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Critical infrastructure forms an interdependent network, where individual infrastructure sectors
depend on the availability of others in order to function. In such environment, faults easily propag-
ate through the interlinked systems causing cascading failures. In order to effectively respond to
incidents at national scale, it is necessary to maintain situational awareness by creating a common
operational picture over all infrastructure sectors. A suitable way of modelling critical infrastruc-
ture and the interdependencies is required for building a system capable of delivering the needed
information for obtaining robust situational awareness.

This thesis presents a model of critical infrastructure for national scale situational awareness
applications, as well as analysis methods for estimating current and future infrastructure status. The
model uses directed graphs in conjunction with finite state transducers to present dependencies
and operational status of critical infrastructure systems. Analysis method utilising graph centrality
measures was developed for quantifying both system specific and infrastructure wide impact of
disruptions. Additionally, an entropy based analysis method was created for estimating operational
status of infrastructure systems in situations, where current data is not available.

The electric grid and mobile networks of a coastal area of Finland were modelled using the
presented methods. Dataset of system failures observed during a storm, in conjunction with
simulation tools were used to evaluate the suitability of the framework for situational awareness
tasks. Results indicate, that the proposed modelling and analysis methods are suitable for real time
situational awareness applications.
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1 Introduction

In modern societies, people are surrounded by advanced networks of infrastruc-
ture systems providing the essential services for everyday life. Water, electricity
and food distribution are just few of the things we rely on a daily basis, often
without thinking. The essential systems necessary for the vital societal functions
are called critical infrastructure (CI). Recent events, such as Fukushima Daii-
chi nuclear disaster (2011), India power blackouts (2012), and Duqu 2.0 APT
campaign (2015), have shown that this infrastructure is relatively vulnerable to
various natural and man-made effects [23] . The malfunction or destruction of this
infrastructure or any of its subsystems may cause major economic losses, pose
various hazards to the environment and people, and – in extreme cases – result in
human casualties. These systems are interdependent in nature; a failure in one
system may quickly affect the operation of other, connected systems.

The field of critical infrastructure protection in its modern form is relatively
new. In its infancy the focus was almost exclusively on natural disasters and recov-
ery procedures. The groundwork for a more holistic approach was laid during the
1990s, when various counter-terrorism related laws, acts, and directives were issued
in the United States of America. The most notable directive concerning critical
infrastructure was Presidential Decision Directive of 1998 (PDD-63), where the
definition of critical infrastructure was revised and division to different sectors
was defined [6] . The directive called for extensive CI vulnerability assessments, as
well as creation of preventative measures and recovery plans. Additionally, the
then relatively new, topics of cyber security and cyber threats were noted and
recognised as a valid concern.

Although awareness about the risks existed before the 2000s, there was relat-
ively little systematic academic interest towards man-made threats facing critical
infrastructure. After the attacks of September 11, 2001 the situation changed.
Resources and interest were directed to researching ways to protect critical infra-
structure from various threats, often with considerable amount of governmental
support. Since then, critical infrastructure and the protection of essential assets
have become a major field of study [18] . This interest has partly been sparked by
the apparent interdependent nature of critical infrastructure systems, which leaves
critical infrastructure systems open to cascading failures where malfunctions and
errors propagate through multiple infrastructure systems and layers [32] .

1.1 Research Problems and Scope

Recent cyber threats and natural catastrophes have shown that our current infra-
structure is highly vulnerable to various failures and malfunctions. The import-
ance of critical infrastructure, and the observed fragility of it, have increased the
demand for a more active monitoring both at industrial and governmental level.

The Finnish government has addressed this need by publishing a Security
strategy for society 2010, a document detailing the preparedness levels and require-
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ments for every layer of society [3] . In order to realise the end goals defined in the
strategy, the Finnish government has launched and funded scientific research on
critical infrastructure protection.

This thesis was written as a part of two such research projects: Digital Se-
curity of Critical Infrastructures (DiSCI), and Situational Awareness on Critical
Infrastructure -project (VN TEAS) [2] . VN TEAS is a part of the Government’s
analysis, assessment and research activities, coordinated by the Prime Minister’s
Office of Finland [1] . The Finnish Funding Agency for Technology and Innovation
funded the DiSCI reseach project.

DiSCI project aimed to find solutions for threats facing the CI at national level.
One of the research goals was to create a demonstration environment of centralised
common operational picture framework which supports situational awareness in
complex networked environment. During the project, a set of requirements for
real-time monitoring system for the critical infrastructure was developed. The
Situational Awareness of Critical Infrastructure and Networks (SACIN) software
framework was developed for evaluation of these CI monitoring concepts.

VN TEAS project investigates the underlying interdependencies in Finnish
critical infrastructure, and their impact on its performance under both normal
operation as well as in serious crises. A simulation model is created for analysing
dependencies of electricity distribution and telecommunication networks in
situations where multiple incidents affect their performance simultaneously.

In this thesis we propose a solution for nationwide CI modelling and analysis
for common operating picture (COP) situational awareness purposes. The work
detailing the software architecture and front-end components were published as
separate articles [38,33] .

The two key research questions examined in this thesis are presented below:

I. How to model critical infrastructure efficiently at national scale
to support real-time SA applications?

I I. What methods can be developed for analysing the CI to estimate
current situation and predict future states?

We firstly collect and analyse the requirements for building a model and analysis
framework for critical infrastructure, tailored for situational awareness applic-
ations. After constructing the model based on the requirements, a suitable set
of analysis methods are developed to complement the model. Since situational
awareness is highly time dependent and tied to the human element, the resulting
methods and complexity must be adjusted for this particular application. Earlier
versions of the proposed model presented in this thesis were published as separate
original articles [29,30,16] .

A set of requirements for Critical Infrastructure Monitoring Operator was
developed during the DiSCI project [34]. The goal this thesis was to satisfy the
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essential functions and information requirements defined therein. Critical infra-
structure model and a set of analysis methods were constructed based on these
requirements. One important design aspect was to achieve real time analysis
capability, needed for keeping pace with rapidly evolving conditions that may
occur in infrastructure networks. The methods were evaluated by building a
test system as a part of the SACIN framework. Finally, the core concepts were
implemented as a part of VN TEAS simulation and analysis environment, where
further evaluations could be made.

1.2 Related Work

Modelling and analysis of critical infrastructure is a notable field of contemporary
research. Consequently, various different modelling and simulation approaches
have been published in modern literature. Ouyang conducted an extensive review
of state-of-the-art models for critical infrastructure in 2014 [25] . The review covered
many different modelling formalisms that have been employed for studying dif-
ferent aspects of CI functionality. The approaches range from purely empirical
analysis to economic theory, network theory and system dynamics, among others
more esoteric ones.

