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Abstract

Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an
infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient
expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The
efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania
grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of
viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis,
suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of
progeny RNA from SeMV icDNA infiltrated leaves and those of its 39 and 59 terminal deletion mutants, we propose a
possible mechanism for 39 and 59 end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2
resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the
four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans.
However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic
domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they
are anchored to membranes.
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Introduction

Sesbania mosaic virus (SeMV) is a member of the genus Sobemovirus.

The viruses from this genus infect both mono and dicotyledonous

plants [1,2]. However, their host range is narrow and each virus

infects only a small number of monocots or dicots. The natural

host for SeMV is Sesbania grandiflora; however it can also infect

Cyamopsis tetragonoloba (guar bean or cluster bean), which is an

experimental host [3]. Both these host plants are dicotyledonous

and belong to Leguminosae family. SeMV is a single stranded

positive sense RNA virus with a genome size of 4147 nt (Fig. 1a).

The 59 end of the genome is covalently linked to a viral protein

genome linked (VPg) and the 39 end lacks the poly A tail [2].

Sobemoviruses encode 3 open reading frames (Fig. 1a). The 59

proximal ORF (ORF 1) codes for the movement protein (MP)

which is involved in cell to cell movement of the virus and is a

suppressor of post transcriptional gene silencing [4,5,6,7,8,9]. The

39 proximal ORF (ORF 3) is translated into coat protein (CP) from

a subgenomic RNA (sgRNA) generated during replication (Fig. 1a).

CP is a major structural protein that forms T = 3 icosahederal

capsids. In addition, the CP is shown to be important for virus

movement [1,5,10]. ORF 2 is translated by a leaky scanning

mechanism and codes for two polyproteins 2a and 2ab. It was

demonstrated that SeMV polyprotein 2a has a domain arrange-

ment of membrane anchor (MA)-protease-VPg-p10-p8 [11]. The

polyprotein 2ab that is translated by a 21 ribosomal frame shift

mechanism has a domain arrangement of MA-protease-VPg-

RdRp [11,12]. The polyproteins 2a/2ab were predicted to contain

an N-terminal transmembrane domain (70 residues from N-

terminus) and a cleavage site was identified at residue 132 [11,13].

Both VPg and p8 are intrinsically disordered domains that

influence the activity of the neighbouring folded domains, namely

protease and p10 respectively [14,15]. For example, it was shown

that the protease-VPg (D70 Pro-VPg) but not the protease (D70

Pro) alone is active [15]. Similarly, the ATPase activity of p10

domain was stimulated by the p8 domain present at its C-terminus

[14]. Further, VPg-RdRp is the predominant intermediate of 2ab

processing in E.coli [11]. However, it was demonstrated that the

recombinant RdRp domain by itself possesses RNA structure

dependent and primer independent RNA polymerase activity

[16]. Majority of these studies were performed using in vitro/ex vivo

methods and it is therefore essential to establish these functions in

vivo for better understanding of the biology of Sobemoviruses.

Inoculation of in vitro transcripts from full length cDNA clones

onto whole plants or protoplasts is the common strategy used for

studying in vivo functions of the viral encoded proteins [17,18].
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However use of DNA based Agrobacterium-mediated transient

expression in planta is a better alternative as the transcripts

synthesized in vivo are much more stable [19]. The agroinfiltration

is simple, efficient, and widely used [20,21,22,23]. It involves

delivery of genes of interest from Agrobacterium containing a Ti-

plasmid into the plant cell nucleus followed by transcription of the

genes [19,24,25]. The full length transcripts thus generated could

then enter the cytosol and express the viral encoded proteins

enabling the replication of the viral RNA and subsequent steps of

the viral life cycle [19].

This paper describes the construction of SeMV full length

infectious cDNA (icDNA) clone in a binary vector and opti-

mization of conditions for Agrobacterium mediated transient

expression of SeMV RNA leading to infection. Based on the

observed 59 and 39 end sequences of SeMV progeny genomic

RNAs (gRNA) from different SeMV icDNA mutants and presence

of various forms of VPg, a possible mechanism for genome end

repair in vivo is proposed. Mutational analysis of cleavage sites in

the polyproteins encoded by ORF2 showed that all the four

cleavage sites identified earlier [11] are crucial for SeMV infection

in vivo. Further, coinfiltration analysis showed that proteins

encoded by ORF 2 but not ND70 ORF2 could act in trans and

support the replication of cleavage site mutants.

Results

Features of SeMV full length cDNA clone
Initially the full length cDNA construct of SeMV was generated

in pBluescript SK+ vector through a series of cloning steps,

resulting in a clone with 2635S promoter-SeMV full length

cDNA-sTobRV Ribozyme-Nos terminator (Fig. 1b & Fig.S1).

This cassette was then cloned into pRD400 binary vector and the

clone was named SeMV icDNA. The cloning strategy resulted in

the addition of 4 nucleotides at the 59 end and 21 nucleotides at

Figure 1. Genome organization. (a) SeMV is a single stranded RNA virus with genome size of 4147 nt. The 59 end of the genome is covalently
linked to VPg and the 39 end lacks polyA tail. ORF 1 encodes movement protein and ORF 3 encodes the coat protein which is expressed through a
subgenomic RNA (sgRNA). The ORF 2 codes for two polyproteins 2a and 2ab. The numbers indicate the position of start and stop codons in each of
the ORFs. The polyprotein 2a contains N-terminal membrane anchor (MA)-protease-VPg-p10-p8 domains. The polyprotein 2ab contains N-terminal
membrane anchor (MA)-protease-VPg-RdRp. The RdRp is expressed through a 21 ribosomal frame shifting mechanism. The numbers in the
polyproteins 2a and 2ab indicate the cleavage site positions. (b) Features of infectious clone: The infectious construct was initially made in pBluescript
SK+ vector and later subcloned into pRD400 vector. The infectious construct consists 2635S Promoter-SeMV cDNA-sTobRV RZ (Ribozyme)-Nos
terminator. It has additional 4 nt at the 59 end (59 CCTC 39) and 21 nt at the 39end. The 39 terminal two nucleotides present in the wild type viral RNA
are absent in this clone (59 AAA T 39 instead of 59 AAA TGT 39). The ribozyme self cleavage site is shown by a curved arrow.
doi:10.1371/journal.pone.0031190.g001
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the 39 end of the SeMV cDNA. Further, this clone had two

nucleotides less at the 39 end when compared to wild type genome

(59 AAAT 39 instead of 59 AAATGT 39) (Fig. 1b).

