Mock objects

- Story mapping

- Additional

practices

needed for

collaboration

between teams,

and

strengthening

the

dependency

management

(7) Dealing with changes

and unpredictability

- Backlog

- Backlog

grooming

- Frequent

releases

- Incremental

development

- Iterative

development

- Simple design

- - -

(8) Dealing with large

amount of "customers"/

stakeholders

- Frequent

releases

- - - Additional

practises to be

considered

(9) Interacting with paral-

lel software maintenance

(or other organizational

processes)

- - - BDD - Additional

practises to be

considered

(10) Personnel/human re-

sources and sourcing deci-

sions e.g. offshoring/out-

sourcing and personnel

changes

- - - - Additional

practises to be

considered

Table 7: Agile practises which mitigate the challenges of large scale IS projects and adaptation and

addition needs.

5.2 Validity and future work

Source material for features and challenges of large scale IS projects consisted solely of

research papers having agile project context. It is possible that different challenges would

have been recognized from the research regarding non agile projects. It is also recognized

45

that methodology itself moderates the impact of success factors. According to some stud-

ies, contingency fit or misfit between methodology and project conditions impacts on

which success factors have significance. Therefore different success factors have different

impact on the project success depending on the methodology approach [ACD15]. To get

more generalizable results this study could be amended with additional analysis from plan

based projects or with systematic literature review.

Since the analysis of agile practises impact to challenges of large scale IS projects was

done as a theory level table study, it is recommendable to continue with verifying these

results with case studies of existing projects, concentrating on used agile practises and

their impact, additional scaling mechanisms developed, found challenges related to large

scale characteristics and how they were mitigated in the projects.

According to State of Agile Survey, three most used scaling mechanisms are Scrum of

Scrums, SAFe (Scaled Agile Framework) and company internally created methods

[SoA16]. The analysis of agile methodologies in large scale projects contexts is suggested

to be continued with analysis of SAFe, possibly also other scaling mechanisms and

whether those addresses the challenges recognized in the study. Scaled Agile Framework

is a framework for scaling agile development over large development organization and it

includes practises targeted to team level, program level and portfolio level. Large devel-

opment organizations are not the same as large scale development projects, but there are

similarities and therefor some of the program and portfolio level practises could be ap-

plied and benefitting large scale projects as well [Laa14, Lef11].

46

6 Summary

This study investigated benefits and challenges of agile methodologies on the large scale

software development and information systems projects by recognizing the features of

large scale projects, analysing the challenges related to them from existing research liter-

ature and using SWEBOK knowledge areas and by analysing the impact of agile practises

listed by Agile Alliance to the recognized challenges.

As a result it was recognized that while the agile practises enhance the team level perfor-

mance and provide direct practises to manage challenges regarding high amount of

changes and unpredictability of problem solving process of a large scale IS project chal-

lenges still remain on the cross team and overall project level.

Conclusion from the analysis is that large scale software development and IS projects

benefit from using agile methodologies. However when seeking best fit between meth-

odology and project characteristics or model where agile approach would respond to the

characteristics of the large scale project context which would likely contribute to project

success, both adaptations of current practises and developing additional practises are

needed.

Following areas for adaptations and new practises are suggested for scaling agile meth-

odologies over large scale project contexts based on the analysis.

1) Adaptation of practises related to distribution, assignment and follow up of

tasks in order to scale them over multiple teams of large scale project.

2) Alignment of practises related to software development process, ways of

working and common principles over all teams.

3) Developing additional practises to facilitate collaboration between teams, to

ensure interactions with the cross functional project dimensions and to

strengthen the dependency management and decision making between all pro-

ject dimensions such as mentioned in chapter 1 regarding IS systems projects

dimensions additional to software engineering.

4) Possibly developing and aligning practises to facilitate teams’ external com-

munication, such as publish status or other relevant information all teams.

47

The study produced comprehensive explanation of the extent and manifestation of chal-

lenges related to large scale software development and IS project characteristics and de-

tailed impact of agile practises to these challenges. This information and the suggested

areas for adaptation and additional practises should prove to be useful for software devel-

opment and IS project practitioners when considering agile method adoptions or adapta-

tions in a large scale project context.

