
Monitoring Service Chains in the Cloud

Emad Nikkhouy

M.Sc. Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, May 21, 2016

Faculty of Science Department of Computer Science

Emad Nikkhouy

Monitoring Service Chains in the Cloud

Computer Science

M.Sc. Thesis May 21, 2016 82

service chaining, SDN, cloud, monitoring, OpenStakc, OpenDaylight, Docker

Service chaining in the cloud is a new trend that network operators are moving towards. Service
chaining in the cloud, is the process of virtualizing various services in the cloud instances
and linking them together in order to create a chain of services. Aside from the benefits that
it provides for the subscribers and network operators, it needs further considerations to be
fully applied and utilized. Since service availability is a key concern for network provider and
operators, the availability of service chain requires careful attention.

The goal of this thesis work is to investigate how to monitor service functions that form
the service chain in the cloud. By monitoring the service functions we aim to inspect the
running services and report occurrence of abnormality (i.e. heavy work load), to our main
monitoring platform, in order to trigger corresponding operations. We believe with monitoring
the services we can increase their availability with low overhead. Our main contribution in
this work, is to build a platform that can control and monitor the services in the cloud in
order to enhance their availability.

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents

1 Introduction 1

2 Service Chaining in the Cloud 4
2.1 Software Defined Networking (SDN) 4
2.2 OpenFlow . 6
2.3 Network Function Virtualization (NFV) 9
2.4 Service Chaining . 9
2.5 Service Chaining Challenges 12
2.6 Cloud (OpenStack) . 14
2.7 Linux Containers (Docker) . 17

3 Service Function Chaining Methodologies 21
3.1 Background and Motivation 21
3.2 Service Chaining Methods . 22

3.2.1 Ericsson: StEERING for Inline Service Chaining . . . 22
3.2.2 Ericsson: Optical Service Chaining 27
3.2.3 Huawei: Service Chaining with Service Based Routing 29
3.2.4 FCSC: Function-Centric Service Chaining 31

3.3 Service Chaining Methods Comparison 33
3.4 Monitoring Cloud: Methods 34

3.4.1 PCMONS: Private Cloud Monitoring System 34
3.4.2 Elastack: Automatic Elasticity in the OpenStack . . . 36

3.5 Monitoring Cloud: Tools (General Purpose) 39
3.5.1 Nagios . 39
3.5.2 Collectd . 40
3.5.3 Ganglia . 41

3.6 Monitoring Cloud: Tools (Cloud Specific) 42
3.6.1 Amazon CloudWatch 42
3.6.2 Azure Watch . 42
3.6.3 Nimsoft . 43

3.7 Cloud Monitoring Tools Comparison 43

4 Design for Monitoring Service Chain 45
4.1 Monitoring cloud . 47

ii

4.2 Monitoring Services and OpenFlow Controller 49
4.2.1 Monitoring Containers through Control Groups (cgroups) 50
4.2.2 Monitoring OpenFlow Controller and its Statistics . . 53

5 Monitoring System Implementation and Evaluation 55
5.1 System Implementation . 55

5.1.1 Software and Hardware 56
5.1.2 RAM and CPU calculation 56
5.1.3 Communication Architecture and Messages 57

5.2 Monitoring Service Chain in Action 59
5.2.1 Service chain with Squid proxy 60
5.2.2 Main Monitoring System 63

5.3 Evaluation . 69
5.3.1 Overhead . 69
5.3.2 Monitoring System Response Time 72

6 Conclusion and Future Work 76

References 78

iii

1 Introduction

Software Defined Networking (SDN) has brought managing and designing
networks into a new era during the past few years. Private networking
companies have kept their devices and the firmware that comes along with it
proprietary, which makes networking devices closed source [FRZ13]. Making
networking devices proprietary has some drawbacks. First, it will make
each device to has its own interface for configuration depending on the
manufacturing company, second, it will prevent network services to be elastic.
Elasticity here conveys the meaning of hiring a middlebox service for instance
deep packet inspection (DPI) and exempt it when its usage is unneeded.
Currently the network infrastructures and devices are tightly coupled, which
makes troubleshooting and removing or introducing new middleboxes tedious
and time consuming.

However, networking and services along with it are evolving and entering
a new phase. With the help of Network Function Virtualization (NFV),
physical network devices are transforming to virtualized softwares that are
basically same as the physical device, with the difference that they can run
on any hardware node in a cloud or data center or even users premises. With
running different services as a virtualized software, cloud is a good candidate
to be the base and host due to its flexibility. In this case each service or
middlebox can be running on a virtual machine or linux container and the
number of these services can be increased or shrinked whenever is necessary.
However reliability of cloud and each of these virtualized services is playing
an important role in quality of service and user experience. [CDSI+14]

In theory transforming physical network to virtual seems to be easy and
straightforward. However in practice there are many issues and obstacles
that need to be considered beforehand. Hardware faults, software faults
and operator faults are some of the issues that can degrade the quality of
network or even break the communication. Due to necessity of reliability in
the network middleboxes and services in the cloud, there are many projects
that have been working on the cloud’s reliability. Prefail [JGS11] is a
programmable tool that injects multiple faults to the cloud in order to
analyze cloud’s behaviour during crisis. Netflix is working on set of tools
called The Simian Army [Tse13] (i.e. chaos monkeys, chaos gorilla, chaos
kong and latency monkey), which inject different kinds of faults in the cloud

1

computing platform in order to assess its resiliency.
Internet traffic has been escalated in the last decade, and predictions

shows that in the next decade mobile traffic will be increased by 1000 times
[LNPW14]. Therefore, by that time 4G, which is used by many users today
will not be sufficient enough to satisfy their needs. Researchers are working on
5th Generation (5G) of mobile internet which will be having larger bandwidth,
less delay, and better quality of services for large data size (such as high
definition (HD) videos), in order to satisfy day to day need of users. Since
network functionality through the aid of SDN is moving from hardware to
software, mobile network service infrastructure can shift from monolithic to
more elastic, which 5G can benefit from it [AP15]. In this approach while
services are running on general purpose hardware devices, then expanding or
reducing services can be easier.

Service chain in SDN is related to higher level, where before chaining
services we have to solve the lower and more fundamental issues. Previously
we have mentioned that services can easily expand or shrink on demand due
to the nature of NFV and SDN. However, before even expanding or shrinking
services, we have to be able to link these services together spontaneously.
On the bigger perspective, we have to link these virtual machines or linux
containers that are running our services. Linux containers are isolated linux
processes that operate on top of linux kernel and their functionality is similar
to virtual machines. There has been tremendous amount of research going
on to solve the problem of elastic service chaining. Huawei [Hua13], Ericsson
[ZBB+13], Nokia [Nok15], and many other companies are trying to implement
elastic service chain in their network infrastructure. Ericsson is also one of
key contributors of Service Function Chaining (SFC) project in OpenDaylight
[Odl16], which is an open source SDN platform.

Therefore, by monitoring service chain in the cloud we monitor the base
for the services that are operating, including controller, network, compute
nodes, and the services running inside the compute nodes. While monitoring
this base for services, there are many issues that needs to be addressed.
Traffic steering is one of the issues that needs to be considered. By traffic
steering, traffic is enforced to take a specific route which is defined by a
central controller to meet certain requirements, for instance inspecting the
packets before sending them to their destination. Another issue, is the sudden
failure of an instance in the cloud, where traffic was enforced to pass through

2

it, however after the instance failure that is not possible anymore. In this
case another copy of the same instance should be started and the incoming
traffic should be enforced to pass through it, which requires sudden changes
of the route.

To address these issues, we design a new platform that can monitor
the foundation of service chain, and monitor the cloud nodes and services
running inside it from preventing any catastrophe to happen. For the cloud
side, we use OpenStack, and instead of Virtual Machines we use linux
containers for the cloud instances, specifically Docker [Doc15] due to its
agility. Furthermore, to control the traffic, we utilize OpenDaylight, which
is an open source SDN platform. The research methodology in this thesis
is driven by measurement. We measure the resource usage (i.e CPU, RAM,
network) of cloud components. Measuring the network performance in the
cloud and number of packet drops via OpenDaylight can be beneficial in
order to alert the main controller in case any of cloud services are getting
saturated. The goal for the developed platform is to be robust and reliable
in case of service saturation, because in the service chain if one node goes
down, the whole chain will be broken.

The rest of this thesis is organized as follows. Chapter 2 describes some
fundamental concepts about SDN, NFV, and SFC and also introduces some
existing SDN and SFC platforms along with brief explanation of cloud.
Chapter 3 illustrates an overview and related works in SDN, Service Function
Chaining and cloud monitroing tools and methods. The design architecture
of the service chain monitoring platform is explained in chapter 4. Chapter 5
depicts implementation details of developed platform along with measurement
results obtained from various studies. Finally, chapter 6 concludes this thesis.

3

2 Service Chaining in the Cloud

In this chapter we discuss the basics of Software Defined Networking (SDN),
OpenFlow, Network Function Virtualization (NFV), OpenStack and Linux
containers, specifically Docker. In addition, we introduce the well known
open source cloud platforms, and compare them.

2.1 Software Defined Networking (SDN)

Over the past 20 years, many technologies and their underlying infrastructure
have been changed. Early telephony networks had separated data and control
plane, which SDN somehow is revisiting that idea in order to facilitate
deployment of new services and network management. Moreover, SDN is
applying the past research which articulated perspective of programmable
networks with affirmation on programmable data planes. [FRZ13]

The evolution which has happened to the networking throughout the past
20 years, can be divided into 3 stages. First stage is active networks that took
place from mid-1990s to the early 2000s, which led to greater innovations
by introducing network programming functions. Second stage, took place
between 2001 to 2007, which open interfaces were developed during this
stage and the outcome was separation of data and control plane. Third stage
was from 2007 to around 2010, which during that time with the creation of
OpenFlow protocol, separation of data and control plane became practical
and feasible. Network virtualization, which is going to be discussed in the
next section also played an important role throughout the history of SDN.
Figure 1 illustrates selected development of programmable networking over
the past 20 years.

Conventional networks are not programmable, however active networking
community introduced an approach to the network control, which by exposing
resources (such as packet queues, processing, storage) on each individual
network node, different kinds of functionality could be applied on a subset of
packets that are passing through that node. Though, this approach was not
pleasant to many Internet community members and defendant of simplicity
in the network core, which is the reason that Internet to be successful.
Therefore, active network community pursued for other approaches. Capsule
model and programmable router/switch model, are two models that active
network community focused on. In capsule model, the code which needs to be

4

Figure 1: 20 years perspective of Selected Development in Programmable
Networking [FRZ13]

executed on the node was carried in the data packets (in-band) and caching
was used for efficiency of code distribution. In programmable router/switch
model, out-of-band mechanism was used in order to execute code on each
node.

In early 2000s, network operators were looking for better solutions to
control the traffic path (traffic engineering). The anxiety that network
operators had, was due to increment in traffic and significance of network
reliability. Control and data plane in conventional routers and switches were
tightly coupled. Therefore, this tight coupling made network management
tasks such as controlling or predicting routing behavior or even debugging
configuration issues extremely tough and challenging. Thereupon, to address
this issue, different attempts to separate data and control plane started to
flourish.

5

2.2 OpenFlow

In the mid 2000s, funding agencies and researchers were attracted to do
network experimentations at scale. However, during that time Stanford uni-
versity came up with a program, in which its idea was distinctive and its focus
was more local and tractable rather than big scale (e.g. campus network).
Before OpenFlow, there were two goals in order to make deployment of the
SDN globally. First one was fully programmable network and the second
one was pragmatism. OpenFlow tried to satisfy these two goals by having a
balance between them. Therefore, building on existing switch hardware and
enabling more functions than previous controllers satisfied both goals. Even
though, founding OpenFlow on top of existing switches limited its flexibility,
but it made OpenFlow promptly deployable and allowed SDN development
to be both pragmatic and bold.

Almost all of the modern ethernet routers and switches use flow-tables to
forward packets from one point to another. Different vendors build different
switches and routers with different flow-table structure. However, there are a
big set of common functions which are the same in different vendor’s devices,
which OpenFlow tries to exploit and take advantage of them. Network
administrators can divide traffic into two production and research flows,
where it gives the ability to the researchers in order to experiment new
network protocols in realistic environment to gain enough confidence which
is needed to deploy these new network protocols globally. [NTH+08]

The datapath of an OpenFlow switch comprises a flow table and also a
task which is attached with each flow entry. Moreover, an OpenFlow switch
has a flow table, a secure channel and OpenFlow protocol. There is an
action attached to each flow entry which tells the switch how to process the
flow. The job of secure channel is to connect controller to switch that allows
packets and commands to be transferred between switch and controller using
OpenFlow protocol. OpenFlow protocol is a standard interface that helps
the controller to communicate with the switch. Therefore, researchers do not
need to program the switch directly, rather entries in the flow table can be
defined externally. Figure 2 illustrates an example of OpenFlow Switch.

In OpenFlow switch, a remote control process defines where packets
should be forwarded. Flow can be a TCP connection or all the packets from
specific IP or MAC address, or even all the packets from same switch port

6

Figure 2: OpenFlow Switch Example

or same VLAN tag. There are three fields in an entry of Flow-Table. The
first field is the packet header which defines the flow. The second field is the
action that specifies how the packets should be processed. Lastly, the third
field is statistics that tracks the bytes and number of packets of each flow in
order to facilitate finding inactive flows for removal.

