
Genetic Variants of TSLP and Asthma in an Admixed
Urban Population
Mengling Liu1, Linda Rogers2, Qinyi Cheng1, Yongzhao Shao1, Maria Elena Fernandez-Beros2, Joel N.

Hirschhorn3,4,5, Helen N. Lyon4,5, Zofia K. Z. Gajdos3,4,5, Sailaja Vedantam4,5, Peter Gregersen6, Michael F.

Seldin7, Bertram Bleck2, Adaikalavan Ramasamy8, Anna-Liisa Hartikainen9, Marjo-Riitta Jarvelin10, Mikko

Kuokkanen11, Tarja Laitinen12, Johan Eriksson13, Terho Lehtimäki14, Olli T. Raitakari15, Joan Reibman1,2*
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Abstract

Background: Thymic stromal lymphopoietin (TSLP), an IL7-like cytokine produced by bronchial epithelial cells is
upregulated in asthma and induces dendritic cell maturation supporting a Th2 response. Environmental pollutants,
including tobacco smoke and diesel exhaust particles upregulate TSLP suggesting that TSLP may be an interface between
environmental pollution and immune responses in asthma. Since asthma is prevalent in urban communities, variants in the
TSLP gene may be important in asthma susceptibility in these populations.

Objectives: To determine whether genetic variants in TSLP are associated with asthma in an urban admixed population.

Methodology and Main Results: Ten tag-SNPs in the TSLP gene were analyzed for association with asthma using 387
clinically diagnosed asthmatic cases and 212 healthy controls from an urban admixed population. One SNP (rs1898671)
showed nominally significant association with asthma (odds ratio (OR) = 1.50; 95% confidence interval (95% CI): 1.09–2.05,
p = 0.01) after adjusting for age, BMI, income, education and population stratification. Association results were consistent
using two different approaches to adjust for population stratification. When stratified by smoking status, the same SNP
showed a significantly increased risk associated with asthma in ex-smokers (OR = 2.00, 95% CI: 1.04–3.83, p = 0.04) but not
significant in never-smokers (OR = 1.34; 95% CI: 0.93–1.94, p = 0.11). Haplotype-specific score test indicated that an elevated
risk for asthma was associated with a specific haplotype of TSLP involving SNP rs1898671 (OR = 1.58, 95% CI: 1.10–2.27,
p = 0.01). Association of this SNP with asthma was confirmed in an independent large population-based cohort consortium
study (OR = 1.15, 95% CI: 1.07–1.23, p = 0.0003) and the results stratified by smoking status were also validated (ex-smokers:
OR = 1.21, 95% CI: 1.08–1.34, p = 0.003; never-smokers: OR = 1.06, 95% CI: 0.94–1.17, p = 0.33).

Conclusions: Genetic variants in TSLP may contribute to asthma susceptibility in admixed urban populations with a gene
and environment interaction.
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Introduction

Environmental insults support an immune milieu that promotes

allergic asthma [1]. Epithelial cells, the first targets of inhaled

environmental insults such as pollution or tobacco smoke, produce

cytokines that modify T cell and inflammatory cell responses.

Genetic variants of these cytokines may contribute to the

susceptibility to asthma. Furthermore, epithelial cell-derived

cytokines may be candidate genes that participate in gene-

environmental interactions.

Thymic stromal lymphopoietin (TSLP) has been called a

‘‘master switch’’ of allergic inflammation at the epithelial cell

and dendritic cell interface [2]. A member of the IL-7 family of

cytokines, TSLP induces maturation of myeloid dendritic cells

(mDC) that support Th2 polarization and promotes maintenance

of the Th2 memory response [2,3,4]. TSLP-treated mDC induce

an inflammatory Th2 response that is associated with elevated IL-

5, IL-4, IL-13, and TNF-a but low IL-10 [2,5,6]. Regulatory T

cell function is also downregulated by TLSP [7], allowing a Th2

permissive microenvironment [2,4,8,9].

TSLP is expressed by human epithelial cells [2,10] and is

increased in asthmatic airways [7,11,12]. We have reported that

diesel exhaust particles (DEP) upregulate TSLP expression in

human bronchial epithelial cells in response to oxidative stress and

that this epithelial-cell derived TSLP induces the functional

maturation and Th2 polarization of dendritic cells (DC) [13,14].