Agroinfiltration on Sesbania grandiflora
In order to check the transient expression and infectivity of

SeMV icDNA, agroinfiltration was carried out on Sesbania

grandiflora plants (the natural host) as described in the methods

section. Interestingly, 2–3 weeks post infiltration, about 5% of the

plants showed symptoms similar to that of wild type SeMV

infection. RT-PCR analysis of total RNA extracted from systemic

leaves showed the presence of the expected 240 bp product (Fig. 2a

lanes 1 & 2) with the same mobility as that obtained with viral

RNA template (Fig. 2a lane 4). Further, western blot analysis with

CP specific antibodies confirmed the presence of SeMV CP in

systemically infected leaves (Fig. 2b lanes 3 & 4). Plants which did

not show symptoms were negative to RT-PCR and western blot

analysis with CP specific antibodies (Fig. 2a lane 5 & 2b lanes 1 &

2 respectively). Leaf extracts of SeMV icDNA infected plants

induced mosaic symptoms on fresh plants showing that progeny

virus from SeMV icDNA infected plants behaved like the wild type

virus. These results suggest that SeMV icDNA could mimic the

wild type virus.

Agroinfiltration on Cyamopsis tetragonoloba plants
As the efficiency of SeMV icDNA infection was rather low on

Sesbania plants, the SeMV icDNA was tested for its ability to infect

another experimental host, namely Cyamopsis tetragonoloba [3].

Initially agroinfiltration was carried out with transformed

agrobacteria of cell density 0.6 at 600 nm (OD600). Symptom

appearance was monitored 2–3 weeks post infiltration. Interest-

ingly, about 50% of the agroinfiltrated Cyamosis plants developed

local chlorotic spots and necrotic lesions on the systemically

infected leaves (Fig. 3a). These symptoms were identical to that of

the wild type SeMV infection on these plants. Western blot

analysis confirmed the presence of CP in the systemic leaves

showing symptoms (Fig. 3b lanes 2–6). When total leaf extracts

from these plants was used to inoculate fresh plants, symptoms

similar to that obtained with wild type virus were observed. Since

Cyamopsis gave better efficiency of infection with SeMV icDNA, all

further experiments were carried out on these plants.

In order to optimize the efficiency of SeMV icDNA infection,

agroinfiltration was carried out with different densities of the cells

(OD600 0.2, 0.4, 0.6, 0.8, 1). It was observed that with increase in

cell density, there was an increase in the number of plants infected

(data not shown). About 80% of the plants showed infection when

infiltrated with cells of density OD600 0.8. However, further

increase in cell density to 1.0 or more did not result in 100%

infection.

Agroinfiltration analysis with pEAQ-GFP showed that the GFP

expression was low in Sesbania plants when compared to Cyamopsis

plants (Fig.S2). This could be due to inefficient T-DNA transfer by

Agrobacterium in Sesbania plants. Therefore lack of efficient T-DNA

transfer in Sesbania plants could be one of the reasons for observed

difference in infectivity of the two plants. Lack of 100% infectivity

in Cyamopsis could be due to difference in resistance from plant to

plant.

To check the time course of virus accumulation, Cyamopsis

cotyledons were infiltrated with Agrobacterium carrying SeMV

icDNA at OD600 0.8. The infiltrated cotyledons were collected

from different plants at 3, 6, and 9 dpi and subjected to western

blot analysis as described in the methods section. As shown in

Fig. 3c, CP was not detected at 3 dpi (lanes 1–3, represent plant

numbers) at which time probably the replication of the viral

genome and synthesis of subgenomic RNA was initiated.

However, CP could be detected in good amount at 6 dpi (Fig. 3c

lanes 4–8) which increased further at 9 dpi (lanes 9–13). Among

the plant samples analyzed, two (lane 8 and 13) showed only a

faint band for CP. Mock infiltrated plants (lanes 15 and 16) did not

show the presence of CP at 9 dpi and the CP from native virus

(Fig. 3c lane 14) migrated at the same position as the CP in the

samples from icDNA infiltrated plants (positive control). The

minor bands below the intact CP (Fig. 3c lane 9–14) could be due

to degradation of CP during extraction. The time course analysis

of plants mechanically inoculated with native virus also gave

similar pattern of CP expression (data not shown).

Northern analysis was carried out to detect the viral RNA

species present in SeMV icDNA infiltrated cotyledon leaves. Viral

Figure 2. RT-PCR and Western blotting analysis of Sesbania grandiflora infiltrated with SeMV icDNA. (a) RT-PCR of total RNA isolated from
systemically infected Sesbania leaves 21 dpi with SeMV icDNA: The RT-PCR was carried out with SeMV RdRp reverse and coat protein forward primer
as described in the methods section. lanes 1 & 2, two different plants infiltrated with SeMV icDNA, lane 3, 100 bp ladder, lane 4, RT-PCR with SeMV
genomic RNA, lane 5, RT(2)-control. (b) Western blot analysis of Sesbania plants Agrobacterium infiltrated with SeMV icDNA clone using CP specific
antibodies: lanes 1 and 2 correspond to mock agroinfiltrated Sesbania leaf samples; lanes 3 and 4 leaf extracts of systemically infected leaves 21 dpi;
lane 5 protein molecular mass marker.
doi:10.1371/journal.pone.0031190.g002
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RNA could not be detected with either the negative or positive

sense probes at 3 dpi (data not shown). However, at 6 dpi samples

showed double stranded (ds) gRNA, single stranded (ss) (+) gRNA,

ds sgRNA and ss (+) sgRNA when hybridized with (2) sgRNA

probe as estimated from the sizes of the positive signals (Fig. 4a).

The ds gRNA was also detectable in EtBr stained gel (Fig. 4 a & b).

Similarly when the hybridization was carried out with (+) sgRNA

probe, ds gRNA, ds sgRNA and ss (2) sgRNA could be detected.

However, ss (2) gRNA was not detectable (Fig. 4b). Lack of signal

for ss (2) gRNA could be due to its low abundance or its presence

predominantly in the ds replicative form. In two of the samples, a

faint band corresponding to 2.7 and 6 kb was observed in the blot

(Fig. 4b). The identities of these bands are unclear.