As mentioned earlier each flow entry has an action associated with it,
and these actions can be concluded into four basic ones. The first action is
forward the flow’s packet to specific port(s), which permits packets to be
routed in the the network and in most of switches this action is expected to
take place at line-rate. The second action is to encapsulate the flow’s packets
and forward them to a controller through a secure channel. Usually this
action is taken for the first packet in the flow, so the controller can determine
whether this flow should be added to the flow table or not. However, this
action also can be used in some experiments where all the packets are sent to
the controller for the processing. The third action is to drop all the packets,
which can be used for some security reasons to prevent denial of service
attacks, or to decrease counterfeit broadcast discovery traffic coming from
end-hosts. And lastly the fourth action is to forward the flow’s packets to

7

the switch’s ordinary processing pipeline.
OpenFlow enabled switch is a commercial switch (router, or access

point) that supports OpenFlow protocol, flow table and secure channel.
Basically, OpenFlow protocol and secure channel will be ported on the
switch’s operating system to run, and flow table will be using the existing
hardware on the switch such as TCAM. Figure 3 illustrates an example
of OpenFlow enabled switches, and access points. In this example, one
controller manages all the flow tables; for purpose of good performance and
robustness, OpenFlow protocol permits a switch to be controlled by multiple
controllers. Controller job is to add or remove flow entries from the flow
table. There are two different types of static and dynamic controllers. In
the static, the controller statically add flows to the flow table and for the
duration of experiment multiple computers get connected to each other and
the experimental flows are isolated in order to do not interfere with the
production network. A more complex controller, can add or remove the flows
dynamically during the experiment, therefore the researcher can control how
flows should be processed and control entire OpenFlow switches.

Figure 3: Example of OpenFlow enabled switches and access point

8

2.3 Network Function Virtualization (NFV)

Commonly, network services (i.e. firewall, DPI, load balancer, etc.) are
operating on proprietary hardware boxes. Running services on proprietary
hardware takes big portion of expenditure for CAPital EXpenditure (CAPEX)
and OPerational EXpenditure (OPEX). The process of moving services
functionalities from hardware boxes to software and making them virtualized
is called Virtualized Network Functions (VNFs). Therefore, instead of running
services or network entities on specialized hardware, an implemented software
version of the same service will be running on commodity hardware which
already exist in data centers, cloud providers or even end-user office or home.
[CDSI+14]

Resiliency to failure in VNF is crucial for network operators. If the service
is not reliable, then users and subscribers would abandon it, in this case the
cost of failure would be incredibly high for the operators. Software faults,
hardware faults and operator faults are three major failures that can impact
service delivery of network operators. In software level, different levels, such
as virtual machine, hypervisor, host OS or even the VNF instance itself can
cause failure in the system. In hardware level, using commodity servers can
cause failure. Also, configuration mistakes by operator can break the system.

Evaluation and building an application for reliability evaluation of VNF,
is not easy. This is because, lack of information for the internal structure of
virtualized technologies like virtual machines provided by third parties, make
it challenging to evaluate and test their reliability. Since NFV itself is still
under development, therefore reliability of network function virtualization
infrastructure (NFVI) and suitable measures and metrics for its reliability
should be analyzed. Lastly, integration and interoperability of different
hardwares and softwares together results in complexity, which consequently
makes finding and resolving issues in the infrastructure troublesome.

2.4 Service Chaining

The current network infrastructure with its current middleboxes (such as
firewall, caching, network monitoring, DIS/PIS and etc.) are fixed, which
is advantageous in term of service quality that has served very well the
telecommunication industry up to now. However, in the current market and
technology this infrastructure is inflexible, and hinders the network service

9

providers (NSPs) to cope with the technology in order to form pioneer and
full service chains at will. [JPA+13]

Changing the current network infrastructure needs careful engineering
due to the interdependencies among the functional components and high
quality expectations. Moreover, adding new component or functionality
in the network that has been already deployed, is complicated, expensive,
and requires a lot of time. This stiffness in the network infrastructure,
hinders the network from emerging to new revenue sources and other possible
opportunities such as retooling the network.

Configuration and management tasks currently are done more in man-
ual and tradition way, however with increasing automation, both CAPEX
(capital expenditure) and OPEX (operational expenditure) can be reduced
dramatically. By deferring network resource investments such as refactoring
and optimizing the use of existing resources, reduction in CAPEX can be
attained. By reducing network touch points which can possibly lead to less
configuration errors, OPEX reduction can be achieved.

Each middlebox in the service chain is stateful and has very limited but
specialized functionality which is closed hardware and purpose-built. With
the existence of many middleboxes in the network, they play an important
role in the network ossification, which take considerable part of the network
OPEX/CAPEX. However, because each middlebox is designed to provide
a single service, network operators cannot reuse them, and if one box is
taken out the whole chain will break. Though, with the emergence of SDN
and NFV in the operator network, orchestration, flexible allocation and
management in the layer 2 to 7 of network functions and services became
easier. Therefore, SDN and NFV provide a good foundation for dynamic
service chains.

Dynamic service chaining bring carrier-grade process for persistent de-
livery of services, where carrier-grade in this context means designing the
whole process for high availability and fast failure recovery that in each
step of process reliable testing capability is integrated. Moreover, Persistent
delivery means, utilizing automated (re-)deployment and network function
orchestration in order to improve the operational efficiency. Figure 4, depicts
how data traverse from source to destination with and without usage of
dynamic network service chaining.

As Figure 4 illustrates, service chaining provides the means that the

10

Figure 4: Static Vs. Dynamic Service chaining

flows go from source to the destination without any disturbance by different
services which are located at different nodes. Deploying various physical
network elements can be avoided in such way that different services are
implemented as member of dynamic chain where each flow is processed
through different service functions.

Figure 5 shows another benefit of dynamic service chaining. In order
to provide better fairness and security for the end users in a network, data
passes through various policy enforcement points such as traffic schedulers,
load balancers, security gateways, etc., that depending to the size of network,
it can be in hardware or software. However, if the data needs to pass different
networks, then extra operator investments in terms of hardware and software
are needed.

As an example we can mention provider edge (PE) that comprises different
policy elements for software and various hardware elements for routing and
forwarding traffic. In this case, because data requires to pass through various
numbers of policy elements, there will huge deterioration in terms of delay,
which depends to the load of cross-domain network. However, with the
aid of dynamic service chaining, which needs to be implemented in every
one of the network domains, this degradation in the delay can be bypassed.
Therefore, network service chaining functionality should be implemented on
PE elements, which can provide traffic performance acceleration with its

11

intelligent traffic steering.

Figure 5: Traffic Steering

2.5 Service Chaining Challenges

With all the benefits and advantages that dynamic service chaining intro-
duces to the network, it comes with its own challenges. Among various
challenges in this field we can name, coupled topology, configuration com-
plexity, solid ordering of service functions, application of service policy,
imposed high availability, transport dependency, elastic service delivery, lim-
ited end-to-end service visibility, traffic selection criteria, per-service function
(re)classification, symmetric traffic flows and multi vendor service functions.
In the next subsections, these challenges will be discussed briefly. [PQ14]

Coupled topology: Usually, network service deployments are dependent
to the network topology. Therefore, this dependency prevents the network
operators to fully utilize service resources, which restricts redundancy, scal-
ability and capacity across network resource. Moreover, when there is a
need for extra service function, topology has to be modified in order the
new service to fit in, which result complex device configuration and network
changes.

12

Configuration complexity: A direct impact of coupled topology is the
complication of the whole configuration, specially in deploying dynamic
service function chains. Simple changes in the chain such as introducing new
service or removing it, causes a change in the ordering of the services that
requires to change the topology and consequently changing the configuration
of some or all of the services in the chain. This is the reason network
operators try to avoid changing the topology once they installed, configured
and deployed it in the production, due to probable misconfiguration and
resultant downtime.

Solid ordering of service functions: Services in the service chain are
not related to each other, and there is no concept that specific service should
be installed before another one. Although, for the network administrator
there is a restriction to put the services in a special order to receive the
best performance. Service function chains today are built based on manual
configuration processes which makes them error prone and slow. With the
emergence of new service deployment models the policy and control planes
provide services that can be utilized optimally and provide connectivity state.

Transport dependence: Service functions are usually deployed in the
network (overlays and underlays) with a confine transports. However, ser-
vice functions should support different transport encapsulations or have a
transport gateway function to be present when service functions are tightly
coupled with the topology.

Traffic selection criteria: Traffic selection is rigid, therefore when traffic
traverse from one segment to another, it should goes through all the service
functions whether it needs the service enforcement or not. This rigidity is
due to the topological behaviour of service deployment since the forwarding
topology forces the data to pass through the service functions that it imposes
In some cases there are some flexible traffic selection, which access control
filtering and policy routing is used to achieve that. However, this results
operationally complicated configuration which is comparably inflexible.

Limited end-to-end service visibility: Both service-specific and network-
specific expertise are required in order to troubleshoot and find service related

13

issues, which is a complicated process. Moreover, this complexity is increased
when the service chains expand into multiple administrative boundaries. In
addition, due to differences in virtual and physical environments in term of
topology the challenge for finding the network issue will be higher.

Per-service function (re)classification: Each service does the classi-
fication individually and it has its own method to do the classification.
Therefore, services do not take advantage of their previous service that did
the classification before.

Symmetric traffic flows: Each service in the service chain depending to
its functionality, might need to be unidirectional or bidirectional. For instance
services such as firewall or DPI, need to be bidirectional to ensure consistency.
Therefore, existing service deployment models have static approach which
has complex configuration for each network device in the service chain.

2.6 Cloud (OpenStack)

OpenStack is an open-source cloud platform which is founded by NASA and
Rackspace on July 2010. Over the years, it has become mature gradually and
currently it has more than 4500 members and most of well-known enterprises
such as Dell, IBM, HP, SUSE, Citrix, NASA, Rackspace, NetApp, Cisco,
Nexenta and many more companies are supporting and contributing in it.
OpenStack currently comprises of nine projects which we discuss about each
one of them briefly [KGC+14] [WGL+12].

• Nova (Compute) is the computing component in OpenStack, its job
is to handle the computing tasks by deploying and managing large
amount of virtual machines and other kinds of instances.

• Swift (Object Storage) is scalable object storage infrastructure in Open-
Stack, which is used mostly for permanent type of data that need to be
stored, retrieved and updated. Its key roles in OpenStack are secure
storage for large data size, archival ability with redundancy, and media
streaming. Swift comprises of these components: Container Server,
Object Server, Account Server, Proxy server and the Ring.

• Cinder (Block Storage) is a persistent block storage provider for the
guest virtual machines. Cinder can provide the backup of virtual

14

machines volumes by collaborating with swift. With the aid of API,
supplied volumes for nova instances can be manipulated to provide the
ideal type of volume and volume snapshot. [RB14]

• Keystone (Identity Service) is identity service in OpenStack. With
keystone, different users are mapped to OpenStack in order to access
the services they are authorized. Keystone provides tokens in order to
give authorization to different users, and each token by default is valid
for an hour.

• Neutron (Networking) is the manager of network in OpenStack. It
connects different components of OpenStack together and at the same
time provides static internet protocol (IP), dynamic host configuration
protocol (DHCP) and virtual area network (VLAN). Neutron also
provides advance policy and topology management.

• Horizon (Dashboard) is the user interface in OpenStack. Through
the web user interface it provides easy provisioning and automating
cloud-based resources.

• Glance (Image Service) is the image service in OpenStack which pro-
vides a template for new instances during the deployment. It provides
essential services for retrieving, discovering and registering virtual
images through API.

• Ceilometer (Telemetry) is the telemetry service to provide cloud providers
billing service for the users. It keeps track of usage of different services
by the user in order to provide the bill information for them.

• Heat (Orchestration) is the service which stores necessary information
for a cloud application in a file that specifies which resources are
required for that specific application.

All the above mentioned components can be installed on different servers,
and there is no need for them to reside on the same machine. This is achieved
by Queue Server, so messages from different services are transported through
Advanced Message Queue Protocol. Managing cloud is possible through Nova-
API which make it possible for developers to create applications managing
OpenStack. Figure 6 shows the Architecture of OpenStack.

15

Figure 6: OpenStack Architecture

Currently there are different Open-Source cloud platforms which are
used by different communities. Each of these platforms have their own
characteristics which make them unique in every aspect. Among different
cloud platforms we can name OpenStack, OpenNebula, Eucalyptus and
CloudStack. Table 1 shows comprehensive comparison between these cloud
platforms.

16

Table 1: Open Source Cloud platforms Comparison
Name OpenStack Eucalyptus OpenNebula CloudStack
Origin Rackspace

and NASA
University of
California

European In-
frastructure
Grants

cloud.com

Open-Source
License

Apache 2.0 Li-
cense

GPLv3 Apache 2.0 Li-
cense

Apache 2.0 Li-
cense

Programming
Language

Python Java and C Java and
Ruby

Java

Public Cloud
Compatibil-
ity

Amazon EC2,
S3

EC2, S3,
EBS, AMI
[HP115]

Amazon EC2 Amazon EC2,
S3

Hypervisors Xen, KVM,
HyperV,
Xen Server,
VMware,
LXC

Xen, KVM,
VMware
[Euc15a]

Xen, KVM,
VMware,
vCenter

KVM, Xen
Server,
HyperV,
VMware
[Clo15]

Networking
Model

Flat DHCP,
VLAN DHCP

VLAN DHCP
[Euc15b]

VLAN VLAN

Cloud Imple-
mentation

Public and
Private

Private Hybrid, Pri-
vate and Pub-
lic

Public and
Private

Operating
System Sup-
port

Most Linux
Distributions

Linux (im-
ages of
Windows and
Linux)

Most Linux
Distributions

Most Linux
Distributions

Database PostgreSQL,
SQLite3,
MySQL

PostgreSQL SQLite (some
versions),
MySQL

Mainly
MySQL

VM Migra-
tion Support

Yes No Yes Yes

2.7 Linux Containers (Docker)

Linux containers are linux processes, residing on single machine, sharing
the same operating system kernel, yet separated from the rest of machine
processes. So in this manner, other linux processes have no permission to
interfere with linux container processes. Containers put all the necessary
dependencies, code, and system tools that are needed for running a software
in a package. Therefore, it is guaranteed that running the software will always
be the same without the necessity for any modification or extra configuration.

