
Date of acceptance Grade

Instructor

Distributed approach to analyze physiological time series
signals in medical telemetry

Maninder Pal Singh

Helsinki May 12, 2016

UNIVERSITY OF HELSINKI

Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/78561459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Maninder Pal Singh

Distributed approach to analyze physiological time series signals in medical telemetry

Computer Science

May 12, 2016 74 pages + 13 appendices

layout, summary, list of references

Research in healthcare domain is primarily focused on diseases based on the physiological changes

of an individual. Physiological changes are often linked to multiple streams originated from different

biological systems of a person. The streams from various biological systems together form attributes

for evaluation of symptoms or diseases. The interconnected nature of different biological systems

encourages the use of an aggregated approach to understand symptoms and predict diseases. These

streams or physiological signals obtained from healthcare systems contribute to a vast amount of

vital information in healthcare data. The advent of technologies allows to capture physiological

signals over the period, but most of the data acquired from patients are observed momentarily or

remains underutilized. The continuous nature of physiological signals demands context aware real-

time analysis. The research aspects are addressed in this thesis using large-scale data processing

solution.

We have developed a general-purpose distributed pipeline for cumulative analysis of physiological

signals in medical telemetry. The pipeline is built on the top of a framework which performs

computation on a cluster in a distributed environment. The emphasis is given to the creation of a

unified pipeline for processing streaming and non-streaming physiological time series signals. The

pipeline provides fault-tolerance guarantees for the processing of signals and scalable to multiple

cluster nodes. Besides, the pipeline enables indexing of physiological time series signals and provides

visualization of real-time and archived time series signals. The pipeline provides interfaces to allow

physicians or researchers to use distributed computing for low-latency and high-throughput signals

analysis in medical telemetry.

ACM Computing Classification System (CCS):

Information systems Ý Information systems applications Ý Computing platforms

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Background 4

2.1 Medical Telemetry . 4

2.1.1 Traditional Data Analysis Workflow 6

2.1.2 Conventional Software Platforms 8

2.2 Distributed Data Processing . 10

2.3 Berkeley Data Analytics Stack . 14

2.3.1 Spark and Spark Architecture 15

2.3.2 Spark Streaming . 18

2.4 Data Collection . 21

2.5 Data Indexing and Visualization . 25

3 Research Methodology 28

3.1 Overview of K|V Methodology . 29

3.2 Adaption of K|V Methodology . 30

3.2.1 Conceptualization Stage . 31

3.2.2 Implementation Stage . 33

3.2.3 Analysis Stage . 34

3.2.4 Documentation Stage . 35

4 Distributed Analysis of Physiological Signals 36

4.1 Design Challenges . 37

4.2 Data Analysis Workflow . 38

4.3 Distributed Analysis Platform Concept 40

4.3.1 System Architecture . 41

4.3.2 Data Ingestion Techniques . 43

4.4 Application Programming Interfaces 47

iii

4.4.1 ECG Application . 47

4.4.2 DTW Application . 49

4.5 Evaluation . 53

5 Discussion 62

6 Conclusion 65

Bibliography 66

Appendices

1 DTW Algorithms

2 Seminar Paper

1

1 Introduction

The digital technology is becoming more pervasive and it is transforming our lives.

The constantly changing environment generates data in the form of time series to

sustain relevant and valuable results. This is evident from the growth of massive

data domains such as trading, gaming, advertisements, social networks,

meteorology and medicine. Namely, various medical examinations rely on time

series signals to measure health parameters of an individual. These health

parameters can be obtained in the form of time series signals from

electroencephalogram (EEG), electrocardiogram (ECG), electromyography (EMG)

and other instruments.

The major part of the time series signals, such as EEG signals, are involuntary in

nature, which makes them effective for brain fingerprinting [48]. Hence, they can

also be used in criminal investigation [62], where EEG acts as biological fingerprints

of an individual. In addition, EEG is considered as an identifier of a brain, which

includes encoded information. This encoded information within a brain can help

to identify individuals [76], locate mobility traces [53], object identification [75],

locating sensitive information, identification of depression patterns [54], linguistic

learning patterns [70], and diagnosis of various diseases [39]. Therefore, the analysis

of such signals allows to unlock the potential of the brain and further contribute

towards brain research. Considering this, the context of these time series signals and

portability of the machines used to gather them evolve interest of many researchers

to analyze the dynamics of these time series signals [35, 59]. Emotiv EEG headset

[9], Mitsar Portable EEG System [15] are some examples of such portable devices.

The time series signals in medical telemetry are continuous in nature and manifest

large scale data over the period. The advent of technologies allows to capture

physiological signals over the period, but most of the data acquired from patients

are momentarily observed or underutilized [79]. The physiological time series

signals are often linked to multiple streams and originate from different biological

systems of an individual. Considering the interconnectedness of various biological

systems, the aggregated approach is more appropriate for prognosis or diagnosis of

an individual. In order to have a comprehensive physiological context of time

series signals, we need to develop new approaches to analyze physiological signals

in medical telemetry. There have been attempts to process continuous

physiological signals to provide better healthcare [33, 34, 52, 87]. The continuous

nature of physiological signals demands context aware real-time analysis. Such

2

analysis demands the system to efficiently process and analyze these time series

signals within determined time frame to derive valuable conclusions for diagnosis

or prognosis. The existing systems are limited in scope and does not provide

context aware real-time analysis of physiological time series signals originated from

interconnected biological systems in an aggregate and cumulative manner.

The limitations of existing systems provided an opportunity to research the

distributed approach to analyze physiological time series signals in medical

telemetry. The research contributed towards a unified coherent system for

processing and analyzing these signals in distributed computing environment. The

research also explored existing state-of-the-art systems and, identified Spark and

Spark Streaming as a possible environment to create a general purpose distributed

data processing pipeline for analysis of time series signals. The focus has been

given to the creation of a unified pipeline for processing of streaming, and

non-streaming time series signals originated from homogeneous or heterogeneous

data sources. An exhaustive discussion has been performed to sketch a solution.

The proposed pipeline and provided interfaces enable researchers to use distributed

computing for low-latency and high-throughput signals analysis in medical

telemetry. It also ensures scalability and extensibility as per domain context. In

addition, the sources such as PhysioNet [17] contain diverse collections of

physiological signals contributed by different researches. These diverse collections

are underutilized due to the lack of tools, which can perform cumulative processing

of large scale time series data. The proposed system provides possibilities to use

the collections of physiological signals for research and experimentation.

The research involved in this thesis explored various aspects linked to physiological

time series signals. It includes identification of the existing systems for the analysis

of physiological signal in medical telemetry and exploration of existing systems in

improving healthcare for individuals. It also includes discussion of approaches used

in time series signals analysis in distributed computing environment and

investigation of existing open-source large-scale data processing systems for

analyzing time series signals. In addition, the research involves a study of the

possibilities to provide a general purpose distributed pipeline which can receive

homogeneous or heterogeneous data sources and decouple them from data

processing engine to provide on the fly management of data streams in the system.

Furthermore, the research provides an interface and algorithms to perform

cumulative analysis of physiological signals. We made an attempt to provide a

detailed discussion on the research aspects linked to the thesis.

3

The thesis is structured as follows. Chapter 2 introduces the theoretical

background concepts used in this thesis. Section 2.1 provides information about

medical telemetry and various physiological signals used in measurements of vital

information. It also explores existing tools and frameworks employed in the

research domain. Section 2.2 illustrates distributed data processing techniques and

open source software components available for large-scale data processing. Section

2.3 provides an overview to Berkeley Data Analytics Stack and explore software

elements of the stack, namely, Spark and Spark Streaming. Section 2.4 contains

information about data analysis and visualization tools used in the pipeline.

Chapter 3 describes the research methodology employed in this thesis for research

and prototyping of the solution.

Chapter 4 presents our contribution to the research work. Section 4.1 introduces

the design challenges encountered while conceptualization of the distributed

analysis of physiological signals (DAPS) system. Section 4.2 explains data analysis

workflow which includes data collection and pre-processing methodologies. Section

4.3 explores platform concepts involved in distributed analysis. It includes software

components, system architecture and different data injection techniques. Section

4.4 introduces the application programming interfaces of the DAPS system. It

includes various application examples. Section 4.5 concludes the chapter with the

evaluation of the DAPS system. Chapter 4 discusses scientific contributions of the

research work, limitations, practical impact and plans to improve the research

work. Chapter 5 concludes the thesis.

4

2 Background

2.1 Medical Telemetry

Physiology is a branch of biology which deals with the scientific study of activities

and functioning of living systems [67]. A living system, in turn, consists of different

physiological processes, such as cardiovascular activities, which generate a particular

type of physiological signals. As per Bertrand [45], a signal is a time varying function,

which consists of one or more variables and include useful information. In a biological

context, physiological signals contain vital information such as state or behavior of

a biological system. For example, voltage potential measurement using a single

or multiple electrodes placed on the chest or scalp of an individual is accounted

as physiological signals. Physiological signals can depend on a single variable or

multiple variables. Based on their dependence, these signals are categorized into

one-dimensional or multidimensional [1].

Medical telemetry involves remote measurement of physiological signals from an

individual for diagnosis or observation [50]. Medical telemetry is also known as

biotelemetry. The physiological signals related to potential or current refer to

bioelectric signals. Bioelectric signals are recorded using electrodes, which detect a

difference in electric potential in a particular body part. Electrocardiogram

(ECG), Electroencephalogram(EEG), Electromyogram (EMG), Electrooculogram

(EOG), are examples of commonly used methods to measure the bioelectric signals

[66]. Each of these signals measures the electric potential difference in a particular

body part of a living system. For example, ECG is used for heart, EEG is used for

brain, EMG is used for muscles, and EOG is used for functioning of eye muscles.

For the purpose of thesis and simplicity, we are focused on non-invasive ECG and

EEG measurements.

ECG is a non-invasive electrophysiological monitoring methodology to record the

electrical activity of heart. ECG is measured by placing metal electrodes over the

chest of an individual. Electrodes measure rhythmic electric potential changes when

a heartbeat happens in the heart. Usually, 12 electrodes are used to record electric

potential difference over the skin surface during a period. ECG measurement is a

repeated process of different waves: P wave, QRS complex, and T wave as shown in

Figure 1. These waveforms are formed in a continuous process of depolarization and

repolarization of heart chambers. Depolarization and repolarization are coordinated

activities in heart chambers linked to contraction and expansion of the heart.

5

Figure 1: Schematic representation of normal sinus rhythm in ECG [43].

EEG is a non-invasive electrophysiological monitoring methodology to observe or

record electric signals between brain cells [65]. EEG is measured by placing metal

electrodes over scalp or cortical surface. The events or activities of an individual

activate brain cells, and multiple electrodes placed on the scalp to measure the

electric potential difference between brain cells or neurons. In a clinical context,

the multiple electrodes are used to record the brain patterns of an individual. The

brain patterns consist of brain waves, which are grouped into four broad categories

based on their frequency bands: alpha (8-13 Hz), beta (greater than 13 Hz) , theta

(4-8 Hz) and delta (0.5-4 Hz) [81]. These frequency bands or their combinations are

associated with specific functions of a physiological process in a living system. EEG

is helpful in the investigation of neurological disorders such as sleep disorders [40],

epilepsy [77], and encephalopathy. Figure 2 presents an example of recorded EEG

waves with various frequency bands.

Biological signals collected from a multitude of devices play a significant role in the

prognosis of health disorders or clinical diagnosis of patients. Based on biological

context, these signals either contain single-channel information or multi-channel

information. A channel can include information from single electrode or combination

of multiple electrodes. A greater number of electrodes used in the measurement of

bioelectric signals provides a better quality and more descriptive information linked

to a physiological process of a living system.

When these bioelectric signals are measured over a period, a time series is generated.

The generated time series is also known as a physiological signal. For example, ECG

is recorded to discover changes in electrical activities of the heart. Similarly, EEG is

6

Figure 2: Example of recorded EEG waves [42].

recorded to discover or diagnose neurological disorders of a person. In general, time

series is defined as ordered sequence of successive values measured over a period.

Time series can be one-dimensional or multi-dimensional. Bioelectric signals are

mostly one-dimensional time series that are continuous in nature and non-stationary.

A collection of time series data assists in understanding of characteristics and

patterns inscribed within a physiological process of a biological system. Biological

signal processing mechanisms extract features from these time series and derives

learning models around them. The later time series signals are mapped to

previously generated learning models to derive conclusions and produce actionable

insight. The statistics from the evaluation can provide better healthcare to

individuals. Many other real world applications are actively using time series in

various domains such as stock market, sales, advertisements, inventory analysis,

and economics [36]. The time series found in different domains, other than medical

telemetry, are beyond the scope of this thesis.

2.1.1 Traditional Data Analysis Workflow

The study of these physiological time series signals provides vital information linked

to a physiological process, which helps in heart-attack prediction or identification

of neurological disorders. It is a complex process to analyze nonlinear and non-

stationary attributes of these physiological time series signals [61] [41]. Historically,

the analysis of physiological time series signals involves four steps: data acquisition,

7

data pre-processing, feature extraction, and actionable insight. Figure 3 presents

typical steps involved in biological signal processing.

Figure 3: Block diagram of steps used in traditional analysis.

Data Acquisition. Historically, continuous time series signals are not stored in

the medical devices. Previously, there have been endeavors to provide an interface

to download data streams from medical devices. Due to the absence of protocols

and standards, the interfaces vary with device manufacturers and are limited to

proprietary software. Recent growth in electronics, medical device manufacturers

are adopting common protocols to extract continuous time series signals. The

emerging technologies provide sophisticated tools to record time series signals over

a period. The continuous nature of physiological time series signal produces a large

amount of data. Consequently, the volume of the data acquired at a velocity poses

an explosion of data over a period. Therefore, most of the data acquired from

patients are observed momentarily or remains underutilized. The momentarily

observed data may not reflect the broad aspect of the clinical state of an individual

patient. The coupling of physiological processes of the biological system requires

long-term observation and data acquisition to deduce comprehensive perspective of

an individual. Considering the data standards, data protocols, data privacy, and

cost of medical devices, the continuous time series signal analysis require system

that should be in coherent with existing healthcare infrastructure and provide

extensibility for the future demands.

Data Pre-processing. Considering the disparity of medical devices, it is a

daunting task to integrate continuous time series signals acquired from different

sources. The signal streams need to organize and standardize into a common data

formats that can be consumed by different components of a system. Sometimes,

acquired time series signals contain redundant information or randomness, which is

considered as noise in signal processing. For this reason, the signals are

pre-processed by applying filters to eliminate noise from physiological signals. The

pre-processing of signals leads to consistency in data that assists in the processing

of signals at the next step. Due to privacy concerns and being a source of vital

8

information, proper handling of physiological time series signals is an important

aspect of the system.

Feature Extraction. The pre-processed signals are complex in nature and linked

to the physiological process of a biological system. The characteristics of signals

are observed to extract biological features linked to the biological system. For

example, feature extraction may involve identifying the difference in ECG pattern

of an individual from regular ECG pattern in the case of heart related disorder.

The observed patterns are used in clinical assessments in the next step.

Actionable Insight. The biological signal processing mechanism used to extract

biological features are employed to create learning models. The learning models are

then used to generate actionable insights. They are later used in clinical assessments.

The data analysis process deduces pathological symptoms and identifies disorders

linked to physiological time series signal obtained from an individual. For example, a

heartbeat rhythm which is irregular, too fast or too slow, than the rhythm obtained

from the learning model, may show a sign of arrhythmia [16].

2.1.2 Conventional Software Platforms

These four steps process acts as a general process for the development of various

software platforms to process and analyze physiological signals. There are several

platforms or frameworks that are used for analysis of biomedical signals. Most of

these softwares are collection of modules for ECG or EEG. EEG modules assist in

brain-computer interface (BCI) research and development. In brain research, BCI

focuses on identifying user generated commands using brainwaves and performing an

action related to commands in virtual or real world. BCI2000 [74], OpenViBE [71],

BCILAB [56], EEGLAB [46], MIDAS [10] are some examples of software platforms

that are used in the biomedical signal analysis.

BCI2000 is a general-purpose software platform designed in C++ programming

language to use in BCI research. It provides application programming interface to

extend modules for various building blocks such as data acquisition, signal

processing, or user application [74].

OpenViBE is an open-source platform for design and development of BCI. It

consists of easy to configure software modules to design BCI applications. It also

supports integration of BCI with virtual reality applications. In addition, it

supports graphical user interface (GUI) for designing BCI without using any

9

programming language.

BCILAB is a cross-platform open-source platform designed for development of

brain-computer interface (BCI). It is a MATLAB-based platform designed to develop

and test new methods for BCI [18]. It also provides a collection of existing common

methods for fast pace development of BCI.

EEGLAB is a cross-platform open-source MATLAB toolbox, which provides an

interactive graphic user interface for processing physiological signals such as EEG,

magnetoencephalography (MEG) and electrocorticography (ECOG) data. It

provides various functions such as pre-processing, visualization, and independent

component analysis [19].

BioStream is a system for continuous monitoring of physiological signals [37].

Bar-Or et. al. [37] presented the prototype for monitoring and diagnosis of ECG.

It uses Aurora [32] for data stream management and allows to create a patient

plan using operators. It integrates alert mechanism to broadcast events to

healthcare staff. For instance, an alert can be related to pathological symptoms

linked to a patient heart.

MIDAS is a general-purpose distributed analysis system for physiological signals.

It involves analysis of time series in a streaming environment. It is a Python based

system, which vouches for modularity and easy to integrate system that can also be

used for machine learning frameworks.

Software platforms, such as BCILAB and EEGLAB are MATLAB based software

stacks. However, MATLAB is a proprietary software which is non-free. BCI2000,

OpenViBE, BCILAB, and EEGLAB softwares are designed to target and collect

data from a single user. Most of these softwares follow the traditional approach of

handling biosignals sequential and configuring software stack based on GUI

parameters to analyze the physiological signals. Some software stacks such as

BCILAB provide limited applications in Human-Computer Interaction (HCI),

whereas OpenViBE provides an interface to create applications in virtual reality.

Systems such as BioStream are unreliable, because use of such a system in a large

environment such as healthcare environment with many patients may cause alarm

fatigue to the medical staff. Moreover, BioStream does not incorporate

comprehensive context of physiological signals of patients. MIDAS is an attempt

to analyze the physiologic signals in a distributed environment but limited to the

degree of distribution. MIDAS also provides general purpose integration with

Internet of Things (IoT). It is a naive system that is still under development.