48

References

ACD15 Ahimbisibwe, A., Cavana, R.Y., Daellenbach, U., A contingency fit model

of critical success factors for software development projects: A comparison

of agile and traditional plan-based methodologies. Journal of Enterprise In-

formation Management, 28,1(2015), p.7-33.

ASR02 Abrahamsson P., Salo O., Ronkainen J., Warsta J., Agile software develop-

ment methods, Review and analysis. VTT Technical Research Center of

Finland, Helsinki, Finland, 2002.

BTB03 Boehm B., Turner R., Booch G., Cockburn A., Pyster A., Balancing Agility

and Discipline: A Guide for the Perplexed 1st Edition. Addison-Wes-

ley/Pearson Education, 2003.

ChC08 Chow, T., Cao, D.-B., A survey study of critical success factors in agile

software projects. Journal of Systems and Software, 81,6(6/2008), p.961-

971.

DFI14 Dingsøyr T., Fægri T.E., Itkonen J., What Is Large in Large-Scale? A Tax-

onomy of Scale for Agile Software Development. Proceedings of the 15th

International Conference on Product-Focused Software Process Improve-

ment, PROFES 2014, Helsinki, Finland, December 10-12, 2014, p.273-276.

DiD14 Diebold, P., Dahlem, M., Agile practices in practice - A mapping study.

Proceedings of the 18th International Conference on Evaluation and As-

sessment in Software Engineering, ACM New York, NY, USA, 2014, arti-

cle 30.

DiM13 Dingsøyr T., Moe N.B., Research Challenges in Large-Scale Agile Soft-

ware Development. In: ACM SIGSOFT Software Engineering Notes,

38,5(9/2013), p.38-39.

DiM14 Dingsøyr, T., Moe, N.B., Towards Principles of Large-Scale Agile Devel-

opment: A Summary of the workshop at XP2014 and a revised research

agenda. In: Lecture Notes in Business Information Processing, 199

(5/2014), p.1-8.

DyD08 Dybå, T., Dingsøyr, T., Empirical studies of agile software development: A

systematic review. International Journal of Information and Software Tech-

nology, 50,9-10(9/2008), p.833-859.

DyD15 Dybå, T., Dingsøyr, T., Agile Project Management: From Self-Managed

Teams to Large-Scale Development. Proceedings of the 37th International

Conference on Software Engineering (ICSE), IEEE/ACM, Florence, Italy,

May 16-24, 2015, vol.2, p.945-946

GBT15 Gregory, P., Barroca, L., Taylor K., Salah D., Sharp H., Agile Challenges

in Practice: A Thematic Analysis. Proceedings on 16th International Con-

ference on Agile Processes in Software Engineering and Extreme Program-

ming, XP 2015, Helsinki, Finland, May 25-29, 2015, p.64-80.

GtA15 Guide to Agile. Agile Alliance, 2015. https://www.agilealliance.org/ag-

ile101/guide-to-agile/. [24/4/2016]

49

GuD15 Gupta, D., Dwivedi, R., A framework to support evaluation of project in-

hand and selection of software development method. Journal of Theoretical

and Applied Information Technology, 73,1(3/2015), p.137-148.

ICB06 ICB - IPMA Competence Baseline, Version 3.0. International Project Man-

agement Association, 2006. . [Also http://www.ipma.world/about/,

9.5.2016]

KeL05 Kettunen, P., Laanti, M., How to steer an embedded software project: tac-

tics for selecting the software process model. International Journal of Infor-

mation and Software Technology, 47,9(6/2005), p.587-608.

Laa14 Laanti M., Characteristics and Principles of Scaled Agile. In: Lecture Notes

in Business Information Processing, 199 (5/2014), p.9-20.

LaV09 Larman C., Vodde B., Scaling Lean & Agile Development: Thinking and

Organizational Tools for Large-Scale Scrum 1st Edition. Addison-Wesley

Professional, 2008.