17

Virtual machines and linux containers are sharing the same goal which is
resource isolation and allocation, however they use different architecture and
approach. Figure 7 shows the architecture of linux containers and virtual
machines, which illustrates linux containers are more efficient and portable
compared to virtual machines since they do not require to operate on top of
guest operating system. [Doc15][ISK+14]

Figure 7: Virtual Machines vs. Containers Architecture

Docker is an open source software system, which makes utilizing linux
containers simple and efficient. Docker containers compare to virtual ma-
chines are lighter, memory efficient and boot-up instantly. Docker exerts
layered file system for images, thus various images can share common files,
which can make disk usage and image downloads efficiently. Docker has an
online repository where images can be pushed to the cloud, and downloaded
on another machine simply and hassle-free.

Virtual machines are good for what they are designed for, which is
abstracting the underlying hardware and permitting multiple operating
systems (OS) to run on the same hardware. This lowers the cost, however
virtual machines are not ideal for every situations. For instance, virtual
machines take minutes to boot-up completely the OS, therefore gives the
opportunity to hackers to exploit known vulnerabilities during boot-up
[ISK+14]. Virtual machines are not suitable for microservices since even the
simplest process requires its own virtual machine. It requires a lot of effort
to manage virtual machine’s lifecycle and apply patches to it. The reason
is because every virtualized application has to operate with two operating
systems which is hypervisor and the guest OS inside the virtual machine.

18

On the contrary, linux containers lowers the cost and improve agility.
Each virtual machine can handle multiple containers inside it, which are all
sharing the same operating system kernel, leading to simpler management
due to fewer operating systems. Since docker containers leverage layered
file system, application patching is matter of adding another layer. For
instance, Apache web server, java runtime system, and Redis for caching
can be different layers for a web application image. While operators are
not able to see the workload inside a virtual machine, from container host
environment they can look inside a container and detect unused containers to
retire them if necessary to optimize resources. Since containers have smaller
payload and do not carry the overhead of guest OS and hypervisor, booting
and restarting them is quicker. Faster boot time, consequently can lead to
less downtime that can reduce cost for organizations who utilize public cloud
services to handle their sensitive tasks.

Linux containers provide as much isolation as virtual machines through
using linux namespaces, Security Enhanced Linux (SELinux) and control
groups (cGroups). However, there are some security issues with containers.
For instance, kernel exploit at the host operating-system level endangers all
the containers running on that host. Though, by enforcing compulsory access
control eliminating this flaw is feasible. Ultimately, securing applications by
containerizing them is easier, since smaller payload lessens the surface area
for security glitch, and rather patching the operating system it is possible to
update it. Moreover, isolating security module of an application from the
application and putting them into separate containers, makes it easier for
security team to debug and update the security module since they do not
need to touch the application’s logic.

Containers are more suitable with microservices compare to virtual
machines. This is because, for developing an application, instead of using
monolithic architecture, developers can develop each component with the
best suitable programming language. Thus, each component can be packaged
inside a container independently. In case of scaling, instead of duplicating the
whole application, only those components that are necessary can be replicated,
which can save space and other resources. In addition, CPU, RAM, and
other resources can be scaled individually. Aside from microservices, below
is a short list of some advantages of linux containers:

• PaaS (Platform as a Service): permits PaaS frameworks to interoper-

19

ate.

• Policy-aware networks: by giving priority to the containers that have
acute services running on them, application experience can be improved.

• Development and Testing: applications can be replicated and deployed
on any host machine which reduces the dependency issues.

• Network application containers: add new functionality to the founda-
tion of network operating system by running third-party applications
in containers.

• Intercloud portability: efficiently move application components among
clouds.

IBM has done an extensive comparison between virtual machine (KVM)
and linux containers (Docker) [FFRR14]. In this report they have conducted
different comparisons such as memory bandwidth using Stream benchmark,
CPU Linpack performance, Random Memory Access using RandomAccess
benchmark, Network bandwidth using nuttcp tool, Network latency using
netperf tool, NoSQL redis and MySQL performance. In this report it is
concluded that in every comparison test which is conducted, Docker is equal
or better than KVM in every case. KVM is not suitable for scenarios when
workloads are sensitive to latency, due to the overhead that KVM adds to
every I/O operation which can vary from negligible to significant depending
on I/O operation. It has to be mentioned that Docker’s NAT also adds
overhead to workloads that have high packet rate. Therefore there is tradeoff
between performance and each of management that needs to be investigated
in disparate cases.

20

3 Service Function Chaining Methodologies

In this chapter we will focus on the problem of service function chaining
(SFC) and related research works that are done thus far. We will present
few various methods for elastic service chaining and later in this chapter
we will discuss about different methods and tools for monitoring cloud and
resources.

3.1 Background and Motivation

Current infrastructure of many Internet Service Providers (ISPs) and mobile
network carriers, is tightly coupled with services. Services or middleboxes in
the network provide various functionalities such as deep packet inspection
(DPI), Intrusion Prevention System (IPS), video enhancement, and many
more. The cost for maintenance, and also the trouble of introducing new
service into the network, forced network operators, organizations and research
institutes to endeavor for solving this fundamental issue.

When an internet subscriber is streaming a video, in a tight coupled
infrastructure that all the routes are predefined, all the traffic goes through
firewall to reach to the user. This is costly for the ISPs due to wasting
resources for processing every packet through the firewall. It is also inefficient
and time consuming to process packets which are not in need of processing.
By eliminating firewall during the session when user is streaming video,
resources can be saved and processing of traffic can be accelerated.

By the rise of OpenFlow and SDN controllers, researchers have been
attempting to eliminate the current restrictions in the network. In dynamic
service chaining different services are connected when it is needed, and traffic
from one or more of these services is bypassed when their presence in the
network is unnecessary. In case a service is over saturated by traffic, a
duplicate of the same service can start running dynamically, in order to
reduce the workload from the saturated service.

Steering is the building block for dynamic service chaining that has been
investigated for the past few years, and different methodologies have been
proposed for it. In steering, traffic is forced to go through different service
nodes, instead of taking the default route to reach its destination. Steering
currently can be done in various methods, using Network Service Header
(NSH), policy-based routing, or policy aware switching [ZBB+13].

21

3.2 Service Chaining Methods

3.2.1 Ericsson: StEERING for Inline Service Chaining

Ericsson [ZBB+13] attained service chaining, which is efficient, flexible,
scalable and open. One feature in this method that makes it outstanding
compared to similar approaches, is its multi-dimensionality for handling
different rules through various tables. Therefore, various rules can expand
when number of subscribers and applications increase. Different routing
tables communicate with each other through specific type of metadata, which
makes tables to manage a set of services independently, for instance adding or
removing services. Scalability in StEERING, makes it suitable for broadband
networks, which enables operators to handle large number of subscribers and
applications.

StEERING infrastructure consists of two different switches, OpenFlow
switches and inner switches. OpenFlow switches are located on perimeter
of network, and they are connected to middlebox services or gateway nodes.
These OpenFlow switches are responsible to classify the incoming traffic
and steer it to the next middlebox or service in the chain. Inner switches
are connected to each other as well as OpenFlow switches and they are
responsible for forwarding traffic using layer 2 switching.

As shown in Figure 8 in StEERING architecture there are two modules
that are controlling the logic, which are OpenFlow controller and an algorithm
for checking the best possible position for placing the services. OpenFlow
controller used in StEERING is NOX, which its job is to set up the table
entries for the OpenFlow switches. The OpenFlow rules that are set in the
switches, perform classification for the incoming traffic and based on the
subscriber, application, or the ordering policies assign different path to it.
Afterwards, the traffic is forwarded to the next service based on its current
location in the chain.

If the policies cannot be resolved through the packet header, then they
can be determined via the packet payload. In order to determine the policies
through the payload, deep packet inspection (DPI) is needed. In Figure 8 the
yellow dotted lines indicate the DPI interface, which is between OpenFlow
controller and inline services. Therefore, a notification is sent via the DPI to
the OpenFlow controller, once it has resolved the policies of a flow.

In order to achieve scalability and prevent exploding switches with tremen-

22

Figure 8: StEERING Architecture

dous amount of rules, four different functionalities are considered in StEER-
ING to reduce pressure on each switch. Multiple tables are utilized in this
method in order to break down multi-dimensional policies. Different ports
on switches are assigned to have different tasks, where for each direction that
traffic is going, different port will be dedicated. Microflow tables are also
utilized in this method, which handle dynamically generated rules. Lastly,
metadata is used for communicating the information between tables and
associated actions.

Putting all the information such as subscriber, application, and ports in
a single table would prevent the scalability. Therefore, separating different
information into multiple tables would result scalability in each separate
table linearly. Following Figure 9 shows six coercive tables along with one
optional table which is dashed rectangle, and Table 2 explains responsibility
of each of these tables.

23

Figure 9: StEERING Tables

Key Responsibility
Direction Table input port • Identify direction of packet (up-

stream or downstream)
• type of the port packet received
(node or transit port)
• set the metadata field (called
dir)

MAC Table destination mac
address

• Forward or Drop the pack

Microflow Table five tuples • Handles dynamically generated
rules
• Set the metadata field with ser-
vices that flow should go through

Subscriber Table source ip
direction bit

• Default service set for each sub-
scriber
• Set the metadata field with ser-
vices that flow should go through

Application Table destination ip
protocol
port

• Modifies default service set for
a subscriber
• Set the metadata field with ser-
vices that flow should go through

24

Path Status Table input port • Determines next service in the
chain and services that have al-
ready been traversed
• Modifies the metadata service
set in order to omit precede ser-
vices that the flow traversed al-
ready

Next Destination
Table

direction
service set

• The highest priority bit in the
service set will be chosen for the
next destination

Table 2: Responsibilities of tables in StEERING

Perimeter switches in StEERING have two different types of ports, transit
port and node ports. Transit ports are linked to the other perimeter switches
or inner switches, while node ports are connected to the gateway nodes and
services. Packets that are coming through transit ports, are forwarded to
the destination base on MAC address, and packets that are coming through
node ports are forwarded to the next service or gateway based on their
assigned service path. Figure 10 depicts the port direction in StEERING
architecture. OF1, OF2, and OF3 are perimeter switches, while SW1 is an
inner switch. Node ports are divided into upstream and downstream, and in
this figure black colored ports are upstream-facing, and red colored ports
are downstream-facing. All the packets that arrive on upstream port, are
travelling downstream and vice versa. Moreover, packets arriving on transit
ports can be traveling in each of two directions.

Policies are usually pre-configured for switches, based on subscribers
and applications. However, in some cases operators need to install new
rules/policies dynamically. Microflow tables give the ability of introducing
new rules dynamically to the network. Based on results of one middlebox
(e.g. DPI), new policies can be added in order to meet specific requirement.
The key in microflow table is a direction bit, and five tuples which are, IP
protocol field, source and destination IP addresses, and TCP/UDP source and
destination port numbers. Microflow tables have higher priority compared
to application and subscriber tables. Therefore, if there is a hit in direction
table the next table to call in will be microflow table.

25

Figure 10: StEERING Port Direction

StEERING method works with OpenFlow 1.1, which uses metadata to
communicate information and related actions among tables. Direction bit
and service set are two types of metadata that are used in this method. The
direction bit, indicates the direction of flow, and service set represents the
set of services that requires to be applied on the flow, which is under process
in the chain. The metadata supported in OpenFlow 1.1 is 64 bit. Thus, the
first bit is used for the direction and another 63 bits are used for different
services. Nonetheless, more complex features in metadata can be employed
to attain better performance in the chain, for instance, load balancing.

Figure 11 depicts encoded metadata for attaining load balancing. In
this case, instead of using a separate load balancer in the chain, traffic can
be distributed in multiple instances with the help of metadata. By extending
the basic format of metadata, from 1 bit for each service to multiple bits for
one service, multiple instances for a service can be achieved. Thus, if n bits
are assigned for a service then 2n instances can be represented. For instance
if 4 bits are dedicated to a service, 1 bit will be an apply bit, and 3 bits will
be instance bits, which will be 8 instances for that service. However, there is
a tradeoff between number of instances and number of services that can be
represented in the chain. The more instances assigned for a service, the less
services can be used in the chain.

26

Figure 11: StEERING encode metadata for load balancing

3.2.2 Ericsson: Optical Service Chaining

Ericsson researchers Xia et al. [XSZ+15], believe that packet-based traffic
steering is not efficient with aggregated flow, and it is only suitable for
small volume of traffic due to its high configuration complexity and energy
consumption. As the number of flows increase, configuration of flow matching
rules become more complex and fallible. Therefore, a new traffic steering
method is introduced, where instead of packets, wavelengths are switched
to achieve coarse-grained optical steering. However, optical steering is less
flexible and agile compare to packet-based methods. Though, it is suitable
for service chains, where high capacity network functions (NFs) and traffic
aggregation exist.