Tobacco smoke extract also upregulates TSLP expression in the

murine lung and in smooth muscle [15,16]. Recently, TNF- a, IL-

4, IL-13, rhinovirus, and dsRNA have also been described to

upregulate TSLP in human bronchial epithelial cells [17]. Airway

epithelial cell expression of TSLP is both necessary and sufficient

for the development of airway inflammation in murine models of

antigen-induced asthma [18,19]. These findings reinforce the

potential importance of TSLP and its genetic components in

environmental-associated asthma.

The gene for TSLP is located on human chromosome 5q22,

near the gene cluster encoding Th-2 cytokines [20,21]. A sex

stratified analysis recently showed that a TSLP polymorphism

(rs2289276) was associated with cockroach-specific IgE in Costa

Rican females [22]. In a large Canadian population, a SNP

(rs1837253) 5.7 kb upstream of the TSLP transcription start site

was associated with asthma [23] and the association was replicated

in a large consortium study [24]. An additional SNP (rs10062929)

of the TSLP gene has been identified in association with

eosinophilic esophagitis [25].

Urban populations in the United States have high morbidity

and mortality from asthma and are highly exposed to ambient air

pollutants such as diesel exhaust, environmental tobacco smoke,

and indoor allergens such as those from cockroach [26]. These

populations are often of diverse racial and ethnic backgrounds,

and thus complex populations for genetic studies. Because of the

importance of TSLP as a target for environmental-associated

asthma, we examined the association of genetic variants of TSLP

with asthma in an admixed urban community using genetic

ancestral informative markers to control for population substruc-

ture. Furthermore, we validated the findings using independent

populations.

Materials and Methods

Study Population
Asthmatics and healthy controls were identified from the New

York University Bellevue Asthma Registry (NYUBAR) in New

York City. This registry was approved by the Institutional Review

Board of the New York University School of Medicine and all

cases and controls signed informed consent. Cases were referred to

the registry by the Bellevue Hospital Center Asthma Clinic and

local clinics. Controls were referred by asthma cases and by

enlisting individuals directly from the community and from other

programs within Bellevue Hospital Center. Subjects were excluded

if they were less than 18 years old, were current smokers or had a

history of .10 pack-year (p-y) tobacco use, had unstable cardiac

disease, uncontrolled hypertension, lung disease other than

asthma, or neuromuscular disease. Questionnaires and evaluations

were completed for all individuals and participants were

ascertained with a diagnosis of asthma by a definition modified

from the Collaborative Study on Genetics of Asthma [27]. Because

most cases were on medication, bronchial hyperresponsiveness

with methacholine challenge testing was not performed. The

diagnosis was further confirmed using the published algorithm of

Enright et al. [28]. To assemble the case-control study, cases and

controls were selected to be genetically unrelated with a case to

control ratio of approximately 2 to 1, resulting in 387 unrelated

asthmatics and 212 healthy controls.

A replication population included 6 population-based cohorts

that are part of the Analysis in Population-based Cohorts of

Asthma Traits (APCAT) consortium [29]. Asthma diagnosis in

these populations was based on physician diagnosed asthma.

Individuals with a diagnosis of COPD, chronic bronchitis, or other

lung diseases were excluded from the analysis. Cohorts included:

the Helsinki Birth Cohort (HBC: 123 cases, 1533 controls), Health

2000 (H2000: 153 cases, 1841 controls), Finrisk (160 cases, 1705

controls) (includes Finrisk 1992, 1997, 2002 and 2007), the North

Finnish Birth Cohort 1966 (NFBC66: 364 cases, 3502 controls),

Laseri (119 cases, 1844 controls), and the Framingham Heart

Study (FH: 797 cases, 6463 controls) for a total of 1716 cases and

16888 controls. All individuals in the studies provided informed

consent and all studies were conducted with the approval of the

local ethics committees or institutional review boards.

Allergy testing and Spirometry
Measurements of total serum IgE (total IgE) and allergen-

specific IgE for allergens considered significant for the Northeast-

ern United States were performed in a commercial laboratory for

the NYUBAR cohort (Pharmacia ImmunoCAP assay; Quest

Diagnostics; Teterboro, NJ). An allergen-specific IgE level .0.35

kilo-international units (kIU)/L was considered positive. Pre- and

post-bronchodilator spirometry was performed according to

American Thoracic Society guidelines [30] and normal values

were obtained from Hankinson et al. [31]. Individuals were on a

Genetic Variants of TSLP and Asthma

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e25099



stable dose of medications for one month prior to study but

medications were withheld for 6 hours prior to testing.

