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Abstract

Within functional magnetic resonance imaging (fMRI), the use of the traditional general linear model (GLM) based analysis
methods is often restricted to strictly controlled research setups requiring a parametric activation model. Instead, Inter-
Subject Correlation (ISC) method is based on voxel-wise correlation between the time series of the subjects, which makes it
completely non-parametric and thus suitable for naturalistic stimulus paradigms such as movie watching. In this study, we
compared an ISC based analysis results with those of a GLM based in five distinct controlled research setups. We used
International Consortium for Brain Mapping functional reference battery (FRB) fMRI data available from the Laboratory of
Neuro Imaging image data archive. The selected data included measurements from 37 right-handed subjects, who all had
performed the same five tasks from FRB. The GLM was expected to locate activations accurately in FRB data and thus
provide good grounds for investigating relationship between ISC and stimulus induced fMRI activation. The statistical maps
of ISC and GLM were compared with two measures. The first measure was the Pearson’s correlation between the non-
thresholded ISC test-statistics and absolute values of the GLM Z-statistics. The average correlation value over five tasks was
0.74. The second was the Dice index between the activation regions of the methods. The average Dice value over the tasks
and three threshold levels was 0.73. The results of this study indicated how the data driven ISC analysis found the same foci
as the model-based GLM analysis. The agreement of the results is highly interesting, because ISC is applicable in situations
where GLM is not suitable, for example, when analyzing data from a naturalistic stimuli experiment.
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Introduction

Inter-subject correlation (ISC) analysis method provides an

opportunity for the functional magnetic resonance imaging (fMRI)

analysis under naturalistic research paradigms. In these para-

digms, the stimuli are designed to be closer to normal everyday life

than in conventional research paradigms. The used stimuli can be,

for example, a movie or a 3D video game [1].

One of the major benefits of the ISC analysis is that it can be

used to locate activations without a priori knowledge of the

temporal composition of processes contributing to the neuronal

activation. In the ISC analysis, the hemodynamic activity of a

subject is used to quantify the hemodynamic activity of another

subject by calculating the correlation coefficient between the

corresponding fMRI time series of the subjects. Inferences about

the locations of activations are solely based on the similarities in

hemodynamic responses across the subjects. Instead, a massively

univariate stimulus-model-based analysis in fMRI predominantly

relies on the theory of general linear models that provide a

framework of analyzing subjects fMRI responses with respect to

the model of the known and fixed stimulus type, typically

appearing as the columns of the design (or predictor) matrix in

the GLM. This often restricts the application of these GLM-based

analyses to strictly controlled research setups as the parametric

model for the BOLD signal changes related to the activation have

to be defined a priori. The major difference between ISC and GLM

based analyses is that the former is completely non-parametric in

the sense it does not require any parametric form for the stimulus

time-course while the latter requires a model for the stimulus time

course. We note that there is a direct connection between the

statistical analysis of a slope parameter in a simple regression, i.e.,

a simplified version of a single subject GLM-based analysis and a

correlation coefficient. In what follows, we will use the terms ISC

and GLM analysis rather loosely, referring to the major difference

explained above rather than to the technical details of computa-

tions and statistics involved.

Hasson et al. [2] introduced the concept of ISC in fMRI and

demonstrated that a simple movie stimulus produced significant

correlations between the voxel-wise fMRI time series of the

subjects, especially in visual and auditory cortices. Since then ISC

analysis has been applied to investigate speech comprehension [3],

auditory abnormalities [4], memory encoding [5] and brain

functions during movie watching [2,6–8]. In a particular relation

to this work, Kauppi et al. [9] developed a new ISC based method

by adding an option to compute the frequency specific ISC and

designed novel non-parametric resampling tests to make inferences

about ISCs. Resampling tests were designed, since the data was

not guaranteed to be uncorrelated as Heijnar et al. [4] had earlier

noted. Significant ISCs were found in visual and auditory areas in
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line with earlier neurocinematics studies and additionally in pre-

frontal cortical areas when studying low frequency bands.

One of the main questions concerning the ISC analysis is how to

interpret correlations between subjects. Because the ISC measures

the similarity of subjects’ Blood Oxygenation Level Dependent

(BOLD) fMRI responses during the same stimulus, a high ISC

does not directly imply a high degree of task (or stimulus) related

activation [4]. However, it has been shown by comparing

intracranial single-unit and local field potential recordings of

epilepsy patients and fMRI of healthy subjects experiencing the

same movie stimulus that the correlated firing rate in a local

population of neurons correlates with the BOLD response ([10],

[11]). Further, Hanson et al. [12] argued that if there are

correlations between individual subjects, who all experience the

same stimuli, most of the correlated activations should be caused

by the stimuli and so it might be possible to find the activity

patterns of the brain even in complex situations.

A parametric GLM-based analysis is a standard method for

detecting task-related activations in fMRI. Therefore, a potential

way to investigate whether an ISC analysis method can locate

activated brain regions due to stimulus presentation is to compare

the results of the ISC analysis with those of the GLM analysis for

the same fMRI data.

In this case, the data must be acquired under strictly controlled

experimental setting so that the GLM analysis can be performed

reliably. Previously, Heijnar et al. [4] studied ISCs of 20 subjects

with the fMRI data acquired during the auditory oddball task and

compared the results with those of the GLM. Multi-subject ISC

maps were thresholded empirically, as it was noted that statistical

thresholds cannot be obtained using standard statistical approach-

es due to dependencies between the correlations. The comparison

was limited to the visual analysis of the activation maps. The

conclusion was that the ISC analysis could find the same activation

foci as GLM but ISC also found foci which were not visible in the

model-based results.

Also in this work, we compare the ISC analysis results with

those of the model-based GLM method to investigate the accuracy

of the non model-based ISC analysis method detecting activated

brain regions. We considerably extend the study of Hejnar et al. by

incorporating more tasks and subjects to the comparative analysis.

Moreover, we evaluate the similarity of the analysis results

quantitatively and use a resampling-based method to obtain

statistical thresholds for the ISC brain maps. It is important to use

automatic thresholding scheme instead of a manual threshold

selection to avoid a possible user-dependent bias in the compar-

ison.