There has not been, however, much research on the real-time capable mod-
elling and analysis frameworks for critical infrastructure. Especially from a
situational awareness viewpoint, there exist a gap in research on this subject. The
current models often require extensive information about the internal structure
of CI systems and material or resource flows. As well as requiring substantial
amount of information about the infrastructure systems and their dependencies,
real-time performance has not been considered. The work presented in this thesis
attempts to fill this gap by specifically considering the requirement to model a
large number of systems while accounting for real-time aspects of SA. The limited
availability of information on the internal operation of various CI systems has
also been addressed.

1.3 Limitations

In this thesis we build a framework based on pre-collected requirements. The
available datasets are used to draw conclusions whether or not the modelling form-
alisms and analysis methods are feasible. Since situational awareness necessarily
includes humans, the actual impact to SA should be assessed by conducting user
tests, where the methods are incorporated as part of the operators work flow.
In such tests, other factors like user interface design also play a major role. The
methods presented in this thesis should be seen as necessary, but not sufficient
building blocks for a complete situational awareness system.
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2 Background

This section describes the key concepts and definitions used in this thesis. Firstly,
the definition and description of critical infrastructure is given. Secondly, the
concept of sensor fusion is explored. Thirdly, the concept of situational awareness
is presented. Finally, a brief overview of the main mathematical concepts is given.

2.1 Critical Infrastructure

Critical infrastructure (CI), as defined by the European Council, is

an asset, system or part thereof located in Member States which is
essential for the maintenance of vital societal functions, health, safety,
security, economic or social well-being of people, and the disruption
or destruction of which would have a significant impact in a Member
State as a result of the failure to maintain those functions; [11] .

Critical infrastructure can be divided into different sectors and layers according to
their relative importance. One such system, proposed by Lewis, divides critical
infrastructure into eleven sectors (Table 1) [18] . The sectors are arranged to form
three levels, where higher tiers generally depend on lower ones to function,
although interdependencies also occur between the layers (Figure 1).

Sector Examples

Agriculture and food Grocery stores, plantations
Public health Hospitals and related services
Emergency services Police, ambulance services, fire brigade
Defence industry Ammunition, repair services, logistics
Telecommunications Internet, phone lines, fibre lines
Energy & Power Power plants and delivery systems, fuel resources
Transportation Trains, buses, aeroplanes
Banking and finance Commercial and (inter)governmental banks
Chemical industry Fertiliser, disinfectants
Postal and shipping Import and export, regular mail
Water Fresh water delivery, waste water services

Table 1: List of critical infrastructure sectors, as defined by Lewis [18] .
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Level 3

Level 2

Level 1

Defence
Industry

Postal &
Shipping

Agriculture
& Food

Public
Health

Emegency
Services

Transportation Chemical IndustryBanking & Finance

Power & Energy Water
Information
& Telecom

Figure 1: Three layers of interdependencies between critical infrastructure sectors,
adapted from Lewis. [18, p. 57]

Critical infrastructure is usually described as highly interdependent [32] . Different
infrastructure sectors depend on the availability of others in order to function.
Due to this interconnectedness, cascading failures that span multiple infrastructure
sectors are possible. Multi-system failures can cause large capacity shortages,
leading to financial losses, equipment damage, and human casualties.

A study by Luiijf et al. on the interdependencies in European CI ecosystems
found that 60% of all inter-sectional CI failures originated from the energy sector,
28% from telecommunication–internet sector, and the remaining 12% from other
sectors [19] . It was also noted, that while CI is highly interdependent, the majority
of failure routes were focussed and directional. This was due to the fact, that most
sectors are dependent on the electric grid.

The failures may be caused by both man-made and natural disturbances. For
example, storms or floods can cause major disruptions on large geographical
area. One such case is the Finnish Tapio -storm, where, at its worst, over 300
000 customers of electricity companies were without power. The storm also
affected water delivery and waste water processing systems, because they were not
equipped with emergency power. Cellular networks also experienced coverage
losses over wide areas.

Regional State Administrative Agency for Southwestern Finland compiled a
detailed report on the Tapio storm [14]. The report states that the storm caused
significant problems to the VIRVE network, a Terrestrial Trunked Radio -based
telecommunication system used by the Finnish authorities. At the worst, 50% of
the base stations were non-operational. This was a major problem especially for
leadership at the operative level. Emergency power generators were available, but
the effective locations for the devices were not known.

The Tapio storm caused one of the largest multi-sector service outage in
recent history. The observations in the report were therefore extremely useful for
guiding the requirement formulation.
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2.2 Sensor Fusion

Sensor fusion refers to the process of combining the outputs of two or more
sensors in order to gain information that would be impossible to obtain by just
looking the outputs of the sensors separately. In a military setting, for example,
combining the outputs of radar and optical sensors, enables identifying targets
and their trajectories even when the individual sensor readings are of poor quality.

The Joint Directors of Laboratories ( JDL) data fusion model is a framework
for combining a set of procedures and algorithms for refining sensor data in order
to improve current situational awareness. The JDL sensor fusion model was
originally presented in 1988, and later refined in 1999 [37] . The model consists of
five different levels, which each refine and combine the data from previous levels
in order to create more informed predictions and analyses (illustrated in Figure 2
and Table 2). Level 0 fusion process is responsible for aligning the raw input data
into a common format. Level 1 combines the pre-processed data and identifies
different objects, such as systems, attacks, and malfunctions. Level 2 forms a
system-level perspective for the current situation, after which level 3 attempts to
predict the future state of the system in question. Level 4 manages the sensors
and allows the refinement of the fusion process, by, for example, shutting down
damaged or captured sensors. Level 5 is the interface between the fusion system
and the human operator, where the situation is finally assessed by combining the
automated analysis and operator expertise.

Level 0 Level 1 Level 2

Pre-

processing
Object

Refinement

Situation

Refinement

Level 3

Threat

Refinement

Level 5

Cognitive

Refinement

Level 4

Process

Refinement

Sensor

Source

System

Database System

Figure 2: JDL model, adapted from [13,37]

Even though sensor fusion is often understood as a way to improve the prediction
quality of ordinary physical sensors, some of the frameworks are also suitable for
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Level Name Description

0 Pre-processing Raw sensor data processing
1 Object Refinement Objects and their position is identified
2 Situation Refinement Relation among entities is assessed
3 Threat Refinement Future state predicition
4 Process Refinement Resources allocation
5 Cognitive Refinement Human operator interprets the situation

Table 2: List of JDL levels

cyberphysical sensor systems [13] . The sensors in a cyber setting could contain e.g.
intrusion detection systems, host health monitoring sofware and network flow
analysers. The output of these sensors can be easily combined and refined using
sources such as vulnerability databases for further analysis.

Since critical infrastructure consists of various systems of different type, they
may be seen as separate types of sensors. JDL model offers a framework for hand-
ling the sensors in order to utilise the data they produce. In SACIN framework the
JDL model is used to refine data provided by cyber-sensors, called Agents [38] . The
various CI systems utilise SACIN Agent middleware for providing information
to the system, and central software components further process the various JDL
steps before presenting the information to the monitoring operator [17] .