Lef11 Leffingwell, D., Agile Software Requirements: Lean Requirements Prac-

tices for Teams, Programs, and the Enterprise. Addison-Wesley, 2011.

MSP09 Managing Successful Projects with PRINCE2®, 2009 Edition. AXELOS,

2009. [Also https://www.axelos.com/best-practice-solutions/prince2,

8/5/2016]

Pap14 Papadopoulos G., Moving from traditional to agile software development

methodologies also on large, distributed projects. Proceedings of the 3rd In-

ternational Conference on Strategic Innovative Marketing (IC-SIM 2014),

Madrid, Spain, Sept 1-4, 2014, p.455-463.

PMB13 PMBOK® Guide, A Guide to the Project Management Body of Knowledge

Fifth Edition. Project Management Institute, 2013. [Also

http://www.pmi.org/default.aspx, 8/5/2016]

RaA14 Razavi A.M., Ahmad R., Agile Development in Large and Distributed En-

vironments: A Systematic Literature Review on Organizational, Managerial

and Cultural Aspects.

Proceedings of 8th Malaysian Software Engineering Conference (MySEC),

Langkawi, Malaysia, Sept 23-24, 2014, p.216-221.

SAR12 Savolainen P., Ahonen JJ., Richardson I., Software development project

success and failure from the supplier's perspective: A systematic literature

review. International Journal of Project Management 30,4(5/2012), p.458-

469.

SeP15 Serrador P., Pinto J.K., Does Agile work: A Quantitative analysis on agile

project success.

International Journal of Project Management, 33,5(7/2015), p.1040–1051.

SEP13 Software Extension to the PMBOK® Guide Fifth Edition. Project Manage-

ment Institute, 2013.

SHK14 Scheerer A., Hildenbrand T., Kude T., Coordination In Large-Scale Agile

Software Development: A Multiteam Systems Perspective. Proceedings of

47th Hawaii International Conference on System Sciences, Waikoloa, HI,

Jan 6-9, 2014, p.4780-4788.

50

SoA16 10th Annual State of the Agile Survey. Version One, 2016. [Also

http://stateofagile.versionone.com/, 6/4/2016]

SWE14 SWEBOK V3.0 Guide to Software Engineering Body of Knoweldge. IEEE

Computer Society, 2014. [Also www.swebok.org, 14/3/2016]

TRA15 Tripathi N., Rodríguez P., Ahmad M.O., Oivo M., Scaling Kanban for Soft-

ware Development in a Multisite Organization: Challenges and Potential

Solutions. Proceedings of 16th International Conference on Agile Software

Development, XP 2015, Helsinki, Finland, May 25-29, 2015, p.178-190.

VlV15 Vlietland, J., Van Vliet, H., Towards a governance framework for chains of

Scrum teams. International Journal of Information and Software Technol-

ogy, 57,1(1/2015), p.52-65.

Yeo02 Yeo, K.T., Critical failure factors in information system projects. Interna-

tional Journal of Project Management, 20,3(4/2002), p.241-246.