Western blot analysis was carried out with VPg antibodies to

detect the nonstructural proteins in the SeMV icDNA infiltrated

cotyledon leaf extracts. The crude membrane fraction was used for

this analysis to enrich the viral proteins. As shown in Fig. 5. lane 3

(10,000 g membrane fraction) & lane 4 (25,000 g membrane

fraction) specific bands corresponding in size to 54 kDa, 43 kDa,

29 kDa and 27 kDa were observed, which could correspond to Pro-

VPg-p10, Pro-VPg, ND132 Pro-VPg and VPg-p10 respectively. In

addition, bands with molecular weight ranging from 12–17 kDa

were also observed with a prominent band at 16 kDa. It may be

noted that the expected molecular mass of the VPg is 9 kDa and the

E.coli expressed VPg does not move abnormally on SDS-PAGE

[15,26]. This observed abnormal mobility of VPg could be due to

post-translational modifications of VPg in planta. Such an abnormal

migration of VPg, due to post-translational modifications, has also

been reported in other members [27,28] of the genus Sobemovirus.

Mass spectrometric analysis of CfMV, RYMV, SBMV and

RGMoV VPgs isolated from native virus showed that they were

phosphorylated and nucleotidylylated [28,29]. The Pro-VPg and

VPg bands could also be detected in native virus inoculated

cotyledon leaf membrane fraction (data not shown). Over all, the

western blot analysis revealed that various processed forms of

polyprotein 2a and post-translationally modified forms of the VPg

are detectable in membrane enriched fractions.

The 39 and 59 end repair of SeMV genome in vivo
Due to the cloning strategy used, SeMV icDNA had 4

additional nucleotides at the 59 end and 21 nucleotides at the 39

end and there was a 2 nt deletion at the 39 end when compared to

the wild type SeMV sequence. It was therefore of interest to

determine the 39 and 59 sequence of the viral RNA obtained after

icDNA infection. The virions were purified from SeMV icDNA

infected plants and the viral RNA was extracted. The RNA was

poly A tailed and reverse transcribed with oligo dT primer and

subsequently amplified using 39UTR forward (Table 1) and oligo

dT reverse primers. The PCR product was cloned and sequenced

to identify the 39 terminal nucleotide sequence of SeMV.

Similarly, to determine the 59 terminal sequence of SeMV, cDNA

was synthesized using progeny viral RNA as template and P1

reverse primer (Table 1), poly dA was added at the 39 end of

cDNA and the second strand synthesis and amplification was

carried out with oligo dT and P1 reverse primers (Table 1) as

described in the methods section. The PCR product was cloned at

SmaI site of pBluescript SK+ vector and sequenced. The

sequencing result showed that the 59 and 39 ends of the progeny

viral RNA did not contain the extra nucleotides (Fig. 6 a & b).

Further the 39 end sequence was found to be either 59 A TGT 39

Figure 3. Agroinfiltration of SeMV icDNA on Cyamopsis tetragonoloba plants and analysis of time course of SeMV icDNA infection. (a)
Mock and SeMV icDNA infiltrated Cyamopsis leaves (b) Western blot of SeMV icDNA infected Cyamopsis tetragonoloba plants. Lane 1, mock
agroinfiltrated leaf extract; lanes 2–6, SeMV icDNA infected systemic leaves from five independent plants showing symptoms; lane 7, protein
molecular mass markers; lane 8, positive control (native virus infected leaf extract). (c) Time course of SeMV icDNA infection on Cyamopsis plants:
western blot analysis using CP antibodies. Lanes 1–3, 3 dpi; lanes 4–8, 6 dpi; lanes 9–13, 9 dpi; lane 14, is a positive control; lanes 15–16 are mock
agroinfiltrated samples; lane 17 is a protein molecular mass marker.
doi:10.1371/journal.pone.0031190.g003
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or 59 T TGT 39 (Fig. 6 a). It may be noted that the later sequence

differs from the wild type sequence at the 4th nucleotide from the

39 end (Fig. 6a). Together these observations suggest that during

replication of the transcripts generated from icDNA, the extra

nucleotides were removed and the 39 end sequence was repaired.

Further, the virus was isolated from infiltrated leaves and systemic

leaves independently, RNA extracted and RT-PCR was carried

out with 39 UTR antisense and 59 UTR sense primers. The PCR

product was cloned into pBluescript SK+ vector and sequenced.

The sequencing results from two independent clones (one from

infiltrated leaves and second from systemic leaves) showed that

except for the differences at the extremity of the genome there

were no other changes in the sequence (data not shown).

Mutational analysis of 59 and 39 end nucleotides of SeMV
genome

The 39 end of the progeny viral RNA sequence obtained after

repair 59 TGT 39/59 T TGT 39 is complementary to the 59 end of

genomic RNA and sg RNA. Further, the 59 ends of the gRNA and

sgRNA promoter sequences of several Sobemoviruses begin with 59

ACAA [1]. Similarly, the 39 terminal sequence ends with GT 39 or

TGT 39. It was proposed that the ACAA motif at the 39 end of the

negative strand might act as promoter or enhancer for replicase

binding and initiation of progeny RNA synthesis [1,30]. In order

to study the importance of 59 and 39 end nucleotides in repair/

replication, 1 nt, 3 nt and 5 nt were deleted at the position

corresponding to 59 end of the viral RNA in the SeMV icDNA

clone. Similarly, 3 nt, 4 nt and 5 nt were deleted at the 39 end as

described in the methods section. These deletion mutants were

agroinfiltrated onto Cyamopsis cotyledon leaves and samples were

collected at 8 dpi and subjected to western blot analysis with CP

antibodies. As shown in Fig. 7, significant amount of CP

accumulation was observed when SeMV icDNA with 3 nt or

4 nt deleted from the 39 end was infiltrated. However, only a small

amount of CP was observed in a few plants when SeMV icDNA

with 5 nt deletion from the 39 end was infiltrated and none of these

Figure 4. Northern analysis of SeMV icDNA infiltrated cotyledon leaves of Cyamopsis tetragonoloba plants. (a) 0.8% TBE agarose gel (EtBr
staining) and northern blot analysis of total RNA extracted from SeMV icDNA agroinfiltrated leaves 6 dpi from three different plants. The negative
sense 32P labelled probe used for hybridization was complementary in sequence to the (+) sgRNA. (b) 0.8% TBE agarose gel analysis (EtBr staining)
and northern blot analysis of total RNA extracted from SeMV icDNA agroinfiltrated leaves 6 dpi. The positive sense 32P labelled probe corresponding
in sequence to that of (+) sgRNA was used for hybridization.
doi:10.1371/journal.pone.0031190.g004
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plants developed symptoms. On the other hand, deletion of 1 nt,

3 nt and 5 nt from the 59 end did not result in complete loss of CP

accumulation (Fig. 7).