2.3 Situational Awareness

Situational awareness (SA) refers to the information, processing methods, – and
ultimately – to the mental picture that a person is required to have in order to
accomplish a specific task or procedure. Endsley defines situational awareness
as "being aware of what is happening around you and understanding what that
information means to you now and in the future" [10] .

The concept of situational awareness was first introduced in the field of
military aviation, where the information requirements of the fighter pilots were
studied [9] . Since the conception, situational awareness oriented thinking has made
its way outside aviation circles.

Situational awareness, as defined by Endsley, consists of three levels of un-
derstanding: perception of the elements, comprehension of the current situation,
and projection of future status (Figure 3) [10]. Critical infrastructure forms a
complicated networked system where humans struggle to maintain clear picture
about the current and future state. Maintaining a robust situational awareness is,
however, necessary in order to detect disruptions and faults as early as possible.
The modelling and analysis techniques must, ultimately, support the monitoring
operator in his or hers endeavour for obtaining situational awareness.

7



Obtaining situational awareness requires models and analysis methods which
support the human operator in this endeavour. For a critical infrastructure mon-
itoring system, the SA level 1, perception, means collecting essential information
about the state of the infrastructure and presenting them to the user. SA level 2,
comprehension, requires the operator to understand how the observed informa-
tion affects the goals or mission. SA level 3, projection of future status, requires
that the operator has both the information and mental model for accurately
deducing future state from available information.

Time

1+2=3

See

Hear

Smell

Feel

Level 1 SA: Perception of needed data

Level 2 SA: Comprehension of Information

Level 3 SA: Projection of Future Status

Figure 3: Levels of situational awareness, adapted from Endsley et al [10] .
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Figure 4: Summary of SA requirements for Critical Infrastructure [30] .

Operator Main Goal:

Increase the situation awareness of critical infrastructure

1.0 Monitor the

organization

environment

2.0 Analyze 

incidents

& communicate

internally

3.0 Communicate

externally

1.1 Identify

incidents

1.2 Monitor

resource

management

3.1 Determine

to whom the

information

should be

communicated

3.2 Determine

incidents worth

mentioning

Figure 5: GDTA tree of operator requirements, as defined by Rummukainen et
al. [33] .

During the DiSCI project, information requirements in all SA layers were for-
mulated. These requirements were defined for both incidents and systems /
services [30] . The requirements are illustrated in Figure 4. This information was
collected by interviewing subject matter experts, and observing the monitoring
operator’s work.

Rummukainen et al. compiled a structured representation, known as the
Goal Directed Task Analysis tree (Figure 5) [34]. The aim of GDTA is to collect
requirements for a specific task in a structured fashion, in order to extract parts
that are needed for performing said task. The modelling and analysis tools should
be built to reflect the requirements.
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2.4 Graph Theoretic Concepts

A graph G is an ordered pair G = (V , E) where V is a set of vertices (or nodes),
and E ⊆ [V ]2 is a set of edges. A graph may be directed or undirected, depending
on how the edge set is defined; undirected graphs consider edges {a, b} and {b ,a}
a, b ∈ V equivalent, whereas directed graphs treat edges as ordered pairs, thus
(a, b ) and (b ,a) are different edges with direction from first tuple member to the
second [8] .

2.4.1 Centrality

Graphs can be used to represent networks, both man-made and naturally occur-
ring. In these networks some nodes can represent things that are more important
in rank than others. This ranking is known as centrality. Various different cent-
rality measures exist to form a ranking, each having a different concept of what
constitutes as important. Centrality measures generally rank nodes based on
reachability, amount of leaving and incoming edges, or some combination of
these metrics, but additional attributes may be used if they are added to graph.

One of the simplest centrality measure is the degree centrality. Node’s cent-
rality is simply defined by how many edges it has. The degree centrality (CD ) of
node v is defined as

Definition 1 (Degree centrality).

CD (v) = deg(v)

where deg() is the number of edges.
As a node with relatively low degree can act as a bridge between two large

segments, it is apparent that the nodes should be examined in relation to more
nodes than their immediate neighbours. Betweenness centrality attempts to rectify
this shortcoming by using shortest paths [12] . Betweenness centrality is calculated
by examining shortest paths between every other vertex than v . A ratio between
shortest paths including and excluding v is calculated for each pair, and the sum
of all ratios is the betweenness centrality.

Definition 2 (Betweenness centrality).

CB (v) =
∑

s 6=v 6=t∈V

σs t (v)
σs t

where σs t is the sum of shortest paths from s to t and σs t (v) is the sum of shortest
paths that pass through v.

Centrality measures often take long to calculate for larger networks. For
example, the time complexity of betweenness centrality can be O(|V |3) in worst-
case. For this reason, the graph centralities can be calculated in advance, and
weighed with additional parameters to reflect changed situation.
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2.4.2 Graph Topology in Man-Made Networks

The topology of man-made networks has been under intensive research for dec-
ades. This research has yielded an observation of phenomena, where man-made
infrastructure networks seem to follow a particular structure. The results indic-
ate that the degree distributions tend to follow a power-law distribution [24,39,4].
The approximate knowledge of the distribution is useful, when modelling the
infrastructure systems, since it allows the estimation of graph densities and other
topological properties. These properties can be used to choose a centrality meas-
ure that provides meaningful results in CI specific graphs.

Graphs, whose degree counts follow the power-law distribution, are called
scale-free networks. More formally, in a scale-free graph, the probability an item
of size x (or node with a degree count of x ), is

p(x) =C x−α

where α > 0 is the exponent of the power law [24] . The constant C is determined
once α is known, such that the distribution sums to 1.

The graph shown in Figure 6 is a randomly generated scale-free graph, with
its degree distribution in Figure 7. A network like this could be a part of a small
power grid in a remote location: few transformer substations deliver electricity
to smaller transformers, which are then connected to the individual houses. The
graph in Figure 6 was created using the Barabási–Albert method presented in [4] ,
a process for generating graphs obeying exponential distribution. The degree
centrality is visualised by indicating a higher degree with a red hue.

Real-world networks also exhibit scale-free structure. A dependency graph
containing all transformers and substations of the Åland island was constructed
using National Land Surveys topographic database [20] . The resulting graph has
812 nodes and 832 edges, with average degree distribution of 2.049. The graph
is presented in Figure 8, and the corresponding degree distribution in Figure 9.
Exponentially distributed data should fall on a straight line in a log-log plot.
Figure 10 contains this fitted line to further illustrates the exponential nature of
the degree distribution.
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Figure 6: A randomly generated Barabási–Albert graph with n = 150 nodes and
m0 = 5 initial nodes. The red colour indicates a higher degree centrality.
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Figure 7: The degree distribution for graph in Figure 6. There are over 100 nodes
with degree of 1, and only one node with a degree of 21.
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Figure 8: A graph view of the Åland island power grid.
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Figure 9: A plot of the degree distribution of the Åland island graph. Red color
indicates higher degree centrality.
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Figure 10: A log-log plot of the degree distribution of the Åland island graph,
with a fitted line illustrating the logarithmic nature of the distribution.
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2.5 Information Theory and Entropy

Information theory considers the concept of information from a mathematical
standpoint. The roots of information theory lie at the advent of electronic
communication systems. The telegraph called for a more formal system to
quantify various properties of communication systems, such as optimal channel
capacity and information loss [7] .