10

Therefore, it is hard to rely on MIDAS for scalability and fault tolerance of

ingested data. Most of the software stacks are too specific, e.g. BCI based

research, which target signals from an individual. Moreover, some of them are too

generic and limited in their context to process biomedical signals. Most of the

research in the biomedical signal analysis are oriented towards individual signal

processing and are non-distributed in nature. Physiological time series signals

originated from a biological system are interconnected within the body. The time

series signals require to be analyzed by embedding context awareness to the

processing system. The system needs to have an open view to accept different

modalities of data for comprehensive view of the physiological condition of a

patient. It is more appropriate to use aggregated approach for processing and

analysing these signals. Therefore, there is a need to develop a system that will

utilize a continuous stream of real-time physiologic signals and record the signals

to provide comprehensive clinical assessments.

Multiple data streams of physiological signals acquired in real-time require a

capable system to process streams in stipulated time frame. In addition, a large

environment such as hospitals with many patients may contribute to a multitude

of physiological signals originated from biological systems of many patients. To

provide a comprehensive viewpoint similar to the existing system, the streams

from different sources should be distributed to perform parallel computation

within a cluster of machines. Therefore, the computation is divided within a set of

nodes and data streams are processed in a distributed environment. Considering

the number and the rate of data streams, the cumulative data analysis requires a

distributed data processing system to analyze physiological signals.

2.2 Distributed Data Processing

The data processing depends on the context of the domain and is also linked to the

underlying data available in the area. The research and development in various fields

lead to the evolution of emerging tools and methods to acquire data from different

sources. For example, there has been consistent growth in the medical telemetry

that leads to usage of technology for monitoring tools and softwares in medical

domain. Another example is neuro telemetry, which employed EEG to monitor

patients remotely. This method assists in the proactive monitoring of physiological

symptoms of patients.

Traditional data processing methods involve one-to-one mapping of healthcare

11

systems to the patients. Healthcare setup may include more than one machines

dedicated to a single patient for monitoring perspective. Such setup requires

observers to monitor regularly the healthcare systems in a confined locality of the

patient room. However, this setup is viable for small environments but limited in

the context of computing and confined locality. Due to one-to-one mapping, the

configuration requires lots of resources in large organizations.

The large organizations such as hospitals with many patients or agile research

environment outlined the limitation of traditional data processing systems. In

order to address the limitations, a proactive and aggregated approach is needed to

handle the data streams from multitude of healthcare devices. This approach

would make the decision making in a large setup dynamic. However, it requires a

new computing paradigm. This emerging solution in the form of distributed

systems appeared as an optimistic solution.

Distributed systems involve a collection of computation nodes connected via

network, which share the resources and coordinate the computation between

nodes. The structured organization of a multiple nodes provides additional

computing power and allows flexibility to add or remove nodes as per requirement.

Distributed systems collectively handle large-scale data domains and provides

computation environment for data received from multiple resources.

The data processing in distributed systems can be categorized as batch processing

and stream processing. In batch processing, the jobs or tasks are accumulated in

batches over a period, and each batch is processed as a single unit. The scale,

diversity, and volume of data governs the computing paradigm of distributed data

processing. Evolution of the Internet, social networks, high-frequency trading, and

large-scale systems adhere to have a real-time data processing requirements along

with existing batch processing systems. The emergence of applications to handle

incoming stream of real-time data at high rate leads to the evolution of distributed

stream processing concept. The stream processing concept has evolved from

stream computing paradigm, which involves continuous query and real-time

analysis of stream data. The scalability, low latency, robustness, and

fault-tolerance are general properties of the distributed stream processing

solutions. There are various open-source and proprietary solutions or systems that

address the requirements for distributed real-time stream processing such as Spark

streaming, Amazon Kinesis, IBM Infosphere stream. The major part of our

discussion is focused towards the open-source data processing solutions.

12

Table 1: Open-Source distributed data processing solutions

Solution Type Developed By

S4 Streaming Yahoo

Storm Streaming BackType & Twitter

Spark Batch & Streaming AMPLab, UC Berkeley

Open-Source Distributed Data Processing Solutions. There are couple of

solutions that are available for distributed data processing. Table 1 refers to various

open-source solutions available for real-time large-scale data processing.

Storm is a distributed stream processing framework, developed in Clojure and built

upon a model of task parallel computation [7]. It provides an adapter to write

applications in virtually any language. Storm is optimized for low-latency processing

and uses ZeroMQ1 for message passing, which makes its architecture provide a

guaranteed message processing [7]. It attempts to process each record at least once,

and if a record is not yet processed by a node, it replays the records. In addition, it

provides reliable fault detection and process management. On discovery of failure

of a task, messages are automatically re-assigned by quickly restart the processing.

For optimal resource handling, the processes in Storm are managed by supervisors.

S4 (Simple Scalable Streaming System) is a general purpose distributed and

scalable streaming platform that allows the processing of continuous unbounded

streams of data. Its processing model is inspired by MapReduce and uses key

based programming model [63]. The computation is performed by processing

elements, and messages are transmitted to them in the form of data events [64].

Spark is an in-memory distributed data analysis platform and provides Spark

Streaming as an extension of the core Spark application programming interface

(API) [21]. Spark is built upon the model of data parallel computation. It

provides reliable processing of live streaming data. Spark streaming transforms

streaming computation into a series of deterministic micro-batch computations,

which are then executed using Spark’s distributed processing framework.

The streaming concept has been divided into micro-batching processing technique

or non-batch processing techniques. Spark Streaming solution provides

micro-batching of the unbounded stream. It incorporates stream processing via

1http://zeromq.org/

13

Table 2: Attributes based comparison of Open-source data processing solutions

Attributes Spark Storm S4

Framework Micro-Batching with

Batch Processing

using Core Spark

Stream Processing +

Micro-Batching using

Trident

Actor

Programming

Model

Implemented in Scala Clojure Java

Application

Language

Java, Scala, Python,

R

Java, Clojure, Scala,

Python, Ruby

Java, Python,

C++

Stream

Primitive

DStream Tuples Events

Stream Source Network, HDFS Spouts Network

Computation or

Transformation

Transformation,

Window Operations

Bolts Processing

Element

Persistence

Entity

foreach RDD Bolts Control

Messages

Reliable

Execution

Exactly once At least once –

Fault Tolerance Tiny bits loss

possible, Require

HDFS for fully fault

tolerant

Tuples replayed,

Guaranteed delivery

New Node begin

from snapshot

Latency Few Seconds Sub-Second Few Seconds

Developed By Conceived by

AmpLab Berkely,

Now Apache

incubation project

Conceived by

BackType/ Twitter,

Now Apache

incubation project

Initially

conceived by

Yahoo!, Now

Apache

incubation

project

14

short interval of batches and provides a linear streaming solution, which is suitable

for existing batch processing infrastructure. Storm and S4 both adopted non-batch

processing techniques. Storm also provides micro-batch processing using Trident

APIs. Apache S4 is entirely focused on real-time stream processing and does not

support micro-batch processing. The attribute based comparison is performed in

Table 2 between Storm, Spark, and S4. Table 2 highlights different aspects of these

solutions, which are compared in the context of processing model, data pipeline,

latency, fault tolerance, and data guarantees.

Apache Spark is a computing framework provided by Berkeley Data Analytics Stack

(BDAS). In the next section, we explore BDAS and relative products or software

frameworks available in BDAS. We learned more about the internals of Apache

Spark and Spark Streaming in the next section.

2.3 Berkeley Data Analytics Stack

BDAS is an open-source stack of software components for data analytics [2]. It is

developed by AMPLab, UC Berkeley2 and widely supported by the open-source

community as well as industry. Over the years, BDAS included various third party

software components and extended support for integrating with other software

frameworks. Figure 4 presents different layers of BDAS components: resource

virtualization, storage, processing engine, and interfaces.

Figure 4: Software components in Berkeley Data Analytics Stack.

2https://amplab.cs.berkeley.edu/

15

At the lower layer, BDAS consists of general-purpose cluster resource manager called

Apache Mesos3. BDAS also supports integration with third party Hadoop Yarn4

cluster manager. Cluster resource manager is a platform for management of different

nodes in a cluster. It can run on one or more cluster nodes. It provides high-level API

for job scheduling and resource allocation in cluster nodes. Storage layer involves

Tachyon and Hadoop distributed file system (HDFS) as file systems. Tachyon5 is a

distributed in-memory file system developed by AMPLab. HDFS is the most used

third party file system in applications. HDFS is a highly fault-tolerant distributed

file system designed to provide high data access throughput for large data sets

[3]. Spark core is the processing engine or computing framework used in BDAS.

Interfaces include in-house developed software components and third-party modules

built on the top of the processing engine. Spark Streaming, SparkR, GraphX, MLlib

are the names of several interfaces. Application layer involves applications that run

over the BDAS using one or more interfaces. User applications run over BDAS using

one or more interfaces.

2.3.1 Spark and Spark Architecture

Spark is an open-source general-purpose cluster computing platform for distributed

data processing. Spark provides a unified platform for batch processing, stream

processing, and interactive computations. Spark provides API in Java, Scala, R

and Python to write an application for Spark. It is also possible to extend existing

interfaces provided by Spark to model it as per application requirements. For this

thesis, we focus on Scala as a primary language of discussion in future context.

Zaharia et al. [84] presented Resilient Distributed Dataset (RDD) as the core

logical unit of Spark. RDD is an immutable partitioned collection of data

elements. The inherent partitioning in RDDs assists in parallel computation in

Spark. The properties of the RDDs are described as follows:

• Immutability. The RDD is read-only collection of data elements. This allows

RDD to store or process them across different worker nodes in Spark.

• Laziness. The RDDs are lazy in nature, such that, they enclose all the

information required to build their elements, but accomplish them only when

3http://mesos.apache.org/
4https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
5http://tachyon-project.org/

16

required.

• Lineage. The RDDs remember their evolution by keeping track of operations

applied to them. This information helps in easy recovery of lost RDDs in the

case of failure. Therefore, the lineage information of RDDs provides fault-

tolerance in Spark.

• Data locality. Spark takes into account location of data while distributing

computations across worker nodes. It provides user interfaces to manage data

locality for computations.

Spark provides fast in-memory computation using RDDs. It includes a set of

operation such as transformations or actions that can directly be applied on

RDDs. Figure 5 presents actions and transformations on RDDs.

• Transformations. They are applied on RDDs to create new RDDs from existing

ones. Transformations are evaluated lazily by Spark and saved in the lineage

graph of RDDs. Operations such as map, reduce, and filter are an example of

transformations. For example, a map operation on RDD will wait for actions

to materialize the execution of the transformation. Table 3 presents commonly

used RDD transformations.

• Actions. They are applied on RDDs to materialize execution of lineage graph

and return instant values. Actions are not lazy in nature, but they are saved

in the lineage graph of RDDs. Actions always trigger materialization of

interim transformations applied on RDDs to return particular result values.

Operations such as collect, count and save are examples of actions. Table 4

presents commonly used RDD actions.

The inherent programming model of Spark provides much wider applications as

compared to other existing models. It is as well more effective than existing

programming models and provides fault tolerance. Zaharia et al. [84] proved that

Spark outperform existing systems such as Hadoop for computations in a cluster

computing.

Spark configurations can be categorized into a standalone mode or cluster mode.

The standalone mode allows Spark installation on a local machine. The standalone

mode also be a cluster mode on a local machine. The cluster mode allows Spark

installation in a cluster environment. The cluster is a loosely coupled group of

17

Figure 5: Actions and Transformations on RDD.

machines connected over a local area network. Cluster manager orchestrates a group

of machines and ensure that machines work together as a single coherent system. In

computer networks, we consider computer machines as nodes in a network. If some

machines or nodes in a cluster fail, other nodes in the cluster share the computation

task among them. The cluster mode of Spark is shown in the Figure 6.

Figure 6: Overview of Spark architecture.

Each application in Spark runs as a collection of processes in a cluster. Spark

cluster consists of a master node and more than one worker nodes. SparkContext

is the main entry point to the Spark functionality that connects to Spark cluster

[4]. SparkContext initialize Spark environment and coordinate the operations in

the application. The main program of the application that holds SparkContext

is also known as Driver program. Driver program submits processing request to

18

the master node. Master node is a resource manager, which manages resources

for an application. Master node in Spark assigns jobs or computation tasks to the

worker nodes. Worker nodes can have more than one executor. The executor is

a process, which runs on a worker node. An executor can have more than one

physical machine core. Cores of a machine are also defined as slots for a particular

executor. Based on the number of slots or cores, an executor can perform some tasks.

Task is the smallest unit of work in Spark [51]. Depending on the application, the

operations such as transformations or actions defined on a RDD are divided into

tasks. Each of these computation tasks is assigned to executors by the master node.

Executors perform computations and store results in worker nodes. On completion

of computations assigned to executors, the master node collects the results from

worker nodes. In this way, Spark architecture enables parallel computation in a

distributed environment on a set of cluster nodes.

Table 3: Common RDD transformations available in Spark [6]

Transformation Defination

map(func)
Apply function func on each item in a collection

to create new dataset

flatMap(func)
Similar to map, but apply function func to produce

flatten sequence of items

filter(func)
Apply boolean function func on each item in a collection

and returns items in true

union(dataset)
Returns new collection that contains union of items in

source data set and data set passed as argument.

intersection(dataset)
Returns new collection that contains intersection of

items in source data set and data set passed as argument.

2.3.2 Spark Streaming

The real-time analysis requires system to accept a stream of data in real-time.

BDAS includes Spark Streaming as an interface to support real-time processing of

the incoming stream of data. Spark Streaming is an extension to Spark API and

performs computations using Spark core. In Spark Streaming, the incoming stream

19

Table 4: Common RDD actions available in Spark [5]

Action Defination

reduce(func) Apply a function func to aggregate items in data set.

collect()
Returns items as an array collection to the driver

program.

count() Returns total number of items in a data set.

take(n) Returns first n items as an array collection.

first() Similar to take(1), returns first item of data set.

foreach(func)
Apply a function func on each item and update items

in a data set.

saveAsTextFile(path)
Saves items in a data set to a text file (or text files) in

a specified filesystem.

saveAsObjectFile(path)
Saves items in a data set to a object file using

serialization in a specified filesystem.

of data received over a network is grouped together to form small batches. These

relatively small batches are called micro-batches. Spark Streaming receive these

micro-batches and buffer them to the memory of workers nodes of Spark. This

discretized approach to handle streaming data into micro-batches provides a

unified experience of batching and streaming within a single platform. It also

enables Spark Streaming to utilize the same memory abstractions (RDDs) as

Spark core engine [80]. This allows using the same programming model to write

the applications using transformations and actions provided by Spark core. This

generalization of handling streaming data as micro-batches leads to sub-second

latency in Spark Streaming. Similar to batch processing models of Spark, it offers

strong consistency, low latency and fault tolerance using parallel recovery protocol.

Figure 7 presents an overview of Spark Streaming architecture.

Similar to RDD in Spark, DStream or Distributed Stream is the fundamental

abstraction of Spark Streaming [85]. DStream is a collection of RDDs, and each

RDD represents a micro-batch of streaming data. Each RDD contains a stream of

data acquired in a specific time interval as presented in Figure 8. This

programming abstraction allows interoperability between batch processing and

20

Figure 7: Overview of Spark Streaming architecture.

stream processing in Spark. Spark provides an interface to apply Spark functions

on each RDD of DStream. It is also possible to perform interactive queries on

micro-batches stored in the memory of worker nodes.

Figure 8: DStream as a collection of RDDs.

In Spark Streaming, the incoming stream of data is received by the receiver in

chunks and divided into blocks of data. The time interval at which data is received

is known as block interval. The default value of block interval is 200 milliseconds

[25]. These blocks of data received from a network by the receiver are grouped

together into micro-batches. The time interval to form these micro-batches refers to

batch interval.

A receiver in Spark Streaming provides a custom interface for receiving the incoming

stream of data from various data sources. A receiver can be considered as a long

running task that receives data streams and executes inside an executor of the worker

node. Receiver divides the incoming stream of data into blocks and keeps them in

memory. These data blocks are also replicated to other executors to provide fault

tolerance and reliability. Based on the batch interval defined in the application, the

driver launches tasks to process data blocks obtained by the receiver.

21

In the case of failure of an executor which is running a receiver, the receiver and

all the related data blocks will be lost. In such scenario, the driver tries to restart

the receiver on another executor and restart the tasks on the available replicated

data blocks. Spark handles this scenario internally, and no configuration is required

from the user end. In the case of failure of the driver, all the executors linked to

the driver will also fail. In such scenario, all the computations on the received data

blocks will also be lost. Therefore, we need to perform a proactive configuration. In

this case, we need to enable DStream checkpoint, so that Spark will periodically save

the Directed Acyclic Graph (DAG) of DStreams into HDFS. If we have DStream

checkpointing, Spark will try to restart driver from checkpointing information saved

in HDFS. As soon as the driver is up, it will launch new executors and begin receiving

the data stream via receivers. To prevent loss of in-memory data blocks when

the driver is restarted, the application requires Write Ahead Logs (WAL). WAL

synchronously saves received data blocks to the HDFS. Such recovery measure also

requires configuration and code handling to provide fault tolerance and reliability.

Figure 9 presents data persistence in Spark Streaming.

Figure 9: Data persistence in Spark Streaming.

2.4 Data Collection

The growth in healthcare and digital technology provides multiple interfaces to

collect physiological signals from an individual. The diversity of these interfaces and

lack of standards often lead to interoperability issues between devices. Therefore,

bridging the gap between devices is an important aspect to collect valuable medical

22

data. Lab streaming layer (LSL) [20] together with Kafka [57] provide a solution for

bridging the gap between different devices. LSL and Kafka enable data collection

from a diverse set of heterogeneous or homogeneous devices, which can be later

consume by data processing framework.

Lab Streaming Layer. LSL provides lower layer open-source interface to collect

time series signals from various devices and handles time-synchronization. LSL

provides interfaces in various different languages such as C, C++, C#, Java, Python

and MATLAB [20]. It helps in multi-modal data acquisition such as EEG, EMG,

EOG, heart rate, from various hardware providers available over a network.

LSL provides a lower layer abstraction that includes stream outlets and stream

inlets.

• Stream Outlets can be considered as consumers, which consume data from

different devices, in a sample-by-sample or chunk-by-chunk format. It can

consume single or multi-channel data, with regular or irregular sampling data

rate.

• Stream Inlets can be considered as receivers, which receive data samples in

order and reliably from subscribed outlet. It also provides stream metadata

in XML format. Resolver function helps in resolving the streams, based on

context-based queries. It involves stream resolution based on name, source

identifier or content type.