We use the GLM as a reference method in the comparison since

it is a standard data analysis tool for locating brain activations in

fMRI. The key difference between ISC and GLM methods is

presented in Figure 1. ISC analysis combines voxel-wise correla-

tions between several subject pairs in a fully non-parametric way

to a single multi-subject statistical measure. Instead, GLM first

compares voxel-wise the fMRI time series of each individual with a

predefined model of the hemodynamic activity and then combines

the results to a single multi-subject statistic. It is obvious that unlike

the ISC method, where the model is not needed, GLM is not easily

applicable to analyzing fMRI datasets acquired under complex

stimuli for which the construction of the parametric model is far

too difficult. Thus, it is necessary to use fMRI datasets which are

acquired under strictly controlled experimental settings in order to

carry out reliable validation, where the parametric model is

guaranteed to succeed extremely well and this way provide the

ground-truth for the non-parametric study.

Materials and Methods

ICBM functional reference battery data
For this study, we used fMRI data from the measurements with

Functional Reference Battery tasks developed by the International

Consortium for Human Brain Mapping (ICBM) [13] (http://www.

loni.ucla.edu/ICBM/Downloads/Downloads_FRB.shtml) The data

was obtained from ICBM database in the Image Data Archieve

(IDA) of the Laboratory of Neuro Imaging (LONI) (http://www.loni.

ucla.edu/ICBM). The ICBM project (Principal Investigator John

Mazziotta, M.D., University of California, Los Angeles) is supported

by the National Institute of Biomedical Imaging and BioEngineering.

ICBM is the result of efforts of co-investigators from UCLA,

Montreal Neurologic Institute, University of Texas at San Antonio,

and the Institute of Medicine, Juelich/Heinrich Heine University -

Germany.

The selected data included measurements from 37 healthy

right-handed subjects (19 men and 18 women; average age was

28.2 years from the range of 20–36 years), who had all performed

the five selected tasks from FRB. The functional data was collected

with a 3 Tesla Siemens Allegra fMRI scanner and the anatomical

T1 weighted MRI data with an 1.5 Tesla Siemens Sonata scanner.

The TR/TE times for the functional data were 4 s/32 ms, flip

angle 90 degree, pixel spacing 2 mm and slice thickness 2 mm.

The parameters for the anatomical T1 data were 1.1 s/4.38 ms,

15 degree, 1 mm and 1 mm, correspondingly.

Similarly to Bellec et al. [14], we restricted the age range of the

subjects to 20–38 years. In the database, this resulted to 41 right-

handed subjects who had fMRI measurements from all five

different FRB tasks: auditory naming (AN), external ordering

(EO), hand imitation (HA), oculomotor (OM) and verbal

generation (VG). The image data was pre-screened before analysis

to ensure high quality of the data. According to pre-screening,

fMRI data from four subjects were discarded because of a poor

data quality for at least one task in the battery.

FRB tasks. The detailed task definitions of the functional

reference battery are included in the FRB software package and

Figure 1. General conceptual difference between the non-
parametric ISC and parametric GLM analysis. The ISCs are
computed voxel-wise over the measured time series of every possible
subject pair and then the results are combined to a single statistic. The
GLM analysis fits the mathematical model (Here: boxcar function
convolved with the canonical hemodynamic response function (HRF))
to the measured time-series of every subject and the group level results
are then combined from the results of the individual subjects’ analyses.
doi:10.1371/journal.pone.0041196.g001
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they are next explained briefly here. All the five FRB task designs

had the same block-structure in their implementations and they

consisted of consecutive ‘off’ and ‘on’ blocks. There were 12 blocks

per run (6 ‘off-on’) and 3 volumes at the beginning of the run to

wait for magnetisation stabilisation. The blocks lasted 28 s so that

‘off-on’ phases lasted totally 56 s. This created finally 5 min 48 s

duration for the whole experiment where there were 12 blocks (six

‘off’ and six ‘on’ blocks) for each run with 7 volumes in each block.

In every task, the ‘off’ block instruction was the same: the

subjects had to respond with the left mouse button press every time

they saw an arrow pointing to the left. The different ‘on’ blocks

were defined separately for each task.

In the first task, AN, subjects were instructed to listen to the

description of an object from a sound file and then think their

answer silently to the description. The stimulus had first 2 s of

silence, then 1.5 s of description and finally again 2 s of silence.

This is a language task with an auditory input modality and the

FRB definition noted that auditory cortex should be activated here

(in addition to language areas).

In the EO task, which is a working memory task, the subjects

were presented with four abstract design stimuli followed by a fifth

stimulus and required to recall whether the final abstract design

was among the four presented previously. The designs were visible

for 450 ms and the screen was blank 50 ms between the designs.

The subjects responded via a button press whether the final

stimulus was among the four previously shown. This test was

repeated five times during each ‘on’ block.

In the HA task subjects were instructed to imitate the presented

hand configuration with their right hand. The example hand

configurations were presented to them with pictures on the screen.

Each hand position was presented for 3.5 s. This is a task requiring

higher order motor coordination and motor planning and in the

FRB description, it was noted that this task should activate the

frontal and parietal areas.

In the OM task subjects were watching an image including a

central cross in the middle surrounded by 10 black boxes. Subjects

were instructed to concentrate on the central cross and saccade to

the surrounding box if it changed white for a moment. After this,

they should have returned their gaze immediately to the central

cross. In each ‘on’ block there were 20 fixation trials and 20 target

trials. There were four fixations of each of the following durations:

800 ms, 1000 ms, 1200 ms, 1400 ms, and 1600. These were

randomized and each were followed by a 200 ms target trial. This

way the task was supposed to activate the visual system and the

occipital lobe.

Finally, in the VG task, the images of certain objects were

shown to the subjects on the screen and subjects were instructed to

generate a verb associated to the object silently in their mind

without saying it aloud. During the ‘on’ blocks, line drawings were

presented for 0.5 s. This task is a language task with visual input

and was noted to activate the language and visual areas.