In order to understand information, a model for information source needs to
be examined. An intuitive approach is to imagine a telegraph. The purpose of a
telegraph is to produce telegrams that are of interest to the receiver. A telegraph is
a sequence of characters of a particular alphabet. Each letter of the alphabet has a
know frequency, i.e. probability of appearing. The receiver knows how common
each letter is, but the actual message is unknown. Information source, such as the
telegraph, can be modelled as a stochastic process, since the output stream can be
thought as a sequence of random variables [28] .

Definition 3 (Discrete Memoryless Source). The discrete memoryless source
(DMS) is a simple model of an information source. DMS consists of a random vari-
able X and an associated probability mass function, and symbol emission speed.
The DMS is then a random process where output is a sequence of independent
and identically distributed random variables.

The receiver wanting to quantify the amount of information any single observed
symbol contains. Intuitively, since the probability of observing each symbol is
known, observing an unlikely symbol contains more information than a common
one. For example, observing a source capable of transmitting only a single symbol
provides no information. The logarithm based definition of information has been
chosen due to its useful and intuitive properties [36] .

Definition 4 (Information).

I (x) =− log P (xi )

The concept of entropy is tightly related to information. It is defined as the
expected value of information, or more formally

Definition 5 (Entropy).

H (X ) =−
∑

i

P (xi ) log P (xi )

Entropy is usually measured by using logarithms of base 2. This means, that
the resulting value will have its units in bits. Imagine, if you will, an uniformly
distributed random variable X over 8 outcomes. Since log2 8= 3, it means that
three bits is enough to represent all outcomes.

H (X ) =−
8
∑

i=1

P (i) log2 P (i) =−
8
∑

i=1

1
8

log2
1
8
= log2 8= 3
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Since entropy tells how many bits, on average, it takes to represent an outcome,
the calculated entropy agrees with the assessment above. A non-uniform distri-
bution with eight outcomes

�

4
8 , 1

8 , 1
16 , 1

16 , 1
16 , 1

16 , 1
16 , 1

16

�

would then have a smaller
entropy:

H (X ) =−1
2

log2
1
2
− 1

8
log2

1
8
− 6(

1
16

log2
1
16
) = 1.375

As expected, the entropy is smaller because this random variable does not have as
much uncertainty as the uniformly distributed counterpart. In other words, the
entropy of a probability distribution can therefore be seen as a characterisation of
unpredictability.
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3 Modelling Critical Infrastructure

This section discusses about modelling of critical infrastructure from a situational
awareness viewpoint. We start by defining the requirements and continue by
presenting a graph-based model.

3.1 Requirements

Critical infrastructure has been described as highly interconnected and interde-
pendent system of systems, that consists of thousands of devices, services and
processes with complex and sometimes unknown relationships [32] . Information
retrieval is often possible from only a subset of the systems, and the availability
of historical data may be uncertain.

The possibility that a fault in one system can cause a cascading failure that
propagates through the whole CI must be taken into account. This propagation
might not be instant, and it may require a depletion of backup resources. Time
component must therefore be incorporated into the model to account for this
behaviour. Flexibility and the ability to use different levels of abstraction in the
model are considered beneficial features. It is likely that all of the dependencies
are not known in advance.

For situational awareness purposes, the system’s current and future ability to
produce or provide a certain service is more crucial than the exact modelling of
internal functionality. By modelling the infrastructure as a network of services de-
pendent on each other, the information requirements can be kept on a manageable
level. The model must be capable of operating, with limited accuracy if necessary,
in the situations where information is scarce. Due to the limitations in available
data, the information requirements of the model must be relatively modest. This
requires that all domain specific details, like electricity flows should be omitted if
possible, in order to simplify the model and make it suitable large-scale deploy-
ment, where running heavy models at that scale computationally prohibitive. The
relations between each system may not be contingent on knowing material flows
or other technical details of the coupling, since such data is usually not available.

Rummukainen et al. have identified a set of requirements for pieces of inform-
ation that must be present in order for the model to be a suitable tool for CI SA
systems [34] . As a minimum, the model must include following:

a. Operational status must exist for every system. Each object must be accompanied
with a tag explaining current or best known status.

b. Each system must have criticality or priority. There must exist a measure which
allows the ranking of the systems based on their relative importance in the CI.

c. Dependencies between systems must be, at least partially, known. If a correct
operation of a system is dependent on some other system, this relationship needs to
be modelled.

d. Sufficiency of critical resources must be modelled. If there is a resource (e.g. backup
power) stored onto some system, the depletion process must be present.
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Rummukainen et al. also define other essential information requirements; loca-
tion, purpose, contact information, and security status. These are not necessary
core parts of the mathematical model, as no operations are done with them.
They are added as tags to each object on data modelling stage during software
implementation, and made available on the user interface.

3.2 Dependency Graph

Directed graphs are extremely suitable for presenting dependencies between ob-
jects. Graphs have been used as an aid for analysing critical infrastructure [39,26] ,
but the focus has been on the static analysis of topology and dependency chains,
without active functionality.

Due to the interconnectedness of CI, we have chosen dependency-heavy
modelling formalism. Critical infrastructure can be modelled as a dependency
graph, where nodes represent different CI systems and the edges dependency
relationships between them. To model the interconnectedness and dependencies
inside critical infrastructure, we construct a directed graph:

Definition 6 (Critical infrastructure dependency graph). A directed graph
G = (V , E) where each vertex v ∈V represents CI system and each edge e ∈ E a
dependency relation between two systems.

A relation may exist between any two systems, and the systems may be depended
on each other as is often the case in real-world systems. For example, many GSM
base stations fail after 3 hours of continuous power outage, so the stations are
dependent on electric grid [14] . However, a next generation power grid may also
depend on cellular networks for remote adjustment, and malfunction without
it. These systems form a bidirectional dependency relation with each other.
A failure in either system will cause the dependent system to fail after certain
time, which is not necessarily the same to both directions. Each node on the
critical infrastructure dependency graph presents one system. There is no definite
guidelines as to what constitutes as a system in critical infrastructure setting. For
example, a cellular radio tower can be modelled as a single system providing
GSM and LTE services, or the base stations could be modelled as two separate
systems. The appropriate abstraction level is left for the persons implementing
the monitoring framework for specific systems. In most cases, the distinction
should be relatively straightforward.

Critical infrastructure devices and systems are usually monitored by the
companies or other organisations that own the devices. When a significant
change is operational state occurs, the operators are usually notified of this event
via a status message sent by the affected device. Status messages are often also
sent periodically, even when no fault is detected to ensure that the devices can
not silently fail. Monitoring is usually done by some automated system that is
supervised by a human operator using a computerised SA system. For simplicity,
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it can be said that a system can send events, even though it would be more accurate
to say that a system sends status messages containing details of the occurred event.

