
Pairwise Measures of Causal Direction in the
Epidemiology of Sleep Problems and Depression
Tom Rosenström1*, Markus Jokela1, Sampsa Puttonen2,1, Mirka Hintsanen3,1, Laura Pulkki-Råback1,
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Abstract

Depressive mood is often preceded by sleep problems, suggesting that they increase the risk of depression. Sleep problems
can also reflect prodromal symptom of depression, thus temporal precedence alone is insufficient to confirm causality. The
authors applied recently introduced statistical causal-discovery algorithms that can estimate causality from cross-sectional
samples in order to infer the direction of causality between the two sets of symptoms from a novel perspective. Two
common-population samples were used; one from the Young Finns study (690 men and 997 women, average age 37.7
years, range 30–45), and another from the Wisconsin Longitudinal study (3101 men and 3539 women, average age 53.1
years, range 52–55). These included three depression questionnaires (two in Young Finns data) and two sleep problem
questionnaires. Three different causality estimates were constructed for each data set, tested in a benchmark data with a
(practically) known causality, and tested for assumption violations using simulated data. Causality algorithms performed
well in the benchmark data and simulations, and a prediction was drawn for future empirical studies to confirm: for minor
depression/dysphoria, sleep problems cause significantly more dysphoria than dysphoria causes sleep problems. The
situation may change as depression becomes more severe, or more severe levels of symptoms are evaluated; also, artefacts
due to severe depression being less well presented in the population data than minor depression may intervene the
estimation for depression scales that emphasize severe symptoms. The findings are consistent with other emerging
epidemiological and biological evidence.
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Introduction

Statistical measures of causality have been introduced for cross-

sectional data [1–4]. Despite their obvious usefulness for the study

of epidemiology, serious attempts to apply these methods have

been rare or negligible; this is perhaps in part due to over-

generalizations made from the well-known fact that a cross-

sectional correlation does not imply causality. What is true for

correlation, however, does not generalize to all aspects of

distributions; it can be shown that information in higher moments

of distribution does sometimes allow causal inferences [1–4]. This

study applies pairwise causality measures to an acute problem in

epidemiology: estimation of the direction of causality between

depression and sleep problems. Acknowledging the small amount

of real-data testing, we first estimate causality in a case that should

be logically evident: parents’ socioeconomic status should cause

that of the offspring’s rather than the other way around. Then real

data on depression and sleep problems is investigated. Finally, a

simulation study is conducted in order to further support the

findings. We next explicate why the issue of causality between

depression and sleep problems is a difficult and acute research

problem in epidemiology.

Sleep problems have rapidly climbed among the leading health

problems in western societies. Point prevalence estimates of

insomnia vary between 6% and 48%, depending on the definition

and sample/country [5,6]. Sleep problems are a great burden to

the individual and costly for the society, because poor sleep can

decrease work performance [7] and increase the risk of non-fatal

and fatal accidents [8,9]. Sleep problems predict cause-specific

work disability, and are associated with subsequent disabling

mental and physical illnesses [10]. Over three-fold risk of disability

retirement due to all causes have been attributed to frequent sleep
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problems [11], and recent studies show that insomnia with

objectively measured short sleep duration is associated with poor

cognitive performance and increased mortality [12,13]. Depres-

sion is another major public health problem. It is projected to be

the second largest cause of the global burden of disease by the year

2030 [14]. Life-time prevalence of depression has been estimated

to be approximately 16% [15], also with high variability between

countries [16]. Depression leads to various social role impairments

[15], and it has a recurrence rate of up to 85% [17].

Complaints of poor sleep quality are estimated to occur in 50%

to 90% of diagnosed cases of depression [16,18], and there is

higher prevalence of depression in patients with obstructive sleep

apnea [19]. Although sleep disorders are traditionally included as

one of the symptoms of depression, this view has been challenged.

Different aspects of sleep display various links with depression that

are clearly physiological [18–22]. The issue of causality between

depression and sleep problems, however, has remained obscure

[18–20].

Sleep problems often precede the onset of melancholic/

depressed mood [23–26]. Temporal order of appearance is a

classical sign of causality, and it has been suggested that sleep

problems may actually cause depression [24,27,28]. However,

sleep problems may also reflect a prodromal symptom of

depression [25], which is why temporal precedence alone is

insufficient to confirm causality. Depression, as currently mea-

sured, is a heterogeneous set of affect-related and somatic

symptoms [29–31]. Thus, it would be unfeasible to assume that

all of the symptoms would emerge at the onset of depression [30].

Rather, various symptoms may emerge one at time, until a

significant amount of depression can finally be diagnosed. The

order of appearance may reflect the sensitivity of the underlying

homeostatic process for disturbances as well as causality; hence,

longitudinal sampling may be insufficient to prove causality. Yet,

knowledge of the correct causality is vital for efficient development

of theories and interventions.

These considerations make evident that an efficient cross-

sectional measure of causality would be useful in determining

whether sleep problems cause depression or depression causes

sleep problems. Recent work in computational statistics has shown

that the use of information in the higher-order (non-Gaussian [32])

moments of population distribution does allow the determination

of causality in certain situations: the causal relation between

variables is assumed to be linear, the error terms need to be non-

Gaussian (i.e., distributed according to some other than the

Normal/Gaussian distribution) and the causal connection must

conform to an acyclic graph [1–3,33]. In principle, the acyclicity

requirement, implying that reciprocal effects are not allowed, can

be relaxed [4]. A further assumption is that an unobserved

confounder does not cause both the variables [1–3]; the extent to

which this needs to hold can be evaluated via computer

simulation. Jointly these assumptions are known as the Linear,

Non-Gaussian Acyclic Model (LiNGAM) [1].

The important assumption of non-Gaussian distribution should

logically hold for population distributions of a depression and sleep

problems scores, as both the variables should be skewed towards

the majority of people having little issues and only a minor part at

the severe end of the continuums. Furthermore, recent studies

suggest that depressive symptoms form a causal network of

symptoms that directly influence each other, instead of reflecting a

single latent causal antecedent [30]. This suggests that the

association between sleep problem symptoms and other depressive

symptoms is not fully confounded by a latent third factor, but a

detectable dominant causal direction may exist.