LSL provides time synchronization for a received data over a local network. It

achieves time accuracy of sub-milliseconds for a received data [20]. It also provides

an interface to add user-supplied timestamp for a received data. The time

synchronization in LSL is based on Network Time Protocol6 (NTP). LSL provides

both timestamp and clock offset to the receiving computer. It requires a receiver

to perform mapping of timestamp with clock offset to produce accurate timestamp

for the sample.

Apache Kafka. Apache Kafka is an open-source distributed messaging system

written in Scala. It provides a unified interface to aggregate different data streams

in real-time. Kafka follows a publish-subscribe pattern, in which the publisher

sends messages, and the subscriber receives those messages independently of each

other. In Kafka, publishers are called Kafka producers and subscribers are called

6https://tools.ietf.org/html/rfc5905#section-14

23

Kafka consumers. Kafka producer is a process that generates messages to the

topics, whereas Kafka consumer is a process that subscribes to a particular topic

and receives messages from the subscribed consumer group. Kafka organizes the

incoming stream of messages and records them into groups called topics.

Internally, a topic is organized into multiple partitioned logs on Kafka brokers [57].

Each partitioned log is an ordered collection of messages. Messages are

continuously appended in an incremental sequential log order to a commit log.

Kafka divides the topics into partitions for scaling and redundancy. Figure 10

presents Kafka topic as a partitioned log.

Figure 10: Kafka topic as a partitioned log, writes from producers and reads by

consumers.

In a cluster environment, Kafka can have more than one nodes or servers, which is

also known as brokers [57]. The design of distributed messaging system provides

fault-tolerance and durability by persisting messages across a disk in a cluster

environment. In this way, Kafka cluster keeps all the published messages for a

particular period of time. These messages might or might not be consumed by the

consumers associated with Kafka. Figure 11 represents the high-level abstraction

of Apache Kafka.

Kafka provides an unbounded buffer for both streaming and non-streaming data.

Internally, Kafka maintains data in structured immutable commit logs or write

ahead logs. Write ahead logs or commit logs is the core abstraction of Kafka.

Producers or data sources send a stream of data that are appended to these logs.

24

Figure 11: High-level abstraction of Kafka involves producers, centralized cluster of

brokers, and consumers.

Multiple consumers from an application in Kafka are grouped together into a

logical unit called consumer group. Kafka automatically deduces the order of

distribution of messages in the partitioned logs of a topic to instances of consumer

groups. The instances of consumer groups can consume or read these updates from

partitioned logs. Each consumer can have its own pointer to read data from these

logs independent of other consumers. Therefore, multiple consumers can read data

in parallel and in ordered way from Kafka.

Figure 12: High-level abstraction of Kafka commit log.

The logical organization of partitioned logs and consumer groups in Kafka provides

even load distribution of messages to instances of consumer groups. The records

or messages in Kafka are ordered using a log sequence number called offset. Kafka

25

maintains the state of the system using the notion of the log sequence, which is a

logical timestamp to the organized records in the commit log. Figure 12 represents

the high-level abstraction of commit logs in Kafka.

Kafka provides a dynamic interface to add or remove producers or consumers. It

scales from zero to N number of consumers or producers in a distributed environment

[24]. A reliable stream of commit log updates, low latency and fault tolerance in a

cluster environment make Kafka a reliable interface for data ingestion.

2.5 Data Indexing and Visualization

In various domains, data is constantly generated from different sources and injected

into the system. Over the period, the acquired data and processed data by the

system, quickly grows into a massive data set. The quick growth of data might lead

to a large volume of stale data. Under this scenario, the organizations need tools

that can retain the valuable insight of data. The valuable insight is possible, if we

can index data in a system and perform good visualization. Therefore, the analytics

around data and ability to have valuable insight makes it more beneficial for the

domains. Elasticsearch together with Kibana are tools that provide a solution to the

growing demands of data handling, analytics and visualization in an organization.

Elasticsearch. Elasticsearch [8] is an open-source distributed search and analytics

engine. It was developed by Shay Banon in 2010. It is based on Apache Lucene

project, which is an open-source text search engine developed in Java

programming language. It provides an interface for smooth integration with

existing Spark applications. Elasticsearch provide data indexing along with

RESTful APIs that makes it an ideal platform for data analysis. The properties of

Elasticsearch are categorized as follows:

• Real-Time Indexing. Elasticsearch allows real-time indexing of saved data.

All the data indexed by Elasticsearch is open for near real-time search and

analytics. It allows quick insight on the stored indexed data.

• Scalability. Elasticsearch enables horizontal scaling of the cluster with the

growth of data. As data grows in a system, more nodes or machines can be

added to the cluster as per the demand, and Elasticsearch scales smoothly by

taking advantage of new nodes.

• High Availability. Elasticsearch asserts safety and accessibility of data saved in

26

the system. In the case of failure of nodes in a cluster, it performs re-balancing

and reorganizing of cluster nodes to ensure high availability of data.

• Multi-tenancy. Elasticsearch provides multiple independent views of the

indexed data. It allows multiple queries such as update or filtering to the

different views in a cluster environment. It allows accessibility of stored data

via different views as per indexed data configurations.

• Full-Text Search. Elasticsearch provides advanced search interface along with

filters to operate on stored data in a distributed environment. It allows easy

to use interface to extract stored data via query API.

• JSON Document. Elasticsearch saves the data in structured JSON documents.

It allows indexing of all the fields in a dataset. It provides automatic data type

inference and schema identification from the dataset.

• RESTful API. RESTful APIs provide a unified experience to query stored data

in structured JSON format. The API can be consumed by any application

over HTTP and allows easy integration of data from Elasticsearch to web

applications.

Kibana. Kibana [13] is an open-source visualization interface and provides

seamless integration with Elasticsearch. It is a web-based interface, which provides

various types of graphical representations such as charts, graphs, histograms, or

maps for visualizing data. The graphical user interface allows interaction with

data indexed in Elasticsearch. It provides easy to configure settings to create

dynamic dashboards. The dynamic dashboards provide a visual interface for

real-time changes in Elasticsearch queries. The visual interface enables discovery of

large-scale datasets that helps in locating patterns in data. Apart from flexible

visualization interface, Kibana also provides analytics capabilities in the form of

mathematical operations that can be applied to datasets. The live indexing and

distributed search interface along with good visualization enable real-time decision

making of the incoming stream of data using Elasticsearch and Kibana. Figure 13

presents graphical user interface of Kibana with indexed JSON data, and Figure

14 depicts a line graph on two channels.

27

Figure 13: Kibana graphical user interface with indexed JSON data.

Figure 14: Kibana graphical user interface with line graph on two channels.

28

3 Research Methodology

This chapter discusses the practical approach employed to carry out the research

and software development required to support the experimentation for analysis of

physiological signals in distributed environment. The list of tasks involved in the

practical approach of our research are defined as follows:

• Understanding of physiological time series signal such as ECG, EEG.

• Requirements analysis for distributed analysis of physiological time series

signals.

• Understanding of state-of-the-art solutions for large-scale distributed data

processing.

• Preparation of use cases and exploratory data analysis with respect to the use

cases.

• Data collection from homogeneous or heterogeneous sources, data

pre-processing, data storage, and data indexing.

• Construction of a pipeline to perform distributed analysis of streaming and

non-streaming physiological signals.

• Development of programming constructs to process the time series signals in

a distributed environment.

• Documentation of steps involved in the research and software development

pipeline.

The execution of above tasks requires an organized approach or methodology for

the realization of aims of our research. The methodology should support execution

of tasks in a sequential, as well as a parallel manner. Tasks, such as understanding

of physiological time series signals, requirements analysis, understanding of

large-scale distributed systems, preparation of use cases, and development of

pipeline, require sequential approach. The order of each task drives the execution

of the next task. Whereas, the tasks such as literature review, documentation of

study, data collection, can be done in parallel while performing other tasks. The

continuous approach also requires constant iterations to improve the research. The

methodology should also support the modular approach for the conceptualization

29

of tasks and rapid prototyping to understand the feasibility of the tasks.

Considering the scenario of the research and development aspects involved in our

research, we employed a variant of a well-known software development

methodology for research and prototyping [58].

3.1 Overview of K|V Methodology

The Kumiega-Van Vliet Trading System Development Methodology (K|V) was

introduced in 2006 by Kumiega et. al. [58]. It was developed to provide a

systematic business process for research and development of prototype for trading

systems. The K|V model combines existing well-known traditional models, i.e.,

Waterfall model [72], Spiral model [38] and Stage-Gate model [44] into a unique

software development paradigm [58].

The Waterfall model is a simple and easy to use staged development model for

requirement analysis, system design, implementation, testing, and installation.

However, the inherent sequential staged development cycle, rigidity for change

requests and weak support for continuous iterations made it less appropriate to

apply directly to our research process.

The Spiral model involves a high level of risk analysis. It consists of four phases:

planning, risk analysis, engineering, and evaluation [82]. The process model

explores alternative solutions and supports rapid prototyping in an iterative

manner. It also supports continuous approval and documentation of the modeling

process. Considering the number of resources required at the planning phase, there

exists a risk for the spiral to keep on growing. Therefore, it is more suitable for a

large project with high risk, rather than to small projects such as our research.

The Stage-Gate model for development process involves a set of stages such as

discovery, scoping, building the use cases, development, testing, and validation.

Each stage or group of stages are separated by a controlled gate. The controlled

gate decides the continuous development process after approval from supervisors.

The model provides control over an outcome of the stage before moving to the

next stage. It ensures quality and continuous development in an incremental order.

However, the approval process involved in the process model may cause a delay in

the continuity of the project.

The shortcomings described in each of these models are overcome by K|V model by

integrating them into a unique research and development paradigm.

30

3.2 Adaption of K|V Methodology

The K|V model divides the development process into certain stages. The concept

of the stage is similar to traditional waterfall model. Apart from stages, the K|V
model also includes continuous iteration process to improve the research. The

spiral model used in the K|V model consists of four basic steps: research, planning,

implementation and test. The continuous spiral cycle is controlled by the gate

after four steps. According to the outcome of the stage, the control gate decides if

the process requires another iteration cycle, or outcome is appropriate to move to

the next stage. Since, K|V model was designed for research and development

process involved in trading systems, therefore, we made certain changes to adapt

K|V model to our academic research context. The notable changes in the

adaptation of K|V model are as follows:

• We use peer review process instead of the hierarchical executive team review

process as a stage gate to move from one stage to another.

• After a review process, if we require additional cycle at a particular stage, then

all the steps involved in the stage are not mandatory to follow.

• Iteration process is a continuous process to improve the outcome of the

research, but the iteration cycle may yield the same result as deliverables of

the research.

In our research context, the organization of research into stages, similar to the

stages in the traditional waterfall model, enables modularity and provides a

direction for finding a solution for distributed analysis of physiological signals in

medical telemetry. The spiral model brings iteration process to a stage and

improves the quality of deliverables via continuous research and development

process. The learning from each stage or each step is applied to other stages or

steps to improve the overall quality of the research process. The stage-gate model

ensures continual growth with quality deliverables using peer review process and

motivates us to be inclined towards the scope of research.

As per K|V model, our scope of research is organized into four stages, and each

stage consists of four steps. Each stage may have different steps as per the context

of the stage. Each stage produces constructive deliverables that act as an input to

the next stage. As per the review process, if we need further improvement in the

stage deliverables, we proceed for another iteration cycle. Otherwise, we move to

31

the next stage. The iteration process may produce minor or major changes to the

deliverables of a particular stage. The continuous peer review process streamlined

the productivity of timely deliverables from each stage. Figure 15 presents the

adaptation of K|V methodology in our research.

3.2.1 Conceptualization Stage

In the first stage, we started our research by exploring existing state of the art

systems used for processing of physiological time series signals in medical telemetry.

The scope of the research was understanding of physiological time series signals

and evaluation of the applicability of distributed approach for their analysis in a

distributed environment. The primary focus was given to the problem statement,

understanding the factors linked to it, and exploration of methods and tools to solve

the problem. The stage involves four spiral steps described as follows:

Domain understanding. The main purpose of this step was to understand

various types of physiological time series signals in medical telemetry. We

performed intensive literature review to understand the domain. The courses such

as Big Data Frameworks [28], Spark Code Camp [29], seminar on Distributed

Computing Frameworks for Big Data [31], offered at University of Helsinki laid

down the foundation and provided an opportunity to research on distributed

computing frameworks. The discussions and informal meetings with Finnish

Institute of Occupational Health (FIOH) assisted in understanding of the research

scope and existing methods used in the research domain.

Research quantitative methods. Within this step, we studied various

quantitative methods that can be used for analysis of physiological time series

signals in medical telemetry. Considering the physiological signals, such as ECG,

we evaluated the existing methods, such as the average inter-beat interval length,

root mean square value by successive differences, for analysis of ECG signals.

Apart from that, we also explored the dynamic time wrapping for processing of

time series signals.

Distributed processing tools. This step involved exploring the available open

source solutions for distributed large-scale processing to make a conceptual model

for the analysis of physiological time series signals.

Conceptual model. This step involved studying the feasibility of open source

large-scale distributed processing solutions, identified in the previous step, to

32

Figure 15: Adaptation of K|V methodology in research and development.

33

formalize them for the conceptual model.

Deliverables. Formalization of the problem statement and platform concepts are

the two important deliverables generated from this stage, which laid the

foundation for our research. First two steps contributed towards the problem

statement, whereas, the last two steps were involved in the development of

platform concepts.

The documentation of literature review is a continuous process in each cycle of each

stage and iterations involved in the whole process.

3.2.2 Implementation Stage

The focus of this stage includes requirements analysis, and rapid prototyping of

conceptual model learned in the earlier stage. It also includes testing on sampled

data and the exploration of a prototype for use cases in the application domain.

The main tasks performed during this step are defined as follows:

Evaluation of applications. As per the knowledge obtained in stage 1, the

problem statement is revisited to identify the applications that can take advantage

of the distributed processing of physiological signals in medical telemetry.

Distributed data analysis platform prototyping. The problem concepts are

revisited for practical implementation of the platform prototype. It involves

feasibility analysis, installations, configuration, customization and integration of

software components to create a coherent pipeline for distributed processing of

physiological signals.

Data collection. Considering the privacy concerns related to physiological signals,

we collected anonymous privacy-preserving open source data from a reliable online

source PhysioNet [49] [30]. PhysioNet is an online web platform, which contains a

diverse collection of physiological signals [17]. We also used synthetic time series

data for initial evaluation of the prototype.

Prototype testing. This step involves testing the processing of physiological

signals from the sampled data with the developed prototype. The testing of

workflow process includes various functional aspects such as data collection, data

ingestion, data pre-processing, data structuring, data processing, data storage,

data indexing, and data visualization.

Deliverables. After several iteration cycles, we delivered a prototype of the

34

distributed data processing pipeline for physiological signals and exploration of use

case applications.

3.2.3 Analysis Stage

This stage involves further evaluation of the prototype for analysis of the data

collected in the earlier stage to produce valuable insight based on the use case

applications. The main tasks performed during this step are defined as follows:

Integration of components. The modularity and extensibility were one of the

primary focus of the developed prototype. Therefore, we tested the modularity

and extensibility of the pipeline by integrating available open source software

components. We studied various aspects of the involved software components in

the pipeline and tried various combinations, such as data ingestion techniques to

strengthen the pipeline for future usability.

Algorithm analysis. This step involves the application of various quantitative

methods discovered in stage 1 on the collected data. As per the application use

case detected at an earlier stage, the library containing algorithms are adapted

for processing of physiological signals in a distributed environment. The continuous

process of learning is used from various cycles to improve the implementation aspects

according to the application use case.

Data analysis. In this step, we use certain algorithms that can be applied to both

distributed and non-distributed systems. The quantitative aspects are measured

by processing of physiological signals in a distributed and non-distributed systems.

The insights obtained from this step accounts for primary results and illustrates the

applicability of analysis of physiological signals in a distributed environment.

Data visualization. The insight obtained from the previous step is indexed using

Elasticsearch and visualized using Kibana. The indexing helps to keep the processed

data valuable and searchable over a period. Whereas, the visualization tool such

as Kibana provides flexibility to visualize indexed data into near real-time custom

graphs.

Deliverables. At the end, the outcome of this stage is a functional prototype

for distributed data processing. We also obtained valuable data insight from this

stage, which affirms the applicability of our approach for the analysis of physiological

signals in a distributed environment.

35

3.2.4 Documentation Stage

The documentation of learning was a continuous process across different stages

and iteration cycles. The principal focus of this stage was to aggregate the

documentation created at each stage and formalize them into a final document. It

includes four steps described as follows:

Review of the problem statement and results. We revisited problem statement

in this step and iterated over the deliverables obtained from various stages. The

central focus was to streamline the research in a single direction and verify the goals

targeted at stage 1.

Thesis documentation formalization. We consolidated the documentation

created at each stage into a single thesis document. We iterated over the figures,

tables, references, structure format, sequencing order and language aspect involved

in the thesis document. We organized the information into a single presentable

consistent document.

Review process. The thesis document obtained from the previous step was

discussed with the supervisors in order to have a valuable feedback to improve the

quality of research and document. The review process explored various aspects

involved in the documentation and discovered the applicability of thesis context

into the future research direction.

Thesis documentation finalization. The reviews obtained from the previous

step were included in the thesis to improve the quality of literature. This step

involves proofreading and updating the thesis document to finalize it.

Deliverables The final thesis document was the main outcome of this stage.

In our research methodology, we followed various iteration cycles in each stage.

We began our research process with a small scope and iteratively moved towards

expanding the horizon of our research. The early state prototyping enabled the

realization of problem concepts and further refining the problem statement. In

this way, the controlled gate approach ensured the quality of each stage, as well

as oriented the research in the correct direction. Furthermore, the approach used

to accomplish the tasks in a sequential, as well as in a parallel manner, drove the

research process to finish in a timely order. The learning from each stage is applied

to the next stage, which in overall improves the characteristic of the deliverables. In

result, the inherent iterative process involved in the K|V model played a significant

role in the overall quality of our research.

36

4 Distributed Analysis of Physiological Signals

Physiological signals are linked to the physiological changes in the biological

systems of an individual. The physiological signals obtained from healthcare

systems contribute to a large amount of vital information related to an individual.

The signals from different biological systems together form attributes for

evaluation of symptoms or diseases. Due to the interconnected nature of biological

systems, the aggregated approach is useful to understand symptoms and predict

diseases.