Candidate SNP selection and genotyping
Contiguous single nucleotide polymorphisms (SNPs) in the

TSLP region on chromosome 5q were identified in the

International Haplotype (HapMap) project (International Haplo-

type Consortium 2003) using data from the European Americans

(CEU) and the West African population (YRI). The program

Tagger [32] was used to select representative SNPs from the TSLP

gene with high linkage disequilibrium (LD) (minor allele frequency

.5% and r2$0.8). Genotyping was performed at the Robert S.

Boas Center for Genomics and Human genetics on an Illumina

BeadStation 500G Golden Gate custom panel using unamplified

DNA extracted from blood. Genotyping reproducibility was

verified with duplicates. Ten SNPs in TSLP were successfully

genotyped with call rate greater than 99% and minor allele

frequency (MAF) greater than 1%. The genotypic information and

the Hardy-Weinberg analysis results are summarized in Table S1.

Genome-wide genotyping, quality control measures, and

imputation in the replication cohorts (APCAT) has been described

previously [29]. Briefly, each cohort was genotyped on a platform

containing .500,000 SNPs, and, after quality control the

genotypes at .2.2 million genotypes were imputed using the

HapMap CEU panel as a reference.

Ancestral informative markers (AIMs) with the maximal

absolute difference in allele frequency between ancestral popula-

tions were used to differentiate continental origins most likely to be

represented in the NYUBAR population including diverse

Hispanic ancestry [33]. We genotyped 213 AIMs to adjust for

population admixture in associate tests [34,35].

Statistical analysis
Genotype frequencies of each SNP were tested for the

concordance with Hardy-Weinberg equilibrium (HWE) using

Pearson’s chi-square test in the overall population and then in the

control population using R package HardyWeinberg (http://cran.

r-project.org/web/packages/HardyWeinberg/index.html). Two

approaches, the principal component analysis (PCA) method

[36] and the Bayesian STRUCTURE method (version 2.2.3) [37]

were implemented using 213 AIMs to adjust for population

stratification. Either the first five principal component scores from

the PCA approach or the posterior probabilities from the

STRUCTURE approach were included in the association analysis

as ancestry covariates to adjust for population stratification.

Single SNP association tests with asthma susceptibility assuming

an additive allelic effect were performed using the logistic

regression, including covariates of age, BMI, income, education

and ancestry covariates. Subgroup analyses stratified by smoking

status into ex-smokers and never-smokers were also conducted. To

test whether multiple genetic variants from the TSLP gene were

associated with asthma, haplotypes were reconstructed using the

EM algorithm [38] and the haplotype-specific association were

tested using the score test approach based on the generalized

linear model [39] using R package haplo.stats (http://cran.r-

project.org/web/packages/haplo.stats/index.html). All analyses

were performed using R 2.9.1.

For the APCAT cohorts, each study separately performed a

single marker association analysis assuming an additive allelic

model for the imputed data set consisting of ,2.2 million SNPs.

SNPs with low imputation quality (r2,0.3 for MACH) were

removed from all studies. Each cohort was stratified into current-

smokers, ex-smokers and never-smokers, and the association

analysis was further performed within each stratum. The analysis

was performed using the logistic regression, adjusted for age,

gender and the first ten principal components, and accounting for

uncertainty at imputed genotypes. The GEE logistic regression test

of the GWAF package in R (http://cran.r-project.org/web/

packages/GWAF/) was used to correct for familial relatedness in

FHS. Test statistics from individual studies were corrected for

inflation using genomic control, and then combined using meta-

analysis by combining the regression coefficients and standard

errors from each study, implemented in METAL (http://www.

sph.umich.edu/csg/abecasis/Metal/index.html).

Results

Patient characteristics
A total of 387 unrelated asthmatic patients and 212 unrelated

healthy controls were included in the analysis of the NYUBAR

population. The demographic and clinical characteristics of the

study population are shown in Table 1. A majority of the cases and

controls were women and were never-smokers. The average age of

the cases was slightly but significantly higher than that of the

control group (40.1 vs. 36.1, p = 0.0015) and the average BMI of

the cases was significantly higher than the control group (29.9 vs.