Pre-processing. Pre-processing and the GLM part of statis-

tical analysis were performed by using the program FSL (version

4.1.6) [Oxford Centre for Functional Magnetic Resonance

Imaging of the Brain (FMRIB), Oxford University, Oxford,

U.K.] [15]. The data processing in FEAT (version 5.98) was done

in three phases. First, motion correction was performed using the

FSL’s MCFLIRT by maximizing the correlation ratio between

each time point and the middle volume, using linear interpolation

[16,17]. Second, the Brain extraction tool (BET) [18] was applied

to to extract the brain volume from functional data. Finally, the

images were temporally high-pass filtered with a cutoff period of

60 s and the spatial smoothing was applied with a Gaussian kernel

with full width at half maximum (FWHM) of 5 mm. The original

data had 87 volumes with three stabilization volumes, which were

discarded from the analysis. The brain extraction from the

anatomical T1 images was also performed by BET, but this was

done manually for each T1-weighted image separately from the

FEAT procedure as the parameters of BET required individual

tuning.

The image registration was performed in two phases using FSL

Linear Registration Tool (FLIRT) [16,17]. First, the skull-stripped

functional images were aligned (6 degrees of freedom, full search)

to the skull-stripped high-resolution T1-weighted image of the

same subject, and then the results were aligned to the standard

(brain only) ICBM-152 template (12 degrees of freedom, full

search).

Analysis Methods
General Linear Model with FEAT. After preprocessing, the

GLM was performed at the single subject level with the FSL

(FEAT, fMRI Expert Analysis Tool) [19,20]. Most of the

processing options were chosen according to the defaults of

FEAT. The model was defined for 84 volumes where each block

had the length of seven volumes. The length of the block in

volumes was computed from the timing of the tasks and the

scanning parameters (28 s divided by 4 s). The boxcar model was

designed with the three-column format of FEAT. In this format it

was possible to define separately for every block the current value

of the model (one for each ‘on’ block), starting point in time from

the beginning of experiment, and duration of the current block

from the starting point. Then, the model was convolved with the

canonical hemodynamic response function (HRF) (a single c-

function modeling: phase 0 s, standard deviation 3 s, mean lag 6 s)

along to its temporal derivative. Finally, the same default high pass

filtering as applied to experimental data (with a cutoff of 60 s) was

applied to the model. The analysis itself was performed with the

FILM prewhitening procedure [21].

Higher-level mixed effects group analyses were performed for

each contrast by using FSL’s FLAME (FMRIB’s Local Analysis of

Mixed Effects) module with two stages (1+2), where the second

stage estimation was performed using MH MCMC (Metropolis-

Hastings Markov Chain Monte Carlo) sampling [19]. Voxel-wise

False Discovery Rate (FDR) based multiple comparison correction

[22,23] under the independence or positive dependence assump-

tion was used to threshold the z-statistic volumes. As argued in [9],

the FDR based multiple comparison correction is a natural option

for ISC and for this reason also the GLM thresholds were

corrected with the FDR method. The used thresholding levels

were q~0.05, q~0.005, q~0.001 and the FDR corrected GLM

thresholds are presented in the Table 1 for reference.

Inter-Subject Correlation Analysis. The ISC analysis was

performed using ISCtoolbox for Matlab by Kauppi et al. [9] (

Table 1. FDR corrected GLM thresholds for different tasks.

q~0,05 q~0,005 q~0,001

AN 0.0025 0.1483:10{3 0.2186:10{4

EO 0.0063 0.4530:10{3 0.7259:10{4

HA 0.0049 0.3574:10{3 0.5872:10{4

OM 0.0040 0.2723:10{3 0.4233:10{4

VG 0.0039 0.2626:10{3 0.4104:10{4

Average 0.0043 0.2987:10{3 0.4832:10{4

doi:10.1371/journal.pone.0041196.t001
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http://code.google.com/p/isc-toolbox/). This implementation

can perform the ISC analysis over the specific frequency bands

of the time series and threshold the results via voxel-wise

resampling with the selected significance level. In this study, the

analysis was performed only across the full frequency band.

In [9], the ISC is defined as a multi-subject similarity measure as

follows. First, Pearson’s correlation coefficient is calculated voxel-wise

between every pair of subjects as:

rij~

PN
n~1

½(si½n�{�ssi)(sj ½n�{�ssj)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n~1

(si½n�{�ssi)
2 PN

n~1

(sj ½n�{�ssj)
2

s , ð1Þ

where rij is the sample correlation coefficient between the time series,

N is the total number of samples in time series, si and sj are time series

obtained from the ith and jth subject, respectively, and �ssi and �ssj

denote the means of si and sj .

To obtain the final multi-subject measure, the rij values from all

subject pairs were combined into a single ISC statistic by

averaging:

�rr~
1

m2{m
2

Xm

i~1

Xm

j~2,jwi

rij , ð2Þ

where m is the number of subjects. Since m was 37 in our study,

the correlation coefficients were averaged from (372{37)=2~666
subject pairs.

The statistical inference with this measure is complicated by the

dependency of 666 correlation coefficients. To account for this

problem a fully non-parametric voxel-wise resampling test is

implemented in the ISC toolbox. This test accounts for temporal

correlations inherent to fMRI data (for details of the test, see [9]).

Similar to [9], we approximated resampling distribution with

1,000,000 realizations and corrected the resulting p-values using

an FDR-based multiple comparison correction with independence

or positive dependence assumption [22,23].

Simulated Data
In order to obtain quantitative validation results against a known

ground truth, we generated four sets of simulated imaging data with

different noise levels mimicking the real data which was used in the

study. Each set contained 37 simulated functional images in the

standard ICBM-152 space. Each voxel in these images was either

activated or not activated. Activation regions were selected

according to the binarized GLM analysis results of AN task with

the threshold level of q~0.05. A hemodynamic signal was included

in the timeseries of the voxels in the activated regions. The signal

was selected to be exactly the same which was used as a model in the

GLM analysis, i.e., a boxcar convolved with a canonical HRF.

Finally, pink 1 f noise generated as described in [24] (https://ccrma.

stanford.edu/,jos/sasp/Example_Synthesis_1_F_Noise.html) was

added to every timeseries in the volume. The power of the noise was

100, 200, 500 and 1000 times stronger than the power of the

included hemodynamic signal resulting to signal to noise ratios

(SNR) of 0.01, 0.005, 0.002 and 0.0001. The areas outside the

activated regions contained only the noise signal. The simulation

procedure was exactly the same for every 37 simulated images, that

is, we ignored the anatomical and effect size variations between

subjects.