On one hand, the advent of technologies allows capturing of physiological signals

over a time period. On another hand, the continuous nature of these signals

demands context aware real-time analysis. Consequently, the research aspects to

analyze physiological signals are addressed using large-scale data processing

solution. Under these circumstances, we have developed a general-purpose

distributed pipeline for cumulative analysis of physiological signals in medical

telemetry. The pipeline is built on top of Spark that performs in-memory

computations on a cluster in a distributed environment. The emphasis is given to

the creation of a unified pipeline for processing of streaming and stored

physiological time series signals. The pipeline provides fault-tolerance guarantees

for the processing of signals and scalability to multiple cluster nodes. The pipeline

enables real-time indexing of physiological signals and provides visualization of

both real-time and archived data. It also provides interfaces to allow physicians or

researchers to use distributed and collaborative computing for low-latency and

high-throughput signals analysis in medical telemetry.

This chapter introduces the distributed analysis of physiological signals (DAPS)

system and the related interfaces. To the best of our knowledge, the DAPS system

is the first general purpose open-source distributed platform for cumulative

analysis of physiological signals in medical telemetry. Different sections of this

chapter provide descriptive information about the DAPS system. Section 4.1

introduces design challenges encountered while conceptualization of the DAPS

system. Section 4.2 explains data analysis workflow, which includes data collection

and pre-processing methodologies. Section 4.3 explores platform concepts involved

in distributed analysis. It includes software components, system architectural and

different data ingestion techniques. Section 4.4 provides application programming

interfaces of the DAPS system. It includes various application examples. Section

4.5 concludes the chapter with the evaluation of the DAPS system.

37

In order to understand the conceptual model of the DAPS system, it is important

to explore the challenges that derive the design of the DAPS system. We start our

discussion with various challenges that influence the design criteria and motivates

the development of the DAPS system.

4.1 Design Challenges

Medical telemetry involves various time series signals in the form of physiological

signals, which deduce important aspects of a living system. For example, in case of

a heart-related problem, ECG is recorded to discover changes in electrical activities

of the heart. The analysis of such physiological time series signals requires careful

consideration of several factors that can affect the effective outcome of the analysis.

Especially the real-time monitoring and analysis of physiological signals comes with

various design challenges, which are addressed in the DAPS system.

Heterogeneity. Since different vendors provide hardwares or devices that can assist

in measuring these physiological signals, the system which can process these signals

should provide an interface to receive these signals. The system requires wrappers

that can act as bridges to consume data from homogenous or heterogeneous data

sources.

Variability. The physiological signals coming from different sources may vary in

time. This aspect leads to synchronization issues. Therefore, a system should

support an offset measurement to correctly map time for these signals.

Data Model. Considering the diversity of data sources, the data received by the

system should be organized into a structured format. The structured data format

enables the easy discovery, singular processing and extensive visualization of the

underlying physiological time series signals.

Streaming Aspects. There exists various software components to process

real-time signals. The selection of these streaming interfaces to perform real-time

analysis of physiological signals requires an evaluation of domain context. An

interface which can provide fault tolerant guarantees and exactly one semantic,

i.e., which can process data records in an exactly once order, could be an optimal

interface.

Dynamicity The system should be coherent, which can provide dynamic addition

or removal of data streams coming from different sources. The cumulative analysis

of these signals in a distributed environment requires software components that are

38

inherently distributed in nature.

Extensibility. The system should take benefit from various open-source softwares.

The system should consider future need and growth aspects as per context of the

domain. The system should be easily extensible to provide a coherent system.

4.2 Data Analysis Workflow

The DAPS system involves various software components, which are written in

different programming languages. These software components together form a

pipeline to process physiological signals. The synergy between these software

components is an important aspect of the pipeline. The different stages of the

pipeline such as data collection, pre-processing, data processing and data

visualization require a single coherent interface to communicate with them. The

interoperability among the different stages of pipelines is an important aspect of

the system. The solution requires a common interface or semantics that can be

understood by different software components. The interface should support

minimalistic structured data types that can be easily serialized or de-serialized

during data exchange among the software components.

Figure 16: Synthetic data in JSON format.

Considering the evolution of Web 2.0, JavaScript Object Notation (JSON) appears

to be a leading markup language for data exchange. JSON is a de-facto open

standard for data exchange between web and mobile applications [60]. JSON is

also the most commonly used data transfer standard for RESTful APIs [78]. It

is inspired from JavaScript but incorporates limited set of most commonly used

39

data types [11]. The set of data types enables easy representation of JSON in any

programming environments. JSON provides two basic data types: a collection of

key-value pair and list of values. Former is considered as an object, whereas later is

considered as an array in different programming languages [11].

In the DAPS system, we represent the samples received from physiological signals

in JSON data format. The sample represents a single data point, which contains

channel information as well as channel data values. As JSON is a de-facto

standard to exchange data between different communication media, the JSON

format normalizes interaction with other native interfaces and software

components used in the DAPS system. Figure 16 presents a synthetic data in

JSON format.

During data ingestion in a system, we normalize input raw data stream into

structured JSON data format. The structured JSON data format provides

singularity to the system. Different software components can parse data format as

per their context. For example, Spark provides interfaces for efficient serialization

and de-serialization of JSON data format to Scala objects and vice-versa. The

JSON data format also enables indexing of data in Elasticsearch, which was

further used in Kibana for visualization.

Figure 17: High-level data process flow.

Data analysis workflow involves the collection of data from multiple homogeneous or

heterogeneous data streams. It includes homogeneous or heterogeneous healthcare

devices and data saved on storage system such as local filesystem or HDFS. Data

streams received over a network can be in semi-structured or unstructured format.

Therefore, the organization of data in structured format streamline the workflow

and enables different components of the DAPS system to process data. Moreover,

the stored data can be used again by the system for derivation of different models

to map incoming data streams. Figure 17 presents an abstraction of data process

40

workflow.

4.3 Distributed Analysis Platform Concept

This section introduces the distributed analysis concepts and the DAPS system.

The Data analysis workflow introduced in the previous section is aligned with the

DAPS system. The proposed system is based on a stack of open-source software

components that together form a pipeline for distributed processing of

physiological time series signals. There are other proprietary softwares or

frameworks that can provide alternate to the proposed model, but the research is

inclined towards open-source software components and does not include

information about other proprietary softwares.

Figure 18: System Architecture of the DAPS system

The challenges identified in the real-time monitoring and analysis of physiological

signals are addressed by the DAPS system. The main objective of the DAPS system

is to perform cumulative analysis of physiological signals in medical telemetry. The

DAPS system involves different layers, and each layer corresponds to process flow

defined in section 4.2. Figure 18 presents system architecture of the proposed DAPS

system.

Various software components are the building blocks for the DAPS system. The

DAPS system is a modular system, which includes Lab Streaming Layer, Apache

Kafka, Spark core, Spark Streaming, Elasticsearch, and Kibana. Spark is used as a

processing engine, where Kafka acts as an unbounded buffer to handle streams

from different resources. Lab Streaming Layer provides lower layer interface for

receiving physiological signals. The real-time indexing of data is performed using

41

Elasticsearch, and Kibana assists in visualization of indexed data. The modularity

enhances the extensibility of the system and enables easy integration or

disintegration with other modules. Therefore, we can extend system as per context

of the domain and requirements.

4.3.1 System Architecture

The focus of the DAPS system is to design a pipeline that can provide a coherent

interface for distributed analysis. The components in the pipeline are configured in

a way to provide modularity, flexibility and end-to-end scalability for the

processing of physiological signals. Components such as Kafka, Spark, and

Elasticsearch are inherently distributed in nature, which means the entire system

is scalable to multiple cluster nodes. It enables the user to add additional nodes or

remove nodes based on usage of the DAPS system. In this way, the DAPS system

is a distributed system, which provides a general purpose platform to perform

cumulative analysis of physiological signals in a distributed environment. The

parallel processing of these physiological signals enables computation load

distribution in a distributed environment. For example, measuring the dynamic

time wrapping (DTW) distance between channels of physiological signals, involves

computing DTW between channels of two time series across different nodes in a

cluster environment.

The pipeline of the DAPS system is organized into different stages. Stages represent

a logical abstraction of roles involved in the analysis of physiological signals. The

software components that are discussed in section 2.3 and section 2.4 laid down a

foundation for the stages. The stages can be categorized as data collection, data

pre-processing, data processing and data visualization.

Data Collection. The DAPS system can receive signals either from static resources

such as storage system, HDFS or from data streams in real-time. There exists a

singularity to receive signals from streaming and non-streaming sources and digest

them in the same system. Considering the diversity of medical devices, LSL provides

a native interface to bridge data received from these sources to Kafka. The devices

that are not supported by LSL can also be supported by the DAPS system using

a wrapper, which can bridge data sources to Kafka. Kafka provides unbounded

buffer, where multiple data sources can publish their data, and multiple consumers

can subscribe to the published data. Kafka enables dynamic addition or removal

of data streams and provides decoupling of data sources from processing engine.

42

Therefore, the DAPS system provides an interface to acquire physiological signals

data from different data sources in medical telemetry.

Data Pre-processing. Data collection involves acquiring raw data set of

physiological signals from homogeneous or heterogeneous sources. Since the DAPS

system receives physiological signals from different data sources, the pipeline

requires a common data format to communicate between different software

components. In general, JSON is most widely accepted lightweight structured data

format for Web 2.0 applications. Therefore, these raw data streams are normalized

into a structured JSON data format before storing them into Kafka in the

pre-processing stage. The structured JSON data format enables different software

components to parse the data format as per their context.

Data Processing. Kafka acts as a central repository of an unbounded resilient

buffer, and assists in unifying collections of data streams from various resources.

The structured data stored in Kafka is consumed by the Kafka receivers in Spark

for processing. Spark performs serialization and/or deserialization of JSON data

format to Scala objects and vice-versa. If the data is acquired from static resources

such as files or HDFS, then the raw data is normalized into structured formats as

per the application programming interfaces. The computations involve applying

algorithms provided by the underlying extended Spark library. The computations

may involve identifying certain features or discovering patterns in physiological

signals or applying machine learning algorithms on physiological signals. After

computations, the derived data from Spark is available system-wide that can also

be looped back to Kafka as a data stream for future processing.

Data Visualization. The DAPS system includes Spark as a processing engine that

can perform both batch and stream processing of data. The cumulative analysis of

physiological signals on real-time data streams leads to large-scale data in a system.

Over a period, the large-scale data collected and processed by the system may result

in a huge collection of obsolete data. Elasticsearch together with Kibana provides a

solution to the growing demands of data handling, analytics, and visualization. In

the DAPS system, Elasticsearch stores the large-scale data into schema-free JSON

documents within a distributed storage environment. Elasticsearch adds dynamic

behavior to the underlying documents. Over a period, the document schema can

evolve as per the change in the input data streams. The inherent distribution of

data across several machines provides scalability to the system. The DAPS system

integrates Elasticsearch for real-time indexing of large-scale data in a system. The

43

indexing enables easy discovery of large-scale data sets. The indexing and rich

query semantics together provide advanced searching and retrieval of documents.

Elasticsearch also provides RESTful APIs to access indexed data in a JSON format

in a near real-time environment. The RESTful APIs can be easily integrated with

web interfaces to create extended applications to the DAPS system. Kibana along

with Elasticsearch provides a live visualization of data indexed by Elasticsearch.

The intuitive graphical user interface of Kibana provides easy to configure settings

to create dynamic dashboards. The dynamic dashboards provide a comprehensive

interface to visualize large-scale datasets in near real-time environment.

Considering the industry wide acceptance of Spark as general purpose computing

platform for large-scale distributed data processing, the usage of Spark justifies the

pipeline for analyzing of physiological signals in a distributed environment. BDAS

also includes various modules, such as Machine learning (MLlib) [27], Graph

processing (GraphX) [26], which can be easily used with Spark. Therefore,

building a pipeline with Spark as a processing engine, also provides extensibility to

the DAPS system and enables us to write any complex computation using other

modules as well.

4.3.2 Data Ingestion Techniques

Data ingestion in the DAPS system involves identifying underlying software

components. Data ingestion revolves around various ways to perform data

injection in Spark. Since, the emphasis is given equally to streaming and

non-streaming incoming stream of data. Therefore, we are focussed on strategies

to utilize underlying Spark processing engine efficiently. Spark provides various

interfaces such as storage system, HDFS or receivers for data injection. Reading

data from the storage system or HDFS is a straightforward process in Spark.

However, receiver involves reading incoming streams of data over a network.

Receivers are used in the context of Spark Streaming for a real-time stream of

data. Since, Kafka provides a coherent interface to connect multiple producers and

consumers, therefore, receivers can be easily integrated with Kafka for data

injection. Spark also provides direct Kafka integration APIs and uses high-level

APIs to manage Kafka. The context of the application and domain requires careful

consideration to rely on receivers and/or Kafka for the incoming stream of data. In

the context of medical telemetry, we explored various strategies to use receivers

with Spark Streaming and identify their limitations, which are discussed as follows.

44

Multiple Spark Streaming Receivers. Initially, we started with a simple setup

of embedding LSL stream listener in a Spark Streaming receiver. Such setup requires

a list of unique identifiers (UID) or domain contexts such as ECG or EEG to listen to

the incoming streams. We organized a list of identifiers or domain contexts by using

a configuration file. Spark application reads the configuration file and creates a set

of Spark Streaming receivers to receive data streams using LSL. The configuration

file was organized in such a way that the number of Spark Streaming receivers

should be equal to the list size. Single Spark Streaming receiver can receive more

than one stream or multiple UIDs streams. To receive multiple streams, a single

line in a configuration file must have more than one identifiers. As we started

working with a number of streams, we realized the number of limitations pertained

to such configurations. The number of UIDs or different domain context must be

declared in advance in a configuration file before running Spark application. In

this configuration, we rely on Spark Streaming receivers. Therefore, a number of

Spark Streaming receivers must be less than the number of cores in cluster machines.

In other words, a system must have n+1 cores to process the incoming stream of

data, where n is the number of Spark Streaming receivers. If we forget to evaluate

system configuration, the system can receive the data streams, but it is unable to

process them. In addition, the dynamic extension of the system is not possible. In

this configuration, we are limited to receive incoming streams of data from different

sources or devices supported by LSL. In Spark, a Spark Streaming receiver is a long-

running task. Hence, the resources will not be free, even if some incoming streams

are stopped completely. Resources will be set free only when we completely stop

the execution of Spark application. Considering the limitation of Spark Streaming

receivers due to a number of cores, resources and dynamic extension of incoming

data streams at run time, we explored other strategies to achieve the objectives.

Spark Streaming Receivers with Kafka. In this configuration, Kafka receiver

was integrated with Spark Streaming receiver. Kafka receiver used high-level

Kafka consumer API and continuously received data. Spark Streaming receiver or

Kafka receiver runs inside an executor or worker node. The received Kafka data is

cached in the memory of a worker node and also replicated via WAL. If data is

successfully persisted, then Kafka offset is updated by Kafka receiver in Zookeeper

[55]. The metadata linked to the received data and its replicated data on log i.e.

WAL locations are used to resume the processing in the case of failure scenarios.

Figure 19 presents Spark configuration where Kafka is integrated with Spark

Streaming receiver.

45

In this integration, each Kafka consumer group should be embedded in a Spark

Streaming receiver of Spark application. Since Kafka receivers should listen to a

particular topic, we created a list of topics for Kafka receiver. The receivers will

listen and fetch the data streams from the related topics. Under this setup, we

consider the topic as a unique identifier or a domain context such as EEG or ECG,

where multiple streams linked to a particular domain context will publish data to the

related topic. Based on the cluster resources, we can create single Spark Streaming

receiver or multiple Spark Streaming receivers that can listen to a single topic or set

of topics via Kafka. Such configuration again leads to the same limitations as we

encountered in the previous scenario of multiple Spark Streaming receivers. Since

we are not using LSL, the dynamic addition of new data streams to the system is

possible via Kafka. It requires careful consideration of context identifier, i.e. topics

for Kafka listeners to consume Kafka data.

Figure 19: Spark configuration where Kafka is integrated with Spark Streaming

receiver [55].

In this configuration, there is a small possibility that may lead to inconsistency in

processing records in Spark. Such scenario may arise if the worker node fails after

saving the received data to the WAL. As worker node fails, the Kafka receivers

will not be able to update the Kafka offsets in Zookeeper. Since the records are

reliably persisted to the logs before failure, the system assumes that data is already

received up to a particular Kafka offset. On the other hand, since the Kafka offset

is not updated by Kafka receiver due to failure, Kafka assume that data is still

needed to be delivered of a particular Kafka offset. Hence, after recovery of failed

worker node, the Kafka will send the data linked to the same Kafka offset. Due

to the limitations of Kafka integration with Spark Streaming receivers and a small

possibility of inconsistency, we explored other strategies to achieve the objectives.

46

Kafka Direct API. In this configuration, the Kafka Direct APIs are used to receive

continuous data from Kafka. The Kafka Direct APIs provide consistent view by

allowing Spark Streaming to maintain the complete control of offset information

linked to a received data [55]. Such control provides consistency in a system and

assists in recovery of the node during failure scenarios. It allows the easy replay

of data records in a system after recovery. In this approach, offsets are decided

before the request for the new batch and these offsets are used to read data from

Kafka. The consistency is provided in the system by saving these offsets together

with checkpointing. This saved offset information is used to recover from failures.

This setup enables Spark Streaming to have exactly-once semantics and provides a

fault-tolerance system that can handle stream segments from Kafka [12]. Figure 20

presents Spark configuration with Kafka direct API.

Figure 20: Spark configuration with Kafka Direct API [55].

Since, Kafka receivers should listen to a particular topic, we created a list of topics

for which Kafka receivers will listen and fetch data streams. Under this setup, we

describe topic as a unique identifier or a domain context such as EEG or ECG,

where multiple streams linked to a particular domain context will publish data to

the related topic. As we are not using LSL, therefore, the dynamic addition of new

data streams to the system is possible via Kafka. It requires careful consideration of

context identifier, i.e., topics for Kafka listeners to consume Kafka data. The setup

eliminates the use of Spark Streaming receivers or WALs in a system. Therefore, we

are not restricted to system cores and long running task resources implications as

discussed in previous configurations of using Spark Streaming receivers. Considering

the advantages provided by the Kafka Direct APIs, we integrated Kafka Direct API

47

with Spark Streaming to create a pipeline for processing of a stream of physiological

signals in medical telemetry.

4.4 Application Programming Interfaces

The DAPS system includes extended Spark application programming interfaces for

analysis of physiological time series signals. The extended interface is written in

Scala programming language, but also usable in Java programming language.