We apply several pairwise measures of causality in order to gain

information regarding causality between depressed moods and

sleep problems in the community-based samples of Young Finns

and Wisconsin Longitudinal studies. Such measures have provided

reasonable information about causality in content domains

relating to physical system and sociological data; for example,

within a system of variables including father’s education and

occupation, number of siblings, son’s education and occupation,

and son’s income, only one out of the five causal connections

simultaneously estimated by the algorithm was illogical [2]. This

study also estimates the pairwise causal direction for parents’ and

their offspring’s socioeconomic status (SES), in a hope that

recovering the logically self-evident outcome builds further trust

for the statistical methodology (empirical benchmark). Provided

that sensible estimates of causal direction can be drawn from the

mentioned cross-sectional questionnaire data, the same methods

may also help in elucidating the causal relationship between sleep

problems and depressed mood.

Most testing for causality algorithms has been performed using

simulated data where the ‘ground truths’ are known for certain

and diverse conditions can be tested. The estimation efficiency

depends on the specific algorithm and on several data parameters

[1–3]; therefore we also perform some simulations in a situation

similar to our data at hand (simulation-based benchmark). The

methods and results sections are organized 1) by estimation of

pairwise causality [1–3]; 2) by evaluation of LiNGAM assumptions

and fit in the data sets; and 3) by further exploration of the models

validity via simulation (Figure 1 sketches the data-analytic flow of

the study). The discussion section summarizes our logical

conclusions from these steps. Despite the subtleties involved, the

causal modeling appeared to provide useful information from a

novel analytic angle.

Materials and Methods

Participants
Data from two separate population studies were used. First, the

Cardiovascular Risk in Young Finns study is an on-going

population-based cohort study [34]; its participants have provided

a written informed consent, and it has been approved by the

ethical committee of the Varsinais-Suomi’s hospital district’s

federation of municipalities. Second, data from Wisconsin

Longitudinal Study was used; data was initially collected via a

telephone interview, after which a questionnaire was mailed to the

participants [35]. Informed consent was obtained at the beginning

of the telephone interview. All instruments and operations were

approved by the Institutional Review Board of the University of

Wisconsin-Madison.

The original Young Finns sample consists of 3596 healthy

Finnish children and adolescents derived from six birth cohorts,

aged 3, 6, 9, 12, 15, and 18 years at baseline in 1980. In order to

select a broadly sociodemographically representative sample,

Finland was divided into five areas according to locations of

university cities with a medical school (Helsinki, Kuopio, Oulu,

Tampere and Turku). In each area, urban and rural boys and girls

were randomly selected on the basis of their unique personal social

security number. The sample has been followed subsequently in 7

data collection waves in 1983, 1986, 1989, 1992, 1997, 2001, and

2007. A detailed description of cohort can be found in an earlier

publication [34]. The most recent follow-up in 2007 included

questions on sleep as well as questionnaires on depression.

Participants who provided full data for both measures were

included in this strictly cross-sectional study. Table 1 illustrates the

basic characteristics of the sample. In addition, a benchmark

Causality, Sleep, and Depression
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analysis of 1348 participants with the required data confirmed that

their parents’ socioeconomic status in year 1983 could be

estimated as being a causal antecedent to their own socioeconomic

status in the year 2007, rather than a causal descendent (see Text

S1 for more information about the benchmark SES variables).

The Wisconsin Longitudinal Study [35] is a prospective cohort

study of a random sample of 10 317 participants (5326 women,

4991 men) born between 1937 and 1940, and followed since they

graduated from Wisconsin high schools in 1957. After baseline

data collection in 1957, survey responses were collected in 1964,

1975, 1992, and 2004. The sample is broadly representative of

white, non-Hispanic US men and women who completed at least

high school education. It is estimated that about 75% of Wisconsin

youth graduated from high school in the late 1950s – everyone in

the primary sample graduated from high school. A mail

questionnaire collected in 1992–93 contained a depression

inventory and 3 sleep items [35]. Participants who provided full

data in both measures were included in this study. Table 2

illustrates the basic characteristics of this sample.

Measures
Young finns study. For the empirical benchmark test, the

causality between parents’ socioeconomic status and that of their

offspring was estimated using pairwise measures. The SES

variance was a z-score standardized sum of the z-score

transformed variables measuring years of education, level of

education, and gross income. More details about these variables

are provided in the supplementary material (Text S1).

Depression was assessed with two different versions of the Beck’s

Depression Inventory (BDI). The first was a modified version in

the Young Finns study, representing the second mildest symptom

statement of each item of the original BDI [36] as a five-point scale

ranging from ‘not at all’ to ‘very much’ [37,38]. The average of

such items provides a measure that samples a larger range of

variation for more similar and milder depressive tendencies than

the original BDI. We refer to this average as the modified BDI

(mBDI). Potentially sleep-related items ‘I get tired faster than

before’ and ‘Waking up in morning, I am much more tired than

before’ were excluded.

The second version was a slightly modified version of Beck’s

Depression Inventory II (BDI-II) [39,40]. First, because we did

comparisons with sleep problems, items that reflected sleep

problems were removed (item 16 about increased/decreased

amount of sleep and item 20 about subjective feeling of tiredness).

Second, because direct comparability with the original sum score

is already lost by removal of these items, we used an average of the

remaining items (having values 0, 1, 2 or 3) as the total score rather

than sum of all items. Despite these small changes, we refer to this

latter score as BDI-II. Both measures had 21 items, 19 of which

were used here. mBDI (average of 19 items) and BDI-II correlated

with coefficient .77 and had respective Cronbach’s alpha

reliabilities of .92 and .91. A sensitivity analysis indicated that

exclusion of sleep related items did not perceivably affect the

results for either scale (Table S1).

Sleep problems were assessed with Jenkin’s scale consisting of

four items that assess: difficulties falling sleep, frequent awaken-

ings, troubles staying asleep (including too early waking), and

Figure 1. Analytic strategy of the study. First, a causality algorithm is applied to infer whether the variable Y is a weighted sum of the variable X
and a residual term e (X causes Y), or vice versa. Second, assumptions of the applied causal model are evaluated. Third, a simulation study probes the
model’s sensitivity for assumption violations that are difficult to evaluate directly; most importantly, the impact of the partial confounding on the
algorithms ability to recognize causal association is evaluated.
doi:10.1371/journal.pone.0050841.g001
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feelings of tiredness and exhaustion after a regular night of sleep

[41]. These items were answered with the following six-point

precision: 1 = ‘not at all’; 2 = ‘1–3 nights in month’; 3 = ‘1 night in

week’; 4 = ‘2–4 nights in week’; 5 = ‘5–6 nights in week’; and

6 = ‘every night’; the average of the four items formed the final

measure of Sleep problems. Cronbach’s reliability coefficient alpha

for Sleep problems was .77.