27.2, p,0.0001). The self-reported race/ethnicity also differed

between cases and controls (p = 0.01). Consistent with a diagnosis

Table 1. Characteristics of NYUBAR case-control study.

Total Case Control p-value

(N = 599) (N = 387) (N = 212)

Gender, N (%) 0.18

Female 409 (68.3) 272 (70.3) 137 (64.6)

Male 190 (31.7) 115 (29.7) 75 (35.4)

Age, Mean (SD) 38.7 (13.3) 40.1 (14.0) 36.1 (11.4) 0.0015

BMI, Mean (SD) 28.9 (7.0) 29.9 (7.4) 27.2 (5.7) ,0.0001

Income, N (%) ,0.0001

,$15,000 per year 203 (33.9) 157 (40.6) 46 (21.6)

$15,000 to $49,999 179 (29.9) 103 (26.6) 76 (35.8)

. = $50,000 134 (22.4) 66 (17.0) 68 (32.1)

NA 83 (13.9) 61 (15.8) 22 (10.3)

Education, Mean (SD) 13.4 (3.9) 12.7 (3.9) 14.6 (3.6) ,0.0001

Self-reported Race/Ethnicity,
N (%)

0.01

Hispanic 326 (54.4) 228 (58.9) 98 (46.2)

Non-Hispanic Black 118 (19.7) 68 (17.6) 50 (23.6)

Non-Hispanic White 155 (25.9) 91 (23.5) 64 (30.2)

Smoking Status, N (%) 0.29

Ex-smokers 158 (26.4) 108 (27.9) 50 (23.6)

Never-smokers 441 (73.6) 279 (72.1) 162 (76.4)

Spirometry

Pre-FEV1, % predicted 83.7 (16.9) 79.2 (17.6) 91.9 (11.8) ,0.0001

Pre-FVC, % predicted 88.5 (15.0) 86.1 (15.8) 92.9 (12.4) ,0.0001

FEV1/FVC 77.2 (8.9) 74.8 (9.6) 81.6 (5.1) ,0.0001

Total IgE (geo-mean) 81.9 108.7 49.0 ,0.0001

Atopic status, N (%) ,0.0001

No 184 (30.7) 89 (23.1) 95 (44.8)

Yes 414 (69.1) 297 (76.9) 117 (55.2)

doi:10.1371/journal.pone.0025099.t001
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of asthma, lung function differed significantly between cases and

controls, with reduced % of predicted FEV1, FVC and FEV1/

FVC in cases compared to controls. Cases had a significantly

higher total IgE and more cases were atopic.

Population stratification
The first and second principal components from the PCA using

213 AIMs were plotted in Figure 1 with self-reported race/

ethnicity information. The first principal component scores

showed good separation between the self-reported non-Hispanic

white group and the self-reported non-Hispanic black group, while

the principal component scores of self-reported Hispanic group

were in-between. The first five principal components counted for

more than 80% of variability of the ancestry markers. The

STRUCTURE method estimates the posterior probability that

each subject belongs to each underlying population for each

individual. When included as covariates to adjust population

stratification in the association tests, the STRUCTURE method

resulted in similar results to the PCA method and thus the

STRUCTURE results are not reported.

TSLP and asthma susceptibility
The results of association analysis of asthma and TSLP SNPs

are summarized in Table 2. One SNP (rs1898671) was nominally

associated with asthma susceptibility in the overall population after

adjusting for covariates and population stratification (OR = 1.50,

95% CI: 1.09–2.05, p = 0.01). However, the risk of asthma was

increased for this SNP when analyzed in the subgroup of ex-

smokers, (OR = 2.00, 95% CI: 1.04–30.83, p = 0.04). In the

subgroup of never-smokers, SNP rs1898671 did not show

significant association with the risk of asthma (OR = 1.34, 95%

CI: 0.93–1.94, p = 0.11).

Because of the suggestion of an association of SNP rs1898671

with asthma, we examined whether the association of this SNP

with asthma susceptibility could be replicated in the APCAT

cohorts that combined 6 cohorts with 1716 asthma cases and

16888 controls. Analysis of this large cohort revealed consistent

results with a positive association between rs1898671 and asthma

(OR = 1.15, 95% CI: 1.07–1.23, p = 0.0003). When stratified by

smoking history, the replication cohort validated the finding in the

NYU cohort that the SNP affected risk in ex-smokers (OR = 1.21,

95% CI: 1.08–1.34, p = 0.003), whereas no significant association

was found in never-smokers.