The pink noise was chosen in the simulations due to empirical

evidence that fMRI noise time-series contains 1 f-like noise [25].

As the data was generated directly in MNI-152 coordinates no

registration or motion correction was needed for the simulated

data and pre-processing included only temporal and spatial

filtering which were performed exactly as described for FRB data.

Method comparison
We compared the results of the ISC analysis and GLM with two

performance measures. The first measure was suitable for

comparing non-thresholded statistical images and was based on

Pearson’s correlation coefficient:

C~
1

K{1

XK

k~1

DZk D{�ZZ

sZ

� �
�rrk{�RR

s�rr

� �
, ð3Þ

Here K is the total number of brain voxels in the image

(K~228453 voxels) and Zk, �rrk are the GLM and ISC statistics of

the kth voxel, respectively. The absolute value of the Z statistic

was taken before computing the correlation measure because it

was expected that both large negative and large positive Z-values

relate to high �rr values. The �ZZ and �RR are the corresponding sample

means and sZ , s�rr the corresponding standard deviations (�ZZ and sZ

are computed from fDZk DgK
k~1).

Our second performance measure was the Dice index [26]

which was suitable for comparing thresholded and binarized GLM

and ISC maps. The binarized maps were created by assigning the

value of one to a voxel if the statistic value passed the threshold

and otherwise assigning the value of zero to it. Let BZ denote the

set of activated voxels of GLM and B�rr the set of those of the ISC.

The Dice index between two sets was defined as:

IDice~
2DBZ\B�rrD
DBZ DzDB�rrD

, ð4Þ

where the numerator measures the size of common activation

occurrence and the denominator measures the sizes of activated

areas according to individual methods. In other words, the

equation measures the areas where both binaries are true against

the areas where at least one binary is true. In practice the Dice

index was computed from the binary vectors. The thresholded and

binarized statistic volumes of the GLM and ISC analyses were

vectorized by reshaping them to M-dimensional vectors. Then, the

Dice index was computed as follows:

IDice~

2
PM
l~1

(BZ½l�:B�rr½l�)

PM
l~1

(BZ½l�)z
PM
l~1

(B�rr½l�)
, ð5Þ

where BZ½l� and B�rr½l� are the lth voxels of binary vectors reshaped

from binarized GLM and ISC statistic volumes, respectively.

The sums were computed over the whole volumes (M =

916109691 = 902629 voxels).

The resulting Dice index values vary between 0–1, where 1

denotes the exact similarity and 0 denotes no overlap. To further

ease the interpretation of Dice indices, we can utilize the

relationship between the Dice index and Kappa coefficient.

Zijdenbos et al. showed that under certain assumptions [27],

which are valid here, the Dice index is (asymptotically) equal to

Kappa coefficient. According to Landis et al. [28] the Kappa

coefficient values can be divided into six categories: less than 0,

ISC in fMRI: Method Validation against GLM
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‘‘No agreement’’; 0–0.2, ‘‘Slight agreement’’; 0.2–0.4, ‘‘Fair

agreement’’; 0.4–0.6, ‘‘Moderate agreement’’; 0.6–0.8, ‘‘Substan-

tial agreement’’; 0.8–1.0, ‘‘Almost perfect agreement’’. These

categories are ad-hoc, but widely used. The relationship between

Dice index and Kappa coefficient is further described by Finch

[29]. Dice index was chosen instead of Kappa, because it is better

suited to for our purposes since it ignores the non-activated regions

(see [27] for more details) and it is widely used as the performance

index in the evaluation of medical image segmentation algorithms.

Results

Pearson’s correlations, Eq. (3), between the absolute values of

the Z-statistic of GLM and ISC are presented in Table 2. The

values of the correlation coefficients were between 0.69 and 0.83,

where the lowest correlation was from the task EO and the highest

from the task HA. The average of the correlation coefficients

across all of the tasks was 0.74. These values indicate a high

similarity between the test statistics of GLM and ISC.

The Dice index, Eq. (4), between binary maps resulted in the

average value of 0.73 across the tasks and the thresholds. The

average Dice index values across the three thresholds for the

specific tasks ranged from 0.65 to 0.81. The average over the tasks

varied from 0.72 to 0.74 depending on the threshold. The results

are presented in the Table 3. When comparing these with the

Kappa categories discussed earlier, the similarity of the thre-

sholded statistical maps of ISC and GLM had a moderate (0.4–

0.6, 3 values), substantial (0.6–0.8, 9 values) or almost perfect (0.8–

1.0, 3 values) agreement. Most of the Dice indices were at the level

of substantial agreement. The Dice index values of the VG task

were most stable across the thresholds (0.77, 0.81, 0.77), whereas

the corresponding values of the EO task were most variable (0.76,

0.66, 0.56). With the tasks AN, HA, and OM, the values of the

Dice indices with the two tightest threshold levels were close to

each other but the values were notably lower with the most liberal

level. These results indicated that the q = 0.05 level might be too

liberal for this kind of study. The correlation and Dice index

results are visualized together in Figure 2.

The Figure 3 presents all three threshold levels q~0.05 (a),

q~0.005 (b), and q~0.001 (c) of the AN task. The Figure 4 (a)

presents a voxel-wise scatter plot between GLM (horisontal axis)

and ISC values (vertical axis). Figure 4 (b) presents the

corresponding histogram, which shows more clearly how the mass

of the values is distributed with respect to the thresholds. The red

lines in the Figure 4 denotes the three thresholds. The scatterplots

and histograms of the other tasks are present in the Figures S2, S4,

S6 and S8 of Supplement. The thresholded statistical maps of

GLM and ISC with the threshold level q~0.001 are presented in

Figure 3 (c) for AN task and Figures 5 and 6 for EO and HA tasks.

The threshold images from tasks EO and HA with threshold levels

q~0.05 and q~0.005 are presented in Figures S1 and S3 of

Supplement. Similarly to Figure 3, the Figures S5 and S7 of

Supplement presents all three threshold levels for the tasks OM

and VG respectively. In the figures, the red color indicates those

voxels, which are activated according to both methods, the blue

color indicates activated voxels according to GLM analysis only

and the green color denotes activated voxels according to ISC

analysis only. The images are in neurological orientation.