1

Appendix 1. Categorization of Atomic Challenges of Large

Scale Software Engineering Project or IS Project

Problem category Challenges / problems

1. Sharing the same under-

standing across large or-

ganization

1:1 Agreeing on common definitions used in requirements definition

1:2 Agreeing on common design principles,

1:3 Agreeing on coding standards over multiple teams

1:4 Agreeing on the approval and completion criteria for deliverables

when moving to testing

1:9 Agreeing on common modelling languages and methods to needed

extent between teams

1:10, 2:10 Agreeing and sharing the same criteria and standards for

quality over multiple/distributed teams

3:9 Shared models are required over split features and their boundaries

3:9 Need to recognize what must what is critical to understand and be

modelled

4:9, 6:9 Updating and communicating updated shared models after

changes

1. Setting roles and respon-

sibilities over multiple

teams

1:1 Deciding the best organization structure for requirements defini-

tion process

1:4 Distribution of testing responsibilities over teams and to common

testing organization

1:7 Defining organizational setting which facilitates engineering pro-

cesses and coordination over functional areas

3. Distributing and assign-

ing tasks for multiple

teams

1:2 Distribution of design tasks to teams

1:3 Dividing the implementation work to teams

4. Decision making over

multiple teams

1:12 Making prioritization and scoping decisions and tools/component

selections which have different impacts over multiple teams

1:7 Organizing decision making and right participants over multiple

teams

3:12 Prioritization of split features in the context of each part

5. Communication over

multiple / distributed

teams

2:1 Requirements negotiation, communicating requirements with dis-

tributed teams

2:2 Communicating design to/from distributed teams

2:4 Communicating requirements,

2:4 Communicating test results/incidents with distributed teams

2:6 Communicating software configuration status to distributed teams

2:7 Communicating the progress of distributed teams

1:7, 2:7 Ensuring knowledge sharing over distributed teams

2:9 Tool support for sharing models and other deliverables with dis-

tributed teams

6. Coordination and depend-

ency management over

multiple / distributed

teams

1:6 Coordinating software configuration with multiple teams

Alignment of testing activities with software configuration status and

environments

2:7 Coordination of the distributed teams regards common milestones

and target schedules

1:7 Monitoring the total progress.

3:1 Splitting large features to smaller sub-features and making archi-

tectural decisions impacting widely in the system landscape

3:1 Recognition of dependencies and boundaries regarding split fea-

tures

3:2 Creating design of interfaces/interactions related to split features.

3:2 Communicating the design regards to split features and architec-

ture decisions,

3:2 Synchronizing the design work of split features

3:3 Synchronizing the implementation work of split features

3:3 Integration and integration testing of split features

2

3:4 Following up and coordinating completion of split features for

testing,

3:4 Organizing E2E testing of large features split involving experts of

multiple teams

3:6 Keeping the dependencies when planning releases and managing

builds including large split features.

3:6 Keeping software configuration working in situations involving

split features

3:6 Planning timing and meaningful content for releases

3:7 Coordinating schedules and deliverables over split features.

3:7 Monitoring progress and completion of split features and comple-

tion of the feature.

7. Dealing with changes and

unpredictability

4:1 Long time span increases the amount of changing requirements

4:2, 4:3 During long time span changes may be inflicted to designed

or completed features

4:4, 6:4 Keeping requirements up to date during long time span

4:4 Defining verification and approval criteria for requirements chang-

ing during the time span

4:6 Planning timing and meaningful content for releases while changes

to implemented features may already be known

4:7 Expected changes during long time span lower the credibility of

the plans created in the initiation phase

4:7 Changes during long time span cause lots of re-planning.

4:7 Measuring success of project after lots of changes is difficult

4:12 Changing business goals and priorities are possible during long

time spans which impact the project feasibility, scope and success

5:1 Information system inherent complexity causes incomplete and

changing requirements

5:2 Incomplete and changing requirements cause design changes

5:3 Incomplete and changing requirements cause changes during im-

plementation time

5:4 Keeping requirements up to date while completion during develop-

ment time

5:4, 6:4 Defining verification and approval criteria for changing re-

quirements

5:4 Since not all conditions can be tested, it is difficult to decide readi-

ness for approval

5:6, 6:6 Due to late finalization of requirements release content may

not be fixed until nearly release time

5:7 Due to IS domain complexity final solution can't be fully defined

in the initiation phase hence not all coming activities are known in ini-

tial planning phase, causing incomplete plans (schedule estimates, re-

source needs, recognised work packages and tasks, etc).

5:7 Incomplete plans require updating and re-planning.

5:12 IS complexity and inability to model everything adds uncertainty

in decision making

6:1 Due to unpredictable nature of problem solving process require-

ments may stay incomplete and changing and requirements engineer-

ing activity can't be completed before late in the development phase.

6:2 Due to unpredictable nature of problem solving, Requirements

definition, design and implementation are intertwined and can't be

completed before completion of development and approval of the fea-

ture

6:3 Due to unpredictable nature of problem solving, development

completion time may be difficult to predict before it's completed with

verification and approval. Even after approval defects can be found

causing changes to the design and implementation

6:4 Time and needed test rounds for feature can't be predicted, sched-

uling the approvals are difficult.