Further, the virus was purified from the infiltrated leaves of all of

these mutants (except 39 UTR D 5 nt) to study the nature of

nucleotide sequence at the 59 and 39 end of progeny viral RNAs.

The RNA was extracted from purified virus and 59 RACE (for 59

deletion mutants) and 39 RACE (for 39 deletion mutants) was

carried out as described in the methods section. Table 2 shows the

59 end and 39 end sequences obtained from independent clones.

As apparent, the 59 end sequence (59 ACAA 39) was efficiently

restored when 1, 3, and 5 nt deletion mutants were infiltrated.

Similarly the 39 end was also efficiently repaired when 2 nt and

3 nt were deleted from the 39 end of the SeMV icDNA. In all the

sequences, the 39 terminal TGT was restored. It was also observed

that in some of the 39 deletion mutants, the nucleotide at the 4th

position from the 39 end was either changed to thymine or deleted.

Similarly the 5th nucleotide at the 59 end was either restored to

adenine or deleted. These results suggest that the nucleotide at the

4th position from the 39 end or the nucleotide at the 5th position

from the 59 end is not crucial for infectivity. Interestingly no

symptoms were observed when 39UTR D 59 nt deletion mutant of

SeMV icDNA was infiltrated and poor CP accumulation was

observed (Fig. 7) probably due to inefficient repair at the 39 end.

Attempts to isolate progeny virus from these plants were

unsuccessful.

Mutation of cleavage sites in polyprotein 2a and
complementation analysis

The cleavage sites in SeMV polyprotein have been previously

characterized with recombinant 2a and 2ab polyproteins from

E.coli [11,13]. In order to verify the role of these sites in SeMV

infection and to study the importance of polyprotein processing in

viral replication in vivo, site directed mutants of all four cleavage

sites (E132A, E325A, E402A and E498A Fig. 1a) were generated

in the SeMV icDNA clone. These cleavage site mutants were

transformed into Agrobacterium and infiltrated into Cyamopsis plants

separately. Symptom expression was monitored up to 30 dpi, on

sets of 20 plants for each cleavage site mutant. None of the plants

showed infection. Further western blot analysis carried out with

cotyledon leaves 15 dpi on representative plants (3 each) did not

show the presence of CP (data not shown). This result suggests that

cleavages at all these sites are indeed crucial for viral replication/

infectivity in planta.

In order to check whether these mutations could be comple-

mented with wild type ORF 2 RNA, coinfiltration experiments

were carried out. All the four cleavage site mutants were

coinfiltrated with pEAQ ORF2 clone (contains only ORF 2

coding region and does not contain 59 or 39 non coding regions of

SeMV). CP could be detected in the infiltrated leaves of all

cleavage site mutants (Fig. 8). Absence of CP in lanes 3, 7 and 10

could be due to the fact that the infectivity of even the wild type

SeMV icDNA is not 100%. Interestingly, the amount of CP

accumulation was significantly high when coinfiltration was

carried out with cleavage site mutant E325A and pEAQ ORF2

transformants (Fig. 8 lanes 4–6). These results suggest that ORF2

products could act in trans and promote the replication of cleavage

site mutants when it is expressed from a high expression plasmid

pEAQ. There was a non specific band above the CP band in all

the lanes which was variable in different blots depending on the

extent of washes given. Further it was observed that deletion of N-

terminal hydrophobic domain (ND70) (membrane anchor) abol-

ished the trans acting ability of ORF 2 products (data not shown)

suggesting a crucial role of this domain in targeting the

polyproteins to the site of replication.

Discussion

It has been demonstrated that in vitro transcripts of full length

cDNA clones are infectious in the case of Rice yellow mottle virus,

Cocksfoot mottle virus and Southern bean mosaic virus [7,10,31]. However

these transcripts showed varying degree of infection and were 5

fold less infectious than native viral RNA [10,31]. In the present

investigation, agroinfiltration approach was used to demonstrate

that SeMV icDNA clone can infect Sesbania and Cyamopsis plants

(Fig. 2 and 3). The efficiency of infection was optimized to be as

high as 80% on Cyamopsis plants.

The nucleotide sequence analysis of the progeny RNAs from

SeMV icDNA infected plants showed that the extra non viral

21 nt at the 39 and 4 nt at the 59 end were removed. Further the 59

and 39 ends were repaired to wild type or near wild type sequence

(Fig. 6a & b). Analysis of the progeny viral RNA from the 59 and 39

end deletion mutants also confirmed that they were efficiently

repaired. The tri or tetra nucleotide sequence at the 39 end (59

TGT 39 or 59 TTGT 39) is complementary to that of the

nucleotide sequence at the 59 end of gRNA and sg RNAs (59 ACA

39/59 ACAA 39). These observations suggest that initially RdRp

might bind to an internal sequence element yet to be identified

and nucleotidylyate VPg resulting in the formation of 59 VPg-

ACAA 39 or 59 VPg-ACA 39 primers (Fig. 9, Step1) . These

primers could realign at the 39 end of the genomic ( Step 2) or anti-

genomic RNA (Step 3) to synthesize negative or positive strand

viral RNAs (Fig. 9). Further, such a realignment is possible only if

the deletion at 39 end of SeMV icDNA is less than five nucleotides

(Fig. 7). Further, it is interesting to note that there is no

complementarity in the sequence of SeMV ic RNA transcript at

Figure 5. Western blot analysis with membrane enriched
fraction of SeMV icDNA infected cotyledon leaves. Western blot
analysis with SeMV VPg polyclonal antibodies: Leaf samples were
collected at 9 dpi; Lane 1, protein molecular weight marker; Lane 2,
crude membrane fraction (25,000 g) from mock infiltrated cotyledon
leaves. Lanes 3 & 4, Crude membrane fractions obtained at 10,000 g
and 25,000 g respectively from SeMV icDNA infiltrated cotyledon
leaves.
doi:10.1371/journal.pone.0031190.g005
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the 39 end and the primers VPg-ACA/VPg-ACAA (Fig. 9).

However, positioning of the replicase complex at the initiation site

is determined by several factors such as 59 and 39 cis acting

elements [32,33]. Our results suggest that such a cis acting element

may be present in SeMV after four nucleotides from the 39end.

Analysis of 59 terminal deletion mutants of SeMV icDNA beyond

Table 1. Description of oligonucleotides used in the study.

Name Sequence (59-39) Description

35S FW 59 CGGGATCCGATCTCCTTTGCCCCGGAGATC 39 To PCR amplify 35S promoter; the BamHI site is under lined.