TSLP haplotype analysis
Reconstructed haplotypes with estimated frequencies of greater

than 5% are listed in Table 3 and the estimated haplotype-specific

OR with respect to the reference haplotype group (defined as the

group with highest frequency) and p-values are also reported. The

second most frequent haplotype (GAGGGCAAAG) had an

estimated frequency of 24% and showed a significant increased

risk with asthma after adjusting age, BMI and population

stratification (OR = 1.58, 95% CI: 1.10–2.27, p = 0.01).

Discussion

Asthma is prevalent in urban populations of mixed ancestry

with high rates of morbidity and mortality in these populations.

However, few genetic studies have used diverse urban populations

for study because of the complexities of analysis resulting from

admixture and mixed ancestry. Moreover, the interaction with

environmental exposures may modify asthma risk. TSLP is an

epithelial cell-derived cytokine in the IL-7 family that is

mechanistically implicated with asthma in numerous human and

animal models. Both ambient pollutants and tobacco smoke,

Figure 1. Scatter-plot of the first and second principal components. Scatter-plot of the first and second principal components calculated
from the genotypes of 213 AIMs. The first principal component scores showed good separation between the self-reported non-Hispanic white and
self-reported non-Hispanic black groups, while the principal component scores of self-reported Hispanic group were in-between.
doi:10.1371/journal.pone.0025099.g001
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common urban environmental exposures, upregulate TSLP

[13,15]. We demonstrated that a SNP variant in TSLP is

associated with clinical asthma in an urban population when

adjusting for ancestry as well as additional covariates. Examination

of an additional large population-based consortium study

supported the association between this SNP and clinical asthma.

Associations were found to be stronger in those with tobacco

exposure. Haplotype analysis of TSLP also revealed an elevated

risk of asthma associated with one haplotype. In summary, these

data suggest that genetic variants in TSLP may influence asthma

risk in complex populations with an environmental interaction.

Our primary population of study was a diverse population and

population stratification can influence genetic variation

[40,41,42,43]. Indeed, we identified a difference in self-reported

race/ethnicity between our asthma cases and controls, suggesting

that ancestral differences needed to be accounted for. Moreover a

large number of our cases and controls self-reported as Hispanic, a

group with complex ancestral history [44]. Thus we accounted for

ancestry in our evaluation using SNPs that previously have been

associated with similar populations [35] and our results remained

consistent even after incorporating ancestry in our evaluation

using either of two separate analyses (PCA or STRUCTURE).

The rs1898671 SNP was significant for clinical asthma after

adjusting for ancestry and covariates. We did not compensate for

multiple testing in these analyses as we considered them discovery

testing to be replicated using independent large cohorts. The

persistence of significance even after adjustment reinforced the

potential importance of this SNP or its associated SNPs.

Furthermore, the association of SNP rs1898671 with asthma was

replicated in an independent large population-based cohort.

The strength of association of rs1898671 increased when

analyzed according to smoking status. The NYUBAR excluded

individuals with .10 p-y tobacco use and so examination was

limited to those with a less than 10 p-y history of tobacco use.

Despite this, the association was strongest in the subgroup with a

history of tobacco use. The association with asthma was also

stronger in the subgroup with tobacco use in the replication

population. This finding suggests a gene-environment interaction

Table 3. Association results of haplotypes with asthma.

Haplotype Frequency Haplotype Specific OR 95% CI of OR Haplotype Specific P-value

AGAGCCAAAG 0.27 REF

GAGGGCAAAG 0.24 1.58 1.10–2.27 0.01

GGGGGCAAAG 0.16 1.12 0.75–1.68 0.57

GGGGCCAAGA 0.10 1.19 0.75–1.88 0.47

GGGGGGAAAG 0.09 0.92 0.59–1.46 0.74

GGAGCCAGAG 0.05 1.06 0.63–1.79 0.82

Rare* 0.07 1.24 0.66–2.35 0.50

*:Haplotypes with estimated frequency less than 5% are included in the rare group.
doi:10.1371/journal.pone.0025099.t003

Table 2. Results of association analysis of asthma with TSLP SNPs.