Wisconsin longitudinal study. Depression was measured

with the Center for Epidemiologic Studies Depression Scale [42],

a modified version (mCES-D) fully described in the study’s web

page [35]. The scale consists of 20 items and describes a level of

psychological distress ranging from 0 (the lowest possible) to 140

(the highest possible). The individual items assesses for how many

days of the past week the participant felt a given depressive

symptom or distress.

Sleep problems were coded with zero if the participant had

answered that he or she did not have trouble sleeping in the past

six months. Otherwise, it was coded as a sum of two items with a

following content: ‘How often have you had trouble sleeping?’

(1 = ‘monthly or less often’; 2 = ‘about once a week’; 3 = ‘daily or

more often’) and ‘How much discomfort has trouble sleeping

caused you in the past six months?’ (0 = ‘none’; 1 = ‘a little’;

2 = ‘some’; 3 = ‘a lot’).

Table 1. Sample Characteristics and Attrition in the Young Finns Study.

Data for comparisons between modified BDI (1. depression scale) and Sleep problems

Measure (unit/range) Study sample Attrition sample p-value

Number of participants 1699 1897

Percentage of males 41.1 % 56.2 % , .001

mean range mean range

Age of participants (years) 37.71 30–45 37.20 (n = 1897) 30–45 .002

mean s.d. mean s.d.

Sleep problems score (1–6) 2.28 1.05 2.31 (n = 463) 1.06 .543

Depression score (1–5) 2.00 0.66 2.14 (n = 333) 0.65 , .001

Data for comparisons between BDI-II (2. depression scale) and Sleep problems

Measure (unit/range) Study sample Attrition sample p-value

Number of participants 1687 1909

Percentage of males 40.9% 56.2% , .001

mean range mean range

Age of participants (years) 37.67 30–45 37.24 (n = 1909) 30–45 .011

mean s.d. mean s.d.

Sleep problems score (1–6) 2.27 1.04 2.34 (n = 475) 1.07 .186

Depression score (0–3) 0.23 0.30 0.54 (n = 328) 0.64 , .001

Note: p-value is from t- or chi-squared test for the difference between the study and attrition samples, and s.d. denotes standard deviation. Attrition sample consists of
participants who lacked information either regarding depression or regarding sleep. Some had one but not other, allowing comparison against those with both. For
such cases, n denotes sample size for this sub-sample.
doi:10.1371/journal.pone.0050841.t001

Table 2. Sample Characteristics and Attrition in the Wisconsin Longitudinal Study.

Data for comparisons between modified CES-D (3. depression scale) and Sleep problems

Measure (unit/range) Study sample Attrition sample p-value

Number of participants 6640 3677

Percentage of males 46.7 % 51.4 % , .001

mean range mean range

Age of participants (years) 53.14 52–55 53.19 (n = 3084) 52–55 , .001

mean s.d. mean s.d.

Sleep problems score (1–6) 1.24 1.75 0.63 (n = 90) 1.48 .001

Depression score (0–140) 16.40 15.44 23.31 (n = 167) 19.81 , .001

Note: p-value is from t- or chi-squared test for the difference between the study and attrition samples, and s.d. denotes standard deviation. Attrition sample consists of
participants who lacked information either regarding depression or regarding sleep. Some had one but not other, allowing comparison against those with both. For
such cases, n denotes sample size for this sub-sample.
doi:10.1371/journal.pone.0050841.t002
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Statistical Analyses
Pairwise causality estimation. The pairwise causality

estimation, as applied here, starts from the assumptions that 1)

either sleep problems xs cause depression or depression xd causes

sleep problems, 2) the causal association is linear, 3) independent

residual terms are non-Gaussian (distributed according to some

other than the Normal distribution), and 4) there are no

confounding variables. This is the Linear, Non-Gaussian, Acyclic

Model (LiNGAM). Mathematically it means that for centered/

zero-mean variables either.

xs~es

xd~bxszed

,

�
ð1Þ

or

xs~bxdzes

xd~ed

�
, ð2Þ

where es and/or ed is a non-Gaussian variable, and b is a constant

regression coefficient. The aim of the algorithm is to estimate

which one holds, system of equations 1 or system of equations 2,

and to estimate the quantitative value of the coefficient b. In these

two alternative systems of equations, either depression or sleep

problems is an exogenous variable: an exogenous variable is not

predicted by other variables in the system, and can be considered

as an input to a system of variables. The estimated exogenous

variable is causal because the other variable is its function, and it is

not a function of the other variable. In other words, manipulations

of an exogenous variable lead to changes in the other (endogenous)

variable, but manipulations of an endogenous variable do not

affect the exogenous variable.

With non-Gaussian variables and the LiNGAM model, all we

need to do in order to determine the causality is to estimate which

one is the exogenous variable, xd or xs, by estimating which one is

less dependent on its residuals. In the DirectLiNGAM-algorithm

[2], dependency is evaluated using a nonparametric kernel-based

estimator [43] of the mutual information [32]. After these

differences, LiNGAM is just a linear regression model with a

non-Gaussian error term. In the two-variable case, DirectLiN-

GAM-algorithm is similar to (causal) non-linear correlation [3];

the connection between the methods derives from the pairwise

measure of dependency. Causality can also be inferred from more

restricted/approximate non-Gaussianity properties of the distri-

butions of xd and xs [3]. Text S2 discusses the mathematics of three

causality statistics, or three causal non-linear correlations, that

were applied here: DirectLiNGAM-based, Skew-based, and Tanh-

based (based on hyperbolic-tangent approximation to Likelihood

Ratio for distributions with non-Gaussian kurtosis). For each

statistic, a positive value signifies causal antecedence of the first

argument/variable and a negative value indicates the opposite

condition. The DirectLiNGAM-based measure applies the default

options of the DirectLiNGAM-algorithm version 1.0; that is, the

pairwise causality statistic used by the more general DirectLiN-

GAM-algorithm [2] (freely provided by authors [44]). The

algorithm is implemented for the MatlabH software (Natick,

Massachusetts, USA), and was applied in the version 7.10.0.