With the AN task, both methods detected activations in auditory

cortex, visual cortex, and cingulate gyrus (see Figure 3). This was

as expected based on the FRB task definition and comparison to

the previous fMRI studies with the AN task through a meta-

analysis tool Pubbrain (http://www.pubbrain.org). With the EO

task, the activations according to both methods were in lateral

occipital cortex, inferior frontal gyrus, precentral gyrus and

supplementary motor cortex (see Figure 5). As we expected, these

results were highly similar to the detected activations of the healthy

control subjects in the study of Hamilton et al. [30] which studied

the same EO task as we were using here. With the HA task, there

were activations in multiple parietal areas and inferior frontal

gyrus and cingulate gyrus in the frontal lobe (see Figure 6). These

were as expected (the FRB description noted that this task should

activate at least frontal and parietal areas). With the HA task, ISC

(but not GLM) detected activation in precuneous cortex. The

activation remained visible even with the tightest threshold

presented in Figure 6. Based on a review [31], it seems plausible

that the precuneous is active during the hand imitation task. With

the OM task, there were activations present at precentral gyrus,

occipital pole, supplementary motor cortex and lateral occipital

cortex (see Figure S5 of Supplement). These were as expected as

the FRB description noted that the task should activate the visual

system and the occipital lobe. With the VG task, activations at

inferior temporal gyrus, inferior frontal gyrus, temporal occipital

fusiform cortex, lingual gyrus, occipital pole, lateral occipital

cortex and supplementary motor cortex were detected (see Figure

S7 of Supplement). These were as expected as the FRB definition

noted that the task should activate language and visual areas.

Two general trends were noticeable from the overlay images.

First, with the EO (Figure 5) and VG tasks (Figure S7 of

Supplement), the ISC analysis was generally more conservative

than the GLM analysis for detecting activation areas, because the

number of voxels detected only by GLM (blue) was high and

common areas (red) were surrounded by these (blue) areas.

Second, with the tasks AN, HA and OM, ISC tended to find more

activated voxels than the GLM when the most liberal threshold

(q~0.05) was used. Thus, GLM analysis was more conservative of

the two methods. However, the situation was reversed when the

most tightest threshold (q~0.001) was used, i.e., ISC analysis

became more conservative than the GLM analysis. This is also

visible in the Figure 7, which presents the voxels that were

consistently detected as activated up by one method and not the

other method for the AN task. Corresponding images for other

tasks are presented in Figures S9, S10, S11 and S12 of

Supplement.

The correlation measure was computed between �rr-statistics and

DZD-statistics instead of signed Z-statistics. This was done because it

was expected that both high negative (de-activations) and high

positive (activations) Z-values relate to high positive �rr values. To

validate this hypothesis, we computed the correlation between

signed Z-values and �rr-values. In that case, the correlation

measures dropped to 0.50, 0.53, 0.74, 0.70 and 0.57 for AN,

EO, HA, OM and VG tasks, respectively. By comparing these

values to the values in Table 2, we can see that the decrease was

larger with the low correlation tasks (0.19 (AN), 0.16(EO) and 0.18

(VG)) and smaller with high correlation tasks (0.10 (HA),

0.06(OM)).

With the simulated data, the Dice indices between the

activations detected (either by ISC or GLM) and the ground

truth are presented in the Figure 8 for different noise and

thresholding levels. Average Dice index was 0.76 for ISC and 0.81

Table 2. Voxel-wise correlation measures, Eq. (3).

TASK AN EO HA OM VG Average

C 0,69 0,69 0,83 0,76 0,75 0.74

doi:10.1371/journal.pone.0041196.t002
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for GLM. The non-parametric ISC method detected simulated

activations very accurately when the SNR was 0.002 or greater.

Only with the highest noise level and especially with the most

conservative thresholding level, the accuracy of ISC was poor

(Dice index below 0.4) as it failed to detect the truly activated

voxels. The lower Dice indices for GLM with the two lowest levels

of noise were due to enlargening of the activation regions due to

filtering. In other words, the GLM-based analysis was too sensitive

in this highly idealized setting. Overall, we consider that the

performance of the two methods was similar at the three lowest

noise levels and only at the highest noise level the advantages of

using stimulus model derived information as in GLM became

clearly apparent.

Discussion

We have compared activations detected by two different fMRI

data analysis methods: a standard model-based GLM method and

a non-parametric ISC method. The major difference between

these two flavours of analyses is that the the former requires a

model for the stimulus time course while the latter is completely

non-parametric in the sense it does not require any parametric

form for the stimulus time-course. This means that the ISC can be

used to analyze fMRI data acquired from the experiments of

complex multi-dimensional stimuli, e.g., a movie. The used

datasets were deliberately chosen so that they were optimized

for the GLM type analysis to maximize the accuracy of the GLM

analysis. The data was acquired from the ICBM research

database, which contains fMRI acquisitions during highly

standardized FRB stimuli. The data was pre-processed and

separately analyzed with GLM (FSL) and ISC [9]. The Pearson’s

Figure 2. The correlation measure and the Dice index. The bars show the correlation measure between ISC and GLM and the lines present the
Dice index values from different significance levels. The continuous black line presents the average over the Dice values within the current task. The
HA task has higher correlation measure than other tasks and a high Dice index value. The EO task has the lowest correlation measure and the Dice
index is also lower and varies the most with the thresholds. This suggests that a high correlation measure predicts a high Dice index value. We note
that the values used as the basis for this figure are of higher numerical precision than those reported in Tables 2 and 3.
doi:10.1371/journal.pone.0041196.g002

Table 3. Dice Indices, Eq. (4).