An event that causes a malfunction or interrupts a service or process is called
incident. Incidents may trigger further events and incidents on other systems.
When coupled with the knowledge about the dependencies, it is possible to
model the critical infrastructure as a set of communicating systems. Even if some
systems are not actively monitored, we can indirectly observe their possible state
by observing systems connected to them.

3.3 The System Model

The states and state changes are naturally captured by using a finite state machine
(FSM). Since CI systems are expected to influence others on state change, we
model this behaviour by expanding the Mealy machine, a variant of FSM that
adds output values to state transitions based on current state and input [22]. In
the model, the output alphabet represents outgoing effects. A change in system’s
state is expected to affect the operational status of the dependent systems. This
is modelled by using the output alphabet as an input feed for dependent systems
automatons, and in turn for its dependencies for cascading failure effect. In this
thesis, we use the terms state and status interchangeably.

Definition 7 (System state machine). The system state machine is an 8-tuple
SSM = (Q,Σi ,Σo ,T ,O, D , S, q0), where

Q is a finite set of (capability) states;

Σi is a finite set of input events (alphabet);

Σo is a finite set of output events (alphabet);

T : Q ×Σi →Q is the transition function;

O : Q ×Σi →Σo is the output function;

D : Q ×Σi →Q ×R+ is a delayed state transition function;

S : Q→ [0,1] is a status function;

q0 is the initial state.

The state machine represents systems operational status. The status function S
maps each state to a real-valued variable, which represents the current percentage
of operational capability.

The pure state machine does not intend to fully capture all aspects of a CI
system. The key idea is to include all relevant failure stages from 100% to 0%.
For example, a primary reactor coolant circuit of a nuclear power plant could
be modelled as a 4-state machine (Figure 11). In a reactor, incidents like severe
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coolant overheating or overpressure may require extreme emergency measures,
which leave the reactor unusable [35] .

Timed transitions are used, when another state change is known to follow fist
change after a period of time. This functionality is implemented using countdown
timers. After moving to a state where delayed transition is defined, a timer is
initialised to correspond function D . If no state change has occurred before timer
expires, the state is automatically changed. The timer is deleted, if another state
change occurs before timer expiration.

The System state machine can be represented by several matrices and indexes;
By presenting the transition and output functions as a lookup table, the current
state can be then presented with a single index Qcurrent. If there are multiple
instances of the same automata, they can share the same lookup table, and
only use this index for determining their state. Timed transitions also require
automata-specific countdown clock for timed state change. Since we expect to see
many instances of the same automata, we can efficiently implement the automata
transition function as a table. The amount of states in one FSM is assumed to be
quite small, as the idea is to capture the failure pattern rather than try to model
the whole process accurately. Instances of the same automata can use a shared
lookup table, and only keep track of their current state. This potentially results
in improvements on both memory and CPU usage in cases where the modelled
infrastructure is relatively homogeneous.

100%100%

50%

10%

0%0%

Figure 11: An exaple of a system state machine, where 0% status means unrecov-
erable failure. In reality, the state machine representing a nuclear reactor would
be more complex.
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3.4 Critical Infrastructure Model

The CI system is modelled as a set of system state machines that communicate
with each other via messages. These actors correspond to the nodes in critical
infrastructure dependency graph, which may communicate via unidirectional
first-in first-out channels, that correspond to the edges of the dependency graph,
honouring their direction.

Updating system state machines by traversing the graph can be done in
O(|V |+ |E |) time complexity by expanding breadth- first traversal, as shown in
Algorithm 1. |E | is typically much smaller than |V |2, since critical infrastructure
dependency graphs are relatively, as shown in Section 2.4.2. The update algorithm
is run every time a new event arrives, or any SSM changes state due to a delayed
transition.

The algorithm utilises two queues (Q and P ), that keep track of nodes in
two levels. Since a node can depend on multiple parent nodes, the status of
a node cannot be determined before all of its parents are at their correct state.
Furthermore a node can be dependent on multiple other systems. In case there
are several possibilities, the worst one (given by the S ) is chosen as the new state
by UpdateLevel function.

The graph is processed breadth-first in a fashion which forms directed acyclic
graph originating from the affected node. Back edges to already processed nodes
are ignored, since the accuracy of the model, and the CI graph topology are not
suited for cycle analysis.
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Algorithm 1: SSM update algorithm
Input :A graph G and source vertex s
Result: Updated graph G
begin

depth← 0;
for each vertex v ∈G do

color[v ] ← White;
d[v ] ←∞ ;
sym[] ← Nil;

color[ s ] ← Grey;
d[ s ] ← 0 ;
Q←∅;
P←∅;
Enqueue(Q, s);
Enqueue(P, s);
while Q 6=∅ do

u← Dequeue(Q);
for each v ∈ child[u] do

if (color[v] = white) then
color[v ] ← Grey;
d[v ] ← d[u ]+1;
Enqueue(Q, v);
if d[v] > depth then

UpdateLevel();
depth+1;

v.sym[] ← u.symbol;
Enqueue(P, v);

else if (color[v] = Grey) then
if d[u] < d[v] then

v.sym[] ← u.getSymbol;

color[u ] ← Black;
UpdateLevel();

Function UpdateLevel
begin

while P 6=∅ do
u← Dequeue(P );
test each s ∈ u.sym[] and set ASMu to state with lowest value given by
function S;
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4 Real-Time Analysis

This section discusses about the the analysis methods for critical infrastructure
models. Firstly, the requirements for achieving desired analysis capability are
examined. Secondly, two analysis tools are presented, one for quantifying impact
of incidents, and a second one for estimating operational status under uncertain
conditions.

4.1 Requirements

Situational awareness is formed through the use of sensors, data fusion, and
automated systems, but it is fundamentally connected to the human element.
Therefore the analysis should focus on delivering metrics that are useful to the
human operator. Situational awareness tools do no usually perform any sort
of automated response, as any action is orchestrated using human-in-the-loop
-paradigm

Analysis methods were selected to conform to the requirements defined by
Rummukainen et al [34] . The most important analysis capability is a method for
quantifying the impact of single event, on both the system it affected and the CI
network as a whole. For each incident or event, following information is needed:

a. Magnitude must be quantifiable at both system and CI level.

b. Relation between incidents and systems.

c. Duration must be quantifiable at both system and CI level.

The analysis results should be produced in real-time from the perspective of the
monitoring operator. Since the operator might want to conduct multiple vari-
ations of the presented analysis techniques under restricted time, the importance
of quick operation is further heightened.

The design philosophy mirrors the same principles used in the model. The
analysis should produce estimates of the operational status using information
provided by the model and the received event. Estimates of operational status
should also be provided even when current data is not available.

4.2 Topology Based Measures on Critical Infrastructure Model

To assess the impact of an event, it is necessary to account for the current situation,
and report how much it was changed. Since the critical infrastructure is modelled
as a graph, it is possible to leverage pre-calculated centrality measures to assess
how important a certain node is in a given situation. Depending on the centrality
measure used, it is possible to analyse impact of different cascading failure patterns.