(R2012a). The same software was used for computation of other

causality statistics according to equations outlined in the Text S2.

Population sampling, estimation procedures, and partial incor-

rectness of assumptions can introduce variability to statistical

estimates. Totality of variability can be assessed by bootstrapping

[45]. One randomly draws with replacement several (2000 here)

bootstrap re-samples from the original data, all equal to the

original in number of observations. Each re-sample is thus drawn

from the same underlying distribution, but is not quite the same as

the original sample. Relevant estimates are then calculated for

each sample and their variabilities over the bootstrap re-samples

are assessed. When an estimated solution is unstable, bootstrap

standard errors are large or the estimated direction of causality

varies for different bootstrap re-samples. Regarding causality

results, we provide a percentage for how often in all bootstrap re-

samples the causal antecedence is estimated for a given variable by

a given causality statistic (Tables 3 and 4). In addition, the median

causality statistic over the bootstrap re-samples is reported,

together with 95% Bias-corrected and Accelerated bootstrap

confidence interval for the statistic [45].

Evaluation of LiNGAM assumptions and model-data

fit. After estimating the direction of causality using the three

pairwise measures, we evaluated the required LiNGAM assump-

tions (model fit) by assessing 1) the linearity hypothesis for the

estimated causal direction, 2) whether the residual distribution was

non-Gaussian, 3) and whether it was independent of the

exogenous variable. The data was considered to exhibit a linear

relationship if the quadratic term in Ordinary Least Squares

regression was non-significant, and a scatter plot visually

supported the linearity-interpretation. The error-term distribution

was considered non-Gaussian if a hypothesis of Gaussian/Normal

distribution was rejected by the Lilliefor’s test [46]; visual

evaluation was also performed using kernel density estimates

(ksdensity-function from Matlab’s Statistics-toolbox with default

options) and histograms. The independence between Ordinary

Least Squares regression residuals and ‘independent’/exogenous

variable was visually inspected, statistically tested using a

distribution-independent L1 test with the suggested four equiprob-

able partitions [47], and tested with the non-parametric Hoeffd-

ing’s test [48].

In principle, the applied L1 test of independence assumes that

there are no atoms (discreteness) in the data [47], but adding small

amount of jitter (low-variance uniform random variable) to

observations prior to regression model estimation, thereby

removing atoms, did not alter the test result (not shown). P-value

was estimated by matching the test-threshold with observed test-

statistic using a standard function-minimizer (Matlab’s fminsearch-

function, i.e., the Nelder-Mead simplex method) with a quadratic

loss-function. For the Hoeffding’s test [48], Frank E Harrell’s

implementation was applied from version 3.9–3 of Hmisc-package

under R-software version 2.13.0 [49]. The test is consistent in the

class of distribution functions with continuous joint and marginal

probability densities. Our empirical distributions were sums of

ordinal items; therefore the robustness of result was verified by

adding a low variance (0.1) normal random variable to each

observed sum score, and by observing that similar results ensue

(not shown).

A simulation study. Although pair-wise measures of causal-

ity (or nonlinear correlations) are quite robust against measure-

ment error [3], tolerance for all assumption violations has not been

directly tested. Furthermore, testing such violations in a simulated

situation that approximates the data at hand provides additional

confidence to the results at hand. Therefore, we performed a short

simulation study as outlined below.

As a preliminary, a continuous probability model was estimated

that closely approximated the observed data-distributions by fitting

a mixture distribution of four Gaussians [50] to the linear model

residual and a (location-shifted) exponential distribution to the

independent variable (standard functions from Matlab Statistics-

toolbox were used). Fully controlled artificial observations can be

Causality, Sleep, and Depression
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drawn/simulated from these probability distributions. A thousand

data sets were simulated in each test condition, always with

number of observations equal to that in the observed real data

(n = 1699, as for the mBDI in Young Finns data). For each test

condition, ‘estimation success’ was calculated as a proportion of

pairwise causality estimates with ‘correct’ causality; correct is

defined below case-wise. The sensitivity for assumption violations

was evaluated by plotting the estimation success for each test

condition as a function of the degree of assumption violation.

First, the effects of discretization (analogous to ordinal variables)

were evaluated by simulating independent-variable values, x, and

residual values, e, from the above-defined distributions, by

computing dependent values, y = bx + e, from the linear model,

and by then imposing a discrete lattice that spans the interval from

x and y variables’ minimum to its maximum. For example, the

interval [min(y), max(y)] was divided to k intervals, and all values

falling to given interval were set to equal the lower limit of that

interval. We tested values of k ranging from 2 to 15, setting b to

equal the Ordinary Least Squares estimate for the real observa-

tions. In these test conditions, a correct causality estimate was the

one that gave the causal direction corresponding to the underlying

simulated continuous model (i.e., x R y).

Second, the effect of confounding was assessed, where

confounding was either linear or proportional. Linear confounding

meant that the observations were simulated by giving the

underlying model a weight (1–l), and by adding a proportion l
from a (simulated) confounded model. Therefore, the dependent

variable was of the form yconfounded = (1–l)bx + lbz + e, and the

independent variable of the form xconfounded = (1–l)x + l(bz + ez),

where z was another variable with the same distribution as for x,

and ez was another residual variable similar to e. Fifteen test

conditions were evaluated, where the degree of confounding

(values of l) ranged from 0 to 1: value zero means no confounding

in the original model, value one means full confounding by an

‘unobserved’ third variable, and intermediate values of l represent

an intermediate degree of confounding (co-existence of discernible

causal direction and latent confounding). In proportional confound-

ing, the simulated values were not a weighted sum of uncon-

founded and confounded values, but a proportion l of observa-

tions was drawn from the fully confounded model and proportion

(1–l) from the fully unconfounded model. In both cases, linear and

proportional, four distribution settings were tested: 1) x and z were

exponentially distributed, e and ex from a Gaussian Mixture

distribution (‘‘GM residual’’ in figure legends); 2) the roles were

reversed (Exp residual); 3) x, z, and ez were exponentially

distributed, e from a Gaussian Mixture distribution (Different

residuals); 4) all variables, x, z, e and ez, were from a Gaussian

Mixture distribution (All GM). In all cases, the residual

distributions were translated to have a zero mean. Here, the

‘correct’ estimate is the one that yielded the simulated causal

direction (x R y) despite partial masking due to confounding; for

the fully confounded model, one (the same) direction is arbitrarily

chosen, and should yield approximately the proportion K for the

estimation success.