This method, similar to other traffic steering approaches consists of dif-
ferent modules and interfaces such as operations support system/business
support system (OSS/BSS) module, cloud manager, and SDN controller.
Service chaining rules and policies are defined and enforced by OSS/BSS
module. On the other hand, cloud manager and SDN controller are responsi-
ble for provisioning of resources. There is a southbound interface between the

27

SDN controller and optical steering domain, which optical circuit switching
can be done with the aid of proprietary interfaces provided by hardware
vendors or using OpenFlow v. 1.4 protocol that has support for optical
circuit configuration. Service chain can be achieved by both optical domain
and packet domain. Figure 12 depicts the architecture of optical service
chaining.

Figure 12: Ericsson Optical Service Chaining Architecture a)General Archi-
tecture b)Domain of Optical Steering [XSZ+15]

In this method, aggregator routers are residing at the edge of operator’s
access/metro network, which is part of forwarding plane. These routers come
with optical module in order to change aggregated traffic into wavelength flows
that later are multiplexed into a fiber link to the data center. Aggregated
flows from aggregator routers go through the high-capacity (HC) Network
Functions (NFs). Moreover, aggregation can be achieved by OpenFlow
matching rules on packet fields or using multiprotocol label switching (MPLS)
[XSZ+15].

Fiugre 12a shows that in this architecture, data center/cloud has ca-
pability of both optical and packet steering, which makes it hybrid. Flows
are entered to the data center and first go through Reconfigurable Optical
Add/Drop Module (ROADM). SDN controller configures ROADM, therefore
flows based on their size are forwarded to different domains. Aggregated
flows are forwarded to the optical steering domain, and small size flows are
dropped into packet steering domain for fine-grained processing. After a

28

wavelength gone through all the required virtual network functions (vNFs)
then it is forwarded back to ROADM. From ROADM it can get dropped for
further fine-grained processing or leave the data center.

Figure 12b, depicts how optical steering is attained by existence of
different modules in this architecture. Wavelength-selective switch (WSS) is
a switching device, which has one common port on one side as an input and
multiple branches of ports on its other side for output. By configuration,
every wavelength that enters WSS can be switched to one of the output
ports without interfering with other wavelength channels. Tunable optical
device, is responsible for the conversion of optical to electrical signals and
vice versa. SDN controller is responsible to configure WSS, so wavelength
flows that are coming from WSS output ports are connecting to the next
vNFs in the service chain via optical couplers and fiber links. Optical coupler
is a passive device which has 2 inputs and one output (2 x 1). It allows
optical signal to enters from one of its input ports, though combining two or
more input wavelength signals and extracting one output out of these signals
results with significant losses. Hence, SDN controller should be responsible
to prevent wavelength conflict when flows are looped back.

This method is flexible, since WSS takes few hundreds of milliseconds to
tune, therefore it is considerably fast to provision on demand NFV service
chain. optical steering can adapt traffic growth, since wavelength switching is
independent from transmission rate, which makes it scalable. Lastly, power
efficiency is another advantage of this method. Based on the simulation
conducted by Xia et al, optical steering is more power efficient compared to
packet-based steering.

3.2.3 Huawei: Service Chaining with Service Based Routing

Huawei [Hua13] achieved service chaining using service based routing (SBR).
The SBR method operates based on Policy and Charging Enforcement
Function (PCEF) or Traffic Detection Function (TDF). Three different
modules cooperate in SBR to attain service chaining, SBR controller (SBR-
C), Traffic Classifier (TC) and SDN controller. Service routing policies are
managed by SBR-C, which is configured locally or received dynamically
through Policy and Charging Rules Function (PCRF). TC is responsible to
classify the traffic using deep packet inspection (DPI), and report the result
to the SBR-C. Based on the specified service routing policy, the classified

29

traffic is binded to the related service chain through SBR-C. Therefore,
SBR-C dictates the forwarding rules to the SDN controller in order to
forward these rules to OpenFlow enabled switches. The classified traffic steer
through required middleboxes based on specified forwarding rules. Figure
13 illustrates huawei SBR solution using SDN.

Figure 13: Huawei SBR with SDN solution

The SBR solution can be deployed in two different methods, which are
standalone and embedded. Standalone SBR solution is suitables for oper-
ators that have already deployed PGWs/GGSNs (PDN Gateway/Gateway
GPRS Support Node) and do not want to replace them. Mobile pipe zone
remains unchanged in this method, where PCEF/TDF (Policy and Charging
Rules Function/Traffic Detection Function) is placed behind the Gi/SGi
firewall interface of existing PGW/GGSN. However, compared to embedded
deployment, standalone SBR requires more configuration and more policy
control signaling. On the other hand, embedded SBR deployment is suitable
for network operators who prefer to replace their existing PGW/GGSN with
the new one. In the embedded SBR, service routing policy control can take
effect directly at the mobile gateway, which can be based on user context
and radio access information. This makes, deployment and management of
service provisioning simpler.

Huawei SBR solution is capable of multi-dimensional service routing
policy control. Multi-dimensional policy control, chooses the best awareness
option, which consists of radio access awareness, user awareness, and service
type awareness. Based on the conditions that these awareness methods

30

provide, different path can be taken, and traffic can be steered through
different middleboxes.

Radio access awareness in SBR, gathers information such as radio access
type and user location from mobile gateway or PCRF. Based on collected
information, SBR can steer the traffic through different middleboxes. For
instance, if the user connection is in 3G mode, due to low bandwidth of
3G, video traffic steers through a video optimizer for enhancing the video
streaming. While, if the user has 4G connection, then video traffic goes
directly from internet to his device without the need of optimization.

SBR is user aware and it can hold information of each user in order
to determine the steering based on this data. Each user has a profile and
the routing policy is defined based on this profile. Traffic is classified into
different user categories based on different subscriptions that users have. For
example, a user with the VIP subscription gets better video quality because
his traffic passes through video optimizer, while normal user traffic goes
directly to the internet without any video enhancement.

Service type awareness in SBR, analyze the traffic from layer 3 to 7 and
identifies the service that it requires. The Value Added Service (VAS) policies
can be based on this awareness method in order to utilize different services
for different traffic. For instance, video streaming traffic can be forwarded
for video optimization service, while web traffic can be forwarded to web
cache service.

3.2.4 FCSC: Function-Centric Service Chaining

Arumaithurai et. al. [ACM+14] believe that current existing service chaining
methods are not efficient due to the coupling of routing with the policy. In
the existing approaches, SDN controller decides the services that needs to
be applied for a flow. They setup the route for the flow which needs to go
through the specified services, and for that they need to setup the state
for intermediate switches. This solution makes the service chain, inflexible,
undynamic, and unscalable.

Information-Centric Network (ICN), is a new approach that decouples
the location of specific service from the function it provides. Arumaithurai
et. al. proposed Function-Centric Service Chaining (FCSC) which is a novel
approach based on ICN. FCSC, decouples the services that needs to be
applied for a flow from the location of these services (middleboxes), and does

31

the routing through a naming layer. Decoupling can simplify the dynamic
alteration of services needed for a flow, which can also result in balancing
the load. In this approach, instead of putting flow state in the switches, they
will be deployed in the packet header. This can reduce the amount of state
stored in the network and result in better scalability.

As mentioned earlier current SDN approaches have lack of dynamic,
scalability, flexibility and reliability. Real-time decision for SDN controllers,
is an issue to reroute the traffic for balancing the load on the network or
a service. This issue can exacerbate if the number of flows increase, which
shows low level of dynamicity. SDN controllers install rules on each switch,
and the number of this rules is proportional to the number of flows. This
hinders the network for scalability, if the number of flows or the network
itself grows. If the result of DPI, indicates that the flow should go through
another service for further processing, controller is responsible for building
the new path. This, can cause extra control overhead in both latency and
communication for every flow whenever the set of services are modified, which
can degrade flexibility. Lastly, if a service or middlebox fails, switches should
rely on the controller to build a new path for the flow, which increases the
time for handling such crisis, and diminishes the reliability.

To eliminate the lack of dynamic, flexibility and reliability, FCSC uses
naming layer for the current SDN infrastructure. In the naming layer
approach, instead of requesting the controller to build a path for flow, only
the name of services that are required for a flow is needed. Network can
forward the packet to any service that provide the same functionality, which
can cause load balancing, and also fast recovery when a service fails. To
achieve this, FCSC incorporates hierarchical naming approach from ICN in
order to represent the list of services, and longest-prefix matching in the
forwarding information base (FIB) to forward the packets.

In order to provide scalability in the network system, FCSC utilizes
packet header to carry the flow-state instead of using switches. In current
method of SDN service chaining, switches hold the flow-state to forward the
packet based on 5-tuple, to the next service. The number of these flow-states
in the switches increase as the network expands or number of flows increase,
which is not suitable for scalability. FCSC, uses ICN naming convention in
order to put list of the services that packet needs to traverse. After each
packet is processed with the service, the name of applied service is removed

32

from the list in the header and will be forwarded to the next service. In this
method, switches need to hold forwarding information, based on per-service
rather than per-flow. Therefore the number of states stored in the switches
are proportional to the number of services, which facilitates scalability.

The FCSC, uses extended version of ICN for naming. Naming in the chain
for instance is like: /DPI/cache/R5. Therefore, after packets go through DPI,
the prefix DIP is popped from the list, then packet goes to the next service
which is cache and then exits the network from egress port R5. Services
that provide the same functionality have the same name, and they can have
distinctive ID, that can be added as prefix in the service list. For instance, if
there are two firewalls in the network they can have prefix _A or _B and
naming list can be like /Firewall/_A and /Firewall/_B. Figure 14 depicts
an example of the name changing of a packet in FCSC.

Figure 14: FCSC packet name changing example

3.3 Service Chaining Methods Comparison

Table 3 illustrates briefly the main features of different service chaining
methodologies, which were discussed in the previous section. This table
briefly shows what each method is suitable for. For instance, StEERING
method, is suitable for cases where we do not want to have different elements
in the system to take care of load balancing, or decision making for placing

33

services. Optical service chaining is good when we have a lot of data to
process, where normal packet based steering is not efficient, and system
breakdown might occur. SBR solution is appropriate where we have different
set of users with different service needs. And FCSC is best when there are a
lot of flows with the need of real-time decision making.

Table 3: A brief Comparison between different service chaining methodologies
Features Steering

Method
Goal

StEERING Multi-dimensional
tables
Algorithm to check
best place to put a
service
Load balancing
through the Metadata

StEERING
(Packet Based)

Scalability
Flexibility
Efficiency

Optical
Service
Chaining

Suitable for aggregated
data

Optical
(Wavelength
Switching)

Flexibility
Power efficiency

Service
Based
Routing
(SBR)

Multi-dimensional
service routing
User aware (proflie)

Service Based
Routing
(Packet Based)

Easy deployment
and
Management

FCSC Naming layer
approach to apply
services

ICN Naming in
packet header
(Packet Based)

Scalability
Reliability
Dynamic

3.4 Monitoring Cloud: Methods

Reliability and consistency in the cloud plays an important role for quality
of service. There are various methods and tools that are used in the cloud
to prevent or detect any unusual behaviour such as heavy traffic on specific
node, low disk space, low RAM, or low CPU. In this section we will discuss
some of well-known methods and tools for monitoring cloud.

3.4.1 PCMONS: Private Cloud Monitoring System

PCMONS [DUW11] is a general purpose monitoring system for private
cloud. Its architecture consists of three layers, which are infrastructure layer,
integration layer and view layer. The infrastructure layer in this system has

34

the basic network equipments and software tools such as various hypervisors,
cloud platform and operating systems. Since the infrastructure layer consists
of heterogeneous resources, the goal of integration layer is to provide a
common interface for this inconsistency. For instance, different hypervisors
such as Xen and KVM or various cloud platforms like OpenNebula and
Eucalyptus require different actions for monitoring. Thus, integration layer
is responsible for abstracting any infrastructure details. The view layer,
provides information such as service level agreement (SLA) and policies,
where the users in this layers are mainly interested to check available service
levels and virtual machine images. Different views are implemented for
different users based on their needs, for example network administrators view
is distinct from business managers view. Figure 15 depicts the PCMONS
system architecture.

Figure 15: PCMONS Architecture

PCMONS is highly relying on integration layer for gathering information,
and transforming these information for visualization. The monitoring is
divided into different modules, which makes future adaptation to particu-
lar tools simple and effortless. Below is the list these modules and their
responsibilities, and Figure 16 illustrates all the modules in action.

35

• Node Information Gatherer: gathers local information about cloud
virtual machines and sends it to cluster data integrator.

• Cluster Data Integrator: gathers necessary data from cluster to pre-
pare it for the next layer, and avoid dispensable data transfer from
nodes to monitoring data integrator.

• Monitoring Data Integrator: gathers the data from cloud and saves
it into the database for archival and also providing this data for the
configuration generator.

• Configuration Generator: fetches the information from the database
and prepares configuration file appropriate for visualization tools.

• VM Monitor: uses script running on virtual machines, and get informa-
tion such as CPU and memory usage.

• Monitoring Tool Server: receives monitoring data from different mod-
ules and take various actions such saving the data into the database
for archival purposes.

• Database: by getting support from monitoring data integrator, and con-
figuration generator, saves the data into database.