Scala is a general purpose statically typed and scalable functional programming

language, which can run on java virtual machine (JVM). The extended interface

includes wrapper around built-in abstraction (RDDs) of Spark. The extended

interface provides a descriptive analogy to represent time series signals in Spark.

Each physiological time series signal is represented as a collection of samples. A

sample is a single data point in a time series data. Each sample includes metadata

of time series as well as data points linked to specific channels in a time series.

Developers or researchers can use application programming interface by writing a

driver program, which runs on Spark and connects worker nodes in a distributed

cluster environment. The driver program creates RDDs as per the data source and

performs transformations or actions on RDDs. RDD transformation and actions

that are supported by Spark are presented in section 2.3.1. Table 5 presents the

APIs developed by us that can be used with real-world time series physiological

signals. We further developed ECG and DTW applications based on these APIs

that runs on distributed cluster environment.

4.4.1 ECG Application

We present an example of non-streaming data source such as reading data from a

file in HDFS. The ECG data is stored on HDFS and is read by Spark into String

of RDDs. RDD operations such as map transformation allow mapping of each line

in a RDD to the structured data as per the domain context. In the following code

example, we are generating a time series RDD from ECG data file on the local file

system. In addition, the code executes common ECG operations such as getting all

r-peaks for a particular channel, calculating the root mean squares of the successive

difference, and average heart rate. The code is presented in the following listing.

// RDD[String] : Read data from file

val lines = sc.textFile("data_source_file.txt",8)

48

Table 5: DAPS application programming interfaces

Operation Meaning

getMovingAverage(channel,

windowSize)

Return moving average of a time

series for specific channel in a window.

getEuclideanDistance(channel,

queryRDD)

Return Euclidean distance between

two time series of particular channel.

getEuclideanDistanceForChannels(

channelRDD, queryRDD)

Return Euclidean distance between

two time series of multiple channels

specified as channelRDD.

getDtwDistanceNaive(channelRDD,

queryRDD)

Return Dynamic time warping (naive)

distance between two time series as

per channels specified as channelRDD.

getDtwDistanceLC(channelRDD,

queryRDD, window)

Return Dynamic time warping

(locality constraint) distance between

two time series as per channels

specified as channelRDD.

getDtwDistanceLBKeogh(

channelRDD, queryRDD, radius)

Return Dynamic time warping

(LB Keogh) distance between two

time series as per channels specified as

channelRDD.

getMeanHR(ibiSeries) Return average heart rate for

Inter-beat Interval(IBI) series.

getMeanIBI(ibiSeries) Return average inter-beat interval

length for IBI series.

getRMSSD(ibiSeries) Return root mean square by successive

differences for IBI series.

getVariance(ibiSeries) Return variance for IBI series.

getStdDev(ibiSeries) Return standard deviation for IBI

series.

getAllRPeaks(channel, frequency) Return inter-beat intervals from the

ECG time series.

49

// RDD[SampleUnit] : Organize data into structured format

val timeSeriesRDDs = new TimeSeriesRDD(lines.map { line =>

val arg = line.split("\t").map(e => e.trim().toDouble);

new SampleUnit("FileSource", "ECG", "ecg-samples", "local", "10HZ", 1,

Map("S1" -> arg(2)), Some(new java.util.Date())

)

}

)

// get all R-peaks for ECG channel S1

val rr = timeSeriesRDDs.getAllRPeaks("S1");

// get Average Heart Rate

val hr = timeSeriesRDDs.getMeanHR(rr)

// get RMS Succesive Differences

val rmssd = timeSeriesRDDs.getRMSSD(rr)

4.4.2 DTW Application

We present an example of evaluation of the Dynamic Time Wrapping (DTW)

algorithm between two time series RDDs. DTW is a distance measurement

algorithm, which allows non-linear mapping of one signal to another signal by

minimizing the distance between these two signals [68]. DTW iteratively measures

the similarity between two time series signals. DTW has been used in many

applications such as shape matching, speech recognition or signature recognition.

Single channel DTW on time series signals. In the following example, we

measure the similarity between two time series signals. We construct a time series

RDD from HDFS data source, whereas we receive other data as streaming signal.

The streaming data source is consumed using Kafka high-level APIs provided by

Spark. Since streaming signals are received as JSON structured data, we serialize

the received streaming data into Scala objects. Figure 21 presents an abstract view

of DTW on time series signals received via streaming signal and HDFS in Spark.

// read data from file and form RDD[String]

val lines = sc.textFile("data_source_file.txt",4)

// create TimeSeriesRDD of SampleUnit

val timeSeriesRDDs = new TimeSeriesRDD(lines.map { line =>

new SampleUnit("file","ecg","ecg-sample-1","local","10HZ",1,

Map("S1"-> line.toDouble), Some(new java.util.Date())

)

50

}

)

val channel = sc.parallelize(List("S1"));

// handle real-time stream of time series signal

kafkaDStream.foreachRDD {

rdd => {

val queryTimeSeriesRDD = new TimeSeriesRDD(rdd.map{ value =>

val jsonAst = value._2.parseJson

jsonAst.convertTo[SampleUnit]

})

println("DTW over Streamming time series signal: " +

timeSeriesRDDs.getDtwDistanceNaive(channel, queryTimeSeriesRDD));

}

}

Figure 21: DTW on time series signals received via streaming signal and HDFS.

51

Multi-channel DTW on time series signals. In the following example, we

present the parallel computation of DTW similarity measure between multiple

channels of two time series signals. We construct both time series RDD from files

on HDFS data source. We use the different variants of DTW such as naive

algorithm, locality constraint and lower bound optimization (LB Keogh) [69].

LB Keogh algorithm explored global constraints to optimize windows operation on

DTW. LB Keogh in DTW speeds up evaluation of similarity measure between two

time series signals [14]. Figure 22 presents an abstract view of DTW on two time

series signals received from HDFS in Spark.

// RDD[String] // drop headers

val csv = sc.textFile("eeg_motor_mv_source_01.txt").mapPartitions(_.drop(2))

// Organized data into structured format

val timeSeriesRDDs1 = new TimeSeriesRDD(csv.map { line =>

val values = line.split(",");

new SampleUnit("PhysioEEGMM","EEG","EEG-Motor-Mv01","Physionet","160HZ",8,

Map("FC5" -> values(1).toDouble, "FC3" -> values(2).toDouble,

"FC1" -> values(3).toDouble, "FCZ" -> values(4).toDouble,

"FC2" -> values(5).toDouble, "FC4" -> values(6).toDouble,

"FC6" -> values(7).toDouble, "C5" -> values(8).toDouble),

Some(new java.util.Date())

)

}

)

Similarly, we read other EEG data source file and organize the data into a stuctured

format of RDD of SampleUnits, timeSeriesRDDs2.

// create RDD of channels to compute DTW

val channels = sc.parallelize(List("FC5", "FC3", "FC1", "FCZ",

"FC2", "FC4", "FC6", "C5"));

// Multi Channel DTW(naive) between time series signals

timeSeriesRDDs1.getDtwDistanceNaive(channels, timeSeriesRDDs2);

// Multi Channel DTW with locality constraint of window size 10

timeSeriesRDDs1.getDtwDistanceLC(channels, timeSeriesRDDs2, 10);

// Multi Channel LB_Keogh DTW between time series signals

timeSeriesRDDs1.getDtwDistanceLBKeogh(channels, timeSeriesRDDs2, 20);

The DTW measures the similarity by evaluating the distance matrix between sample

points of two different time series. We apply different approaches for building the

52

Figure 22: DTW on two time series signals received from HDFS in Spark.

distance matrix depending on the type of data source of the time series signals. The

types of the data source can be a file or streaming channels. In case the type of the

data source is file, then the time series is constructed using our extended Spark APIs.

The data samples collected from two such time series are used to build a distance

matrix. DTW can be computed on a single channel or multi-channel time series.

For a single channel time series, we create a distance matrix from the data samples

of a particular channel of two time series. For a multi-channel time series, we utilize

parallel computations on Spark and create a distance matrix between corresponding

channels of time series data set. For example, data samples of the Fcz channel from

both time series can be used to build a distance matrix. Likewise, If one of the time

series data set is received by streaming channel, then the samples from that time

series are collected in batch intervals. Other time series can be from a file source or

stored on a HDFS. We build a distance matrix between all the samples of a stored

time series and samples received in a particular batch interval. A distance matrix

is always formed between corresponding channels of two different time series.

53

The DAPS system provides a set of algorithms that can directly be applied to time

series signals in medical telemetry. It also includes a comparison between time series

signals. We have optimized the provided algorithms for Spark and have written

them in Scala. The algorithms include measuring the similarity between time series

signals, such as finding dynamic time wrapping between different channels of time

series signals using various strategies such as naive method, locality constraint, and

lower bound operation. Appendix 1 contains the pseudo code of the different variants

of DTW algorithm. The DAPS system also includes algorithms for streaming signals

such finding moving average, computing window based dynamic time wrapping. For

the ECG signals, we include various operations such as measuring the average heart

rate, finding the root mean square for successive differences. Therefore, the extended

interfaces for physiological signals together with presented pipeline in the DAPS

system enables distributed analysis of time series in medical telemetry.

4.5 Evaluation

We have evaluated the DAPS System for analysis of physiological time series signal

in medical telemetry. We have also organized a series of experiments on time series

signal for both non-streaming and streaming data sources. We have presented

different algorithms for similarity measures using DTW and evaluation of metrics

for ECG data sources. The algorithms include single channel as well as multi

channel operations on underlying time series signals. As a result, the library

developed during this thesis provides flexibility to create time series RDDs from

both streaming and non-streaming data sources.

All our experiments are performed on a standalone mode of Spark cluster on a

commodity machine. We performed our experiments on University of Helsinki

Ukko cluster, as well as on a single machine. The machines or nodes in a Ukko

cluster are shared among students of the University of Helsinki. Each node in a

cluster consist of 240 Dell PowerEdge M610 machine and has Ubuntu 12.04.5 LTS

operating system. Each machine has two Intel Xeon E5540 2.53GHz CPUs with

32GB of RAM. Each node in a Ukko cluster has 16 cores. For our experiments, we

used four Ukko cluster nodes. Apart from Ukko cluster, we also used the single

local machine for computations. The single machine configuration involves OS X

EI Capitan operating system with 2.7 GHz Intel Core i5 processor, 4 cores and

16GB memory. Both worker nodes and master node were established in the

mentioned configuration. We used recent versions of stable builds of various

54

software components involved in the DAPS system: Apache Spark 1.5.2, Spark

Streaming 1.5.2, LSL 1.10.2, Kafka 2.10-0.8.2.0, Elasticsearch 2.0.0, Kibana 4.2.0.

We used Python 2.7, Scala 2.10 and Java Runtime Environment 7 as an

environment to run various components. We also used other open-source libraries

for smooth handling of various operations such as Argot 1.0.4 for command line

argument parsing, Breeze 0.11.2 for complex computation operations, ScalaTest

3.0.0-M11 for test driven development, and Spray-Json 1.3.2 for JSON parsing.

The execution involves command line handling of cluster components such as

Spark, Kafka, Elasticsearch and Kibana.

The study was performed to investigate physiological signal analysis in a

distributed computing environment. We studied existing large-scale data

processing system and validated the applicability of Spark and Spark Streaming

for the analysis of physiological signal in medical telemetry. Our contribution

involves building a general purpose distributed pipeline and validating pipeline by

extending Spark APIs for cumulative analysis of time series in medical telemetry.

The pipeline supports analysis of streaming and non-streaming physiological time

series signals in medical telemetry. More focus has been given to the real-time

analysis of streaming physiological signals in distributed computing environment.

We explored various techniques to perform cumulative analysis of these signals in a

large environments such as hospitals with many patients.

At the specific level, we incline our research work in this thesis on a few time series

signals such as ECG and EEG, which provide a starting point for our analysis of

physiological signals. The DAPS system includes extended Spark APIs, which

provide building blocks for modeling of physiological time series signals in Spark.

The algorithms provided in the library can execute computations in both

streaming and non-streaming environment. We presented the examples of

operations applied to EEG and ECG signals that represent a validation of

algorithms provided in the library and process flow in the DAPS system. We also

demonstrated the parallel computations between channels of two different time

series signals. In addition, we presented the examples of applying operation over

an incoming stream of physiological time series signals.

We performed the execution of different variants of DTW algorithm on a number

of data points or samples of data sets. Figure 23 presents the execution of different

variants of DTW algorithm on a single channel of EEG data set. According to

our observations, the naive variant of DTW computation on a standalone mode of

55

Spark cluster performed slower than Python program for a small data set of fewer

than 2000 samples. The processing time is lower in Spark for the computation of

more than 2000 data points. Due to the locality constraint, the execution time

reduces further in the respective DTW variant. For a data set of more than 2500

samples, the locality constraint variant of DTW computation on a standalone mode

of Spark cluster performed faster than Python program. The optimization used

by LB Keogh variant of DTW algorithm on a single channel data set produces

approximately constant processing time for both Spark and Python programs.

The execution of different variants of DTW algorithm on a multi-channel data set

is shown in Figure 24. We utilized the multiprocessor cores for parallel

computations in Python program. In addition, we performed the execution of

algorithms on four different channels of EEG data set. We observed that the naive

and locality constraint variants of DTW computation on a standalone mode of

Spark cluster performed faster than Python environment. However, for a data set

with more than 5000 data points, the naive and locality constraint variants of

DTW computation leads to memory issues in the computing environment. In

contrast, the optimization used by LB Keogh variant of DTW algorithm produces

nearly constant computation time for both Spark and Python programs. Due to

the distribution of computations on worker nodes and collection of data from

worker nodes in Spark, the processing time increases for a small number of samples

in a data sets. As a consequence, the execution of the program on Spark includes a

minimal processing time of approximately 6 to 7 seconds. This is apparent from

the results presented in the Figure 24.

When we operate on large time series signals, the distributed computing cluster

handles large data sets due to multiple nodes in a cluster environment. Figure

25 presents the execution of DTW (LB Keogh) algorithm on a large data set (64-

channel EEG signals) of 250000 data samples in a cluster environment. According to

the results, the single channel and multiple channel computations on Spark performs

faster than Python program. The significance of distributed computation is more

apparent when we perform complex operations or operate in parallel on multiple

channels of time series signals. In addition, the benefits of distributed computing

come when we operate on multiple continuous streams of time series signals. Figure

26 and 27 present DTW (naive) computation on Spark using Kafka direct streaming

API’s with a batch size of one second in a cluster environment. For Spark streaming,

we used the sliding interval same as window length. One of the time series was

received from HDFS, while the other time series was received as Kafka stream.

56

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0
3,
00

0
3,
50

0
4,
00

0
4,
50

0
5,
00

0
5,
50

0
0

10

20

30

40

50

60

Number of data points

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Python
Spark

(a)

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0
3,
00

0
3,
50

0
4,
00

0
4,
50

0
5,
00

0
5,
50

0
0

5

10

15

20

25

30

35

Number of data points

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Python
Spark

(b)

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0
3,
00

0
3,
50

0
4,
00

0
4,
50

0
5,
00

0
5,
50

0
0

5

10

15

20

25

Number of data points

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Python
Spark

(c)

Figure 23: The execution of different variants of DTW algorithm on a single channel

of 64-channel EEG data set. The comparison has been drawn by computing DTW

using Spark program and Python program. The computation on Spark involves

time series received from HDFS. (a) DTW (naive) execution. (b) DTW (locality

constraint) execution. (b) DTW (LB Keogh) execution.

57

The time series data samples were streamed at a sampling rate of 125. Figure 26

presents the streaming statistics of a single channel time series EEG signals. The

computation took an average processing time of 496 milliseconds for processing of

last 1000 batches. The statistic presents running of batches of 1 second for 37

minutes 9 seconds. It involved processing of 2224 batches and processed 256789

records. Figure 27 presents the streaming statistics of multi-channel time series

(four channels) EEG signals. The computation took an average processing time of

725 milliseconds for processing of last 1000 batches. The statistic presents running

of batches of 1 second for 37 minutes 14 seconds. It involved processing of 2228

batches and processed 258180 records. The parallel processing of streaming signals

in a real-time environment assists in real-time decision making on time series signals.

The application development on Spark requires the knowledge of programming

model provided by Spark. Spark provides a restricted programming model, which

consists of RDD and Dstreams. Most of the constructs provided by Spark follow

the principle of immutability. Spark does not support nested transformations or

actions on RDDs. Therefore, the development of application in Spark requires

special attention. Spark provides various tuning parameters to enhance the

performance of computations, such as the memory of slave nodes, the number of

partitions, etc.

Underlying components in the DAPS system provides low latency, fault-tolerance

and exactly-once semantics for processing input data streams. Therefore,

computational overhead to process physiological time series signals in the DAPS

system is relatively small. The modularity and extensibility of the DAPS system

enable integration of presented pipeline with other available software components

such as Machine Learning (MLlib), Graph API (GraphX). At the moment, the

applications can be written in Scala and Java. The provided library can be easily

extended to provide support for different programming languages.

58

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0
3,
00

0
3,
50

0
4,
00

0
4,
50

0
5,
00

0
5,
50

0
6,
00

0
6,
50

0
0

100

200

300

400

500

600

Number of data points

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Python
Spark

(a)

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0
3,
00

0
3,
50

0
4,
00

0
4,
50

0
5,
00

0
5,
50

0
6,
00

0
6,
50

0
0

50

100

150

200

250

300

350

Number of data points

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Python
Spark

(b)

0
50

0
1,
00

0
1,
50

0
2,
00

0
2,
50

0
3,
00

0
3,
50

0
4,
00

0
4,
50

0
5,
00

0
5,
50

0
6,
00

0
6,
50

0
0

5

10

15

20

25

Number of data points

E
x
ec

u
ti

on
T

im
e

(s
ec

on
d
s)

Python
Spark

(c)

Figure 24: The execution of different variants of DTW algorithm on a 64-channel

EEG data set (sampled at 160 samples per second). The comparison has been

drawn by computing DTW on multiple channels using Spark program and Python

program. The computation on Spark involves time series received from HDFS.

(a) DTW (naive) execution. (b) DTW (locality constraint) execution. (c) DTW

(LB Keogh) execution.