NYUBAR

dbSNP rs# Overall Ex-Smokers Never Smokers

(N = 599) (N = 158) (N = 441)

OR 95% CI P OR 95% CI P OR 95% CI P

rs2289276 0.81 0.61–1.07 0.13 0.89 0.49–1.60 0.69 0.79 0.57–1.08 0.14

rs1898671 1.50 1.09–2.05 0.01 2.00 1.04–3.83 0.04 1.34 0.93–1.94 0.11

rs11466741 0.86 0.66–1.11 0.25 0.78 0.44–1.38 0.39 0.88 0.64–1.19 0.41

rs11466743 1.04 0.47–2.32 0.91 0.80 0.18–3.61 0.77 1.18 0.45–3.08 0.73

rs2289277 0.86 0.67–1.11 0.24 1.05 0.61–1.83 0.85 0.81 0.61–1.09 0.16

rs2289278 0.78 0.52–1.16 0.22 0.73 0.32–1.66 0.46 0.79 0.49–1.27 0.33

rs11241090 0.92 0.51–1.67 0.79 0.94 0.25–3.53 0.92 0.94 0.48–1.83 0.86

rs10035870 1.14 0.63–2.05 0.67 0.52 0.16–1.76 0.30 1.43 0.72–2.85 0.31

rs11466749 1.08 0.73–1.60 0.70 2.28 0.95–5.44 0.06 0.83 0.53–1.32 0.44

rs11466750 0.99 0.70–1.40 0.96 1.81 0.87–3.78 0.11 0.82 0.55–1.23 0.34

APCAT replication

dbSNP rs# Overall (N = 18604) Ex-Smokers* (N = 5872) Never Smokers* (N = 8060)

rs1898671 1.15 1.07–1.23 0.0003 1.21 1.08–1.34 0.003 1.06 0.94–1.17 0.33

*: the current smoker group of the APCAT study was not shown.
doi:10.1371/journal.pone.0025099.t002
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effect and is consistent with the studies showing a relationship with

TSLP expression and pollutants or tobacco smoke.

The rs1898671 variant is located in an intron and no functional

effect of the variant is known. However, we used a tagging

algorithm to identify tagSNPs and as such rs1898671 may be in

linkage disequilibrium with other SNPs with potential function

variation. In the HapMap CEU sample [45], rs1898671 is in

strong linkage disequilibrium (r2 = 0.91) with rs1043828, which

was strongly associated with asthma in the meta-analysis by the

GABRIEL consortium (p = 3.161026) [24]. Although the result

did not reach genome-wide significance in GABRIEL study, the

combination of our results with the published data now strongly

suggest that rs1898671 or a variant in LD with rs1898671

influences the susceptibility to asthma. Stratification by smoking

status was not available for rs1043828 in the GABRIEL data, so

we cannot test whether their association is also stronger in

individuals with a history of smoking. We did not perform

genotyping for SNP rs1837253 in the NYUBAR cohort but were

able to examine the association of this SNP from APCAT cohorts,

since this SNP was highlighted by He et al. [23] and the

GABRIEL study [24] as possibly associated with severe asthma.

The SNP rs1837253 was not significantly associated with asthma

risk in the overall population (OR = 1.08, 95% CI: 0.99–1.17,

p = 0.1), but did show a nominal association with asthma in Ex-

smokers (OR = 1.22, 95% CI: 1.07–1.37, p = 0.01). But this SNP is

only in weak LD with rs1898671 (r2,0.2), and thus likely

represents a separate signal from the associations we observe.

Furthermore, the rs1898671 SNP has recently been reported in

association with increased risk of eosinophilic esophagitis when

comparing to the combined allergic and non-allergic controls [25].

Our exploratory analysis also showed a positive association of this

SNP with elevated circulating eosinophils but the result was not

statistically significant (data not shown). The possibility exists that

this SNP was not detected in other large population studies

because of the tobacco interaction.

In summary, we now suggest the association of a TSLP variant

and asthma in an admixed population after adjusting for

confounders and ancestry. We replicate the finding in an

independent population and suggest an interaction with tobacco

use. The risk for asthma was associated with a specific haplotype of

TSLP involving SNP rs1898671. These data suggest that variants

in TSLP may participate in gene and environment interactions

associated with asthma susceptibility.
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