Third, we demonstrated robustness against Gaussian measure-

ment error in observations by adding a Gaussian random variable

to x between the computation of y = bx + e and the application of

causality statistic (correct direction: x R y). Fifteen different

measurement-error standard deviations were examined. Although,

previous simulations have been performed [3], this confirms the

error-tolerance in a situation that closely correspond to our data.

All the steps of the simulation study, discussed above, were

separately performed for all the three causality statistics; that is, for

the DirectLiNGAM-based, Skew-based, and Tanh-based statistic.

Graded response modeling for depression scale

differences. Finally, we wanted to obtain a crude picture

regarding the relative depression severity encoded by different

scales, and this was possible for mBDI and BDI-II because

altogether 1993 Young-Finns-Study participants had answered to

both of the scales. A Graded Response Model with the ‘logit’-

response function [51–53] was fitted simultaneously to the items of

the both scales, and sums of the item-informations of the respective

scales indicated the relative information per scale that can be

plotted as a function of depression severity. It is generally expected

that the local independence assumption [51–53] does not hold for

depression-questionnaire items [30], and therefore the absolute fit

of a unidimensional Graded Response Model is bound to be more

or less bad. Only the relative information about the differences

between mBDI and BDI-II was of interest here, and was judged to

warrant reporting as supporting information for the other analyses

(the exact code for the procedure is provided as Demos S1);

because the result may be of general interest and no direct

comparison with sleep problems is involved in the Graded

Response Model, all the 21 items of each scale were used.

Results

Pairwise Causality Estimates
Table 1 displays the basic characteristics of the Young Finns

sample, and the sample that was excluded due to missing data.

Table 2 shows the same for the Wisconsin Longitudinal study.

Sample correlation between depression and sleep problems was

clear in all three data sets (mBDI: r = 0.41 with a 95% confidence

interval of (0.37, 0.45); BDI-II: r = 0.39 (0.34, 0.43); mCES-D:

r = 0.37 (0.35, 0.39)); the same held for the correlation between

parents’ and offspring’s socioeconomic status (SES) in benchmark

data (r = 0.41 (0.37, 0.46)). Table 3 summarizes the results from

causal analyses between depression (BDI-II or mBDI) and sleep

problems in the Young Finns data; also the results for benchmark

SES data are reported therein. Table 4 shows the results from

causal analysis between depression (mCES-D) and sleep problems

in the data from Wisconsin Longitudinal Study.

All three pairwise causality statistics easily recognized parents’

SES as a causal antecedent for their offspring’s SES; among the

bootstrap re-samples, each statistic is almost always positive

(Table 3), signifying that its first argument (parents’ SES) is the

causal antecedent of the second (offspring’s SES). Each method

therefore recovers the desired for logical result in the empirical

benchmark data. Few failures that occurred in the Tanh-/kurtosis-

based estimates may be due to fact that skewness rather than

kurtosis is the dominant departure from Gaussian distribution for

the SES variables (Text S2); therefore, less causality information

exists for the use of Tanh-based statistic than for the Skew-based

statistic.

According to Table 3, Sleep problems were the estimated causal

antecedent for depression as measured with the general-popula-

tion oriented mBDI scale. Depression measured with the more

clinically oriented BDI-II scale was the estimated cause of Sleep

problems, but both DirectLiNGAM with the original non-

standardized variables and the Tanh-based estimate were highly

inconstent across the bootstrap re-samples. The general measure

(i.e., DirectLiNGAM) indicated that sleep problems were a cause

of mCES-D, whereas the Skew- and Tanh-based estimates

contradicted this (Table 4). In the technical discussion that follows,

the DirectLiNGAM results are nonetheless taken as the estimated

causal directions for the three alternative pairings of sleep problem

and depression variables; that is, Sleep problems cause mBDI, and

BDI-II causes Sleep problems in the Young Finns data, and Sleep
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problems cause mCES-D in the Wisconsin Longitudinal Study

data.

Evaluation of LiNGAM Assumptions and Model Fit
After deriving the DirectLiNGAM causality estimates, we

assessed whether the assumed models are fitting descriptions of

the data for the recognized directions of causality. Figure 2 visually

illustrates the linear model fit for each regression model, and the

associated residual distributions. Table 5 collects P-values from

statistical hypothesis tests for the existence of a quadratic (i.e., non-

linear) term in regression model, for the non-Gaussian residual

distribution, and for the dependence between the exogenous

variable and residual.

First, visually the linear model seemed to be a fitting description

when the estimated direction of causality was from Sleep problems

to depressive tendencies assessed with mBDI. In the large WLS

data (n = 6640; depression assessed with mCES-D) the quadratic

term was statistically significant (Table 5), but the model was close

to linear within the support of the data (Figure 2). In contrast, the

nonlinear term was prominent between Sleep problems and BDI-

II (Fig. 2 and Table 5). Second, the assumption of non-Gaussian

distribution was satisfied for all data sets (Fig. 2 and Table 5).

Third, and the most difficult, question is whether the ‘indepen-

dent’ variable and residual term can be considered to be

statistically independent of each other. Independence seems to

be a reasonable approximation in the Young Finns data when

modeling the outcome mBDI with the Sleep problems as an

independent variable, although not strictly true (Table 5 and

Figure 2); for other depression-sleep cases of Table 5, however, the

Hoeffding’s D-statistic was 4 to 96 times larger than for the mBDI-

outcome, indicating more dependency. The visual evaluation

implied that the situation was not the worst possible in the large

WLS data either, although the hypothesis of independence was

strictly rejected. Also, a 1.4 times larger D-statistic for the

benchmark SES model than for mBDI, and the significant

quadratic coefficient (Table 5), did little to hinder the efficient

causality estimation in the benchmark data (Table 3). For the

model with BDI-II as independent variable and Sleep problems as

dependent variable, the assumed independence clearly did not

hold. Models are always approximations, and a simulation study

further probed sensitivity to assumption violations.