• User Interface: Nagios user interface is used in this system.

3.4.2 Elastack: Automatic Elasticity in the OpenStack

The key element for elasticity is to monitor instances and check them regularly
in order to get alerted when they have heavy load or when they are idle.
Elastack [BMVO12] is a system introduced by Beernaert et. al., which
performs monitoring of instances for cloud platforms that collects data from
them, which can be used to manage the infrastructure.

In order to make Elastack scalable with its beneath infrastructure, a
monitoring daemon is running on each nova-compute node to monitor the
instances running on that node. Serpentine is an adaptive middleware for
complex heterogeneous distributed systems that permits a system to adapt
to changes which might happen in a production environment without the
need of human interference. Components of Serpentine do not pertain on a

36

Figure 16: PCMONS Typical Deployment Scenario

persistent state since it was initially made to be scalable, which enables the
system for macro and micro-management. Management policies are defined
through different scripts which are applied to the system. Serpentine plays
the role of node monitoring in the Elastack system which is shown in Figure
17.

Elastack is made of three main components: controller daemon, monitor
daemons and serpentine script. When instances launch or terminate there are
events which are propagated by the queue server (1), and instance monitors
are responsible for monitoring instances and collect data periodically (2). The
behavior of system is defined by serpentine script, which first a configuration
file should be fed to it in order to connect all the available monitor daemons
and controller daemon (3,4). The controller daemon is a background process
that should be running on the same host as controller node ideally. Its main
job is to extract the underlying cloud service and to separate the remaining
Elastack components from it to ensure that it stays cloud infrastructure
agnostic. With the communication of controller daemon through nova-api
on the controller node the system can create and terminate instances in
OpenStack (5).

Serpentine script creates and terminates instances and coordinate it with

37

Figure 17: Elastack System Architecture

the load balancer, so when an instance is created it will inform the load
balancer. Afterwards, load balancer initiates connection to the client running
on that instance, then after establishing connection it will distribute tasks to
this instance. In case of terminating an instance, Serpentine informs the load
balancer that the instance is signed to be terminated, then the load balancer
will stop assigning further tasks to that instance and after all the pending
tasks of that instance are finished it will be signed as ready to be terminated.
Meanwhile, Serpentine queries the load balancer if that instance is ready for
termination, and once it receives positive reply then it will issue termination
for that instance. New instances are created when x ≥ (90.0 × n), where
x is the total cpu usage of all instances and n is the number of instances.
Moreover, Instances are deleted when the total cpu usage can be distributed
to all the instances.

In order to not create or terminate an instance sequentially for example,

38

creating instance, removing it and then again creating it, the system requires
each decision to be made twice before acting accordingly. Therefore, each
time when the script is executed the decision will be stored, and after second
time if the decision is the same then it will proceed otherwise the first decision
will be marked as invalid.

3.5 Monitoring Cloud: Tools (General Purpose)

In this section some of well-known general purpose tools for monitoring cloud
and data centers will be discussed. All of these tools are open source and
free to use.

3.5.1 Nagios

Nagios [Nag15] is an open source platform for monitoring network, services,
applications, operating systems, infrastructure components and system met-
rics. Using plug-ins, any organization or individual can develop their own,
or use pre-developed plug-ins to customize monitoring behavior of nagios
in order to regulate it in the best possible way to suit their needs. Nagios
is highly scalable [IPMM12], which can support up to 100,000 hosts and
1,000,000 services.

The scheduler daemon in Nagios is responsible for checking network and
other related services and inform the administrator in case of failure or
emergency by sending email or instant messages. By the help of Nagios
Remote Plug-in Executor (NRPE) it is also possible to check CPU load and
memory usage of local resources. Nagios Event Broker (NEB) is another
module in nagios, which provides an API for developers to add extra work
flow to nagios events. Therefore, a developer for instance can add extra
feature to save results of a plug-in execution in a database.

Nagios configuration is text-based, which makes configuring it troublesome
by remembering various configuration options and complex structure. Since
the configuration file is text-based, configuration files can be created with
any text editor. However, this makes it error prone especially for large
network enterprises. Open source applications from nagios community make
the process of creating configuration files easier. Some of these applications
that can create simple configuration files are, Fruity and Lilac, which have
PHP-based web interface. And for creating more complex configuration files,

39

NConf and NagiosQL can be useful to assist creating configurations for large
network topology.

Nagios has a web-interface that gives the ability of monitoring servers,
and services from anywhere and anytime. Nagios Fusion, which was released
on 2014, unifies all nagios products and gives additional visual info to the
user. Upgraded highcharts and advance dashlets are implemented in this
release. This release, enhances visualizing operational status, which enables
faster trouble resolution for an entire IT infrastructure.

3.5.2 Collectd

Collectd [Col15], is another open source monitoring tool, which is a daemon
that collects system performance statistics regularly and provide various ways
for storing the collected data. From the collected statistics, one can extracts
system performance and bottlenecks, and do future or capacity planning for
the system. Collectd takes advantages of graphs, which provide tremendous
amount of information for analyzing different system components.

Collectd is written in C language, for the performance purposes and also
feasibility of running it without scripting language or cron daemon. This
makes collectd to handle more than thousands of data sets without any
issue or performance degradation. Moreover, collectd has a community that
actively develop and update, and also provide a proper documentation for it.
There are more than 90 plugins developed for collectd, which are ranging
from basic cases to more specialized and complex topics.

Notifications can be sent through the daemon and this allows for threshold
checking. There has been a development for a module called “collectd-nagios”,
which allows collectd to be integrated into nagios for more sophisticated
system monitoring. Figure 18 shows the architecture of collectd.

40

Figure 18: Collectd Architecture

3.5.3 Ganglia

Ganglia [Gan15], is also another open source monitoring system which tar-
gets clusters and grids. Similar to many other monitoring systems, it allows
the user to check the system performance by checking CPU load, network
utilization and other system attributes. It operates based on multicast proto-
col (listen/announce), to aggregate the state of systems that are monitored.
Ganglia uses XML for data presentation, RRDTool for storing data and
representation, and XDR for serializing and compacting the data.

The ganglia monitoring daemon (gmond) is multi-threaded daemon,
which runs on every node of cluster and has four primary responsibilities. It
monitors nodes for changes and notifies the user for any critical situations
that needs attention. It responds to request with XML representation to
describe the node state in the cluster. And last but not least, it listens to
the states of other nodes in the cluster through multicast or unicast channel.

41

3.6 Monitoring Cloud: Tools (Cloud Specific)

In this section we will discuss about some of tools, which are specifically
made for monitoring cloud. Among all, we will briefly discuss about Amazon
Cloud Watch, Azure Watch and Nimsoft.

3.6.1 Amazon CloudWatch

Amazon CloudWatch [Ama16] is a proprietary monitoring tool for amazon
cloud services. It can be used with AWS services such as Amazon RDS
DB, Amazon EC2, and Amazon DynamoDB instances. It can collect logs,
track various metrics (i.e. CPU utilization, disk usage, data transfer, etc), or
respond to different changes automatically.

Aside from the metrics that Amazon CloudWatch provides, it is possible
to create custom metrics in the application and use a simple API to request
Amazon CloudWatch to monitor them. These metrics can be stored in order
to spot trends or troubleshoot the issues that the application might encounter.
Similarly, logs can also be stored with the Amazon CloudWatch, or existing
logs can be sent to it to monitor them in almost real-time manner.

Furthermore, Amazon CloudWatch provide another feature, which is
called Alarm. Alarms can be set in order to take automatic actions whenever
is necessary. For instance, if CPU usage of one Amazon EC2 instance exceeds
certain threshold, the alarm module can send a notification to the admin, or
automatically add new EC2 instance to bring down the load and distribute
the jobs.

CloudWatch also provide a graphical user interface in order to check the
graphs. It can store metrics up to two weeks, which are shown on different
graphs, that can help to detect issues at a glance. Amazon CloudWatch can
also save all the metrics in the application owner’s account for search and
easy access.

3.6.2 Azure Watch

Similar to Amazon CloudWatch, Azure watch [Azu16b] is a proprietary tool
for monitoring microsoft cloud services. It can monitor different metrics
which by default are disk read/write, Data in/out, available and used memory
and CPU percentage. However, by configuring verbose monitoring, more
metrics can be stored. By default each 3 minutes, metrics are sampled and

42

stored. However by turning on the verbose configuration, these intervals can
be changed to 5 minutes, 1 hour, or 12 hours. Metric data is stored for 10
days, and after that will be removed. Different metrics can be selected to
plot them on graph which is provided by Azure Watch.

Azure Watch also can send alerts when certain metrics goes above pre-
defined threshold. For enabling alerts, a rule should be specified. If the
rule meet certain criteria it can send a notification based on an event or
aggregated events. Notifications can be sent as email to service admin, or
any specified person. If the problem is resolved, another email will be sent
as well notifying that the issue has been resolved.

Azure Watch can also auto scale [Azu16a] similar to Amazon CloudWatch.
This can be achieved based on different attributes, such as admin predefined
upper and lower limits, schedules, epochal performance, at the beginning or
end of specific hour, or any combinations of these attributes.

3.6.3 Nimsoft

Despite from Amazon CloudWatch and Azure Watch that are proprietary
tools for Amazon and Microsfot, nimsoft [Nim16] cloud monitoring tool, can
be used for any cloud platform. This tool has subscription fee, and it is not
free. However it provides wide ranges of features for monitoring the cloud.

Aside from basic features that Amazon CloudWatch and Azure Watch
provide such as storing various metrics and representing them graphically,
it has different features that make it unique compare to other monitoring
tools. For instance, it can notify the service admin via SMS, RSS feed,
instant messenger, twitter, email and many more. For testing availability
and transaction times, it tests the availability from 60 different locations in
40 different countries.

Nimsoft is SaaS, which does not need to be installed, and can be accessed
through web and set up easily. However, based on all the good features that
Nimsoft provide, we have mention that this monitoring tool is only suitable
for websites and web services, since they are only focusing on that.

3.7 Cloud Monitoring Tools Comparison

Fatema et. al, have done a comprehensive survey of various monitoring
tools, which here we put some of their foundings. Table 4 demonstrates a

43

brief comparison between monitoring tools that we discussed in the previous
sections of this chapter (i.e. general purpose and cloud specific).

Table 4: A brief comparison between different monitoring tools
Tools Monitored

Resources
Drawbacks OS Support

Nagios Network
Applications
System resources
Services
Sensors

Unable to bind to service
after VM migration
Difficult configurations
Unable to operate at
high sampling interval

Linux/Unix
Windows
through
proxy

Collectd Network
Applications
System resources
Services
Sensors
Databases

No Graphical interface Linux/Unix
Mac OS

Ganglia System Resources Rigid to customize
Overhead at both net-
works and hosts

Linux/Unix
Mac OS
Solaris
Windows

Amazon
CloudWatch

AWS resources Security threats because
of non-efficient utiliza-
tion
Limited only to AWS re-
sources

Linux
Windows

Azure
Watch

Azure resources Limited only to Azure re-
sources
Supports only Windows

Windows

Nimsoft Network
Applications
Different cloud re-
sources

Not fault tolerant
No support for SLA
agreement for data loca-
tion
Limited mostly to Web
sites and services

Linux/Unix
Mac OS
Windows
Netware

44

4 Design for Monitoring Service Chain

Monitoring service chain is essential in order to check the performance and
health of every module in the system. In the service chain which is operating
under cloud services, if any component goes down, then the whole service
chain breaks, and the entire service will be unavailable for the customer. The
consequence of this unavailability will be distrust from service subscriber
towards the service provider and eventually damage to the reputation of its
service and loss of income.

As discussed in the previous chapter, there are different monitoring
solutions available in the market, however some of them are proprietary like
Amazon CloudWatch, or Azure watch, and other open source systems are not
tuned for monitoring the service chain. Due to this reason, we are introducing
our own design for monitoring the service chain. Our monitoring system
divides the monitoring into two subsystems. The first part is monitoring the
cloud components and the network (i.e. flow controller and its tables) since
the services are operating under the cloud system and communicate over
OpenFlow switch. The second part is responsible for monitoring the services
running inside our compute nodes, which provide the required service for the
user.

Figure 19 shows our overall design for the cloud service and its integration
with OpenFlow controller. As it is illustrated, our cloud system consists of
three nodes, controller, network and compute nodes. Moreover, there is an
OpenFlow controller responsible for controlling the flows in the OpenFlow
switch. Instances or services that are running inside the compute node are
all connected to an OpenFlow Switch, and their traffic is controlled by the
OpenFlow controller.

Controller node is responsible for managing the network node and com-
pute node. For the compute node, controller can create, delete, start, restart
or shutdown an instance. For the network node, controller is responsible
for creating router, managing subnets, assigning floating ip to the instances,
etc. Aside from controlling the compute and network node, controller node
is responsible for managing the databases, identifications, message broker,
tenants, security groups, and operating system (OS) images that compute
node needs for booting an instance. In general, controller, as it is clear from
its name, is responsible for controlling the whole cloud system.

45

Figure 19: Overall Service Chain Design

The network node has the networking plug-in, layer 2 and 3 agents to
control the network. Layer 2 agent is responsible for provisioning the tunnels
and virtual networks. Layer 3 agent is responsible for the provisioning and
operations of tenants network, and its services include routing, NAT, and
DHCP. Network node is also responsible for handling the external network
connectivity of virtual machines to the internet.