59

0

20
,0
00

40
,0
00

60
,0
00

80
,0
00

10
0,
00

0

12
0,
00

0

14
0,
00

0

16
0,
00

0

18
0,
00

0

20
0,
00

0

22
0,
00

0

24
0,
00

0

26
0,
00

0
0

50

100

150

200

250

300

Number of data points

E
x
ec

u
ti

on
T

im
e(

se
co

n
d
s)

Python
Spark

(a)

0

20
,0
00

40
,0
00

60
,0
00

80
,0
00

10
0,
00

0

12
0,
00

0

14
0,
00

0

16
0,
00

0

18
0,
00

0

20
0,
00

0

22
0,
00

0

24
0,
00

0

26
0,
00

0
0

100

200

300

400

500

600

Number of data points

E
x
ec

u
ti

on
T

im
e(

se
co

n
d
s)

Python
Spark

(b)

Figure 25: The execution of DTW (LB Keogh) algorithm on a large data set (64-

channel EEG signals) in a cluster environment. The comparison has been drawn

by computing DTW using Spark program and Python program. Python execution

utilizes the cores of the machine and multiple processes execute the computation on

channels in parallel. The computation on Spark involves time series received from

HDFS, one master node and four worker nodes in Ukko cluster. (a) The computation

on single channel of EEG data set. (b) The parallel computation on four different

channels of EEG data set.

60

Figure 26: DTW (naive) computation on Spark using Kafka direct streaming API’s

in a cluster environment. One of the time series was received from HDFS, while the

other time series was received as Kafka stream. The single channel time series data

samples were streamed at a sampling rate of 125. The streaming statistic presents

timeline for the last 1000 batches. In total, the computation time was 37 minutes

9 seconds for batches of 1 second since 16:16:27 (2224 completed batches, 256789

records).

61

Figure 27: DTW (naive) computation on Spark using Kafka direct streaming API’s

in a cluster environment. One of the time series was received from HDFS, while the

other time series was received as Kafka stream. The multi-channel time series (four

channels) data samples were streamed at a sampling rate of 125. The streaming

statistic presents timeline for the last 1000 batches. In total, the computation time

was 37 minutes 14 seconds for batches of 1 second since 7:20:30 (2228 completed

batches, 258180 records).

62

5 Discussion

The research organized in this thesis enables us to answer various aspects involved in

this thesis. We examined existing systems meant for analysis of physiological signals

in medical telemetry and discussed whether it is possible to perform distributed

analysis of physiological signal in medical telemetry. Chapter 2 provided background

information on medical telemetry and explored medical telemetry context related to

the research topic. We discussed existing research works and their orientation for

the distributed analysis of physiological time series signals.

We investigated existing large-scale data processing systems and their applicability

in the research context to provide low-latency, high-throughput and fault-tolerance

guarantees. Section 2.2 and Section 2.3 explored distributed data processing using

Spark. We studied the utilization of streaming paradigm for the analysis of

physiological time series signal in medical telemetry. Section 2.3.3 explored Spark

Streaming for real-time processing of data streams. Chapter 3 discussed the

methodology applied in our research. Chapter 4 presented a system that can

perform distributed computations on streaming and non-streaming physiological

time series signals. Section 4.3.1 presented implementation details linked to the

pipeline and section 4.2.2 discussed different strategies for data ingestion in a

system.

We provided an interface for modeling of physiological time series signals and

algorithms to perform cumulative analysis of physiological signals in medical

telemetry. Section 4.4 introduced application programming interfaces provided for

modeling of time series physiological signals and presented use cases of an

extended library for distributed computation on the functional pipeline. Therefore,

research aspects linked to the thesis illustrates the breadth of research domain for

cumulative analysis of time series physiological signals in a distributed computing

environment.

The evolution of computing paradigms provides distributed data processing

techniques, which lead to the growth of large-scale data processing systems. The

research in this thesis is an attempt to provide convergence of distributed data

processing in medical telemetry. The vital information carried by physiological

signals and their importance for the healthy functioning of living system justifies

the importance of the domain. Although, significant research has been performed

in the past to explore physiological signals, less research has been performed to

63

take advantage of distributed data processing for the analysis of physiological

signals in medical telemetry. We contributed in the cumulative analysis of

physiological signals using large-scale data processing system. We created a

general purpose distributed pipeline and provided an interface to this pipeline by

extending Spark APIs. Since, physiological signals contains vital information

linked to a biological system, the real-time analysis of these time series signals

provides an operational insight about functioning of organs in a living system.

More focus has been given to the real-time analysis of streaming physiological

signals in a distributed computing environment. The presented pipeline is built to

provide coherence and solidarity in the processing of streaming and non-streaming

signals. We presented a unified system to perform timely processing of data

streams that can be used in large environments such as hospitals with many

patients. We have shown promising results by validating the applicability of

large-scale data processing system for distributed analysis of physiological signals.

The software components used in the presented pipeline contains Spark as core

processing engine for in-memory computations. The distributed computing engine

provides various tuning parameters to enhance the system performance. As per

the computation context, we have to configure tuning parameters such as resource

tuning, parallelism tuning to utilize Spark cluster efficiently.

Tuning parameters such as partition size determines the parallelism in Spark.

Partition size plays a significant role in turning of Spark jobs. Spark jobs are

divided into tasks, which are grouped together into stages. The partition size of an

RDD determines the number of tasks grouped together on a stage and controls the

overall processing time. A smaller number of tasks underutilizes the available cores

provided by the worker node. Therefore, the stages will be inefficient to take

advantage of worker nodes. A large number of tasks leads to more tasks to

schedule and execute on worker nodes. Therefore, it will increase the overall

processing of tasks. Thus, based on the underlying cluster resources and hardware,

the partition size should be configured appropriately to reduce the overall

processing and scheduling time.

Spark provides in-memory computations, which produce impressive performance

improvements for the computations. However, the processing in Spark is limited by

the memory available for the Spark cluster. As per the computation context, we need

to configure appropriately the memory tuning parameters to take advantage of the

in-memory computations. The identification of memory usage of dataset eliminates

64

such limitation. The memory consumption can be optimized by building RDD and

caching it in the memory. The web interface of Spark cluster provides a monitoring

tool to observe the memory consumption of RDD. Therefore, the memory of the

underlying cluster resources can be configured as per dataset.

Apart from underlying computation framework and configurations, the

development of the DAPS system is an ongoing process. Therefore, the API and

analysis algorithms are limited in scope and context. The data visualization tools

used in the DAPS system need more attention and require an interface which can

be accessible to multiple individuals such as researchers, patients and physicians.

As physiological signals are private data to individuals, therefore, we need to

address privacy concerns to make the DAPS system reliable for real-time

environments.

We presented the DAPS system as a general purpose distributed pipeline for an

end-to-end processing of time series physiological signals. The methodologies used

in this thesis scratched the surface of analysis of physiological signals in distributed

computing environment. The exploratory research utilized in this thesis requires

deeper investigations for the analysis of physiological signals in medical telemetry.

Our implementation provides a groundwork for analysis of physiological signals using

distributed computing framework, but we would like to extend our work by including

research on other physiological signals. In the later releases, we would like to add

more features to the library that can provide rich set of constructive operations for

physiological signals analysis. We would also like to improve the existing command

line interface by providing a web interface to submits jobs to Spark.

The current implementation of the DAPS system supports Scala and Java

programming languages. Since, Python is also one of the widely used programming

languages in research as well other domains. We would like to extend our DAPS

API by providing support for Python programming language. In this way, a wider

community could take advantage of the DAPS system.

We would like to keep track of open-source solutions, which can assist in the

analysis of physiological signals and we intended to integrate those software

components to enhance the presented pipeline. Our aim is to create a distributed,

modular, and scalable stack of software components for computations and analysis

of physiological signals. We would also like to integrate the presented system in

real-time environments such as hospitals, which can provide a quantitative

assessment to the DAPS system.

65

6 Conclusion

We have discussed the distributed analysis of physiological signal in medical

telemetry. We reviewed the state-of-the-art in the background information on

medical telemetry, and various distributed data processing techniques. We

described various systems related to medical telemetry and methodology used in

existing interfaces. In particular, the previous research addresses the use of a

non-generic non-distributed system for the analysis of physiological signal. Most of

the research and tools are focused towards BCI or MATLAB based tools for

physiological signals. We also explored software stack provided by Berkeley and

learned about related data analysis and visualization tools. Later, we formalized

the problem for distributed analysis of physiological signal in medical telemetry.

We provided a solution to the problem by proposing a general purpose distributed

pipeline. We described software components linked to the proposed system and

explained their relation and roles in the suggested pipeline. We validated the

pipeline by extending Spark APIs for cumulative analysis of time series signals in

medical telemetry.

The implementation of the DAPS system explored various techniques to perform

cumulative analysis of physiological signals. Our design is targeted towards

cumulative analysis in large environments such as hospitals with many patients.

We started our analysis with ECG and EEG physiological signals and used our

extended Spark APIs for modeling of these signals. We have shown the

applications of distributed computing in medical telemetry. Especially, real-time

analysis of streaming physiological signals in a distributed computing environment

can assist in proactive monitoring and diagnosis of the functional aspect of organs

in a living system. The presented research explored physiological time series

signals in medical telemetry and provided new avenues to employ distributed

computing in medical telemetry.

66

Bibliography

1 Signals And Systems 3E. McGraw-Hill Education (India) Pvt Limited,

2010. ISBN 9780070672857. URL https://books.google.fi/books?id=

XtuS7zCEA10C.

2 Berkeley Data Analytics Stack, Aug 2015. URL https://amplab.cs.berkeley.

edu/software/.

3 HDFS Architecture Guide, Aug 2015. URL https://hadoop.apache.org/

docs/r1.2.1/hdfs_design.html.

4 SparkContext API, Aug 2015. URL http://spark.apache.org/docs/latest/

api/scala/index.html#org.apache.spark.SparkContext.

5 Actions: Spark Programming Guide, Aug 2015. URL http://spark.apache.

org/docs/latest/programming-guide.html#actions.

6 Transformations: Spark Programming Guide, Aug 2015. URL http://spark.

apache.org/docs/latest/programming-guide.html#transformations.

7 Storm: Distributed and fault-tolerant realtime computation, Oct 2015. URL

http://storm.apache.org/.

8 Elasticsearch: Search & Analyze Data in Real Time, Oct 2015. URL https:

//www.elastic.co/products/elasticsearch.

9 Emotiv EPOC, Oct 2015. URL https://emotiv.com/epoc.php.

10 MIDAS: Modular Integrated Distributed Analysis System, Oct 2015. URL

https://github.com/bwrc/midas/wiki.

11 JSON, Nov 2015. URL http://json.org/.

12 Spark Streaming + Kafka Integration Guide, Aug 2015. URL http://spark.

apache.org/docs/latest/streaming-kafka-integration.html.

13 Kibana: Explore & Visualize Your Data, Oct 2015. URL https://www.elastic.

co/products/kibana.

14 LB Keogh Homepage, Nov 2015. URL http://www.cs.ucr.edu/~eamonn/LB_

Keogh.htm.

67

15 Mitsar Portable EEG System, Oct 2015. URL http://www.mitsar-medical.

com/eeg-system/portable-eeg/.

16 Arrhythmia, Dec 2015. URL https://www.nlm.nih.gov/medlineplus/

arrhythmia.html.

17 PhysioNet, Oct 2015. URL https://www.physionet.org/.

18 BCILAB: Open Source Matlab Toolbox for Brain-Computer Interface research,

Oct 2015. URL http://sccn.ucsd.edu/wiki/BCILAB.

19 EEGLAB: Open Source Matlab Toolbox for Electrophysiological Research, Aug

2015. URL http://sccn.ucsd.edu/eeglab/.

20 Lab Streaming Layer, Aug 2015. URL https://github.com/sccn/

labstreaminglayer/wiki.

21 Apache Spark Streaming Programming Guide, Aug 2015. URL http://spark.

incubator.apache.org/docs/latest/streaming-programming-guide.html.

22 DStream: Spark API Documentation, Aug 2015. URL https:

//spark.apache.org/docs/0.9.2/api/streaming/index.html#org.apache.

spark.streaming.dstream.DStream.

23 RDD: Spark API Documentation, Aug 2015. URL http://spark.apache.org/

docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD.

24 Apache Kafka, Aug 2015. URL http://kafka.apache.org/documentation.

html.

25 Configuration: Spark 1.6.0, Jan 2016. URL http://spark.apache.org/docs/

latest/configuration.html.

26 GraphX: Spark 1.6.0, Jan 2016. URL http://spark.apache.org/docs/

latest/graphx-programming-guide.html.

27 Machine Learning Library (MLlib): Spark 1.6.0, Jan 2016. URL http://spark.

apache.org/docs/latest/mllib-guide.html.

28 Big Data Frameworks, Jan 2016. URL http://www.cs.helsinki.fi/en/

courses/582740/2015/K/K/1.

68

29 Spark Code Camp, Jan 2016. URL http://www.cs.helsinki.fi/en/courses/

582738/2014/V/K/1.

30 EEG Motor Movement/Imagery Dataset, May 2016. URL https://physionet.

org/physiobank/database/eegmmidb/.

31 Seminar: Distributed Computing Frameworks for Big Data, Jan 2016. URL

http://www.cs.helsinki.fi/en/courses/58314306/2014/S/S/1.

32 D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,

M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new model and

architecture for data stream management. The VLDB Journal, 12(2):120–

139, Aug. 2003. ISSN 1066-8888. doi: 10.1007/s00778-003-0095-z. URL

http://dx.doi.org/10.1007/s00778-003-0095-z.

33 N. Ahmad, D. Hoang, and M. Phung. Robust preprocessing for health care

monitoring framework. In e-Health Networking, Applications and Services, 2009.

Healthcom 2009. 11th International Conference on, pages 169–174, Dec 2009. doi:

10.1109/HEALTH.2009.5406196.

34 D. Apiletti, E. Baralis, G. Bruno, and T. Cerquitelli. Real-time analysis of

physiological data to support medical applications. Trans. Info. Tech. Biomed.,

13(3):313–321, May 2009. ISSN 1089-7771. doi: 10.1109/TITB.2008.2010702.

URL http://dx.doi.org/10.1109/TITB.2008.2010702.

35 P. Aspinall, P. Mavros, R. Coyne, and J. Roe. The urban brain: analysing

outdoor physical activity with mobile eeg. British journal of sports medicine,

pages bjsports–2012, 2013.

36 S. Asur and B. A. Huberman. Predicting the future with social media. In Web

Intelligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM

International Conference on, volume 1, pages 492–499. IEEE, 2010.

37 A. Bar-Or, J. Healey, L. Kontothanassis, and J. Van Thong. Biostream: a system

architecture for real-time processing of physiological signals. In Engineering

in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International

Conference of the IEEE, volume 2, pages 3101–3104, Sept 2004. doi: 10.1109/

IEMBS.2004.1403876.

38 B. Boehm. A spiral model of software development and enhancement. Computer,

21(5):61–72, May 1988. ISSN 0018-9162. doi: 10.1109/2.59.

69

39 W. Bosl, A. Tierney, H. Tager-Flusberg, and C. Nelson. Eeg complexity as a

biomarker for autism spectrum disorder risk. BMC medicine, 9(1):1, 2011.

40 S. Chokroverty. Sleep Disorders Medicine: Basic Science, Technical

Considerations, and Clinical Aspects. Elsevier Science, 2013. ISBN

9781483165196. URL https://books.google.co.in/books?id=

tEAfAwAAQBAJ.

41 G. Clifford, J. Fisher, J. Greenberg, and W. Wells. HST.582J

Biomedical Signal and Image Processing, Spring 2007. URL

http://ocw.mit.edu/courses/health-sciences-and-technology/

hst-582j-biomedical-signal-and-image-processing-spring-2007.

42 W. Commons. Epileptic spike and wave discharges monitored with EEG, 2006.

URL https://commons.wikimedia.org/wiki/File:Spike-waves.png. File:

Spike-waves.png.

43 W. Commons. ECG of a heart in normal sinus rhythm, 2007. URL

https://en.wikipedia.org/wiki/Electrocardiography#/media/File:

SinusRhythmLabels.svg. File: SinusRhythmLabels.svg.

44 R. G. Cooper. Stage-gate systems: a new tool for managing new products.

Business horizons, 33(3):44–54, 1990.

45 B. Delgutte. Introduction to biomedical signal and image processing, Dec 2015.

URL http://ocw.mit.edu/courses/health-sciences-and-technology/

hst-582j-biomedical-signal-and-image-processing-spring-2007/

lecture-notes/l1_intro.pdf.

46 A. Delorme and S. Makeig. EEGLAB: an open source toolbox for analysis of

single-trial {EEG} dynamics including independent component analysis. Journal

of Neuroscience Methods, 134(1):9 – 21, 2004. ISSN 0165-0270. doi: http://

dx.doi.org/10.1016/j.jneumeth.2003.10.009. URL http://www.sciencedirect.

com/science/article/pii/S0165027003003479.

47 A. Delorme, C. Kothe, A. Vankov, N. Bigdely-Shamlo, R. Oostenveld, T. O.

Zander, and S. Makeig. Matlab-based tools for bci research. In Brain-Computer

Interfaces, pages 241–259. Springer, 2010.

70

48 L. A. Farwell. Brain fingerprinting: a comprehensive tutorial review of

detection of concealed information with event-related brain potentials. Cognitive

neurodynamics, 6(2):115–154, 2012.

49 A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.

Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. Physiobank,

physiotoolkit, and physionet components of a new research resource for complex

physiologic signals. Circulation, 101(23):e215–e220, 2000.

50 N. F. Güler and E. D. Übeyli. Theory and applications of biotelemetry. J.

Med. Syst., 26(2):159–178, Apr. 2002. ISSN 0148-5598. doi: 10.1023/A:

1014862027454. URL http://dx.doi.org/10.1023/A:1014862027454.

51 M. Guller. Big Data Analytics with Spark: A Practitioner’s Guide to Using

Spark for Large Scale Data Analysis. Apress, 2015. ISBN 9781484209646. URL

https://books.google.co.in/books?id=yqhPCwAAQBAJ.

52 P. Hu, S. M. Galvagno, A. Sen, R. Dutton, S. Jordan, D. Floccare, C. Handley,

S. Shackelford, J. Pasley, C. Mackenzie, et al. Identification of dynamic

prehospital changes with continuous vital signs acquisition. Air medical journal,

33(1):27–33, 2014.

53 I. Iturrate, J. Antelis, and J. Minguez. Synchronous eeg brain-actuated

wheelchair with automated navigation. In Robotics and Automation, 2009.

ICRA ’09. IEEE International Conference on, pages 2318–2325, May 2009. doi:

10.1109/ROBOT.2009.5152580.

54 D. Kan and P. Lee. Decrease alpha waves in depression: An

electroencephalogram (eeg) study. In BioSignal Analysis, Processing and Systems

(ICBAPS), 2015 International Conference on, pages 156–161. IEEE, 2015.