Simulation Study of Discretization and Confounding
Effects

Figure 3 summarizes the constructed probability model that

imitated the observed data during the simulations. The causality

algorithms handled the discretization of data very well, indicating

that ordinal variables should not be a problem provided that an

underlying continuity exists: discretization down to just two

Table 3. Pairwise Causality Comparisons for 2000 Bootstrap Re-samples in Young Finns Data.

Chosen as cause % Summary of values

Method/Statistic Parents’ SES Offspring’s SES Statistic 95% confidence int.

DirectLiNGAMb 100.00 0.00 0.1062 (0.0627, 0.1485)

Skew-based 100.00 0.00 0.0721 (0.0454, 0.1019)

Tanh-based 99.90 0.05 0.0077 (0.0033, 0.0124)

mBDI Sleep problems

DirectLiNGAMa 00.40 99.60 20.0433 (20.0747, 20.0090)

DirectLiNGAMb 01.40 98.60 20.0354 (20.0677, 0.0001)

Skew-based 2.80 97.20 20.0276 (20.0565, 0.0009)

Tanh-based 28.50 71.50 20.0013 (20.0054, 0.0027)

BDI-II Sleep problems

DirectLiNGAMa 77.65 22.35 0.0213 (20.0332, 0.0781)

DirectLiNGAMb 100.00 0.00 0.1633 (0.0927, 0.2572)

Skew-based 100.00 0.00 0.0913 (0.0457, 0.1507)

Tanh-based 65.95 34.05 0.0011 (20.0038, 0.0058)

aNon-standardized original variables (not available for SES).
bStandardized variables; Skew- and Tanh-based statistic always require standardization. Second and third column report the percentages of ‘wins’ in the indicated
pairwise comparison, whereas the two last columns summarize the statistic implying the result over the 2000 re-samples. SES = socioeconomic status, mBDI = modified
Beck’s Depression Inventory; BDI-II = Beck’s Depression Inventory II.
doi:10.1371/journal.pone.0050841.t003

Table 4. Pairwise Causality Comparisons for 2000 Bootstrap
Re-samples in the Data from Wisconsin Longitudinal Study.

Chosen as cause % Summary of values

Method/
Statistic mCES-D

Sleep
problems Statistic

95%
confidence int.

DirectLiNGAMa 0.00 100.00 20.8798 (20.8940,
20.7940)

DirectLiNGAMb 0.00 100.00 20.5655 (20.6031,
20.5185)

Skew-based 100.00 0.00 0.0443 (0.0205,
0.0730)

Tanh-based 99.85 0.15 0.0042 (0.0013,
0.0071)

anon-standardized original variables.
bstandardized variables; Skew- and Tanh-based statistic always require latter.
Second and third column report the percentages of ‘wins’ in the indicated
pairwise comparison, whereas the two last columns summarize the statistic
implying the result over the 2000 re-samples. mCES-D = modified Center for
Epidemiologic Studies Depression scale.
doi:10.1371/journal.pone.0050841.t004
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Figure 2. Three linear (Ordinary Least Squares) regression models corresponding to causal directions estimated by DirectLiNGAM-
algorithm. Each row shows data for a model estimated in one data set. First panel of a row (A, D, or G) shows the linear (thick line) and quadratic
(thin line) fits, superimposed on the data points. Jitter (a uniform random variable ranging from 20.1 to 0.1) was added to variables to enhance
visibility of data points. Second panel is a scatterplot of the linear model residual against the independent variable. Last panel of each row shows a
Gaussian probability density with mean and standard deviation equaling those of the observed residual distribution, and a kernel density estimate of
the observed linear model residual.
doi:10.1371/journal.pone.0050841.g002

Table 5. P-values for Statistical tests evaluating LiNGAM assumptions.

Estimated causal model H0: bquadratic = 0 H0: me = Gaussian H0: mX6me H{
0: mX6me

offspring’s SES = f(parents’ SES)+e .013 ,.001 1.05?1028 .002

mBDI = f(Sleep problems)+e .657 ,.001 .079 .003

Sleep problems = f(BDI-II)+e 6.06?1026 ,.001 1.79?10216 ,1028

mCES-D = f(Sleep problems)+e 7.37?10221 ,.001 ,,.001 ,1028

Note: Leftmost column shows the evaluated model in the form where variable Y is a function f of X plus an error term e, denoted Y = f(X) + e. The second column is a p-
value for the null-hypothesis that the f does not have quadratic nonlinearity, third column for the e being Normally distributed, fourth for the independence of X and e
using L1-test, and final column tests independence by Hoeffding’s test (‘{’ superscripted). Lilliefor’s test for normality was based on tabulated values, and did not allow
higher precision than given. For independence test between the residual and independent variable in the Wisconsin Longitudinal study data (n = 6640), very small p-
value was obvious but exact value difficult to find using a standard function-minimizer.
doi:10.1371/journal.pone.0050841.t005
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categories yielded a 99.9% estimation success, and with 3 to 15

categories a flawless performance was observed for the LiNGAM-

and Skew-based estimates; Tanh-based estimate only erred four

out of thousand times for four-category variables, and twice for

two-category variables. The algorithms also tolerated Gaussian

measurement error in the exogenous variable very well: a

performance decline was observed for the DirectLiNGAM-based

estimate only after the measurement error variance exceeded the

true variance of mBDI (i.e., 1.282; see Figure 4C); the Skew-based

estimate was even less sensitive (Fig. 4F), and the Tanh-based

estimate appeared most robust against measurement noise (Fig. 4I).

Latent confounding was a more difficult question, and

algorithm performance depended a lot on the underlying

distributions and type of confounding (proportional/mixture vs.

linear). Figure 4 indicates that a small amount of confounding was

not a problem for the general estimate, but the Tanh- and Skew-

based estimates were less robust against confounding; with some

distribution settings and a large amount of confounding, they can

be even biased. Partial confounding tended to disturb the causality

estimation more when the residual distribution was a translated

Exponential than when it was a mixture of four Gaussians. The

relative performances of the three methods were mirror-images

with respect to tolerance for confounding versus tolerance for

measurement error: the Tanh-based estimate was the most noise-

robust and least tolerant for confounding, and the DirectLiNGAM

estimate obtained the opposite pattern. Since all measures

tolerated quite a lot of measurement error, the potential

confounding appears to be a more acute problem.