3

6:7 Due to unpredictably nature of software development work (prob-

lem solving) all activities needed in the design and implementation

phases can't be recognized in the initial planning causing incomplete

plans. Incomplete plans require updating and re-planning

6:10 Deciding when and how to measure quality when end results and

requirements are not known/fixed until late stage

6:12 Unpredictable nature of software development adds uncertainty

in decision making

8. Dealing with large

amount of "custom-

ers"/stakeholders

7:1 Large amount of requirements and requirements sources/stake-

holders that need to be involved and satisfied

7:3, 7:4, 7:10 Validating ad confirming the results with many stake-

holders

7:12 Decision making is difficult with various stakeholders having

contradicting objectives

9. Interacting with parallel

software maintenance (or

other organizational pro-

cesses)

3:5 Agreeing the incident management and maintenance responsibili-

ties over large features involving several subsystems and possibly sev-

eral maintenance organizations

4:5 Long development project may be still ongoing while maintenance

process needs to be set up and the interaction between these two needs

to be planned (in regards to functionalities changed in both work

streams and timing of changes near releases)

4:5 Creating the documentation for maintenance when lots of content

from long development project and changes still coming.

10. Personnel/human re-

sources and sourcing de-

cisions e.g. offshor-

ing/outsourcing and per-

sonnel changes

2:12 Need to make decisions over offshoring/outsourcing

4:11 Personnel changes likely during long time span, learning time

and group dynamics aspects may have impact when personnel is

changing.

Table 8: Categorization of atomic challenges of large scale software engineering project or IS project.

1

Appendix 2. Mapping of Problem Categories to SWEBOK

Knowledge Areas and Large Scale Project Features

SWEBOK

Knowledge

Area

Features

Multiple

teams

Distributed

teams

Large &

spanning

features

Long time

span

Software

/ IS com-

plexity

Problem

solving

process

nature

Other

Software re-

quirements

1:1

(1)Sharing

the same

understand-

ing cross

multiple

teams

(2)Setting

roles and

responsibil-

ities over

multiple

teams

2:1

(5)Communi-

cation over

multiple / dis-

tributed teams

3:1

(6)Coor-

dination

and de-

pendency

manage-

ment over

multiple /

distrib-

uted

teams

4:1

(7)Dealing

with changes

and unpre-

dictability

5:1

(7)Deal-

ing with

changes

and un-

predicta-

bility

6:1

(7)Deal-

ing with

changes

and un-

predicta-

bility

7:1

(8)Dealing with

large amount of

"custom-

ers"/stakehold-

ers

Software de-

sign

1:2

(1) Sharing

the same

understand-

ing cross

multiple

teams

(3)Distrib-

uting and

assigning

tasks for

multiple

teams

2:2

(5)Communi-

cation over

multiple / dis-

tributed teams

3:2

(6)Coor-

dination

and de-

pendency

manage-

ment over

multiple /

distrib-

uted

teams

4:2

(7)Dealing

with changes

and unpre-

dictability

5:2

(7)Deal-

ing with

changes

and un-

predicta-

bility

6:2

(7)Deal-

ing with

changes

and un-

predicta-

bility

7:2

-

Software

construction

1:3

(1) Sharing

the same

understand-

ing cross

multiple

teams

(3)Distrib-

uting and

assigning

tasks for

multiple

teams

2:3

-

3:3

(6)Coor-

dination

and de-

pendency

manage-

ment over

multiple /

distrib-

uted

teams

4:3

(7)Dealing

with changes

and unpre-

dictability

5:3

(7)Deal-

ing with

changes

and un-

predicta-

bility

6:3

(7)Deal-

ing with

changes

and un-

predicta-

bility

7:3

(8)Dealing with

large amount of

"custom-

ers"/stakehold-

ers

Software

testing

1:4

(2) Setting

roles and

responsibil-

ities over

2:4

(5)Communi-

cation over

multiple / dis-

tributed teams

3:4

(6)Coor-

dination

and de-

pendency

4:4

(7)Dealing

with changes

and unpre-

dictability

5:4

(7)Deal-

ing with

changes

6:4

(7)Deal-

ing with

changes

7:4

(8)Dealing with

large amount of

2

multiple

teams.