55 C. Koeninger, D. Liu, and T. Das. Improvements to Kafka integration of

Spark Streaming, Oct 2015. URL https://databricks.com/blog/2015/03/

30/improvements-to-kafka-integration-of-spark-streaming.html.

56 C. A. Kothe and S. Makeig. BCILAB: a platform for brain-computer interface

development. Journal of Neural Engineering, 10(5):056014, 2013. URL http:

//stacks.iop.org/1741-2552/10/i=5/a=056014.

57 J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging system for

log processing. In Proceedings of the NetDB, pages 1–7, 2011.

71

58 A. Kumiega and B. Van Vliet. A software development methodology for research

and prototyping in financial markets. Quality Financial Management, 7, 2006.

59 Y. Liu, O. Sourina, and M. K. Nguyen. Real-time eeg-based human emotion

recognition and visualization. In Cyberworlds (CW), 2010 International

Conference on, pages 262–269, Oct 2010. doi: 10.1109/CW.2010.37.

60 M. Manoochehri. Data Just Right: Introduction to Large-Scale Data &

Analytics. Addison-Wesley Data & Analytics Series. Pearson Education,

2013. ISBN 9780133359077. URL https://books.google.co.in/books?id=

kmlCAgAAQBAJ.

61 D. Mao, Y. Wang, and Q. Wu. A new approach for physiological time series.

CoRR, abs/1504.06274, 2015. URL http://arxiv.org/abs/1504.06274.

62 A. A. Moenssens. Brain fingerprinting-can it be used to detect the innocence of

persons charged with a crime. UMKC L. Rev., 70:891, 2001.

63 G. D. F. Morales. Distributed stream processing showdown:

S4 vs Storm, Oct 2015. URL http://gdfm.me/2013/01/02/

distributed-stream-processing-showdown-s4-vs-storm/.

64 L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream

computing platform. In Proceedings of the 2010 IEEE International Conference

on Data Mining Workshops, ICDMW ’10, pages 170–177, Washington, DC, USA,

2010. IEEE Computer Society. ISBN 978-0-7695-4257-7. doi: 10.1109/ICDMW.

2010.172. URL http://dx.doi.org/10.1109/ICDMW.2010.172.

65 E. Niedermeyer and F. da Silva. Electroencephalography: Basic Principles,

Clinical Applications, and Related Fields. LWW Doody’s all reviewed collection.

Lippincott Williams & Wilkins, 2005. ISBN 9780781751261. URL https:

//books.google.fi/books?id=tndqYGPHQdEC.

66 P. Pandian, A. K. Whitchurch, J. K. Abraham, H. B. Baskey, J. Radhakrishnan,

V. K. Varadan, V. Padaki, K. B. Rao, and R. Harbaugh. Low noise multi-channel

biopotential wireless data acquisition system for dry electrodes. In The 15th

International Symposium on: Smart Structures and Materials & Nondestructive

Evaluation and Health Monitoring, pages 69310Q–69310Q. International Society

for Optics and Photonics, 2008.

72

67 C. Prosser. Comparative Animal Physiology, Environmental and Metabolic

Animal Physiology. Comparative Animal Physiology. Wiley, 1991.

ISBN 9780471857679. URL https://books.google.co.in/books?id=

7fQvbFlQBaQC.

68 T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu,

J. Zakaria, and E. Keogh. Searching and mining trillions of time series

subsequences under dynamic time warping. In Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’12, pages 262–270, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-

1462-6. doi: 10.1145/2339530.2339576. URL http://doi.acm.org/10.1145/

2339530.2339576.

69 T. M. Rath and R. Manmatha. Lower-bounding of dynamic time warping

distances for multivariate time series. 2003.

70 S. Reiterer, E. Pereda, J. Bhattacharya, et al. On a possible relationship

between linguistic expertise and eeg gamma band phase synchrony. Frontiers

in psychology, 2(334):1–11, 2011.

71 Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand,

and A. Lécuyer. Openvibe: An open-source software platform to design, test,

and use brain–computer interfaces in real and virtual environments. Presence:

Teleoper. Virtual Environ., 19(1):35–53, Feb. 2010. ISSN 1054-7460. doi: 10.

1162/pres.19.1.35. URL http://dx.doi.org/10.1162/pres.19.1.35.

72 W. W. Royce. Managing the development of large software systems: Concepts

and techniques. In Proceedings of the 9th International Conference on Software

Engineering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA, 1987. IEEE

Computer Society Press. ISBN 0-89791-216-0. URL http://dl.acm.org/

citation.cfm?id=41765.41801.

73 S. Sanei and J. Chambers. EEG Signal Processing. Wiley, 2013. ISBN

9781118691236. URL https://books.google.fi/books?id=f44hLefOz6UC.

74 G. Schalk, D. McFarland, T. Hinterberger, N. Birbaumer, and J. Wolpaw.

BCI2000: a general-purpose brain-computer interface (BCI) system. Biomedical

Engineering, IEEE Transactions on, 51(6):1034–1043, June 2004. ISSN 0018-

9294. doi: 10.1109/TBME.2004.827072.

73

75 I. Simanova, M. Van Gerven, R. Oostenveld, and P. Hagoort. Identifying object

categories from event-related eeg: toward decoding of conceptual representations.

PloS one, 5(12):e14465, 2010.

76 Y. N. Singh, S. K. Singh, and A. K. Ray. Bioelectrical signals as emerging

biometrics: Issues and challenges. ISRN signal processing, 2012, 2012.

77 S. Smith. Eeg in the diagnosis, classification, and management of patients with

epilepsy. Journal of Neurology, Neurosurgery & Psychiatry, 76(suppl 2):ii2–ii7,

2005.

78 S. Sriparasa. JavaScript and JSON Essentials. Community experience distilled.

Packt Publishing, 2013. ISBN 9781783286041. URL https://books.google.

co.in/books?id=MZOkAQAAQBAJ.

79 J. Sun and C. K. Reddy. Big data analytics for healthcare. In Proceedings of the

19th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’13, pages 1525–1525, New York, NY, USA, 2013. ACM. ISBN

978-1-4503-2174-7. doi: 10.1145/2487575.2506178. URL http://doi.acm.org/

10.1145/2487575.2506178.

80 M. Z. Tathagata Das and P. Wendell. Diving into Spark Streamingś

Execution Model, Aug 2015. URL https://databricks.com/blog/2015/07/

30/diving-into-spark-streamings-execution-model.html.

81 M. Teplan. Fundamentals of EEG measurement. Measurement Science

Review, 2, 2012. URL http://www.edumed.org.br/cursos/neurociencia/

MethodsEEGMeasurement.pdf.

82 C. Wasson. System Engineering Analysis, Design, and Development: Concepts,

Principles, and Practices. Wiley Series in Systems Engineering and Management.

Wiley, 2015. ISBN 9781118967140. URL https://books.google.fi/books?

id=wuJbCwAAQBAJ.

83 M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:

cluster computing with working sets. In Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing, volume 10, page 10, 2010.

84 M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th

74

USENIX conference on Networked Systems Design and Implementation, pages

2–2. USENIX Association, 2012.

85 M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: an

efficient and fault-tolerant model for stream processing on large clusters. In

Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing,

pages 10–10. USENIX Association, 2012.

86 M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized

streams: Fault-tolerant streaming computation at scale. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 423–

438. ACM, 2013.

87 Y. Zhang. Real-time development of patient-specific alarm algorithms for critical

care. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th

Annual International Conference of the IEEE, pages 4351–4354. IEEE, 2007.

Appendix 1. DTW Algorithms

Algorithm 1 DTW naive algorithm

1: procedure getDtwDistanceNaive(channelNameRDDs, queryRDD)

2: state1←Map(String, Array); state2←Map(String, Array)

3: channelNameRDDs.collect().foreach{ch⇒
4: state1+=(ch→ selfRDD.map(s⇒ s.channels(ch)).collect())

5: state2+=(ch→ queryRDD.map(s⇒ s.channels(ch)).collect())}
6: return channelNameRDDs.map{channel⇒

series1← state1.get(channel); series2← state2.get(channel)

(channel,computeNaiveDTW(series1, series2))}

7: end procedure

1: procedure computeNaiveDTW(seriesDV1, seriesDV2)

2: dm←Matrix(seriesDV 1.size, seriesDV 2.size)

3: for i← 0 until seriesDV1.size do

4: for j ← 0 until seriesDV2.size do

5: dist← pow((seriesDV 1(i)− seriesDV 2(j)), 2.0)

6: minV alue← min(min(MatrixValue(dm, i− 1, j),

MatrixValue(dm, i, j − 1)),MatrixValue(dm, i− 1, j − 1))

7: dm(i, j)← dist + minV alue

8: return sqrt(dm(seriesDV1.size-1, seriesDV2.size-1))

9: end procedure

Algorithm 2 DTW algorithm using locality constraint optimization

1: procedure getDtwDistanceLC(channelNameRDDs,queryRDD,window)

2: state1←Map(String, Array); state2←Map(String, Array)

3: channelNameRDDs.collect().foreach{ch⇒
4: state1+=(ch→ selfRDD.map(s⇒ s.channels(ch)).collect())

5: state2+=(ch→ queryRDD.map(s⇒ s.channels(ch)).collect())}
6: return channelNameRDDs.map{channel⇒

series1← state1.get(channel); series2← state2.get(channel)

(channel,computeLCDTW(series1, series2, window))}

7: end procedure

1: procedure computeLCDTW(seriesDV1, seriesDV2, window)

2: dm←Matrix(seriesDV 1.size, seriesDV 2.size)

3: w ← scala.math.max(window, (s1.size− s2.size))

4: for i← 0 until seriesDV1.size do

5: for j ← max(0, i-w) until min(seriesDV2.size, i+w) do

6: dist← pow((seriesDV 1(i)− seriesDV 2(j)), 2.0)

7: minV alue← min(min(MatrixValue(dm, i− 1, j),

MatrixValue(dm, i, j − 1)),MatrixValue(dm, i− 1, j − 1))

8: dm(i, j)← dist + minV alue

9: return sqrt(dm(seriesDV1.size-1, seriesDV2.size-1))

10: end procedure

Algorithm 3 DTW algorithm using LB Keogh optimization

1: procedure getDtwDistanceLBKeogh(channelNameRDDs,queryRDD,radius)

2: state1←Map(String, Array); state2←Map(String, Array)

3: channelNameRDDs.collect().foreach{ch⇒
4: state1+=(ch→ selfRDD.map(s⇒ s.channels(ch)).collect())

5: state2+=(ch→ queryRDD.map(s⇒ s.channels(ch)).collect())}
6: return channelNameRDDs.map{channel⇒

series1← state1.get(channel); series2← state2.get(channel)

(channel,computeLBKeoghDTW(series1, series2, radius))}

7: end procedure

1: procedure computeLBKeoghDTW(s1,s2,searchRadius)

2: r ← searchRadius;LBSum← 0.0

3: for index← 0 until seriesDV1.size do

4: if (index− r) ≥ 0 then

5: s2StartIndex← (index− r)

6: else

7: s2StartIndex← 0

8: if (index + r) ≥ seriesDV 2.size then

9: s2StopIndex← seriesDV 2.size

10: else

11: s2StopIndex← (index + r)

12: lowerBound← min(seriesDV 2.slice(s2StartIndex, s2StopIndex))

13: upperBound← max(seriesDV 2.slice(s2StartIndex, s2StopIndex))

14: if seriesDV 1(index) > upperBound then

15: LBSum← LBSum + pow((seriesDV 1(index)− upperBound), 2)

16: else

17: LBSum← LBSum + pow((seriesDV 1(index)− lowerBound), 2)

18: return sqrt(LBSum)

19: end procedure

Appendix 2. Seminar Paper

Analysis of systems to process massive data stream
Author: Maninder Pal Singh (maninder.singh@cs.helsinki.fi)

Seminar: Distributed Computing Frameworks for Big Data

Course Supervisor: Professor Sasu Tarkoma

Course Date: Sept, 2014 - Dec, 2014

State: Unpublished

Analysis of systems to process massive data stream

Maninder Pal Singh
maninder.singh@cs.helsinki.fi

ABSTRACT
The immense growth of data demands switching from
traditional data processing solutions to systems, which
can process a continuous stream of real time data.
Various applications employ stream processing systems
to provide solutions to emerging Big Data problems.
Open-source solutions such as Storm, Spark Streaming
and S4 are an attempt to answer key stream processing
questions. The recent introduction of real time stream
processing commercial solutions such as Amazon Kinesis,
IBM Infosphere Stream reflects industry requirements. The
system and application based challenges to handle massive
stream of real time data are an active field of research.

In this paper, we present a comparative analysis of the
existing state-of-the-art stream processing solutions. We
also include various domains which are transforming their
business model to benefits from stream processing.

Keywords
Stream computing, Massive data stream, Real time analysis,
Streaming solutions

1. INTRODUCTION
The growth of massive data domains such as social networks,
high frequency trading, online gaming, advertisement,
DNA sequencing are beyond the reach of traditional data
processing systems. Companies are focusing towards real
time data based products, for the consumers. For example,
the online gaming company such as Supercell1 provides
online games - Clash of Clans2 and Boom Beach3. These
games are online combat strategy games which can be played
on devices such as tablets and smartphones. Supercell is
using Amazon Kinesis [2] for real time processing of data
streams generated from various devices. Amazon Kinesis

1http://www.supercell.net/
2http://www.supercell.net/games/view/clash-of-clans
3http://www.supercell.net/games/view/boom-beach

helps in real time analysis of game insight data originated
from hundreds of game engine servers [4]. The timely insight
data helps in business analytics and is used to improve the
game experience of the players [4].

The stream processing concept has evolved from stream
computing paradigm which involves continuous query and
real time analysis of massive stream of data. There are
various solutions which address real time stream processing.
S4 [19], Storm [7] and Spark Streaming [5] are examples of
existing open-source solutions. Commercial solutions such
as Amazon Kinesis [2], IBM Infosphere stream [21] are also
working in the direction of stream processing.

The paper focuses on discussion and comparative analysis
of existing state-of-the-art stream processing solutions. The
rest of the paper is organized as follows. Section two
discusses about massive data streaming concepts. Section
three looks into various streaming solutions. Section four
discusses the architecture perspective of stream processing
solutions and explores programming model, latency, data
pipelines, fault tolerance and data. Section five presents
emerging use case of stream processing solutions. Section
six explores challenges of stream processing solutions and
applications. Finally, the conclusions are summarized in
section seven.

2. STREAMING CONCEPTS
Streaming data is fundamentally different from traditional
data handling patterns and comes with its own set
of challenges and requirements. It requires in-stream
processing to have a low latency. The system should be
scalable with self load balancing capability and should have
high availability. It may require some persistent storage for
short period of time. Real time streaming data has all the
well-known attributes of Big Data, such as volume, variety,
velocity and veracity.

Stream processing requires handling of varying rate of
streaming data, the incoming streaming data might involve
missing data or delays. The processing includes on-the-fly
decision and provision for handling such out of order
streaming data. The streaming data can be time-stamped
on arrival or subject to discard depending upon sensitiveness
of data. The time sensitive operations require time-out
of blocking computations. The time intensive operations
require careful handling of stream linked to the system
and resources binding to the computation. Real

Table 1: Open Source Streaming Solutions

Solution Type Developed By

Storm Streaming BackType

Spark Streaming Batch & Streaming Berkeley AMPLab

S4 Streaming Yahoo

Table 2: Commercial Streaming Solutions

Solution Developed By

MillWheel Google

Amazon Kinesis Amazon

Infosphere IBM

time streaming also requires deterministic processing as
time-order guarantee is subjected to conditions. The
system demands mining around processed streaming data
and data stored across persistent storage. The persistent
storage adds additional latency, but requires integration
to provide business analytic around data. Persistent
storage for long time of streaming data involves its own
set of challenges. The streaming data require extensible
framework for querying and processing to conclude desired
results. The operators involving stream data require
understanding of streaming data context. The variety of
data in the structured, unstructured or semi-structured form
requires adaptability in real time processing.

The attributes such as data integrity and data availability
are an integral part of data engines. There is a
change in paradigm which involves distributed processing
solutions provider to run on low cost commodity hardware
clusters. The system demands scalability and transparent
load-balancing for such high volume of data. The data
engine should be adaptive, extensible to add easy to program
modules and capable to process high-volume of streaming
data with low latency.

3. STREAMING SOLUTIONS
There are few solutions available for real time massive data
stream processing. The available solutions can be classified
into open source contributions and commercial solutions.
The Table 1 refers to various open-source solutions available
for real time massive data streaming processing. Table 2
refers to the list of various streaming solutions employed by
industry.

3.1 Open Source Streaming Solutions
Storm is a distributed stream processing framework,
developed in Clojure and built upon model of task parallel
computation [7]. It provides an adapter to write applications
in virtually any language. Storm is optimized for low-latency
processing and uses ZeroMQ4 for message passing, which
makes its architecture to provide a guaranteed message
processing [7]. It attempts to process each record at least
once and if a record is not yet processed by a node, it replays
the records. In addition, It provides fair fault detection
and process management. On discovery of failure of a task,

4http://zeromq.org/

messages are automatically reassigned by quickly restart the
processing. For optimal resource handling, the processes in
Storm are managed by supervisors.

Spark Streaming is an extension of the core Spark API
and an in-memory distributed data analysis platform [5].
Spark is built upon the model of data parallel computation.
It provides reliable processing of live streaming data. Spark
streaming transforms streaming computation into a series
of deterministic micro-batch computations, which are then
executed using Spark’s distributed processing framework.

S4 (Simple Scalable Streaming System) is a general purpose
distributed and scalable streaming platform that allows
the processing of continuous unbounded streams of data.
Its processing model is inspired by MapReduce and uses
key based programming model [18]. The computation
is performed by processing elements and messages are
transmitted between them in the form of data events [19].

3.2 Commercial Streaming Solutions
Google5 MillWheel is a framework for low-latency data
processing streaming applications [1]. It is also inspired by
MapReduce programming model and allows users to write
application logic in a directed computer graph using custom
topology [1]. Records in a Google MillWheel are delivered
continuously along edges in a graph [1]. It provides fault
tolerance and guaranteed delivery of records to the users.

Amazon6 Kinesis is a service to perform real time
processing of massive data stream [3]. It is a recent
solution which was introduced in late 2013. Kinesis adapts
to streaming data and do load-balancing by auto-scaling.
Fault tolerance is provided using checkpointing to replay
data records. Kinesis comes with a Kinesis client library
that requires users to create ”Producer” and ”Worker” in
an application. The Producer accepts data from stream
source and converts it into a Kinesis stream. Kinesis stream
consists of data records organized into tuples. The Worker
acts as client application which accept Kinesis stream and
perform required processing on stream. The worker can be
invoked on stream of data to obtain required results. The
processed data is available only for 24 hours, which requires
user to link storage solution for future processing.