35S Rev 59 CCTCTCCAAATGAAATGAACTTCCTTATATAG 39

sTobRV RZ FW 59 TCTAGAGATACCCTGTCACCGGAT 39 To PCR amplify the sTobRV ribozyme; the XbaI and StuI sites are
underlined in FW and Rev primers respectively.

sTobRV RZ Rev 59AGGCCTCTGCAGGACAGTC 39

59UTR FW 59 CTAAGGCCTCACAAAATATAAGAAGGAAAGCTG 39 To PCR amplify the SeMV full length cDNA; the StuI and SmaI sites are
underlined.

39UTR Rev 59 CCCCCGGGATTTGGATTACGCGCCAATTTCTC 39

Nos FW 59 TATACCGGTCCCGATCTAGTAACATAGATG 39 To PCR amplify the Nos terminator; the AgeI and KpnI sites are
underlined in FW and Rev primers respectively.

Nos Rev 59 ATATGGTACCGATCGTTCAAACATTTGG 39

E132A FW 59 GATGCTTCCAATGCGTCAGCTGTGTTGGGG 39 To introduce E132A mutation in SeMV icDNA; the restriction site PvuII
created is underlined.

E132A Rev 59 CCCCAACACAGCTGACGCATTGGAAGCATC 39

E325A FW 59 CTCTTAAGATCTAATGCGACTCTCCC 39 To introduce E325A mutation in SeMV icDNA, the restriction site BglII
created is underlined.

E325A Rev 59 GGGAGAGTCGCATTAGATCTTAAGAG 39

E402A FW 59 GAAAACGCTCAAGCTTCCGTCGCTGTTGAG 39 To introduce E402A mutation in SeMV icDNA; the restriction site
HindIII created is underlined.

E402A Rev 59 CTCAACAGCGACGGAAGCTTGAGCGTTTTC 39

E498A FW 59 GTTATTACAAGCAGGCAAGTTTAATCCTTCCAG 39 To introduce E498A mutation in SeMV icDNA.

E498A Rev 59 CTGGAAGGATTAAACTTGCCTGCTTGTAATAAC 39 Mutation was confirmed by sequencing.

59U TR D 1 nt FW 59 CATTTCATTTGGAGAGGCCCCAAAATATAAGAAGGAAAG 39 Used for deletion of one nucleotide from the 59 end, StuI site
abolished is underlined.

59UTR D 1 nt Rev 59 CTTTCCTTCTTATATTTTGGGGCCTCTCCAAATGAAATG 39

59UTR D 3 nt FW 59 CATTTCATTTGGAGAGGCCCCAAATATAAGAAGGAAAG 39 Used for deletion of 3 nucleotides from the 59 end StuI site abolished is
underlined.

59UTR D 3 nt Rev 59 CTTTCCTTCTTATATTTGGGGCCTCTCCAAATGAAATG 39

59UTR D 5 nt FW 59 CATTTCATTTGGAGAGGCCCCATATAAGAAGGAAAG 39 Used for deletion of 5 nt from the 59 end, StuI site abolished is
underlined.

59UTR D 5 nt Rev 59 CTTTCCTTCTTATATGGGGCCTCTCCAAATGAAATG 39

39UTR D 3 nt FW 59 GGCGCGTAATCCAAACCCACTAGAGATACCCTGTC 39 Used for deletion of 3 nt from the 39 end, XbaI site abolished is
underlined.

39UTR D 3 nt Rev 59 GACAGGGTATCTCTAGTGGGTTTGGATTACGCGCC 39

39UTR D 4 nt FW 59 GGCGCGTAATCCAACCCACTAGAGATACCCTGTC 39 Used for deletion of 4 nt from the 39 end, XbaI site abolished is
underlined.

39UTR D 4 nt Rev 59 GACAGGGTATCTCTAGTGGGTTGGATTACGCGCC 39

39UTR D 5 nt FW 59 GGCGCGTAATCCACCCACTAGAGATACCCTGTC 39 Used for deletion of 5 nt from the 39 end, XbaI site abolished is
underlined.

39UTR D 5 nt Rev 59 GACAGGGTATCTCTAGTGGGTGGATTACGCGCC 39

ORF2 FW 59 CTAGCTAGCCATATGTATCATCCGAGCTGCAAGG 39 To PCR amplify the SeMV ORF 2.

ND70 ORF2 FW 59 CCCCATATGGAGGCAAAGCAGGACAG 39 To PCR amplify the SeMV ND70 ORF 2.

RdRp/ORF 2 Rev 59 CGGGATCCTTACGAATCCGCACCATAGC 39 Used in RT-PCR and to amplify ORF 2.

39UTR FW 59 AAC CAA CTG CCT CAG CCC TG 39 To PCR amplify the polyA tailed 39 UTR cDNA.

CP sense 59 GGG GAA TAC TCC ATC GCC CC 39 Used in RT-PCR reaction.

P1 Rev 59 CCGCCGAAGCTTGAATTCCGGCCCGTTTTCACAAGGAGC 39 Used for 59 RACE analysis.

Oliogo dT 59 TTT TTT TTT TTT TTT TTT 39 To PCR amplify the polyA tailed 39 UTR cDNA.

T7 FW 59 TAATACGACTCACTATAGGG 39 Used in cloning and sequencing of SeMV icDNA.

T3 FW 59AATTAACCCTCACTAAAGGGA 39

doi:10.1371/journal.pone.0031190.t001
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5 nt might lead to the identification of cis acting elements also at

the 59 end of SeMV in future. Thus it is possible that during the

repair process, replicase may overcome the requirement of

complementarity in the nucleotide sequence of the template, at

the initiation site. It was shown that viruses from Picornaviridae use

protein primed initiation mechanism for repairing the genomic

ends wherein the RdRp could uridylylate the VPg using the

internal sequence of the template and could realign the

nucleotidylated VPg at the genomic termini [33,34,35].