The compute node runs the hypervisor part of compute that operates
tenants instances or virtual machines. By default the hypervisor in compute
node is KVM, however in our design, we use linux containers. The compute
node has the networking plug-in, and the layer 2 agent, which controls the
tenant networks, and implements security groups. Since the compute node,
is responsible for handling the instances/services, after limited amount of
instances, it gets overloaded. And the exact amount of services that can
operate simultaneously on a compute node is proportional to the hardware
configuration and the amount resources dedicated to the compute node.
However, compute node can get expanded horizontally to multiple compute
nodes in different host machines.

OpenFlow controller is responsible for managing the flows through its

46

tables. Tables have the necessary rules for managing the service chain. Based
on deployment architecture of service chain, these rules may vary. The
OpenFlow controller also populates statistics for each port on the OpenFlow
switch, and with these statistics, we can get how much traffic passed from
specific port, and how many packets have dropped, which can help us in our
monitoring system.

4.1 Monitoring cloud

For monitoring cloud, the design should be in such a way that, the main
monitor system takes control of every module in the cloud in order to prevent
any service in the cloud to become unavailable or unresponsive. There are
two key elements in monitoring that needs to be considered carefully. The
first element is overhead produced by the monitoring system in the network,
and the second element is availability of the monitoring system.

Many monitoring systems in order to check availability of the monitored
system, use ICMP messages to ping the services. In this case, if there is any
response from the service then they conclude that the service is available,
otherwise they assume the service is down. Therefore, these systems mostly
use the pulling mechanism to get informations from the service that they
are monitoring. However, despite from functionality of this mechanism and
its popularity, a lot of overhead is introduced in the network. Since, all the
time the monitoring system pulls the information from the machines.

This mechanism works flawlessly if only couple of machines are monitored.
However if it comes to hundreds or thousands of machines, then the network
bandwidth and other resources are wasted in order to periodically pull
information from every single machine to check whether they are healthy or
not. By default each ICMP message is 32 bytes, if this message is sent to 1000
machines, then 32,000 bytes is sent to the machines requesting and almost the
same amount is coming back to the requester as the reply, which in total can
be around 64,000 bytes. This is only for each time pinging the machines, and
if it is one time request then it would not have any impact on the network.
However, if this ping message is sent every 5 seconds dependending to the
configuration of monitoring system, then in 24 hours 1105920000 bytes (1.1
Gigabytes) are sent in the network only to check if there is a response from
the machines or not. This is just an example of 1000 machines, however
cloud providers usually have more machines that need to be monitored.

47

Pull mechanism imposes a huge burden on the CPU of managers, and
that is because of repetitive requests to the agents regarding their status.
Likewise, the repetitive requests to the agents can cause the network overhead
[Mar98]. Thus, reducing overhead is crucial in the network in order to have
an optimized system for monitoring the service chain. For this reason, our
design uses the pushing mechanism due to its efficiency and low overhead
for the network and CPU. In this approach, there will be a light application
running on each module of cloud as a daemon, monitoring the resources of
that machines, (i.e. CPU usage, RAM usage, Network, etc.). If the usage of
each of these resources exceed certain threshold, for a certain period of time,
then it will send a message to the main monitoring system, that it is getting
overloaded and backup is needed.

However, this question might arise, what if the whole virtual machine
goes down suddenly, so the monitoring daemon will not have enough time to
send any messages to the main monitoring system? This might be unlikely,
since the whole point of monitoring is to prevent such disasters and inform
the main controller before any possibility of failure. However, just to make
sure nothing goes wrong, we have extended our design. Since all of our cloud
components are running inside different Virtual Machines (VMs), then there
will be a monitoring daemon running on the host machine, monitoring the
VMs. Therefore, if any of these VMs go down, the monitoring daemon on the
host machine will send an alert about the situation to the main monitoring
system. Figure 20 depicts the design for the monitoring system.

Figure 20: Monitoring Cloud Nodes Design

The monitoring daemon, which is running on the host machine, can

48

also monitor health of hard disk, RAM, and any other component that its
failure can cause the whole host machine become unavailable. There is a
trade-off between network overhead and checking the availability of hosts. If
any of VMs go down, with the monitoring daemon on the host machine, a
notification will be sent to the main monitoring system. However, if the host
itself goes down, and we use push mechanism instead of pulling, then we are
unable to detect it. This failure can only happen, if certain machine gets
power shortage. Thus, power shortage should be detected through another
mechanism and hardware, which is out of scope of this paper.

4.2 Monitoring Services and OpenFlow Controller

Monitoring services in the compute node that are running to provide a
specific service for the customer is momentous. When services are linked
together, they create a service chain. However, if one of the service nodes
goes down and become unavailable then the whole chain breaks. Thus, by
monitoring the services our goal is to minimize such tragedy.

The design idea behind our service chain is static, however in reality many
networking companies are shifting towards dynamic service chaining. Since
our goal here is not to create a new method for service chain, we decided to
implement static chain for the simplicity of implementation, which has the
similar fundamental nature as dynamic service chain, that forwards packets
from one service to another and finally to the destination. Figure 21 shows
our design for the service chain.

Figure 21: Service Chain Design

Based on this design, packets which are destined to the destination are
take the path to the services that the user is subscribed for, then after

49

packet processing is done in each service the packets are forwarded to the
destination. We use Type of Service (ToS) [Alm92] in IP header, in order
to steer the traffic to the services, before sending them to the destination.
In this method, based on the services that the user is subscribed, the port
number and mac address is changed to the mac address of desired service
node, in order to steer the traffic to that node, after the process is done,
packets are sent back to the OVS, and if another service needs to process
the packets, then the packets are steered through that service, otherwise the
packets will be sent to the destination.

4.2.1 Monitoring Containers through Control Groups (cgroups)

Linux control groups (cgroups) partition tasks into different groups that
have specific behaviour, which affects their children, if any, in the hierarchy
[Men15]. Linux containers, are process groups in linux, where each container
is an isolated process with its own cgroup. In our design for the monitoring
services we use the method of monitoring cgroups from [KISdL15] to monitor
the containers that services are running on them for few different reasons.

The first reason is that, even if the container itself is unresponsive, we
still can find the necessary information that we want, for instance we can
check if our IPS process id is still in the cgroup or not. The second reason is,
we do not need to install any special software with different required libraries
on every container node to monitor them. And the third reason is that, even
if the container instance gets compromised, still we can monitor it, since we
are collecting the data outside of the container. However, the only case that
we cannot monitor the container is, when the container gets compromised
and get access to the host context.

Through this approach we gather resource utilization of each container
periodically. However, containers that are monitored should be mapped to
the corresponding cloud instance. If the resource usage is above specified
threshold then the monitoring system sends an alert that specific service is
overloaded and backup service is needed to balance the load. The monitoring
system receives the alert, investigates the type of service that requires load
balance, finds suitable image which has that specific service installed on it,
and starts the service, or creates the service if there are not any services
available. After new service is created, necessary actions should be taken
through the OpenFlow controller to direct the flows to the new initiated

50

service. Figure 22 illustrates the flowchart for monitoring daemon for the
services in the compute node. And Figure 23 demonstrates the flowchart of
main monitoring system, which takes care of automatic scale up and down
for the services.

Figure 22: Monitoring Services Flowchart

51

Figure 23: Main Monitoring Service Flowchart for Auto Scale up/down

However, if the new backup service is idle for certain period of time, then
it will send an alert to the monitoring system that it has been idle for certain
amount of time, with very low CPU usage. The monitoring system then
will request from main service (requester service) its current resource usage.
Therefore, if monitoring system realizes that the main service is near the
heavy load threshold, it will keep the backup service on, otherwise it will
shut it down to save resources. Figure 24 shows the flowchart for turning
off an unneeded backup service.

52

Figure 24: Turning off a service Flowchart

4.2.2 Monitoring OpenFlow Controller and its Statistics

OpenFlow controller is responsible for the OpenFlow rules and managing
them. With the rules, we can specify that packets go through specific nodes
before forwarding them to the destination. Therefore, monitoring the Open-
Flow controller is essential, because if the controller becomes unresponsive or
its entire node goes down, then whole packets will drop or take the default
route without being steered to specified service nodes.

For monitoring the controller itself, our design, takes the similar approach
as monitoring cloud nodes. Therefore, we measure CPU usage, RAM usage
and Network traffic in the OpenFlow controller node, and if resource usage
goes above certain threshold for certain amount of time then we notify the
main monitoring system about the situation and send an alert to it. Main

53

monitoring system can take the necessary action to handle the situation.
One desirable function in the OpenFlow controllers is that they provide

easy access to the statistics of OpenFlow switch through their APIs. With
these statistics we can monitor the network that our services are running in
the compute node. We can extract the information that how much traffic
has passed from specific port in the OVS. In addition, we can observe how
many packet drops each port have had so far, in order to make a prediction
that for certain hour in the day we need extra backup services to balance the
load. Consequently, we pull the statistics from the OVS less frequently, after
certain period of time, that we have gathered information about behavior of
our network and services.

54

5 Monitoring System Implementation and Evalu-
ation

In this chapter we discuss the implementation of designed platform for the
monitoring service chain. First, we illustrate that how we implemented this
platform, and what tools we have used, then we demonstrate different screen
shots of working system in different scenarios. Lastly we evaluate our system
by showing the latency, uptime and the overhead that it imposes on the
cloud components and instances.

5.1 System Implementation

Our system contains three core components, which are main monitoring
system, services monitoring daemon (i.e docker instances), and KVM moni-
toring daemon for each one of the KVM nodes. The main monitoring system
has all the logics, and has control over the cloud. KVM monitoring daemon
which is running on cloud nodes (i.e. compute, network, and controller)
as well as OpenFlow controller (i.e OpenDaylight) node is responsible for
monitoring the resources on each of these KVM nodes. Furthermore, service
monitoring daemon is responsible for monitoring the resource utilization of
docker containers through docker API, which access cgroups. Figure 25
demonstrates the basic structure of this system.

Figure 25: Overall System Implementation

As it is illustrated in the Figure 25 OpenStack components are running

55

on three KVM nodes, as well as OpenDaylight on a separate node. The
autopilot module on the monitoring system is responsible for turning on
new instances, which we will discuss more in upcoming sections. The cloud
controller module is responsible for connecting to the OpenStack controller
node, in order to take control over the various operations.

5.1.1 Software and Hardware

For the cloud side we use OpenStack since it is open source with the huge
community support. Based on the hardware that we had for this development,
we put all the OpenStack components on a single machine including the
OpenDaylight component. The machine is running ubuntu 14.04 LTS, with
16GB of RAM and intel core i7-4790 CPU 3.60GHz. The main monitoring
system is running on a HP laptop running ubuntu 14.04 LTS, with 8GB of
RAM and intel core i5-2540 2.60GHz

We use KVM for running the cloud components as well as OpenFlow con-
troller, and each machine comes with its own configuration for the resources
that it is dedicated to it based on its requirements. For the controller node
we assigned 3GB of RAM and 2 cores out of 8. Compute node has 3.5GB of
RAM with 2 CPU cores. The network node comes with 3GB of RAM and 1
CPU core. And OpenDaylight node is tuned to have 3GB of RAM with 2
CPU cores.

All the applications main development language is Java, with Spring
framework. For the OpenDaylight and OpenStack KVM nodes, we use
Sigar API in order to get resource usages (i.e RAM and CPU). For the
compute node, we use nova-docker module instead of KVM for the service
virutalization, which enables OpenStack to run docker containers. Therefore,
for their resource calculation we use docker API to get the data, which is
from cgroups.

5.1.2 RAM and CPU calculation

The heart of our monitoring system is the RAM and CPU usage, which via
these data we can determine if a virtual machine or cloud instance is under
a lot of pressure or not. For the resource utilization of docker containers, we
have referred to their "docker stats" git repository [Doc16], in order to find
the formula behind "docker stats" command, which is used for displaying

56

the docker resource usages (i.e. CPU and RAM). Here is the formula for
calculating the CPU and RAM usage in percentage:

cpuPercentage = cpuDelta

systemDelta
× 100 (1)

ramPercentage = memoryUsage

memoryLimits
× 100 (2)

Here cpuDelta is the current total CPU usage minus previousTotalCPUusage,
depending how regularly we are checking the CPU. And systemDelta is
current system CPU usage minus previousSystemCPUusage. Moreover, in
the second formula, memoryLimits, refers to the memory limitation that is
imposed to each container, in order to use up to certain amount of memory.
In our system we check CPU and RAM usage of each container in the interval
of 1000 milliseconds (1 second).

In the developed system, if the CPU or RAM usage exceeds to more than
80% for more than 10 seconds, then the monitoring daemon will send an
alert notification to the main monitoring system. The reason for waiting
10 seconds is to make sure the service is under persistent pressure and not
just a sudden temporary burst. In the next subsection we discuss about the
messaging mechanism between monitoring daemons and the main monitoring
system.