(1) Sharing

the same

understand-

ing cross

multiple

teams.

 manage-

ment over

multiple /

distrib-

uted

teams

and un-

predicta-

bility

and un-

predicta-

bility

"custom-

ers"/stakehold-

ers

Software

maintenance

- - 3:5

(9)Inter-

acting

with par-

allel soft-

ware

mainte-

nance (or

other or-

ganiza-

tional

pro-

cesses)

4:5

(9)Interacting

with parallel

software

maintenance

(or other or-

ganizational

processes)

- - -

Software

configura-

tion man-

agement

1:6

(6)Coordi-

nation and

dependency

manage-

ment over

multiple /

distributed

teams

2:6

(5)Communi-

cation over

multiple / dis-

tributed teams

3:6

(6)Coor-

dination

and de-

pendency

manage-

ment over

multiple /

distrib-

uted

teams

4:6

(7)Dealing

with changes

and unpre-

dictability

5:6

(7)Deal-

ing with

changes

and un-

predicta-

bility

6:6

(7)Deal-

ing with

changes

and un-

predicta-

bility

-

Software en-

gineering

manage-

ment

1:7

(2) Setting

roles and

responsibil-

ities over

multiple

teams.

(4)Decision

making

over multi-

ple teams.

(5)Commu-

nication

over multi-

ple / dis-

tributed

teams:

(6)Coordi-

nation and

dependency

manage-

ment over

2:7

(5)Communi-

cation over

multiple / dis-

tributed teams

(6)Coordina-

tion and de-

pendency

management

over multiple

/ distributed

teams

3:7

(6)Coor-

dination

and de-

pendency

manage-

ment over

multiple /

distrib-

uted

teams

4:7

(7)Dealing

with changes

and unpre-

dictability

5:7

(7)Deal-

ing with

changes

and un-

predicta-

bility

6:7

(7)Deal-

ing with

changes

and un-

predicta-

bility

-

3

multiple /

distributed

teams.

Software en-

gineering

process

1:8

Selection

and tailor-

ing of pro-

cesses and

lifecycle

models to

support

features of

large scale

project

Software en-

gineering

models and

methods

1:9

(1) Sharing

the same

understand-

ing cross

multiple

teams

2:9

(5)Communi-

cation over

multiple / dis-

tributed teams

3:9

(1) Shar-

ing the

same un-

derstand-

ing cross

multiple

teams

4:9

(1) Sharing

the same un-

derstanding

cross multiple

teams:

 6:9

(1) Shar-

ing the

same un-

derstand-

ing cross

multiple

teams:

-

Software

quality

1:10

(1) Sharing

the same

understand-

ing cross

multiple

teams

2:10

(1) Sharing

the same un-

derstanding

cross multiple

teams:

- - - 6:10

(7)Deal-

ing with

changes

and un-

predicta-

bility

7:10 (8)Dealing

with large

amount of

"custom-

ers"/stakehold-

ers

Software en-

gineering

professional

practice

1:11 - - - 4:11

(10)Person-

nel/human re-

sources and

sourcing deci-

sions e.g. off-

shoring/out-

sourcing and

personnel

changes

- - -

Software en-

gineering

economics

1:12

(4)Decision

making

over multi-

ple teams

2:12

(10)Person-

nel/human re-

sources and

sourcing deci-

sions e.g. off-

shoring/out-

sourcing and

personnel

changes

3:12

(4)Deci-

sion mak-

ing over

multiple

teams:

4:12

(7)Dealing

with changes

and unpre-

dictability

5:12

(7)Deal-

ing with

changes

and un-

predicta-

bility

6:12

(7)Deal-

ing with

changes

and un-

predicta-

bility

7:12

(8)Dealing with

large amount of

"custom-

ers"/stakehold-

ers

Computing

foundations

Mathemati-

cal founda-

tions

4

Engineering

foundations

Table 9: Mapping of problem categories to SWEBOK Knowledge Areas and large scale project features.