As shown in Fig. 5, different processing intermediates were

identified in the SeMV icDNA infected leaf extracts suggesting

that the polyprotein processing was indeed occurring at the

expected cleavage sites [11]. In order to decipher importance of

cleavage at these sites during virus replication/infectivity, all the

four cleavage sites were independently mutated to alanine in the

SeMV icDNA clone. As shown in the results section, mutation of

any of the four cleavage sites (E132A, E325A, E402A and E498A)

abolished CP accumulation/replication suggesting that cleavage at

all the sites is indeed crucial for SeMV infection in vivo. Loss of

infectivity upon mutation of E132 suggests that cleavage at this site

by the protease domain is important for release of ND132Pro-VPg

from membrane. This ND132Pro-VPg might perform proteolytic

functions in trans as shown earlier [11,15,26] and these trans

functions also are crucial for replication/CP accumulation. In

Potato leafroll virus (genus Polerovirus), a similar cleavage site was

identified and it was proposed that release of protease domain

from the membrane may have a regulatory role [36]. The cleavage

at E325 and E402 positions may be important for release of VPg

for priming the replication. Western blot analysis showed the

presence of the fully processed VPg apart from Pro-VPg and VPg-

p10 suggesting that cleavages at both ends of the VPg had

occurred (Fig. 5). Mutation of E498 site also abolished the viral

replication suggesting that release of p8 from the rest of the

polyprotein 2a may be important. The p8 was shown to be an

Figure 7. Mutational analysis of 59 and 39 terminus of SeMV genome. (a) Western blot analysis of 39 and 59 end deletion mutants of SeMV
icDNA infiltrated plants. Lanes 1–3 represent 39 UTR D3 nt icDNA; lanes 4–6 corresponds to 39UTR D4 nt icDNA; lanes 7–9 represent 39UTR D5 nt
icDNA; lanes10–12 corresponds to 59UTR D1 nt icDNA; lanes 13–15 represents for 59UTR D3 nt icDNA; lanes 16–18 corresponds to 59UTR D5 nt icDNA
and lane 19 is a positive control (SeMV native virus).
doi:10.1371/journal.pone.0031190.g007

Figure 6. In vivo 39 end repair of SeMV icDNA. (a) Comparison of nucleotide sequence corresponding to the 39 end of the genomic RNA from
native virus (SeMV Wild type), genomic RNA from virus purified from SeMV icDNA infiltrated sample (SeMV icDNA inf 1 & 2 ) and sequence of SeMV
icDNA clone (SeMV icDNA clone). (b) Comparison of nucleotide sequence corresponding to the 59 end of the genomic RNA from native virus (SeMV
wild type), genomic RNA from virus purified from SeMV icDNA infiltrated sample (SeMV icDNA inf) and sequence of SeMV icDNA clone (SeMV icDNA
clone).
doi:10.1371/journal.pone.0031190.g006
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RNA binding protein and may be required for specific binding to

genomic RNA and targeting it to the site of replication. The

detection of Pro-VPg-p10 band in western blot analysis suggests

that the cleavage between p10-p8 may be important for the release

of p8 along with viral genome at the replication site. The loss of

infectivity may also be due to changes in the conformation of the

polyprotein upon mutation of the residue at the cleavage site.

However, earlier studies [11] on cleavage site mutants of the poly

proteins have shown that while the cleavage at the site of mutation

does not occur, cleavages at other sites remain unaffected

suggesting that changes in the amino acid sequence itself may

not be responsible for lethality. However, a more detailed analysis

on the lethality due to mutation of the cleavage site amino acid will

be tested in future by introducing conservative mutations.

Coinfiltration analysis of cleavage site mutants with SeMV ORF

2a/2ab showed that cleaved 2a/2ab products could act in trans and

restore the replication of these mutants (Fig. 9). Interestingly ORF

2a/2ab products complemented the cleavage site mutant E325A

more efficiently than any other cleavage site mutants (Fig. 9). Earlier

studies have shown that mutation of cleavage site E325 in the DN70

polyprotein 2a results in accumulation of DN70Protease-VPg,

which is an active form of the protease [11,15]. Further in vitro

studies also showed DN70Protease-VPg could act in trans and could

cleave the polyprotein 2a at E325 and E402 positions [11,15,26]. A

significant accumulation of full length Pro-VPg was also observed in

membrane fractions of SeMV icDNA infiltrated leaf samples (Fig. 5).

It is therefore possible that accumulation of enzyme (Protease-VPg

expressed from icDNA E325A and pEAQ ORF2) at the site of viral

replication may result in efficient processing of polyproteins and

release of VPg and other domains in sufficient quantities for virus

replication. Furthermore, no complementation was observed when

coinfiltration was carried out with pEAQ-ND70 ORF 2 suggesting

that N-terminal membrane anchor domain is crucial for this

complementation. These results emphasize the necessity of the

Figure 8. Western blot analysis of SeMV icDNA cleavage site mutants coinfiltrated with pEAQ ORF2. Each mutant was tested in 20
independent plants but three were used for western blotting. Lanes 1–3, SeMV icDNA E132A cleavage site mutant coinfiltrated with pEAQ ORF2;
lanes 4–6, SeMV icDNA E325A mutant coinfiltrated with pEAQ ORF2; lanes 7–9, SeMV icDNA E402A mutant coinfiltrated with pEAQ ORF2; lanes 10–12,
SeMV icDNA E498A mutant coinfiltrated with pEAQ ORF2.
doi:10.1371/journal.pone.0031190.g008

Table 2. 59 and 39 terminal sequence of progeny viral cDNAs of SeMV icDNA deletion mutants.

59 Terminal deletion 59 UTR terminal sequence* 39 terminal deletion* 39 UTR terminal sequence

WT 59 ACAAAATAT39 WT 59CCAAATGT39

59 ACAAAATAT39 59CCAAATGT39

59 ACAAAATAT39 59CCAAATGT39

1 nt D 59 ACAAAATAT39 2 nt D 59CCAAATGT39

59 ACAAAATAT39 59CCAAATGT39

59 ACAAAATAT39 59CCAATTGT39

3 nt D 59 ACAAAATAT39 3 nt D 59CCAAATGT39

59 ACAAAATAT39 59CCAATTGT39

59 ACAA - ATAT39 59CCAA - TGT39

59CCA - TTGT39

5 nt D 59 ACAAAATAT39 4 nt D 59CCAATTGT39

59 ACAA - ATAT39 59CCAATTGT39

59 ACAA - ATAT39 59CCAA - TGT39

59CCAT - TGT39

*The sequence obtained from 3 independent clones in each case is shown.
doi:10.1371/journal.pone.0031190.t002
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polyproteins to first target themselves to membrane (where

replication occurs) via the membrane anchor domain prior to their

processing into functional domains. Such a targeting of the

polyproteins to the membranes would ensure the release of

processed products at the site of replication.

In summary, this paper describes the construction and

optimization of conditions for agroinfiltration of SeMV infectious

clone on Cyamopsis tetragonoloba plants. Based on mutational analysis

of 59 and 39 ends of SeMV genome and detection VPg in different

forms, a possible genomic end repair mechanism was proposed.