5.1.3 Communication Architecture and Messages

For messaging and communication between all the client and servers we use
REST architecture due to its efficiency and simplicity to implement. REST
web architecture first was introduced by Roy Fielding. REST uses URI in
order to manipulate, or fetch the data from a web server. To do that, it uses
HTTP interfaces which are limited to GET, PUT, POST, and DELETE.
With the GET request data from web server can be obtained for processing
or displaying it to the user. PUT messages are responsible for creating data
entry in the web server. In addition, POST messages are similar to PUT
messages, with the difference that POST can update the data in the web
server as well as creating it. Lastly, DELETE messages are used for deleting
the data from the web server. REST uses XML or JSON data format for
sending and receiving the data to/from the web server. [He03]

Currently almost all applications have support for REST and they pro-

57

vide REST-API for programmers in order to have unified procedure to
communicate with their application. In our environment, all the components
including OpenStack, OpenDaylight, Docker, monitoring daemon, and main
monitoring system have support for REST-API which we utilize it as primary
communication method. Table 5 illustrates the messages that goes from
monitoring system to OpenStack controller node. Table 6 shows the message
which goes from monitoring daemon to the main monitoring system. And
Table 7 illustrates the messages that goes from the docker monitoring daemon
to the main docker server and the main monitoring system.

Table 5: Messages from Monitoring System to OpenStack Controller
Message Argument(s) Type Description
AUTHENTICATION username

password
tenant name

POST Sends authentication re-
quest to the OpenStack
controller and receives to-
ken in response

SERVER_DETAILS token
admin_url

GET Gets the details of all the
instances

SWITCH_INSTANCE token
instance_address
action

POST Turns on or off an in-
stance in the cloud

CREATE_INSTANCE token
name
network_id
image_id
flavor_id

POST Sends a request to create
new instance

NETWORK_ID token GET Gets the network id of
OpenStack controller

IMAGE_ID token GET Gets the glance image
IDs of OpenStack con-
troller

FLAVOUR_ID token GET Gets the flavour IDs of
OpenStack controller

DELETE_INSTANCE token
instance_id

DELETE Deletes specified instance

58

Table 6: Message between Monitoring System and Monitoring Daemon
Message Argument(s) Type Description
ALERT_CONTROLLER authentication

vm_hostname
vm_cpu_
percentage
vm_ram_
percentage

POST Send an alert message
to the monitoring system
that a VM has high CPU
or/and RAM usage

Table 7: Messages between Monitoring System, Docker server and Docker
Monitoring Daemon
Message Argument(s) Type Description
ALERT_CONTROLLER authentication

docker_instance_
hostname
docker_instance_
cpu_percentage
docker_instance_
ram_percentage

POST Send an alert message
to the monitoring system
that a docker instance of
OpenStack has high CPU
or/and RAM usage

CONTAINER_DETAILS - GET Gets details of all the
docker instances which
are running, from the
docker server

COTNAINER_STATS container_id GET Gets the raw CPU and
RAM data to calculate
the RAM and CPU us-
age in percentage from
the docker server

5.2 Monitoring Service Chain in Action

In this section we show our system in action, therefore we illustrate the
platform through various screen shots that have been taken during project
runtime. First we show how our service chain operates with different screen
shots that are taken during packet forwarding from one service to another.
Then later, we show the main monitoring system in action specially the
platform’s reaction when it receives an alert from docker monitoring daemon.

59

5.2.1 Service chain with Squid proxy

In order to achieve service chaining we have developed a small application
that whenever receives a message requesting host name, it will respond
with the host name of the machine that it is running on. We have three
instances that are running with the naming of "ubuntu1", "squid-proxy" and
"echohostname". "ubuntu1" requests the host name of "echohostname" and it
replies its host name to the "ubuntu1". Figure 26 demonstrates the list of
instances which are running in our cloud along with their IP addresses.

Figure 26: List of running docker instances in the OpenStack

However to show how service chain works in action, with the aid of
OpenDaylight we force all the incoming packets from "ubuntu1" port go to
the "squid-proxy" instance instead of taking the default route. Therefore in
this situation, identity of the instance that is requesting host name will be
masked by the identity of "squid-proxy" instance. Figure 27 illustrates the
terminal message that goes from "ubuntu1" instance and its response from
"echohostname".

Figure 27: Ubuntu1 requesting host name

Figure 28 demonstrates that the packets are sent from 192.168.1.65

60

which is the private IP address of "ubuntu1". However tcpdump messages of
"echohostname" in Figure 29 shows that the incoming packets are coming
from 203.0.113.147 which is the IP address of "squid-proxy". Moreover, Figure
30 shows the log of messages that are sent to it.

Figure 28: TcpDump messages in "ubuntu1" terminal

Figure 29: TcpDump messages in "echohostname" terminal

61

Figure 30: Squid Log

For redirecting the flows to "squid-proxy", we had to add new flow to
the flow table of Open vSwitch, and we achieve this by sending REST PUT
message to the OpenDaylight controller. Figure 31 shows the XML code that
we put in the flow table. "in-port" is the port number that the packets are
coming from which is "ubuntu1", "output-node-connector" is the port number
that we want packets to go there which is the port number of "squid-proxy"
and "address" is the mac address of our "squid-proxy" instance.

62

Figure 31: OpenDaylight XML code for redirecting packets

5.2.2 Main Monitoring System

In this section we demonstrate how our system operates, and what actions it
takes in order to avoid the service chain to break down. Figure 32 shows
the application user interface, which is divided into two columns. The left
column includes Authentication, Properties, Create Instance and Attach IP.
The right column will display all the instances and responses that comes

63

from the OpenStack controller.

Figure 32: Platform User Interface

In order to communicate with the OpenStack controller, we have to login
with the credentials, which are all "demo" in this case. After login we are able
to do any operations such as listing all the available instances, turning on/off
an instance, or creating new instance. Figure 33 illustrates the Response
after we login and request for list of available instances. In this case we have
only one instance running with the name of "ubuntu1".

64

Figure 33: Listing available instances

With the system we can create new instances remotely and assign a
public IP to them. For doing that we have to choose a name for the new
instance, and choose what flavor and image type we want it to boot from,
and then create the instance. Here for our OpenStack flavors, we assigned
512MB of RAM and 1GB of storage space to the "m1.tiny" which we use it
for creating all the instances during this demo. Figure 34 shows creating
new instance and assigning public IP to it in action.

65

Figure 34: Creating new instance and assigning public IP to it

The module that makes this platform responsive to alerts from instances
and virtual machines, is called "AutoPilot". With the aid of this module,
whenever help is needed from our services in the cloud, the system provides
assistance for them automatically. Therefore, in this case, the main moni-
toring system receives a message from the docker monitoring daemon that
a specific service is seeking help. The monitoring system’s console shows
which instance needs help, which is shown in Figure 35, the id that needs
help belongs to "ubuntu1".

66

Figure 35: System’s console showing the ID of the service that needs help

After the system receives this message, it will investigate what kind of
flavor and image type this instance is using, in order to find suitable instance
to turn on. If the system finds any instance which is turned off (available to
use), and have the same type of flavor and image, then it will turn on that
instance to decrease the load of the instance which needs help. As Figure
36 illustrates, the application found that "ubuntu2" has the same image and
flavor type as "ubuntu1" and it turns it on.

Figure 36: Turning on new instance automatically

Though, if the system cannot find any suitable or available instance to
turn on, it will start creating new instance identical to the instance requesting
help. After the instance totally gets ready and boot up, the system will
automatically assign a public IP to it. Figure 37 shows the system’s console,
when it receives message from an instance requesting for help. After the

67

system finds that there is no available instance to turn on, it displays in the
console that there is no available instance, and it is processing to create new
instance. Consequently Figure 38 displays the new created instance that
has "-ubuntu2" as its suffix, to show this instance was created based on the
request of "ubuntu2".

Figure 37: System’s console showing there is no available instance

Figure 38: Response panel of system, showing the new created instance

In addition, if one of our cloud nodes (i.e. controller, compute, network)
or OpenFlow controller node (i.e. OpenDaylight) due to some reason have
high CPU or RAM usage, the monitoring daemon will send an alert message
to the main monitoring system. However due to time limitation that we
had for this project, we just show the message, and not implemented any

68

module to take care of this situation. Figure 39 demonstrates the notification
message that our system shows in case one of the KVM nodes goes under
heavy load. For simulation purpose of heavy load, we use an application in
ubuntu which is called "stress". With "stress" the user can define how long
and how much CPU and RAM should be used to put the system under the
pressure.

Figure 39: System showing a message that a KVM node is heavy loaded

5.3 Evaluation

In this section we evaluate our system by different metrics such as the
overhead that monitoring daemons impose on the KVM nodes, and how long
it takes for our system to react to the situations where a service needs help.

5.3.1 Overhead

It is essential that the daemons that are running in each KVM node to
have low overhead, so we would not have any trade off between performance
and reliability of nodes. Therefore, we check their resource consumption
when they are running on each node in order to investigate if they utilize
great deal of resources or not. For comparison, we decided to compare our
developed java monitoring daemon with collectd which is a popular and
open source monitoring system. In order to check the overhead of each of
these systems we use two simple linux commands, first we use "ps aux | grep
SYSTEM_NAME" to get the process ID (PID) of running daemons, then
we use "top -p PROCESS_ID" command to get the CPU and RAM usages
of the daemons in percentage. Figure 40 demonstrates two running systems
and their resource usage.

69

Figure 40: Getting resource usages of running daemons

For the purpose of fair comparison, we disabled all the unnecessary plugins
of collectd and just kept memory and CPU monitoring plugins enabled. Both
systems are configured to get the CPU and memory usage in interval of one
second. We recorded the memory and CPU consumption of both systems
for 60 minutes. Figure 41 shows the CPU usage of both systems. As it is
demonstrated our developed system has lover CPU consumption and it is
more steady compare to collectd.

The average CPU usage of collectd in one hour is 1.04% and the average
CPU usage of developed system is 0.29%. However, as it is illustrated in
Figure 42, our system has more memory consumption compare to collectd.
The average memory usage of collectd is 0.2% compared to developed system
which is 2.0%. The reason that our system consumes more memory is because
it is written in java while collectd is written in C programming language
which has lower memory consumption compare to java since JVM requires
more memory.

70

Figure 41: CPU usage of collectd vs. developed system

Figure 42: Memory usage of collectd vs. developed system

Advantage of our system is that it can be started easily on any machine
that supports java without the need for configuration and hassle for instal-
lation. However, collectd needs many libraries and configuration to work
properly. Collectd is not designed to handle OpenStack instances and report
their behaviour if they use excessive resources, and plugin development might
be needed for that purpose. On the other hand, our system is developed
to work with any operating systems that supports java as well as docker
containers. Collectd is more suitable for general environments which just
monitoring resource consumption and reporting it to the admin is sufficient.

71

5.3.2 Monitoring System Response Time

In this section, we discuss the response time that the monitoring system
takes in case of receiving alert message from one of the services in the cloud.
At first we evaluate the situations where we have available instances and
we only need to turn them on. Later, we evaluate the system in situations
where there is no available instance, and the system should create a new one.
The reason for evaluating the response time is to investigate how quick our
system can react to prevent services from failure and breaking the chain.

For the purpose of this evaluation, we repeat the process of turning on
an instance and creating new instance for 250 times, where the standard
deviation becomes steady. Our computing node with its current configuration
can handle only 9 instances to run simultaneously. Figure 43 shows that
the standard deviation for turning on an instance, when we only want to
turn on 1 instance which is shown with blue dashed line. When we have 8
instances running and one of the instances request for help to turn on the
9th instance, dashed magenta line is used to represent that.

Figure 43: Standard deviation of turning on an instance from 1 up to 9
instances

The average time to turn on instances is displayed in Figure 44, which

72

shows that the turning on time increases linearly which starts from 783
millisecond for turning on one instance, and ends at 911 milliseconds for
turning on the 9th instance. The linear increasing of average time is because
the more services running on the compute node the less memory, CPU and
disk space will be available for new instances to start.

Figure 44: Average time for turning on an instance from 1 up to 9 instances

Similarly we have done the same evaluation for creating a new instance.
The time recorded, is the time taken from the point the system receives an
alert message, until it finishes creating new instance and wait for the instance
to spawn and boot completely. Figure 45 illustrates the standard deviation
for population of 250 recorded data, where blue dashed line shows when we
already had 1 instance running, and that instance requested for help, and
the magenta dashed line, demonstrates when we already had 7 instances
running, and one of these running instances asked for help.

73

Figure 45: Standard deviation of creating an instance

The average time to create a new instance is similar to the average time to
turn on an instance, which is linearly increasing. However with the difference
that the time taken to create new instance is greater compare to turning on
an already existing instance. The reason is due to the time taken for the
main monitoring system to investigate what image and flavour it should use
and after preparing proper configuration send the request to the OpenStack
controller to spawn and boot the new instance, which requires more time.
Figure 46 shows that the system took around 2848 milliseconds to create
the 2nd instance when there was only 1 instance running. And, around 3170
milliseconds were taken to create the 8th instance when there were already 7
instances running.

74

Figure 46: Average time for creating an instance

75

6 Conclusion and Future Work

Monitoring service chain is essential and important, since failure of any
components of the cloud and its services can break the service chain. Many
network communication companies are investing on service chain, and trans-
forming their hardware based networking infrastructure to NFV and SDN.
In addition dynamic service chain is one the key elements in 5G network
that operators are working on it.

In this report we studied some of the well known techniques for service
chaining as well as tools for monitoring the cloud. We compared these
techniques and tools to discover which tool or technique is suitable for what
kind of environment and situation. Later we have explained briefly the
techniques and terms that are used in the entire of this report to provide a
better understanding for the reader.

For the purpose of service chain monitoring, we developed a system with
different modules to monitor the cloud nodes, and services. Main monitoring
system is responsible for controlling the cloud and creating/turning on new
instances automatically whenever is needed. Moreover, main monitoring
system has the ability to control the services manually to turn them on/off,
create/delete them as well as assigning floating IPs to them. Monitoring
daemons are responsible to monitor the CPU and memory usages of KVM
nodes as well as docker services and report when there is a heavy load on
any of the services.