Task/
Threshold q~0.05 q~0.005 q~0.001 Average

AN 0.56 0.69 0.7 0.65

EO 0.76 0.66 0.56 0.66

HA 0.71 0.86 0.86 0.81

OM 0.54 0.71 0.73 0.66

VG 0.77 0.81 0.77 0.78

Average 0.72 0.74 0.72 0.73

According to Landis et al. [28] the results can be categorized as following: less
than 0, ‘‘No agreement’’; 0–0.2, ‘‘Slight agreement’’; 0.2–0.4, ‘‘Fair agreement’’;
0.4–0.6, ‘‘Moderate agreement’’; 0.6–0.8, ‘‘Substantial agreement’’; 0.8–1.0,
‘‘Almost perfect agreement’’. By comparing the results with these categories
the HA task can be nominated to have ‘‘Almost Perfect’’ agreement and the EO
task, which had the lowest results as ‘‘Substantial agreement’’ even it also has
values from ‘‘Moderate agreement’’ level.
doi:10.1371/journal.pone.0041196.t003
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Figure 3. GLM and ISC analysis results for the AN task (thresholded and FDR corrected, q~0.05 (a), q~0.005 (b), q~0.001 (c) ). In
the images, the red color indicates voxels which are activated according to both ISC and GLM methods, blue indicates voxels activated according to
GLM but not according to ISC and green indicates voxels activated according to ISC but not with GLM. The images are in neurological orientation.
There is a notable correspondence between the ISC and GLM maps especially in auditory cortex, visual cortex, and cingulate gyrus. We can also see
that the ISC analysis was clearly more liberal than the GLM analysis with a loose threshold (q~0.05), but became more conservative when the
thresholds became tighter (q~0.005 and q~0.001).
doi:10.1371/journal.pone.0041196.g003
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correlation was computed between corresponding statistics of ISC

and GLM. The statistical maps from both methods were

thresholded while accounting for the multiple comparisons based

on FDR. The resulting binarized thresholded maps were

compared by computing Dice index between them.

The correlations between GLM and ISC statistics validated the

original assumption of the similarity of the measures used to

quantify the activations. The average correlation value over all five

tasks was 0.74, which can be considered as a high correlation. The

average Dice-index over all five tasks varied between 0.72 and

0.74 depending on the task. As noted earlier, nine of the 15 Dice

values were classified as substantial agreement (0.6–0.8) and three

of the 15 as almost perfect agreement according to a widely used

Landis and Koch categorization. Not surprisingly, the tasks with

the highest Pearson’s correlations featured the highest (and the

most stable) Dice index values.

Accordingly, the activations detected by ISC matched well with

the activations detected by GLM. The activation maps presented

in Figure 3 and Figures 5 and 6 illustrate that ISC method was

slightly more conservative than GLM method especially at the

most conservative thresholding level q~0.001 presented in the

figures. The development is easiest to see from the Figure 3 where

Figure 4. GLM and ISC analysis results for the AN task. The scatterplot (a) presents the voxel-wise statistic values of GLM (horisontal axis) and
ISC (vertical axis). Red lines define the thresholds with levels q = 0.05, q = 0.005 and q = 0.001. The second image (b) displays the corresponding
histogram, which shows more clearly how the mass of the values is distributed with respect to the thresholds defined by the red lines. Most of the
values are focused close to the origin which is not visible in the scatterplot.
doi:10.1371/journal.pone.0041196.g004
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all threshold levels are present (See also the Figures S5 and S7 of

Supplement). In most of these cases, the area of common

activation (in red) was surrounded by GLM only activation area

(in blue) indicating that ISC had found the same overall activation

location as GLM method. This result is promising from the fMRI

data analysis point of view under naturalistic paradigms, because it

suggests that the nonparametric ISC method can locate true

sources of BOLD signal activity well and yet it is not susceptible to

spurious findings, easily leading to overinterpretation of the results.

The variation in the correlation measure (range 0.69–0.83) and

Dice index (range 0.54–0.86) could have resulted from the

differences in the nature of the behavioral tasks. Especially, the

EO task had lower correlation value and Dice index than other

tasks, probably because it is the most complex task in FRB

designed to activate working memory. Surprisingly, the Dice and

correlation measures of the AN and the VG tasks were different

although the tasks are similar.

The simulation study demonstrated that the ISC could in

principle accurately detect activations even when the signal to

noise ratio was as low as 0.002. The lower Dice index values of

GLM than those of ISC with the simulated databases with low

noise levels (SNR 0.01 and 0.005) could be largely attributed to the

spatial smoothing applied to the data before analysis. (With higher

noise levels, the leakage of the activation to the voxels surrounding

the true activation region by smoothing became harder to detect

and thus GLM detected more accurately true activation areas.) As

Figure 5. GLM and ISC analysis results for the EO task. In the image the thresholded (FDR corrected, q~0.001) results for EO task are
presented as a binary overlay image. The color coding in the image is the same as in Figure 3. The threshold images from the levels q~0.05 and
q~0.005 are visible in the Figure S1 of the Supplement. Both methods find the same activation areas widely across the brain, including lateral
occipital cortex, inferior frontal gyrus, precentral gyrus and supplementary motor cortex. Note also how ISC only (green) and commonly detected
areas (red) are vanishing faster than GLM only areas (blue) when the threshold becomes more conservative. Thus, the ISC analysis was more
conservative of the two methods especially with the lowest q-value. This tendency explains relatively high variation in the Dice index values with
different significance levels for this particular task.
doi:10.1371/journal.pone.0041196.g005

Figure 6. GLM and ISC analysis results for the HA task. In the image the thresholded (FDR corrected, q~0.001) results for HA task are
presented as a binary overlay image. The threshold images from the levels q~0.05 and q~0.005 are visible in the Figure S3 of the Supplement. The
color coding in the image is the same as in Figure 3. Here it is clear that commonly detected areas (red) are dominant. There are also a notable
number of ISC only detections (green), which might indicate that ISC can detect activations which are not detectable by GLM. On the other hand,
some GLM only activations were located in cerebrospinal fluid, which suggested that there might exist measurement artifacts.
doi:10.1371/journal.pone.0041196.g006
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the FWHM of the smoothing kernel was the same for both

methods this indicates ISC was more conservative (or less sensitive)

than GLM. This phenomenon was observed also with exper-

imental data - albeit to a lesser extent. As the simulation model was

idealized and greatly simplified ignoring all between-subject

variability, the results with simulated data should be interpreted

Figure 7. The voxels consistently detected as activated by one method and not by the other with AN task. Green color indicates voxels
which were detected as activated by GLM in all thresholding levels, but not detected as activated by ISC in even the most liberal thresholding level
(q = 0.05). Viceversa, blue color indicates voxels which were detected as activated by ISC in all of the thresholding levels, but not detected as activated
by GLM with even the most liberal thresholding level (q = 0.05). Mostly these are isolated voxels or voxels lying near the boundary of the activation
area. However, the ISC detected activations in Posterior and Anterior cingulate cortex and Precuneus as well as Occipital lobe that were not detected
by the GLM. These areas are suspected to overlap with the default mode network in several studies, e.g., [34–36].
doi:10.1371/journal.pone.0041196.g007