Analysis of cleavage site mutants showed that cleavage at all the

four sites previously characterized with recombinant proteins in

the polyprotein 2a/2ab are essential for infection. Further,

products of processing are functional only when released at the

site of replication.

Materials and Methods

Construction of SeMV icDNA Clone
SeMV full length cDNA clone was initially constructed in

pBluescript SK+ vector and later subcloned into pRD400 binary

vector (Fig.S1). The schematic representation of the infectious

cDNA (icDNA) clone construction is shown in Fig.S1. The Nos

terminator (T) was PCR amplified from PVA icDNA [37] clone

using appropriate sense and anti sense primers (Table 1) and

cloned at SmaI site of pBluescript SK+ (Fig.S1). SeMV full length

cDNA was PCR amplified from pFX37 SeMV full length clone

(Lokesh G.L., unpublished clone) using sense and antisense

primers corresponding to 59 and 39 ends of the genome (Table 1)

and subcloned at EcoRV site of pBluescript SK+ (T) (Fig.S1.) The

SeMV full length genome sequence is available at GenBank with

Figure 9. A possible mechanism for 59 and 39 end repair in SeMV. VPg is shown as a small circle at the 59 end of the (+/2) gRNA, (+/2) sgRNA
and primer nucleotides. The 59 end of the (+) gRNA and (+) sgRNA begins with 59ACAA39 sequence. Step1, The VPg-ACAA or VPg-ACA primers could
be synthesized by RdRp using unknown internal sequence element (shown as stem-loop) (presence of different VPg forms in the western blots
supports this possibility). Step 2, these primers realign at the 39 end of the (+) gRNA even in the absence of complementarity (Note that initial RNA
formed from SeMV icDNA lacks complementarity with the VPg-ACA/VPg-ACAA primer at the 39 end). Alignment or positioning of primers at the
genomic termini could be determined by cis acting elements. The RNA chain could be elongated to synthesize full length negative strand or
terminated prematurely to synthesize subgenomic length negative strand (the full length genomic negative strand in replicative form (ds gRNA) and
(2) ss sgRNA or ds sgRNA are indeed detected in northern blots). Step 3, the VPg-ACAA/VPg-ACA primers align at the 39 end of these negative
stranded genomic and subgenomic RNAs which could be elongated to synthesize positive stranded genomic and subgenomic RNA respectively.
doi:10.1371/journal.pone.0031190.g009
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Accession number AY004291. Double 35S promoter was PCR

amplified from PVA icDNA [37] using appropriate sense and

antisense primers (Table 1 and cloned at StuI site located at the 59

end of SeMV cDNA in pBluescript SK+ SeMV-(T) clone Fig.S1.

The sequence for 35S promoter is available at GenBank with

Accession number FN398079.1. The Ribozyme sTobRV (satellite

RNA of Tobacco ring spot virus)(Fig.S1) was PCR amplified from

pCass4RZ binary vector [19] using primers (Table 1) and

subcloned at SmaI site located at the 39 end of the SeMV in

pBluescript SK+ 35S-SeMV-(T) clone (Fig.S1) (The sequence of

the Ribozymes is 59 TCTAGAGATACCCTGTCACCGGATG-

TGTTTTCCGGTCTGATGAGTCCGTGAGGACGAAACA-

GGACTGTCCTGCAGAGGCCT39) [19]. In each cloning step

orientation was confirmed by PCR using appropriate primers

(Fig.S1). The final clone was confirmed by sequencing with T3

FW, T7 FW and 35S FW primers. The icDNA cassette from

pBluescript SK+ vector was released by digestion with BamHI and

subcloned at BamHI site of pRD400 vector [38]. The clone was

confirmed by restriction digestion with KpnI. This clone was

named as SeMV icDNA.

All the DNA sequences used in the construction of SeMV

icDNA are published and/or available at GenBank with accession

numbers given above.

Site directed mutagenesis
The cleavage site mutants, 59 and 39 end deletion mutants were

generated by PCR based site directed mutagenesis method as

described by Weiner et al [39]. PCR was performed using

pBluescript SK+ SeMV icDNA template with appropriate sense

and antisense primers (Table 1) and Phusion polymerase

(Finzymes). The PCR product was digested with DpnI to remove

templates followed by transformation into DH5a competent cells.

Plasmids were isolated from colonies and screened by digestion

with appropriate restriction enzymes (Table 1). The mutations

were confirmed by DNA sequencing. The inserts were released

with BamHI digestion and subcloned at the same site of pRD400

binary vector.

Cloning of pEAQ-ORF2 and pEAQ-ND70 ORF2
The SeMV ORF 2 and ND70 ORF 2 were PCR amplified from

the SeMV cDNA template using appropriate sense and antisense

primers (Table 1) and Phusion polymerase. The PCR products

were cloned at SmaI site of pEAQ-HT vector [40]. The clones

were confirmed by sequencing.

Agroinfiltration protocol
Agroinfiltration was carried out essentially as described by

Eskelin et.al., [37]. Briefly, Agrobacterium tumefaciens strain C58C1

[41] containing the helper plasmid pGV2260 was transformed

with the binary vector constructs. Transformation was carried out

by electroporation (voltage 1.44 kV, conductivity 25 mF, and

resistance 100–200 V). After electroporation, cells were grown in

plain LB medium for 3–4 hours at 28uC with vigorous shaking.

The cells were harvested by centrifugation at 3000 g for 5 min and

platted on LB agar plates containing kanamycin, carbenicilin and

rifampicin (100 mg/ml each) and incubated at 30uC for 48 hours.

Single colony was inoculated to 3–50 ml of LB medium containing

10 mM MES pH 6.3 (2-(N-morpholino) ethanesulfonic acid) and

20 mM of acetosyringone (39-59-dimethoxy-4-hydroxyacetophe-

none) and antibiotics 100 mg/ml and grown at 30uC with shaking

(200 rpm) until optical density at 600 nm (OD600) reached 0.6–

0.8. The cells at this stage were harvested by centrifugation at

3000 g for 5 min and the pellet was washed with milli-Q water,

followed by resuspension in induction buffer (10 mM MES

pH 6.3, 10 mM MgCl2, and 150 mM acetosyringone). The

suspension was diluted with induction buffer to desired density

(OD600 0.05 to 1.2) and incubated at room temperature for 3–

4 hours. The cotyledon leaves of Sesbania grandiflora or Cyamopsis

tetragonoloba plants were chosen for infiltration. Leaves to be

infiltrated were turned upside down and a small prick was made

with a needle in the middle of intended infiltration area and the

bacterial suspension was injected at this position with 1 ml syringe

without needle.
Coinfiltration. Coinfiltration experiments were carried out

with Agrobacterium from each transformant at OD600 0.4 (SeMV

icDNA cleavage site mutant+pEAQ ORF2) in such a way that the

combined final OD600 was 0.8. This mixture was infiltrated onto

plants as described above.