We continue by defining a Downstream Weighted Impact Sum (DWIS), as first
described in [29] . It attempts to estimate the impact of a single event by summing a
change in status function value, weighed by the centrality. More formally, DWIS
is defined as:
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Definition 8 (Downstream Weighted Impact Sum).

DWIS(v) =
∑

Ai∈T(v)
∆S(Ai ) ·Ci

where v is the starting node, T (v) is the set of all nodes reachable from v ,∆S(Ai )
is the difference of SSM status value function before and after the state transition
caused by the event, and Ci is the (normalised) centrality of the node i . DWIS
can be calculated in O(|V |+ |E |), since it requires only one pass through each
affected node.

The formula allows us to estimate the effects of a single event on the whole
infrastructure, as it gives higher results if important nodes are affected. This
allows the estimation of the magnitude of the disruption. If one of the systems is
known beforehand to be extremely crucial, there is the possibility of weighting it
more during during modelling a particular CI cofiguration. The DWIS is highly
dependent on the chosen centrality measure, as well as the scaling function, if
any, used to normalise the measures. A suitable scaling function can be chosen to
achieve balance between nodes with small and large centrality.

The DWIS explicitly uses the difference between old and new state, ∆S(A).
The method provides results based on the actual change in operational condition.
It can also be used to estimate what would theoretically happen, if the status
of particular component is altered, for example by repairing it. It allows the
framework to suggest which component would be the best candidate for repairs.
Since the maximum sum of centrality is known, current situation can also be
assessed against the fully operational state.

4.3 Entropy Measures on Critical Infrastructure Model

The previously presented model and analysis methods are event-driven and dis-
crete. Although the delayed state transitions add a time component to the model,
it does not otherwise account for passage of time [16] . The goal of the probabilistic
analysis is to leverage existing knowledge about the target system for estimating
its current state. For this purpose, we associate each system with a probability
distribution, that associates each possible FSM state with a probability.

For example, let M be a finite state machine with 3 states (operational [O],
marginally operational [M], and not-operational [N]) such that

P (X = x) =











a, when x =O
b , when x =M
c , when x =N

The probabilities a, b , and c may have been collected by observing the operation
of the system for a certain time period, or they may have been defined by the
operator. The associated probability distribution should be chosen to model
how the system reacts when it is unable to communicate with the monitoring

26



framework. Some systems might experience intermittent communication delays
which do not cause any disruptions. Other systems, such as networked remote
control solutions, might only stop communicating if they are malfunctioning.
The chosen distribution can now be used to estimate system status without status
messages.

We may now view the system as an information source that produces events
based on the defined probability distribution. After each event, the probability
distribution must be altered. This models the fact that major faults often prevent
the system from reaching normal operational capacity without repairs or other
manual intervention.

In case we get a sensor reading not-operational [N], we define the new prob-
ability distribution as follows:

P (X = x) =











a · (1− e−k t ) · S(N ), when x =O
b · (1− e−k t ) · S(N ), when x =M
1− (a+ b ) · (1− e−k t ) · S(N ), when x =N

where t denotes the elapsed time since the event, constant k is an operator-
definable parameter, and S(N ) is the output of the status function as defined for
the automata M . The new probability distribution is calculated using the severity
of last-known status, elapsed time since receiving said status, and the original
distribution associated with the system. By using the status function for weighing
the probability, the distribution accounts for the fact that recovering from “worse”
states to “better” is more improbable than other way around. The distribution
allows us to calculate the expected value of the function S , as well as the entropy.

The general case for n-state system is defined as

P (X = x) =























































a1 · (1− e−k t ) · S(Aj ), when x =A1

a2 · (1− e−k t ) · S(Aj ), when x =A2
...
1− (

∑

i 6= j
ai ) · (1− e−k t ) · S(Aj ), when x =Aj

...
an · (1− e−k t ) · S(Aj ), when x =An

In Figure 12 a plot of three-state FSM representing a base station is shown. At
time t = 0 the base station is known to be marginally operational, due to lack of
power. During normal operation, the station sends heartbeat event once a minute.
System operator has indicated, that even a brief delay in status messages is a
symptom of a fault. This causes the not-operational state likelihood to increment.
There is a fair amount of uncertainty associated to probability distributions before
t = 150, since no state is extremely unlikely. In Figure 13 the fast growth of
entropy can be seen, while the expected value of S remains relatively stable.
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At t = 150 the station is able to send ’battery depleted’ status message before
losing power. This causes the probability for not-operational state to become one.
Since the value of S for non-operational state is almost zero, a recovery is highly
improbable. The growth of entropy after t = 150 also illustrates the differences
between distributions.
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Figure 12: Probabilities for each three operational state in base station FSM. At
t = 150 a message indicating battery depletion is received, causing a state change.
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Figure 13: Expected value of S(Xb ), and entropy H (Xb ) (measured in bits) of a
random variable Xb representing a status of a cellular base station.

By defining the probability distribution using both pre-collected knowledge

28



of failure patterns, and last-known state, an estimate of current status can be
made without new information. The entropy associated with the calculated
probability distribution informs how "unreliable" the expected value currently
is. For example, the expected value (or nearest possible state) of a system can be
displayed as a coloured marker in the user interface. Entropy can be used to turn
this indicator slowly to gray, when the estimate is considered too unreliable for
use in decision making.
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5 Evaluation

The proposed model and analysis techniques were evaluated against the require-
ments presented by Rummukainen et al. [33], as well as running several bench-
marks over several generated and real-world graphs. Various scenarios were
designed based on reports compiled by Regional State Administrative Agencies,
using datasets supplied by the VTT Technical Research Centre of Finland Ltd
(VTT) in conjunction with Caruna Ltd.

5.1 Requirement Based Evaluation

The main goal of the proposed modelling formalism was to to satisfy the require-
ments set by Rummukainen et al., as presented in Section 3.1. Requirement a –
operational status for a CI system can be determined by the assigned automaton
and the status function S . The automaton keeps track of the current status and the
S function associates a numerical value for operational capability. Requirement b
– criticality is assigned to each node by using a graph centrality measure. In case,
where a particular node is known to be extremely important, the calculated meas-
ure can be boosted to include this fact. Also the centrality measure and centrality
normalisation function can be adjusted for increased accuracy. Requirement c –
dependencies are expressed by using a directed graph, where the edge directions
mark dependency relation between systems. Finally, requirement d – resource
sufficiency is modelled by allowing time-delayed transitions in automata. The
requirements and corresponding model capabilities are shown in Table 3.