Figure 8. Similarity of the detected activation region and ground truth activation region in the simulation study. The lines present the
Dice index values between the simulated versus detected activation area by ISC with different thresholding levels (blue lines) and by GLM with
different thresholding levels (red lines). The ISC performed well with lower noise levels (SNR 1/100 and 1/200) but failed with the highest noise level
(SNR 1/1000). The GLM performed overall well, but has a lower detection rate at low noise levels compared to ISC. This is due to false positive
detections on the areas nearby ground-truth activation areas due to the effects of the spatial smoothing.
doi:10.1371/journal.pone.0041196.g008
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with caution expecially regarding the exact noise levels that ISC

could tolerate.

In this study, we used a relatively large database of 37 subjects.

One interesting topic for future research would be to test

comprehensively how the number of subjects affects the ISC

analysis and what is the minimum number of subjects for the ISC

analysis. Some results in this direction were presented by Hanson

et al. [12] who demonstrated (but did not quantify) the stability of

Roy’s largest root statistic based ISC analysis after six or more

subjects with a video stimulus of length of 156 s. However, for

example, the reproducibility of ISC across subject samples remains

an almost untouched research topic. Another slightly unusual

aspect of the data is rather long TR of 4 seconds. It is difficult to

speculate what effects this would have to the results of the method

comparison as the two methods might react differently to the

shortening of repetition time. However, it is important to note that

recent ISC applications have typically used shorter TRs from 1.5

to 2 seconds.

Certain methodological choices warrant commenting. The

GLM was used as the reference method because it is the standard

method for analyzing fMRI studies acquired under a strictly

controlled stimulus. The particular implementation of the multi-

subject GLM (FSL’s FLAME using MCMC) was selected because

it is widely used and properly evaluated [15,20]. In particular, a

computationally heavy MCMC approach was selected due to its

accuracy [20]. Obviously, activations detected by GLM cannot be

considered as ground truth and we therefore verified that our

GLM analysis results to matched to the prior expectations based

on fMRI literature. This was done by comparing our analysis

results with the information available through a meta-analysis tool

Pubbrain. In the GLM-based fMRI analysis, it is often recom-

mendable and more typical to apply a family-wise error rate based

multiple comparisons correction (either in voxel or cluster level)

instead of a more liberal FDR-based criterion adopted by us (see

[32] for a comparison of different multiple comparison options in

fMRI). We adopted it, since FDR is a natural choice for ISC

analysis and it is essential to compare detected activations at the

same significance level. Indeed, as can be noted based on Figure 3,

especially the FDR level q~0.05 was liberal (technically, we could

expect 5% of the activated voxels to be false positives) and some of

the activations were likely to be due to imaging artefacts. In visual

inspection, both ISC and GLM seemed to detect activations that

could be suspected to be artefactual at the most liberal threshold-

ing level while at the most conservative thresholding level

activations that could be easily labeled as artefactual were almost

non-existent.

Obviously, there are also methodological choices related to the

ISC analysis although the methodological literature about ISC is

scarce compared to that of the model-based GLM analysis. The

first choice is that of the test statistic, in this work given in Eq. 2.

Alternatives to this statistic include average of Z-transformed

correlation coefficients [3], Roy’s largest root [12], and average

correlation coefficient between subjects response time-course and

an averaged response time course [33]. In the latter, the order of

the averaging and normalization to unit variance is reversed

compared to our test statistic leading to a different (but related)

test-statistic. Our preference of the test statistic selected in this

work relate to its easy interpretation in the simple case that the

true correlation between all subjects’ time series has an equal value

(see [9]). However, we speculate that the choice of test statistic is

not critical unless the number of subjects or time-points is much

smaller than here and, in particular, the qualitative results of this

work do not rely on a particular choice of test statistic. The second,

we think more critical, choice is that of the thresholding

procedure. The important question here is if the hypothesis

testing relying on parametric models (e.g. [3]) could replace more

computationally heavy resampling procedures (e.g. [33], [9], and

this work). In this work, we have experimentally shown that a

time-domain resampling test produces inference results compara-

ble to model-based activation detection. Further work is required

to identify the most optimal thresholding scheme.

An interesting detail can be observed by studying activations

detected only by ISC colored in blue in Figure 7. These activations

detected by solely by ISC included voxels from Posterior and

Anterior cingulate cortex and Precuneus as well as Occipital lobe.

Similar patterns of activations detected solely by ISC can also be

found by inspecting the Figures S10 and S11 in the Supplement.

These areas are suspected to overlap with the default mode

network in several studies, e.g., [34–36]. In a wider scope, [8]

suggested that that naturalistic stimulation may provide a

complementary tool to the resting state protocol for studying the

default mode network.

Both the ISC- and GLM-based statistics presented here focus on

shared responses across subjects while allowing some intersubject

variablity in the models via mixed effects modelling (GLM) or how

the hypothesis testing is performed (ISC). This seems to be a

reasonable assumption in the tasks presented here, but under other

kind of experiments intersubject variability can be considerably

higher and harder to model due to individual differences in

information processing. The investigation of these differences

requires the use of more sensitive methods which take better into

account the variability across subjects. For instance, clustering

approach presented in [37] preserves the entire structure of the

intersubject correlation matrices, making it a suitable method for

investigating differences and similarities in brain responses in data-

driven manner even for a large group of subjects simultaneously.

Another approach was presented in [38], where individual

differences were investigated by comparing the results of group-

level ISC analysis and intra-subject correlation analysis computed

across repeated presentations.

Our results indicate that the ISC analysis can be used to find the

same activation areas as the stimulus model-based GLM analysis

when the parametric form of the stimulus is known. The

motivation for this study is that ISC-based methods do not

require the model of the stimulus time course and therefore they

can be used in many research settings where the parametric

modeling of the stimulus is not applicable. For example, movies

provide an interesting form of a more naturalistic stimulus that is

impossible to model completely and where the applicability of the

parametric model based methods for activation detection is

therefore limited.