Western blotting
100 mg of leaf sample was homogenised in 500 ml buffer

50 mM phosphate buffered saline (PBS) pH 7.4. 20 ml of the

homogenised sample (containing 400 mg of protein according to

absorbance at 280 nm) was used for SDS-PAGE followed by

western blot analysis. The SDS-PAGE was carried out at 125 V,

for 2 hours. After SDS-PAGE proteins were electro-blotted on to

PVDF membranes by applying a current of 100–150 mA for 2–

3 hours. Membrane was blocked with 5% skimmed milk solution

(in PBS) for one hour followed by incubation with primary

antibody for one hour (rabbit polyclonal SeMV CP or VPg

antibodies were used in 1:5000 ratio). Blot was washed with

phosphate/Tris Buffered saline pH 7.5, 0.1% tween 20 (PBST/

TBST). Finally the blot was incubated with secondary antibody

(goat polyclonal anti rabbit IgG HRP conjugate antibodies were

used in 1:10,000 ratio) for one hour followed by washing with

PBST/TBST for one hour (three times 20 min each). The blot

was developed using ECL reagent (Millipore).

Northern analysis
Northern blotting was carried out as described previously [16].

Briefly, total RNA was extracted from 100 mg of cotyledon leaves

using Trizol method. The RNA (2–4 mg) was run on 0.8% TBE

agarose gel and transferred to Nylon membrane by electro blotting

(150–200 mA for 2 hours). The blot was exposed to UV for cross

linking and blocked with hybridization buffer containing 26SSC,

50% formamide, 1.36Denhardt’s reagent (506Denhardt’s re-

agent contains 1% bovine serum albumin (BSA), 1% polyvinyl

pyrrolidone (PVP), 1% Ficoll), 100 mg/ml salmon sperm DNA,

7% SDS and 0.1% sodium-N-lauroyl sarcosine detergent at 65uC
for 3 h. The probe (1.56106 cpm/ml) was added to the

hybridization buffer not containing salmon sperm DNA and the

probe was allowed to hybridize with the immobilized RNA at

68uC for 14 h. The blot was washed with 26SSC, 16SSC and

0.26SSC containing 0.1% SDS at 65uC. The blot was finally

exposed to a phosphor-imager and analyzed by Fuji-film LAS

9000 instrument.

RT-PCR
The total RNA was extracted by trizol method and about 2 mg

of RNA was annealed to DNA oligo nucleotide (40 pmol) by

heating at 72uC for 5–10 min and immediately chilling on ice.

This was followed by addition of 16MuLV buffer, 1 mM rNTPs,

1 U/ml RNase inhibitor, 1 ml of MuLV RT (200 U/ml) to the total

reaction mixture (20 ml). The reaction mixture was incubated at

37uC for 5 min followed by incubation at 42uC for one hour. The

PCR was carried out using 1 ml of RT-reaction mixture in 50 ml

PCR cocktail containing appropriate sense and antisense primers,

dNTPs and Phusion polymerase. The CP sense and RdRp anti-
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sense primers were used for detection of viral RNA in SeMV

icDNA infiltrated and systemic leaves.

Poly A tailing of genomic RNA (For 39 RACE)
Poly A tailing of genomic RNA was carried out with 10 mg of

gRNA using poly A polymerase (Ambion) as described by the

manufacturer. After the reaction, the RNA was extracted with

Trizol, Chloroform and precipitated with isopropanol. The RNA

pellet was dissolved in nuclease free water and used for RT-PCR

with appropriate primers.

Addition of poly dA at the 39 end of cDNA (For 59 RACE)
After reverse transcription (using P1 reverse primer) the reaction

mixture was treated with RNase A (1 mg) for 15 min at 37uC and

15 min at 45–50uC to remove the RNA template. The cDNA was

extracted with phenol and chloroform and precipitated with

isopropanol. The cDNA was then incubated with terminal

transferase in the presence of dATP (130 pmol). The second

strand synthesis and amplification was carried by PCR with oligo

dT sense and P1 gene specific antisense primers (Table 1). The

high fidelity Phusion polymerase (Finzymes) was used in the PCR

reaction.

Preparation of crude membrane fraction
Cotyledon leaves infected with SeMV icDNA were collected 8–

10 days post infiltration (dpi) and used to isolate crude membrane

fraction. Five g of cotyledon leaves were ground in 20 ml of buffer

containing 20 mM Tris-HCl pH 7.5 and10 mM MgCl2. The leaf

extract was passed through muslin cloth and the flow through was

centrifuged at 2000 g for 10 min to remove debris. The

supernatant was centrifuged at 10,000 g for 10 min and the pellet

was resuspended in 2–3 ml of buffer. The supernatant obtained

after centrifugation at 10,000 g was again centrifuged at 25,000 g

for 30 min and the pellet was resuspended in 2–3 ml of buffer.

These pellet fractions were used for western blot analysis.

Supporting Information

Figure S1 A schematic representation of the SeMV
icDNA construction. Initially the Nos terminator (red box)

was cloned at SmaI restriction site and the orientation was

confirmed by PCR using Nos forward and T3 reverse primers.

The SeMV cDNA (purple box) was cloned at EcoRV site and the

orientation was confirmed by PCR with CP forward and Nos

reverse primers. The double 35S promoter (green arrows) was

cloned at the StuI site at the 59 end of the SeMV cDNA and the

orientation was confirmed by PCR with T7 forward and 35S

reverse primers. The ribozyme (yellow box) was cloned at the

SmaI site at the 39 end of the SeMV cDNA and orientation was

confirmed by PCR with ribozyme forward and Nos reverse

primers. The entire cassette 2635S-SeMV cDNA-Rz-Nos was

released by digestion with BamHI and subcloned into pRD400

vector.

(TIF)

Figure S2 Comparison of agroinfiltration efficiency in
Sesbania and Cyamopsis plants. Agrobacterium containing

pEAQ-GFP at an OD600 of 0.6 was infiltrated onto (a) Sesbania

plants (b) Cyamopsis plants.

(TIF)
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