For the evaluation, we compared the developed monitoring daemons with
the collectd monitoring system in order to evaluate how much overhead our
system imposes on each node. We found out that our system consumes less
CPU compare to collectd. However, it utilizes more memory, because our
system is developed in java which runs through JVM, and collectd is written
in C language which is more memory friendly. In addition we evaluated the
system reaction time to alerts, and identified that the system response time
increases linearly as the number of services increase.

However, due the time limitation that we had, we could not implement
some of the features that we discussed in the design chapter, which are
reserved for the future work, including:

• Decision making logic to turn off or delete an unused instance in order to
save resources.

76

• Turning on new compute node automatically if the first compute node
cannot handle more services, which in our case our compute node could
handle only 9 services simultaneously.

• Requesting OpenDaylight to divide the flows between two or more services
when the system creates new instance for help, in order to bring down
the load of a saturated service.

• Some extra features for the UI in order to handle more jobs, such as
deleting an instance, creating a router, creating different tenants, etc.
However these features consider a plus, and have no impact on the
monitoring which was the purpose of this system.

77

References

[ACM+14] Arumaithurai, M., Chen, J., Monticelli, E., Fu, X. and Ra-
makrishnan, K. K., Exploiting icn for flexible management of
software-defined networks. Proceedings of the 1st international
conference on Information-centric networking. ACM, 2014, pages
107–116.

[Alm92] Almquist, P., Type of service in the internet protocol suite.
RFC 1349, Internet Engineering Task Force, July 1992. URL
https://tools.ietf.org/html/rfc1349. Visited 2015-11-03.

[Ama16] Amazon cloudwatch, 2016. URL https://aws.amazon.com/

cloudwatch/. Visited 2016-03-17.

[AP15] Akram, H. and Pascal, B., Leveraging SDN for the 5g networks:
Trends, prospects and challenges. CoRR.

[Azu16a] About azure, 2016. URL https://www.paraleap.com/

AzureWatch. Visited 2016-03-18.

[Azu16b] Microsoft azuzre, how to monitor cloud services, 2016.
URL https://azure.microsoft.com/en-us/documentation/

articles/cloud-services-how-to-monitor/. Visited 2016-
03-18.

[BMVO12] Beernaert, L., Matos, M., Vilaça, R. and Oliveira, R., Auto-
matic elasticity in openstack. Proceedings of the Workshop on
Secure and Dependable Middleware for Cloud Monitoring and
Management, New York, NY, USA, 2012, ACM.

[CDSI+14] Cotroneo, D., De Simone, L., Iannillo, A., Lanzaro, A., Natella,
R., Fan, J. and Ping, W., Network function virtualization: Chal-
lenges and directions for reliability assurance. Software Reliability
Engineering Workshops (ISSREW), 2014 IEEE International
Symposium on, Nov 2014, pages 37–42.

[Clo15] Apache cloudstack, 2015. URL http://

cloudstack-release-notes.readthedocs.org/en/latest/

compat.html. Visited 2015-09-11.

78

https://tools.ietf.org/html/rfc1349
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://www.paraleap.com/AzureWatch
https://www.paraleap.com/AzureWatch
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-monitor/
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-monitor/
http://cloudstack-release-notes.readthedocs.org/en/latest/compat.html
http://cloudstack-release-notes.readthedocs.org/en/latest/compat.html
http://cloudstack-release-notes.readthedocs.org/en/latest/compat.html

[Col15] collectd – the system statistics collection daemon, 2015. URL
https://collectd.org/index.shtml. Visited 2015-10-09.

[Doc15] What is docker, 2015. URL https://www.docker.com/

whatisdocker. Visited 2015-09-14.

[Doc16] docker stats, 2016. URL https://github.com/docker/

docker/blob/0d445685b8d628a938790e50517f3fb949b300e0/

api/client/stats.go. Visited 2016-02-04.

[DUW11] De Chaves, S., Uriarte, R. and Westphall, C., Toward an architec-
ture for monitoring private clouds. Communications Magazine,
IEEE.

[Euc15a] Eucalyptus 3.1, 2015. URL https://www.eucalyptus.com/

docs/eucalyptus/3.1/ig/installing_hypervisors.html.
Visited 2015-09-11.

[Euc15b] Eucalyptus networking modes, 2015. URL https:

//www.eucalyptus.com/docs/eucalyptus/3.2/ig/planning_

networking_modes.html#planning_networking_modes. Vis-
ited 2015-09-11.

[FFRR14] Felter, W., Ferreira, A., Rajamony, R. and Rubio, J., An updated
performance comparison of virtual machines and linux containers.
technology, 28, page 32.

[FRZ13] Feamster, N., Rexford, J. and Zegura, E., The road to sdn. Queue
journal.

[Gan15] Ganglia monitoring system, 2015. URL www.ganglia.info. Vis-
ited 2015-10-09.

[He03] He, H., What is service-oriented architecture. Publicação
eletrônica em, 30, page 50.

[HP115] Hpe helion eucalyptus, 2015. URL http://www8.hp.com/us/

en/cloud/helion-eucalyptus.html. Visited 2015-09-11.

[Hua13] Enabling agile service chaining with service based routing. Tech-
nical Report, 2013. URL http://www.huawei.com/ilink/en/

download/HW_308622. Visited 2015-07-12.

79

https://collectd.org/index.shtml
https://www.docker.com/whatisdocker
https://www.docker.com/whatisdocker
https://github.com/docker/docker/blob/0d445685b8d628a938790e50517f3fb949b300e0/api/client/stats.go
https://github.com/docker/docker/blob/0d445685b8d628a938790e50517f3fb949b300e0/api/client/stats.go
https://github.com/docker/docker/blob/0d445685b8d628a938790e50517f3fb949b300e0/api/client/stats.go
https://www.eucalyptus.com/docs/eucalyptus/3.1/ig/installing_hypervisors.html
https://www.eucalyptus.com/docs/eucalyptus/3.1/ig/installing_hypervisors.html
https://www.eucalyptus.com/docs/eucalyptus/3.2/ig/planning_networking_modes.html#planning_networking_modes
https://www.eucalyptus.com/docs/eucalyptus/3.2/ig/planning_networking_modes.html#planning_networking_modes
https://www.eucalyptus.com/docs/eucalyptus/3.2/ig/planning_networking_modes.html#planning_networking_modes
www.ganglia.info
http://www8.hp.com/us/en/cloud/helion-eucalyptus.html
http://www8.hp.com/us/en/cloud/helion-eucalyptus.html
http://www.huawei.com/ilink/en/download/HW_308622
http://www.huawei.com/ilink/en/download/HW_308622

[IPMM12] Issariyapat, C., Pongpaibool, P., Mongkolluksame, S. and
Meesublak, K., Using nagios as a groundwork for developing a
better network monitoring system. Technology Management for
Emerging Technologies (PICMET), 2012 Proceedings of PICMET
’12:, July 2012, pages 2771–2777.

[ISK+14] Ivan, M., Sandeep, P., Ken, O., Kiran, T., Sailesh, Y., Lars, H.,
Mark, C., Joe, F., Kimberly, C. and Dan, J., Linux containers:
why they’re in your future and what has to happen first. Technical
Report, 09 2014.

[JGS11] Joshi, P., Gunawi, H. S. and Sen, K., Prefail: A programmable
tool for multiple-failure injection. SIGPLAN Not., 46,10(2011),
pages 171–188.

[JPA+13] John, W., Pentikousis, K., Agapiou, G., Jacob, E., Kind, M.,
Manzalini, A., Risso, F., Staessens, D., Steinert, R. and Meirosu,
C., Research directions in network service chaining. Future
Networks and Services (SDN4FNS), 2013 IEEE SDN for, Nov
2013.

[KGC+14] Kumar, R., Gupta, N., Charu, S., Jain, K. and Jangir, S. K.,
Open source solution for cloud computing platform using open-
stack. International Journal of Computer Science and Mobile
Computing, pages 89–98.

[KISdL15] Koller, R., Isci, C., Suneja, S. and de Lara, E., Unified monitoring
and analytics in the cloud. 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015,
USENIX Association.

[LNPW14] Li, Q., Niu, H., Papathanassiou, A. and Wu, G., 5g network
capacity: Key elements and technologies. Vehicular Technology
Magazine, IEEE.

[Mar98] Martin-Flatin, J., Push vs. pull in web-based network manage-
ment. CoRR.

[Men15] Menage, P., cgroups, 2015. URL https://www.kernel.org/

doc/Documentation/cgroups/cgroups.txt. Visited 2015-12-
15.

80

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

[Nag15] Nagios features and capabilities, 2015. URL https://www.

nagios.org/about/features/. Visited 2015-10-08.

[Nim16] Ca nimsoft cloud monitor, 2016. URL http://www.ca.com/

~/media/files/lpg/ca-nimsoft-cloud-monitor-datasheet.

pdf. Visited 2016-02-04.

[Nok15] Flexible service chaining. Technical Report, 2015. URL
http://networks.nokia.com/sites/default/files/

document/whitepaper_flexible_service_chaining.pdf.
Visited 2015-09-13.

[NTH+08] Nick, M., Tom, A., Hari, B., Guru, P., Larry, P., Jennifer, R.,
Scott, S. and Jonathan, T., Openflow: enabling innovation in
campus networks. SIGCOMM Comput. Commun. Rev., 38, pages
69–74.

[Odl16] Opendaylight, platform overview, 2016. URL https://www.

opendaylight.org/platform-overview-beryllium. Visited
2016-04-07.

[PQ14] P. Quinn, T. N., Service function chaining problem statement.
Technical Report, August 2014. URL http://tools.ietf.org/

html/draft-ietf-sfc-problem-statement-09. Visited 2015-
10-20.

[RB14] Rosado, T. and Bernardino, J., An overview of openstack architec-
ture. Proceedings of the 18th International Database Engineering
& Applications Symposium. ACM, 2014, pages 366–367.

[Tse13] Tseitlin, A., The antifragile organization. Commun. ACM,
56,8(2013), pages 40–44.

[WGL+12] Wen, X., Gu, G., Li, Q., Gao, Y. and Zhang, X., Comparison
of open-source cloud management platforms: Openstack and
opennebula. Fuzzy Systems and Knowledge Discovery (FSKD),
2012 9th International Conference on. IEEE, 2012, pages 2457–
2461.

81

https://www.nagios.org/about/features/
https://www.nagios.org/about/features/
http://www.ca.com/~/media/files/lpg/ca-nimsoft-cloud-monitor-datasheet.pdf
http://www.ca.com/~/media/files/lpg/ca-nimsoft-cloud-monitor-datasheet.pdf
http://www.ca.com/~/media/files/lpg/ca-nimsoft-cloud-monitor-datasheet.pdf
http://networks.nokia.com/sites/default/files/document/whitepaper_flexible_service_chaining.pdf
http://networks.nokia.com/sites/default/files/document/whitepaper_flexible_service_chaining.pdf
https://www.opendaylight.org/platform-overview-beryllium
https://www.opendaylight.org/platform-overview-beryllium
http://tools.ietf.org/html/draft-ietf-sfc-problem-statement-09
http://tools.ietf.org/html/draft-ietf-sfc-problem-statement-09

[XSZ+15] Xia, M., Shirazipour, M., Zhang, Y., Green, H. and Takacs,
A., Optical service chaining for network function virtualization.
IEEE Communications Magazine, 53,4(2015), pages 152–158.

[ZBB+13] Zhang, Y., Beheshti, N., Beliveau, L., Lefebvre, G., Manghir-
malani, R., Mishra, R., Patneyt, R., Shirazipour, M., Subrah-
maniam, R., Truchan, C. and Tatipamula, M., Steering: A
software-defined networking for inline service chaining. Network
Protocols (ICNP), 2013 21st IEEE International Conference on,
Oct 2013.

82

	Introduction
	Service Chaining in the Cloud
	Software Defined Networking (SDN)
	OpenFlow
	Network Function Virtualization (NFV)
	Service Chaining
	Service Chaining Challenges
	Cloud (OpenStack)
	Linux Containers (Docker)

	Service Function Chaining Methodologies
	Background and Motivation
	Service Chaining Methods
	Ericsson: StEERING for Inline Service Chaining
	Ericsson: Optical Service Chaining
	Huawei: Service Chaining with Service Based Routing
	FCSC: Function-Centric Service Chaining

	Service Chaining Methods Comparison
	Monitoring Cloud: Methods
	PCMONS: Private Cloud Monitoring System
	Elastack: Automatic Elasticity in the OpenStack

	Monitoring Cloud: Tools (General Purpose)
	Nagios
	Collectd
	Ganglia

	Monitoring Cloud: Tools (Cloud Specific)
	Amazon CloudWatch
	Azure Watch
	Nimsoft

	Cloud Monitoring Tools Comparison

	Design for Monitoring Service Chain
	Monitoring cloud
	Monitoring Services and OpenFlow Controller
	Monitoring Containers through Control Groups (cgroups)
	Monitoring OpenFlow Controller and its Statistics

	Monitoring System Implementation and Evaluation
	System Implementation
	Software and Hardware
	RAM and CPU calculation
	Communication Architecture and Messages

	Monitoring Service Chain in Action
	Service chain with Squid proxy
	Main Monitoring System

	Evaluation
	Overhead
	Monitoring System Response Time

	Conclusion and Future Work
	References