Requirement Model capability

Operational status Automata reflects the best-known status
Criticality Graph centrality is calculated for each node
Dependencies Directed graph expresses the dependency relations
Resource sufficiency Timed transitions to model e.g. resource depletion

Table 3: List of SA requirements and model capabilities

The analysis methods were also created based on requirements by Rummukainen
et al., as presented in Section 4.1. For each event, the proposed analysis methods
can provide estimates of magnitude at both system and infrastructure level. The
change S function output directly shows the magnitude for any single system.
Utilising the centrality and S function, magnitude at infrastructure level can
be estimated by calculating a centrality weighed sum of all affected systems. In
case there is no new data available, a probabilistic entropy based measure can
be used to make less reliable estimates. Duration was not directly addressed by
the proposed analysis methods. The probability distribution used in the entropy

30



based analysis method addresses the time component, but it does not provide
estimates on repair time or fault duration. The requirements and corresponding
analysis capabilities are shown in Table 4.

Requirement Analysis capability

Magnitude Impact sum utilising centrality and change in operational status
Relation Graph structure shows all affected systems
Duration Not directly addressed by the analysis methods

Table 4: List of SA requirements and analysis capabilities

Some elements of the requirements are best addressed at software implementation
stage. The model and analysis methods should be complemented with well-
thought visualisation methods, map data, and additional information, as the raw
numbers and values might not be intuitively meaningful for human operators.

5.2 Modelling and Analysis Using Simulation Tools

A simulation environment was created for use in VN TEAS project using real
failure data and base station coverage measurements. Caruna Ltd. provided a
dataset containing the location, type, and partial dependency structure of various
electric grid components for use in this research project. They also provided a
fault log detailing a storm that affected the provided grid, spanning several weeks.
In addition, a cellular coverage mapping of the area was conducted by VTT. The
environment and the datasets were used to test the model and analysis methods
by simulating realistic failure data and replaying actual failure logs.

5.2.1 Dataset

A dataset covering both electric grid and mobile phone communication networks
found in a coastal area of Finland was used. A total of 2391 components from
the electric grid were used in building of the model. Components found in the
dependency graph include primary and secondary substations, as well as discon-
nectors, as shown in Table 5. This ’Service area’ is linked to the nation-wide
high-voltage core grid, and forms a mid-voltage distribution network belonging
to a local utility company. Component positions and logical dependency informa-
tion was further augmented by using open access data provided by the National
Land Survey of Finland (NLS) [20] .

A total of 151 GSM/UMTS/LTE radio towers found in the area were con-
nected to nearest secondary substation. There were total of 1747 base stations
attached to the towers. The base stations were added as attributes for the hosting
radio tower, and were not modelled as separate nodes.
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Finally, buildings (N 119206) in the area, as indicated by NLS data, were
attached to the nearest secondary substation using QGIS (2.12 Lyon) [31]. Due
to the sensitive nature of the dependency data, accurate visualisations of the
geographical locations or dependencies are not shown in this thesis. The data
does not have dependencies from base stations to electric grid components, since
final cellular coverage maps were not available.

Feature Count
Primary substation 23
Disconnector 54
Secondary substation 1390
Radio tower 151
Building 119206
Total no. of features 120824

Table 5: The features included in the building of final graph model.

The final dependency graph has 68080 nodes and 68079 edges. The degree distri-
bution exhibits power-law properties, as illustrated in Figure 14, and agrees with
our assumption of CI graph topology. The building nodes were omitted from
the picture, since they all have degree of one. Each node representing a power
grid component was given a two-state FSM (Figure 15a). Base stations, which
contain a backup power source are assigned with a three-state FMS (Figure 15b).
The buildings were also assigned type (a) automatons, to model whether or not
they are receiving power. Operational states (green) were assigned S(O) = 1,
Marginally operational states S(M ) = 0.6, and Not operational states S(N ) = 0.1.
Degree distribution and centrality measures for the graph were calculated using
Gephi (0.8.2) [5] .

Custom format parsers and scripts were developed to integrate all datasets into
formats beneficial for the framework. Geographical data on the above-ground
segments of the electric grid lines (NLS) was unified to form a connected line
segments. Since NLS database is intended for constructing maps, it does not
have actual models of the power lines. Instead, the lines are presented as polyline
segments, which do not necessarily form a continuous line even though the actual
line is continuous. Furthermore, a crossing of two or more lines, or connections
to buildings or relay fields created irregularities on the grid network as some
of the essential structures are underground [21]. These issues were corrected by
hand, consulting aerial photos, also provided by the NLS database. In the case
of large transformer structures, the aerial photos were used to estimate how the
outputs of a particular components were configured, and in the case of islands or
islets, undersea cable entry and exit points. This process resulted in one unified
undirected graph representing the power lines of the target area.

The Caruna dataset contained a tree-like representation on the dependencies
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Figure 14: The degree distribution for graph of the modelled area, excluding
building nodes.
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Figure 15: Two state diagrams representing the operation
of (a) electric grid component and (b) base station. Green
state represents [O]perational, yellow [M]arginally oper-
ationa, and red [N]ot operational state.

of grid components (as well as their geographical location and type), but lacked
critical inter-component dependency information; the dataset could indicate that
a primary substation was powering three secondary stations, but would lack the
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information that the dependent stations were connected as series on the same
power line, such that a failure in first component would render the two remaining
non-operational. To rectify this situation, the grid components on Caruna -dataset
were connected to the nearest line segment of the NLS data via geoprocessing.
Using both Caruna and NLS data, the final dependency graph was created by
utilising shortest-path routes and spanning tree algorithms, until the resulting
graph respected the constraints imposed by both datasets. The nodes representing
buildings were connected to the nearest secondary substation, if the distance did
not exceed 3 Kilometres. The dataset was hand-pruned after the operation to
account various geographical factors such as bodies of water, major roads and
other confounding factors. Convex hulls for each building group associated with
substation were calculated, in order to visualise areas affected by substation faults
(Figure 17). In addition, some buildings, such as hospitals, were marked ’critical’
(N 117).

A mapping between the geographical data and the nodes found in the graph
model was retained for visualisation and future analysis purposes. Final data
formats utilised the Graph Markup Language for graph model and a set of ESRI
shapefiles for geographical data.

5.2.2 Software Components

A software implementation was constructed to assess the feasibility of the model-
ling and analysis techniques presented in this thesis. Furthermore, a suitable user
interface for visualisation was implemented for user-level situational awareness
tests, which are to be conducted at the end of the research project. The result-
ing software framework is powered by the GraphStream library [27], as well as
QGIS geoprocessing and visualisation components and uses both Java and Python
programming languages.

VTT conducted a survey of base station radiation patterns in the target area.
Using VTTs Network Planning Tool (NPT) [15] , the obtained dataset can provide
estimates of cellular coverage on the area, when a base station is non-operational.
Using the model presented in this Thesis, the combined framework can be used
to estimate how the cellular grid is affected by the loss of power in electric grid
segment.

5.2.3 Simulation Results

The target area was successfully modelled with the graph based approach using
datasets obtained from Caruna Ltd. and National Land Survey of Finland. Using
the software tool and CI model, the extent of disruptions and repair processes can
be visualised. NLS data was also used in creating additional map layers (Figure 16).