Some Differences between the Depression Scales
Despite the same Young Finns data, 22.8% of participants had

answered ‘no symptom’ to all BDI-II items compared to only 1.5%

in mBDI. For mCES-D, 5.7% of participants reported the lowest

attainable score. This, and the different nonlinearities with respect

to Sleep problems (Figure 2), suggested that despite their high

correlation (r = 0.77) mBDI and BDI-II might differ with respect

to some depression properties they measure. A Graded Response

model was estimated in order to evaluate what relative informa-

tion mBDI and BDI-II encode. Although the model did not fit well

in the absolute sense (over half of the two-way item-margins

indicated lack of fit for observed and expected frequencies of

response patterns [51,52]), in a relative sense, the model

nonetheless indicated that the two measures did not encode fully

overlapping information (Figure 5): mBDI encoded better than

BDI-II for the lower levels of depression that were most present in

this general-population sample. Scales that place a lot of weight on

only severe depression may be problematic in population studies,

as the study-attrition tends to associate with high depression scores

(Tables 1 and 2). Indeed, the effect size (Cohen’s d) of the attrition

on the depression score was three times larger for the BDI-II

(d = 0.637) than for the population-oriented mBDI (d = 0.213) or

mCES-D (d = 0.219) scales.

Discussion

This study tested recently introduced causality estimators, that

are able to estimate causality from cross-sectional data [1–3], on

an epidemiological problem that can be considered truly open

with respect to the issue of causality: does depression cause sleep

problems in the general population, or vice versa? It was first

shown that each of the three applied estimators easily recognized

the correct causality from a benchmark data consisting of parents’

and their offspring’s socioeconomic status. The estimators quite

consistently indicated that sleep problems caused depressive

symptoms in one of the three data sets that best fulfilled the

required assumptions for causality estimation (mBDI-data of the

Young Finns study). In the same Young Finns data, another

depression measure (BDI-II) yielded an inconsistent result, but this

data set violated the assumptions of the model; the relationship

was not linear, and the residual clearly depended on the

independent/predictor variable value. In addition, the Wisconsin

Longitudinal Study’s data violated one or both of these

assumptions, although to a lesser degree, and provided conflicting

results among the different estimators. A simulation study

imitating present data characteristics revealed a dose-response

relation between the degree of assumption violation and causal

estimation-failure frequency. The DirectLiNGAM-based estima-

tor in particular, that utilizes mutual information between

regression residuals and independent variables, tolerated small

violations in assumptions well. It also indicated the causal

antecedence of Sleep problems in the Wisconsin data.

The results are partly in line with the causal implication of many

studies that have found sleep problems to precede depression in

time [23–27]; although compared to benchmark data and

simulations, it appears that some amount of confounding and/or

reciprocal effects exist between depression and sleep problems.

Figure 3. Simulation study approximating the observed data. The situation where mBDI was linearly modeled in the Young Finns data using
Sleep problems as independent/predicting variable was modeled. Histograms of Sleep problems (A), Ordinary Least Squares residual of mBDI (B), and
the dependent mBDI (C) are shown, together with probability distributions fitted to these data (thick lines, y-axis re-scaled for the number of
observations), and (Gaussian-) kernel density estimates of the data (thin lines). First panel suggests that Mixture of Gaussians is not a good model for
Sleep problems; a shifted Exponential distribution was chosen.
doi:10.1371/journal.pone.0050841.g003
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Depression seemed to cause sleep problems according to a single

DirectLiNGAM-comparison out of six, that for the standardized

BDI-II variable. Non-standardized variable yielded less consistent

results for BDI-II, which further undermines interpretation since

the DirectLiNGAM should be invariant to standardization [2]; the

lack of invariance may have resulted from the significantly

nonlinear association between sleep problems and BDI-II

(Figure 2). Hence, most results where the data appeared to follow

the required LiNGAM assumptions to a reasonable degree

indicated that the dominant direction of causality was from sleep

problems to the depressive symptom score. Furthermore, depres-

sion scales for community-based studies (e.g., mBDI and mCES-D)

tend to provide more information on lower degrees of depression

severity than more clinically oriented scales, such as the

unmodified version of Beck’s Depression Inventory [51]; a result

that was supported by Graded Response Modeling of mBDI and

BDI-II in the present study (Figure 5). The degree of depression

severity may play a role in population association between

depression and sleep problems.

There are two important ways for the degree of severity assessed

by a scale to influence the results from LiNGAM estimates of

causality. First, a measure like BDI-II appears to concentrate its

informative range on severe depression [51], being relatively

uninformative for a great number of mildly depressed participants

in common-population samples (Figure 5); such a selective

attenuation precludes the linear association that is required for

causality estimation unless the sleep-problem covariate is also

sensitive only for the same participants. A strong nonlinearity was

indeed observed between Sleep problems and BDI-II in the Young

Finns data, and 22.8% of participants had the lowest possible score

in BDI-II compared to only 1.5% for the mBDI. Due to its

emphasis on severe depression, the study attrition also had thrice

the effect on BDI-II that it had on the mBDI and mCES-D.

Second, the causal association in question may differ for severe

and mild depression. For example, emerging evidence indicates

Figure 4. Simulation results by gradually perturbing the model of Figure 3. The rows signify the applied causality statistic: DirectLiNGAM-
based (panels A,B,C), Skew-based (D,E,F), and Tanh-based statistic (G,H,I). Two leftmost panels of each row show estimation success (proportion of
correct estimates) as a function of the degree of latent confounding. Different types of confounding (linear or proportional) and different
distributional conditions were tested: Gaussian mixture (GM), Exponential (Exp), and GM and Exp (different) residual, and with all GM distributions;
see methods. Last panel shows estimation success when an amount of Gaussian ‘measurement error’ indicated by horizontal axis was added to
independent variable.
doi:10.1371/journal.pone.0050841.g004
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that sleep problems induce immune system alterations, and

immune dysfunction may be depressogenic [21]; also, severe

depression itself causes major immune system alterations [21].