IBM7 InfoSphere Streams (Streams) is
high-performance stream processing system [8]. It is
used for large scale continuous real time in-stream data
processing [8]. The Streams does not follow specific
programming model. The Stream Processing Language
(SPL) has been used for stream applications. SPL is a
declarative programming language [8]. SPL allows users to
create complex applications without focussing on intricacies
of distributed execution [8]. Users can control operator and
its execution using C++ or Java.

Streams includes various management services which
together lays the foundation of distributed execution.
Stream application accepts jobs and performs concurrent

5https://www.google.com/
6http://www.amazon.com/
7http://www.ibm.com/

Table 3: Attributes based Streaming solution classification

Attributes Storm Spark Streaming S4

Framework
Stream Processing +
Micro-Batching using
Trident

Micro-Batching with Batch
Processing using Core
Spark

Actor Programming Model

Implemented in Clojure Scala Java

Application Language
Java, Clojure, Scala,
Python, Ruby

Java, Scala Java, Python, C++

Stream Primitive Tuples DStream Events

Stream Source Spouts Network, HDFS Network

Computation or
Transformation

Bolts
Transformation, Window
Operations

Processing Element

Persistence Entity Bolts foreach RDD Control Messages

Reliable Execution At least once Exactly once –

Fault Tolerance
Tuples replayed,
Guaranteed delivery

Tiny bits loss possible,
Require HDFS for fully
fault tolerant

New Node begin from
snapshot

Latency Sub-Second Few Seconds Few Secondsa

Developed By
Conceived by BackType/
Twitter, Now Apache
incubation project

Conceived by AmpLab
Berkely, Now Apache
incubation project

Initially conceived by
Yahoo!, Now Apache
incubation project

aAssuming low latency as few seconds [19]

processing. A job consists of one or more Processing
Elements (PEs) [8]. Messaging in the system is
performed using Low Latency Messaging (LLM) mechanism
to optimize application execution. IBM Infosphere
Streams is actively used in diverse domains such as
transportation [9], DNA sequencing [17], radio astronomy
[10], weather forecasting [13], stock market trading [6], and
telecommunications [16].

4. ARCHITECTURE ANALYSIS
The streaming concept has been divided into micro-batching
processing technique or non-batch processing techniques.
Spark Streaming solution provides micro-batching of
unbounded stream. It incorporates stream processing via
short interval of batches and provides linear streaming
solution which is suitable for existing batch processing
infrastructure. Storm and S4 both adopted non-batch
processing techniques. Storm also provides micro-batch
processing using Trident APIs. Apache S4 is entirely
focussed on real time stream processing and does not
support micro-batch processing.

The attribute based comparison is performed in Table 3
between Storm, Spark Streaming, and S4. Table 3 highlights
different aspects of these solutions, which can be compared
in context of processing model, data pipeline, latency, fault
tolerance, and data guarantees.

4.1 Processing Model & Latency
Storm does not mandate any specific programming model.
It adopted both streaming processing and complex event
processing [20]. It follows Directed acyclic graph (DAG) as a
processing model. DAG is a directed graph with no directed
cycles. Storm provides topologies that operate on stream of

data. A topology is a job and is represented as DAG. The
vertex in a topology represents a worker and edges represent
the dataflow between the worker instances. Workers are
classified as spouts and bolts. Therefore, as topologies are
arranged in a DAG, the data flows from spout to bolt and
reverse flow is not possible. Spouts work as an input source
for the topology. Since, incoming events are processed as
one record at a time, Storm have sub-second latency.

Spark streaming follows a micro-batching programming
model. It combines streaming model with batch processing
model. Before processing arrived data, Spark streaming
batches up events within a short time frame. The batch
processing of smallest units in Spark streaming leads to few
second latency.

S4 implements the Actors programming paradigm [18].
Processing elements are defined by the user. The messages
as data events are transmitted between processing elements
[19]. The triggered events are consumed by the S4 processing
elements. Processing Elements interact with each other
either as an event generator or event consumer. S4 is
inspired from MapReduce model.

4.2 Data pipeline
Storm employs pull model where events from sources are
pulled by each bolt. The loss of events is possible only at
ingestion time. Spouts are responsible for maintaining the
event rate.

On the other hand, Spark follows micro-batching processing
model where massive data streams are divided in small
batches and considered as Resilient Distributed Dataset
(RDD). RDD is a distributed memory abstraction that

allows in-memory computations on large clusters in a
fault-tolerant manner [24]. RDD is smallest processing unit
and results of RDD operations are returned as batches.

Finally, S4 is based on push model. The data events are
pushed to appropriate Processing Elements. There is a
possibility of drop of data events in case of choking of
receiver buffer.

4.3 Fault Tolerance & Data Guarantees
As Storm processing model is based on a record, therefore,
state of each record requires to be tracked as arrived in
DAG nodes. Storm only guarantees processing of record
to be atleast once. In case of failure, the records can be
replayed by spout. It is quite possible to have duplicates
or twice updates to the mutable state of record. Events
are possible to be lost due to various reasons, therefore,
the state recovery is important from system perspective.
State recovery is also one of the required attribute for long
running operations. Storm does not provide state recovery
but provides gauranteed delivery and processing of data.

Spark Streaming and Storm both provide fault tolerance and
data guarantees. Stateful computation is better supported
in Spark Streaming. Spark Streaming guarantees that batch
level processing will be executed in an exactly one manner.
In case of a node failure, Spark Streaming allows rebuilding
a dataset in a node.

S4 provides state recovery via uncoordinated checkpointing
[12]. In case of failure or crash, the other nodes begin
operation with recent snapshot of its state. The data events
to the Processing Elements may be sent with or without
guaranteed delivery. S4 also provides gauranteed delivery of
control messages.

5. APPLICATIONS
The rise of various solutions to process real time continuous
stream of data reflects the trends and interest of public in
massive data stream. The stream processing systems are
adopted by variety of applications from social media to
sensing devices to astronomical telescope. An overview of
such applications are provided below.

Finance services are based on high frequency real time
trading and investment. Most of the transactions are
performed using credit cards by customers. Banking
institution has to take preventive measures to detect any
fraud activities with credit cards [23]. For that purpose,
banking sector monitors and processes multiple streams
of transaction every day. The real time monitoring of
transactions prevents likelihood of miscellaneous activities.
Real time stream processing system plays an important role
in decision making for trading and investment.

Medical hospitals are also involved in using distributed
stream processing for health monitoring objectives. The
streams of measurement data generated from various
medical instruments are processed and analyzed for
proactive health diagnosis. The real time stream based
monitoring tool assists doctors for diagnosis and relieves
workload from other staff of hospital [11].

Smart cities [15] explore urban planning to incubate
human adaptive environment. The real time data from
different domains is analyzed for city planning and human
mobility [14]. The urban data from cities are explored to
assist government in dynamic decision making process [22].
These distributed real time streams of data can be used for
optimization of public transportation. It also allows people
to avoid traffic congestion across different routes within a
city. The urban data can also be used for constant weather
monitoring and air content monitoring.

Radio Astronomy involves continuous stream of data from
radio telescopes. The telemetry communication process
collects continuous stream of data remotely using various
radio elements such as antennas, beam formers. These
imaging signals are synthesized and processed at real time.
The final accumulated outcome is stored in a system.
There are number of projects which are utilizing streaming
solutions such radio astronomy group of Uppsala University
and the LOFAR Outrigger In Scandinavia (LOIS) project
[10] [21].

DNA sequence analysis requires large-scale data
set processing along with incremental computation and
parallel processing while handling linear scalability. The
Next-Generation Sequencing (NGS) methods benefit from
streaming data analysis in a scalable and cost-efficient
way. The stream computing provides promising solution
for large scale data-intensive computations in domain such
as bioinformatics. The stream-based data management
solution for large-scale DNA sequence analysis is explored
using IBM Infosphere Streams computing platform [17].

There are endless possibilities to utilize real time
streaming data. Various fields such personalization
of web page by Yahoo!8, pay-as-you-drive insurance
model, recommendation system, weather forecasting,
energy trading services are emerging domains which are
transforming their business model to have benefits from
real time data stream processing. With the major
development in Internet of Things, distributed real time
stream processing and analysis soon will be the part of every
day life.

6. CHALLENGES
The stream processing solutions are designed to solve
emerging Big Data trends. The solutions and applications
incorporate their own set of challenges, which should be
addressed before designing any solution. The challenges
require elaborate reasoning and inspection of application
requirements to create an optimal solution. However, the
challenges can be classified into application challenges and
system level challenges.

6.1 Application Challenges
There are many domains which incorporated stream
processing into applications. Each application is having
its own set of requirements which provide uniqueness to
them. Table 4 provides an overview of application challenges
from domains such as radio astronomy imaging, smart cities,
online gaming, medical hospitals, financial services include

8https://www.yahoo.com/

Table 4: Applications using streaming solution in real time environment

Applications
Applied Streaming
Solution

Challenges

Online Gaming (esp.
Supercell) [4]

Amazon Kinesis

• real time data streams originated from multiple players
• continuous query on data streams to improve player experience
• real time player sessions to provide real time experience
• business analytics on real time insight of game data

Medical Hospitals
[11]

IBM Infosphere
Stream

• privacy-protected real time stream monitoring from medical devices
• analysis of data streams to explore correlation in patient diseases
• predictive proactive medical alerts from real time data streams
• handling multiple data streams on large scale from multiple patients

Radio Astronomy
Imaging [10]

IBM Infosphere
Stream

• large volume of imaging data from multiple channels
• handling of high incoming data rate
• real time image synthesis for analysis
• storage limitation as all raw data is not useful

DNA Sequencing
[17]

IBM Infosphere
Stream

• large volume of genetic data
• large-scale DNA sequence analysis
• high latency and significant processing time
• incremental and parallel processing

Smart Cities [9]
IBM Infosphere
Stream

• large volume of raw data from various source in cities
• data disparity due to unstructured and unrelated raw data
• modeling of heterogeneous data and real time data analogy

Finance Services [23]
[6]

Storm, IBM
Infosphere Stream

• real time decision on investing and trading
• analytics around real data stream and previous stored market data
• monitoring of millions of high frequency transactions
• sub-second latency

data handling challenges. The high volume of data leads
to high latency in DNA sequencing. The modeling of
heterogeneous data and real time data analogy is a challenge
for smart cities. The real time analysis of business analytics
data is an important requirement for financial services. The
adaptive real time experience for players in online gaming
requires continuous query on real time data. The solutions
require low latency for these domains to adapt with real time
stream of massive data.

6.2 System Challenges
The stream processing system encounters following
challenges which can be broadly categorized into four
categories.

Data Acquisition: It is challenging to handle massive
stream of continuous data. The system requires to adapt
to the velocity of incoming data. The variety of incoming
data described as structured or unstructured data. The
structured data acts as an optimal input for stream
processing systems, whereas the unstructured data requires
data preprocessing which involves filtering, extraction and
organization into structured format. The latency of
the stream processing system varies with structured and
unstructured data. The correct representation of data and
data acquisition strategies depend on the application built

on the top of stream processing systems.

Data Handling: Another challenge is to properly handle
large volume of data. The stream processing application
requires to analyze sensitivity of data which need to store
into persistent storage. Some applications only requires to
store cumulative processed results while other applications
require to store filtered and structurally organized processed
data for later usage and analysis. The data handling and
persistent storage of data format varies with the application
requirement. It needs to be properly assessed by stream
processing systems.

Data Modeling: The stream processing systems require
in-stream processing capabilities to have a low latency.
Considering the volume, variety, velocity and veracity of
data, the stream processing system requires predictive
models and efficient algorithms to extract application linked
to important events from massive data streams. It also
requires to have data models to perform comprehensive
analysis by combining all available data.

Data Mining: The stream computing involves
computational analysis and analytics around it. The
stream processing requires new computational tools which
can analyze heterogeneous data sets into appropriate
results. It involves data analytics and data visualization of

massive data sets. The traditional mining approaches need
to adapt as per in-stream processing to provide dynamic
results.

7. CONCLUSIONS
In the last decade, significant research has been performed
to create a system that can handle Big Data. The
MapReduce paradigm is able to offer a solution for Big
Data and many solutions revolves around it. A solution
based on MapReduce is suitable for many problems but not
appropriate for many others. Previous research has been
paired to find solutions which would be optimal for emerging
Big Data trends. The stream computing paradigm appears
to be a solution to the emerging Big Data trends.

The research community is primarily focused on
development of solution or mining of large data sets.
The research on providing solution is divided into the
selection of the programming model or data model for a
system. The selection of processing model for a system
varies from batch processing to micro-batch processing.
Considering the availability of MapReduce as successful
paradigm, many solutions for streaming are influenced
by this paradigm. Some solutions also explore the Actor
model to have stream processing solution. Solutions such
as Storm provide a sub-second latency and S4 does not
provide persistent state and complete fault tolerance.
Spark Streaming has mixed processing model and exactly
once mechanism for record delivery which might affect
processing.

A fundamental set of questions exists, which should be
addressed before selecting any programming model or data
model for stream processing. The design choices and
challenges affect system latency and throughput. The
challenges linked to applications and processing system
require elaborate reasoning and inspection of requirements
to create a stream processing system for heterogeneous data
set. The stream processing paradigm requires solution which
can provide low latency, high throughput, fault tolerance
along with scalability and versatility. The system requires
extensibility to plug and play different components to
provide analytics for in-stream processing and stored stream
data in a persistent storage.

8. ACKNOWLEDGEMENTS
I sincerely thank the reviewers for their comments and
suggestions. This survey paper has been supported by the
University of Helsinki as a learning initiative under Seminar
course on distributed computing frameworks for Big Data.

9. REFERENCES
[1] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,

J. Haberman, R. Lax, S. McVeety, D. Mills,
P. Nordstrom, and S. Whittle. Millwheel:
Fault-tolerant stream processing at internet scale. In
Very Large Data Bases, pages 734–746, 2013.

[2] Amazon. Amazon Kinesis.
http://aws.amazon.com/kinesis/.

[3] Amazon. Amazon Kinesis Product Details.
http://aws.amazon.com/kinesis/details/.

[4] Amazon. AWS Case Study: Supercell. http://aws.
amazon.com/solutions/case-studies/supercell/.

[5] U. B. AMPLab. Spark Streaming.
http://spark.incubator.apache.org/docs/latest/

streaming-programming-guide.html.

[6] H. Andrade, B. Gedik, K.-L. Wu, and P. Yu. Scale-up
strategies for processing high-rate data streams in
system s. In Data Engineering, 2009. ICDE ’09. IEEE
25th International Conference on, pages 1375–1378,
March 2009.

[7] Apache. Storm - Distributed and fault-tolerant
realtime computation. http://storm.apache.org/.

[8] C. Ballard. IBM Infosphere Streams harnessing data
in motion. Vervante, S.l, 2010.

[9] A. Biem, E. Bouillet, H. Feng, A. Ranganathan,
A. Riabov, O. Verscheure, H. Koutsopoulos, and
C. Moran. Ibm infosphere streams for scalable,
real-time, intelligent transportation services. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10,
pages 1093–1104, New York, NY, USA, 2010. ACM.

[10] A. Biem, B. Elmegreen, O. Verscheure, D. Turaga,
H. Andrade, and T. Cornwell. A streaming approach
to radio astronomy imaging. In Acoustics Speech and
Signal Processing (ICASSP), 2010 IEEE International
Conference on, pages 1654–1657, March 2010.

[11] M. Blount, M. Ebling, J. Eklund, A. James,
C. McGregor, N. Percival, K. Smith, and D. Sow.
Real-time analysis for intensive care: Development
and deployment of the artemis analytic system.
Engineering in Medicine and Biology Magazine, IEEE,
29(2):110–118, March 2010.

[12] J. Chauhan, S. A. Chowdhury, and D. Makaroff.
Performance evaluation of yahoo! s4: A first look. In
Proceedings of the 2012 Seventh International
Conference on P2P, Parallel, Grid, Cloud and
Internet Computing, 3PGCIC ’12, pages 58–65,
Washington, DC, USA, 2012. IEEE Computer Society.

[13] L. Daldorff. Novel data stream techniques for real time
hf radio weather statistics and forecasting. IET
Conference Proceedings, pages 74–76(2), January 2009.

[14] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick,
J. Kalagnanam, J. Paraszczak, and P. Williams.
Foundations for smarter cities. IBM Journal of
Research and Development, 54(4):1–16, July 2010.

[15] J. M. Hernández-Muñoz, J. B. Vercher, L. Muñoz,
J. A. Galache, M. Presser, L. A. H. Gómez, and
J. Pettersson. The future internet. chapter Smart
Cities at the Forefront of the Future Internet, pages
447–462. Springer-Verlag, Berlin, Heidelberg, 2011.

[16] IBM Corporation. Exploiting Big Data in
telecommunications to increase revenue, reduce
customer churn and operating costs.
http://www-01.ibm.com/software/data/bigdata/

industry-telco.html.

[17] R. Kienzler, R. Bruggmann, A. Ranganathan, and
N. Tatbul. Large-scale dna sequence analysis in the
cloud: A stream-based approach. In Proceedings of the
2011 International Conference on Parallel Processing -
Volume 2, Euro-Par’11, pages 467–476, Berlin,
Heidelberg, 2012. Springer-Verlag.

[18] G. D. F. Morales. Distributed stream processing

showdown: S4 vs storm.

[19] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In
Proceedings of the 2010 IEEE International
Conference on Data Mining Workshops, ICDMW ’10,
pages 170–177, Washington, DC, USA, 2010. IEEE
Computer Society.

[20] J. Pillgram-Larsen. Storm - the Hadoop of stream
processing. http://fierydata.com/2012/03/29/
storm-the-hadoop-of-stream-processing/.

[21] R. Rea. IBM InfoSphere Streams.
http://www.monash.com/uploads/

IBM-InfoSphere-Streams-White-Paper.pdf.

[22] H. Schaffers, N. Komninos, M. Pallot, B. Trousse,
M. Nilsson, and A. Oliveira. The future internet.
chapter Smart Cities and the Future Internet:
Towards Cooperation Frameworks for Open
Innovation, pages 431–446. Springer-Verlag, Berlin,
Heidelberg, 2011.

[23] L. Sensmeier. How Big Data is revolutionizing Fraud
Detection in Financial Services.
http://hortonworks.com/blog/

how-big-data-is-revolutionizing-fraud\

-detection-in-financial-services/.

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