Supporting Information

Figure S1 GLM and ISC analysis results for the EO
task. In the image the thresholded (FDR corrected, q~0.05 (a)

and q~0.005 (b)) results for EO task are presented as a binary

overlay image. The color coding in the images is the same as in

Figure 3 of the article. The image of q~0.001 is presented in the

Figure 5 of the article. Both methods find the same activation areas

widely across the brain, including lateral occipital cortex, inferior

frontal gyrus, precentral gyrus and supplementary motor cortex.

Note also how ISC only (green) and commonly detected areas (red)

are vanishing faster than GLM only areas (blue) when the

threshold becomes more conservative. Thus, the ISC analysis was

more conservative of the two methods especially with the lowest q-

value. This tendency explains relatively high variation in the Dice
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index values with different significance levels for this particular

task.

(TIFF)

Figure S2 GLM and ISC analysis results for the EO
task. The scatterplot (a) presents the voxel-wise statistic values of

GLM (horisontal axis) and ISC (vertical axis). Red lines define the

thresholds with levels q = 0.05, q = 0.005 and q = 0.001. The

second image (b) displays the corresponding histogram, which

shows more clearly how the mass of the values is distributed with

respect to the thresholds defined by the red lines. Most of the

values are focused close to the origin which is not visible in the

scatterplot.

(TIFF)

Figure S3 GLM and ISC analysis results for the HA
task. In the image the thresholded (FDR corrected, q~0.05 (a)

and q~0.005 (b)) results for HA task are presented as a binary

overlay image. The color coding in the images is the same as in

Figure 3 of the article. The image of q~0.001 is presented in the

Figure 6 of the article. Here it is clear that commonly detected

areas (red) are dominant. There are also a notable number of ISC

only detections (green), which might indicate that ISC can detect

activations which are not detectable by GLM. On the other hand,

some GLM only activations were located in cerebrospinal fluid,

which suggested that there might exist measurement artifacts.

(TIFF)

Figure S4 GLM and ISC analysis results for the OM
task. The scatterplot (a) presents the voxel-wise statistic values of

GLM (horisontal axis) and ISC (vertical axis). Red lines define the

thresholds with levels q = 0.05, q = 0.005 and q = 0.001. The

second image (b) displays the corresponding histogram, which

shows more clearly how the mass of the values is distributed with

respect to the thresholds defined by the red lines. Most of the

values are focused close to the origin which is not visible in the

scatterplot.

(TIFF)

Figure S5 GLM and ISC analysis results for the OM
task. In the image the thresholded (FDR corrected, q~0.05 (a),

q~0.005 (b) and q~0.001 (c)) ) results for OM task are presented

as a binary overlay image. The color coding in the images is the

same as in Figure 3 of the article. As earlier with the HA task in

Figure S3, also here ISC was first very liberal q~0.05 and there

was mainly common (red) and ISC only (green) areas. When the

threshold gets tighter q~0.005 the ISC only areas becomes

smaller like with AN task and with the tightest threshold q~0.001

ISC becomes more conservative than GLM. Here some ISC only

areas remained visible even with the tightest significance level

q~0.001.

(TIFF)

Figure S6 GLM and ISC analysis results for the OM
task. The scatterplot (a) presents the voxel-wise statistic values of

GLM (horisontal axis) and ISC (vertical axis). Red lines define the

thresholds with levels q = 0.05, q = 0.005 and q = 0.001. The

second image (b) displays the corresponding histogram, which

shows more clearly how the mass of the values is distributed with

respect to the thresholds defined by the red lines. Most of the

values are focused close to the origin which is not visible in the

scatterplot.

(TIFF)

Figure S7 GLM and ISC analysis results for the VG
task. In the image the thresholded (FDR corrected, q~0.05 (a),

q~0.005 (b) and q~0.001 (c)) results for VG task are presented as

a binary overlay image. The color coding in the images is the same

as in Figure 3 of the article. Here we can see the similar progress

than with the task EO. There were merely a few ISC only areas

(green) without GLM areas next to them and most of the common

(red) areas were surrounded by GLM only areas (blue). When the

threshold tightened from q~0.05 to q~0.001 both ISC and GLM

detections contracted, but ISC contracted somewhat faster, which

again suggested that ISC was more conservative than GLM.

(TIFF)

Figure S8 GLM and ISC analysis results for the VG
task. The scatterplot (a) presents the voxel-wise statistic values of

GLM (horisontal axis) and ISC (vertical axis). Red lines define the

thresholds with levels q = 0.05, q = 0.005 and q = 0.001. The

second image (b) displays the corresponding histogram, which

shows more clearly how the mass of the values is distributed with

respect to the thresholds defined by the red lines. Most of the

values are focused close to the origin which is not visible in the

scatterplot.

(TIFF)

Figure S9 The voxels consistently detected as activated
by one method and not by the other with EO task. Green

color indicates voxels which were detected as activated by GLM in

all thresholding levels, but not detected as activated by ISC in even

the most liberal thresholding level (q = 0.05). Viceversa, blue color

indicates voxels which were detected as activated by ISC in all of

the thresholding levels, but not detected as activated by GLM with

even the most liberal thresholding level (q = 0.05). Mostly these are

isolated voxels or voxels lying near the boundary of the activation

area.

(TIFF)

Figure S10 The voxels consistently detected as activated
by one method and not by the other with HA task. The

color coding of the image is the same as in Figure S9. Mostly these

are isolated voxels or voxels lying near the boundary of the

activation area. However, the ISC detected activations in

Precuneous cortex that were not detected by the GLM.

(TIFF)

Figure S11 The voxels consistently detected as activated
by one method and not by the other with OM task. The

color coding of the image is the same as in Figure S9. Mostly these

are isolated voxels or voxels lying near the boundary of the

activation area. However, the ISC detected activations in middle

frontal gyrus that were not detected by the GLM.

(TIFF)

Figure S12 The voxels consistently detected as activated
by one method and not by the other with VG task. The

color coding of the image is the same as in Figure S9. Mostly these

are isolated voxels or voxels lying near the boundary of the

activation area. However, the ISC detected activations in middle

temporal cortex and in superior cortex that were not detected by

the GLM.

(TIFF)
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