Another recent study showed that depressive symptoms rather

form a causal network than reflect a single latent cause [30];

among the depressive symptoms, sleep problems are the promi-

nent correlate of immune system alterations [21,53]. From the

causal network point of view, it is therefore plausible that sleep

problems serve to initiate fatigue and mild depression through

immune system dysfunction, whereas causality in severe depres-

sion is more mixed due to a large interconnected network of

symptoms, life-events, and feedback from depressed mood to sleep

and the immune system.

It has been shown that pairwise measures of causal association

are robust against measurement noise or error [3], and the same

was true for the computer simulation that imitated the present

context. Our simulations also indicated that a small amount of

confounding by an unobserved third variable did not necessarily

preclude the estimation of causality with the DirectLiNGAM-

based statistic, whereas the more approximate measures based on

only certain kinds of departures from Normality did worse with

respect to confounding. They did have the benefit of greater

tolerance for symmetric measurement error, but DirectLiNGAM

also had a surprisingly good tolerance for such errors. This

dissociation between measurement- and confounding-related

sensitivity may explain the dissociation in the causality estimates

between Sleep problems and Depression that was observed for

DirectLiNGAM-based and Tanh-/Skew-based estimates of the

Wisconsin data (Table 4). The simulations suggest that differing

results may be due to partial confounding/cyclicity for which

Tanh- and Skew-based estimates are more sensitive than the

DirectLiNGAM estimate. This would mean that while depression

causes some Sleep problems in the Wisconsin data, the effect of

Sleep problems on depression was greater still (i.e., only partial

confounding). Interpreting this together with the results on mBDI

and BDI-II scales, the logical implication is that the more severe

depression one measures, the more it appears to inflict or

confound with Sleep problems, but for less severe depression, sleep

problems appear to serve as a causal antecedent. That is, Sleep

problems are estimated as potent initiators of dysphoria or other

depressive symptoms. Such a finding aligns with inferences made

from the similarities between the patterns of neurobiological

changes in chronic sleep deprivation and in depression: ‘‘chronic

sleep deprivation may be a precursor of depression’’ [55].

The possibility of cyclic (reciprocal) causal relation between

depression and sleep problems is intuitively sound and has been

implicated in previously reported research [54,56]. The LiNGAM-

based approach is unable to learn such a model from the data. The

Figure 5. Total Test Information for the items of BDI-II (solid line) and for those of mBDI (dashed line). Units of the horizontal axis
represent standard deviations of the latent/general depression as estimated by unidimensional Graded Response Model. Information per latent
depression value holds no absolute meaning; it is estimated by integral over an adjacent step in 200 point discretization of horizontal axis. In addition
to (Fisher) Information-content of the scales, the thin dotted line plots a Gaussian kernel density estimate from the factor scores of the estimated
Graded Response Model, normalized to maximum of one; this serves to illustrate which severity-levels were actually present in the population-based
Young Finns data set.
doi:10.1371/journal.pone.0050841.g005
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confounding simulation suggested that if reciprocal causality were

asymmetric, in the sense that one variable causes more of the

other, the DirectLiNGAM-algorithm should detect the dominant

cause. Although an algorithm for the estimation of a cyclic, linear,

non-Gaussian, causal model does exist [4], it needs to rely on

Independent Component Analysis [4,32] rather than direct

estimation methods [2,3]. Causal methods based on Independent

Component Analysis provide less reliable estimates than direct

estimation methods [2,3]. In addition, the authors of the method

concluded that a ‘‘number of questions remain open’’ [4]. In

addition, the cyclic method needs to assume that the underlying

system is observed in an equilibrium state [4], whereas depression

has a complex age-dependent biology [57,58]. Therefore, our

results only suggest a dominant causal flow from antecedent sleep

problems to mild depressive symptomatology. Such findings are

nonetheless important due to ongoing debate on lowering of

thresholds for depression-like diagnoses and for initiation of their

somatic therapy [59]; they are also of interest for the scientific

understanding of depression etiology, as minor depression can be a

transitional state on a path towards major depression [60].

Although research toward cyclic estimation may be beneficial

for the understanding of depression-sleep connection, developing

robust [61] versions of causality algorithms might be of a more

immediate benefit. Depression is a multi-cause condition [62] with

clearly established dependence on individual life-events [30,63] as

well as with the individual biology [21,64]. Automated modeling

of effects as being present in only part of the sample/population, as

in robust statistics [61], has yielded benefits in complex

psychobiological epidemiology [65]; many of the causal effects

affecting majority of population might be more readily seen

provided that less frequent routes to depression do not dilute them.

Furthermore, it might be possible to alleviate the study attrition-

based problems via some future missing-data models.

Regarding study limitations, it is not surprising that participants

who were excluded due to lacking data had higher depression

scores than the study samples (Tables 1 and 2), because

inefficiency and lack of initiative are typical for depressed people.

Equally unsurprisingly, women were over-represented in our data,

as the men were more likely to lack data. Sleep problems and

depression were self-reported by the same informant, resulting in

possible common-rater variance. Future studies might measure

these variables also with clinical interview of mental health and

laboratory recordings of sleep, in addition to self-reports. A

strength of the current study is the use of three depression

measures, two sleep problem measures, two large populations, and

three causality statistics. The reliability of the results was also

evaluated by a numerical simulation using a setting that imitated

the properties of the observed data, and by a benchmark data test.

In summary, this study provides one of the first applications of

cross-sectional statistical estimation of pairwise causality to a

challenging real-world epidemiological problem, as opposed to

simulations and benchmark testing with ‘toy problems’. A

prediction is drawn from these estimates for future empirical

studies to confirm: for minor forms of depression and sensitive

measures, sleep problems cause significantly more dysphoria/

depression than dysphoria causes sleep problems; the situation

changes as depression gets more severe, or more severe levels of

symptoms are evaluated. It remains unclear as to whether the

dominant causality becomes reversed or is balanced for more

severe depression, and study attrition appears to present an

increasingly severe problem for causality estimation in increasingly

severe depression. This study is another piece of evidence for the

causal role of sleep problems in the population-level etiology of

depression, in addition to their temporal precedence [21–27] and

physiological effects [18,20–24,54,56].
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