A series of artificial faults were analysed using the framework. Fault one was
total failure of the core electric grid. Fault two was a mid-sized fault situation
spanning several days, created using the real storm data. Fault three was a smaller
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Figure 16: A subsection of the modelled area. Green lines represent power lines
and green dots secondary substations. Heat map corresponds to population
density. The image is a screenshot of the developed visualisation tool.

Figure 17: A screenshot of the developed software package. Red convex hulls
represent areas without electricity, yellow points are secondary substations.

subsection, affecting 30 electric grid components, one base station, and one critical
feature (Figures 19 and 20). All of the faults were caused by a total failure in an
electric grid component, where the state was set to Not Operational.
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Figure 18: A screenshot of the full area. The grey mosaic layer is an example of
cellular coverage disruption. The visualised electric grid disruption is based on
the real storm data combined with the CI model.

As indicated by Table 6, the DWIS values increase rapidly, when central compon-
ents are affected.

Actual storm data was used to calculate the entropy -based measures for one
base station. Storm data was collected for a period of 10 days 3 hours and 17
minutes. During this time, eight faults occurred to the secondary substation
powering the base station. The target probability distribution was chosen to be
P (O) = 0.2, P (M ) = 0.4 and P (N ) = 0.4, due to the fact that communication loss
to base station during storms indicate high fault probability. The selected base
station did not have backup batteries, and enters to Not Operational state when
the secondary substation powering it fails and powers itself on when the power is
restored.

Severity, or the values of S function were S(O) = 0.1, S(M ) = 0.5 and
S(N ) = 0.9; k = 0.007. The probabilities for each state are illustrated in Fig-
ure 21, and the corresponding entropy measures and expected value in Figure 22.
The entropy plot indicates, that the operational state is associated with high
uncertainty, indicating unstable operating condition.
The implemented software framework was benchmarked using the described data-
set. The update operation for all components takes less than a second, indicating
suitable performance with modest hardware. Benchmarks were conducted using
commodity laptop with 8 Gigabytes of RAM and Intel i5 mobile processor.
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Figure 19: A screenshot of a fault affecting one base station and one critical feature.
Note the power loss and communication fault.

Figure 20: A more detailed view of one critical feature. The software can pinpoint
both the exact location and status for each critical feature.
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Fault Size Affected Nodes DWIS

Full Area 1620 88964.09

Medium 83 5636.69

Small 30 907.12

Table 6: List of DWIS values for faults of differing size. Buildings are not counted
towards affected nodes.

0.0

0.2

0.4

0.6

0.8

1.0 Operational

0.0

0.2

0.4

0.6

0.8

1.0 Marginally operational

0 200 400 600 800 1000 1200 1400 16000.0

0.2

0.4

0.6

0.8

1.0 Not operational

Time (min)

St
at

e 
pr

ob
ab

ilit
y

Figure 21: Probabilities for each three operational state for base station during a
storm. The base station enters to state [N] at time t = 0.
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6 Results and Discussion

In this thesis we have presented a novel approach for CI modelling and analysis
by combining graphs and finite state machines. Additionally, we explored the
possibility of using entropy -based measures to estimate operational status of
systems that are off-line or otherwise unable to send status information.

The design goals were set based on a set of information requirements for
critical infrastructure monitoring operator, as defined by Rummukainen et al [34] .
Additional requirements imposed by the need for real-time monitoring capability
were also honoured. Model data requirements and suitable abstraction levels were
also taken into account.

Several man-made networks were modelled as graphs, and analysed to find
suitable modelling formalisms. Based on the observed topological structure, a
graph based approach combined with finite state machines was used to model
infrastructure dependencies and operational status. Other necessary elements
were incorporated as part of the modelling formalism for achieving the required
modelling power.

Analysis methods suitable for real-time operation were developed to comple-
ment the created modelling tools. Using the graph topology and relative changes
in operational status, a method was developed for quantifying both system-specific
and infrastructure-wide impact of disruptions. Entropy -based analysis method
was created for situations, where current data is not available, and an estimate
based on previously observed events must be made.

The modelling and analysis methods were tested using data collected during a
real storm, and by simulation tools. A coastal area of Finland was modelled using
both public and non-public datasets. Modelling of the area proved cumbersome,
but doable using semi-manual script assisted processing. Using both public and
non-public dataset, a suitable graph model could be constructed. Based on the
evaluation results, the presented methods capture the extent and magnitude of
different types of disruptions, and can operate on limited input data.

Overall, meeting the set requirements and simulation based evaluations in-
dicate that the presented methods can be used in real-time situational awareness
applications. As the information requirements were kept relatively modest, and
it is likely that infrastructure operators may be willing to share data at this
abstraction level.

6.1 Datasets

There has been much discussion about the interdependencies between CI systems
and sectors. Although this is known, there has been relatively little success in
obtaining the datasets that describe those dependencies. Indeed, some authors
claim that it is impossible to map the interdependencies at the national scale.
There exists only a few datasets concerning the dependencies, and essentially none
at all contain several CI sectors. Although modelling and analysis of CI has been a
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hot topic for quite a while, public datasets that are suitable for evaluating the work
are still almost non-existent. In some cases, the companies that run CI systems
are unwilling to share their data, for academic purposes. This is somewhat under-
standable, because this data is often thought as company confidential, and sharing
is not seen as directly beneficial. Even though the governmental authorities are
able to access this information, it is usually classified, and can’t be readily used in
academic research.

For this thesis, a major part of the dataset was constructed form what the
author believes is the best and onliest public data source available for this purpose
in Finland; the National Land Surveys database. The dataset contains many
features useful for building maps, but the relationships between objects are not
included. Moreover, the dataset is not accurate or consistent enough for building
e.g. graphs form the electric grid automatically, so the process is essentially
manual. Furthermore, the data only gives limited insights to the interdependencies
between objects, and it does not contain information about possible failures and
their propagation. Open-source efforts have been launched to crowd-source e.g.
the locations of base stations, but the data is somewhat inaccurate especially in
less-travelled places.

The lack of data makes many data mining and other advanced approaches that
demand large datasets unsuitable. It would be advantageous for society if govern-
ments actively pushed for open data, which could then further be distributed to
the scientist. Data sharing should be seen as beneficial between industry sectors,
so that every participant can benefit from advanced data fusion and common
operating picture.

6.2 Centrality Measures and Other Parameters

In this thesis the betweenness centrality was used to rank infrastructure compon-
ents. However, a purely topological centrality value does not provide the best
estimate, since additional data on the importance of components is often available.
A suitable way to weight the centrality against a list of known important com-
ponents would provide more accurate impact estimates. Furthermore, the scaling
of the chosen centrality measure may prove to be as important as the centrality
measure itself.

6.3 User Tests

Situational awareness is ultimately tied to the human element. The ability to
provide data that can be transformed into actionable information is the ultimate
benchmark for a decision support system. User test should be conducted for
assessing the actual impact of the proposed methods towards situational awareness.
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