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Abstract

Background: In genetic studies of rare complex diseases it is common to ascertain familial data from population based
registries through all incident cases diagnosed during a pre-defined enrollment period. Such an ascertainment procedure is
typically taken into account in the statistical analysis of the familial data by constructing either a retrospective or
prospective likelihood expression, which conditions on the ascertainment event. Both of these approaches lead to a
substantial loss of valuable data.

Methodology and Findings: Here we consider instead the possibilities provided by a Bayesian approach to risk analysis,
which also incorporates the ascertainment procedure and reference information concerning the genetic composition of the
target population to the considered statistical model. Furthermore, the proposed Bayesian hierarchical survival model does
not require the considered genotype or haplotype effects be expressed as functions of corresponding allelic effects. Our
modeling strategy is illustrated by a risk analysis of type 1 diabetes mellitus (T1D) in the Finnish population-based on the
HLA-A, HLA-B and DRB1 human leucocyte antigen (HLA) information available for both ascertained sibships and a large
number of unrelated individuals from the Finnish bone marrow donor registry. The heterozygous genotype DR3/DR4 at the
DRB1 locus was associated with the lowest predictive probability of T1D free survival to the age of 15, the estimate being
0.936 (0.926; 0.945 95% credible interval) compared to the average population T1D free survival probability of 0.995.

Significance: The proposed statistical method can be modified to other population-based family data ascertained from a
disease registry provided that the ascertainment process is well documented, and that external information concerning the
sizes of birth cohorts and a suitable reference sample are available. We confirm the earlier findings from the same data
concerning the HLA-DR3/4 related risks for T1D, and also provide here estimated predictive probabilities of disease free
survival as a function of age.
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Introduction

Family data utilized in genetic association studies of rare

diseases are usually ascertained by initially recruiting individuals

with the phenotype of interest from some background population.

After this initial study phase, it is possible to gain information

about the relatives of the recruited subjects. Such an ascertainment

procedure is usually taken into account in the statistical analysis of

familial data by constructing either a retrospective or prospective

likelihood expression, which conditions on the ascertainment event

[1]. Complex ascertainment procedures often lead to inferential

difficulties; recently proposed computationally intensive methods

can however provide ways to resolve such issues [2].

In the statistical analysis of variable age at onset diseases, the

versatility of traditional survival analysis methods has been

frequently demonstrated in genetic linkage and association

studies [3–7]. Recent advances in modern non-parametric

Bayesian survival modeling have however mainly been utilized

outside the domain of genetic research [8–9]. To create a

likelihood-based framework for estimating disease risks associat-

ed with the genetic information and other possible factors

available, we use here an approach where a population based

ascertainment procedure is combined through a statistical model

with the demographic data describing also the non-ascertained

part of the target population.

Our framework is illustrated by a model of the T1D risks

associated with polymorphic markers located in the HLA region of

chromosome 6 in the Finnish population. Although our approach

is more generally applicable, the model framework is presented

directly in the T1D context in order to make it more easily
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accessible for readers with an interest in genetic epidemiology

rather than in statistical methodology per se. The family based

T1D data set was collected as a part of the DiMe study [10], and

has been previously analyzed by other statistical methods [11–12].

The additional reference data utilized in the present work are

taken from a large sample (,20,000 individuals) of unaffected

Finns at the Finnish Bone Marrow Donor Registry (BMDR), who

had been serotyped for the same HLA loci as the family members

included in the DiMe Study. These two sources of information are

further appended with the available demographic facts about the

population at risk during the ascertainment period. Since the

dominance effects of HLA-DRB1 are known to be highly genotype

dependent, we chose to model the effects of HLA-DRB1

genotypes, rather than alleles [13], as has been done in the

previous analyses using these same data. All genotype-associated

risks are here estimated jointly within a hierarchical Bayesian

hazard modeling framework. Similarly, in our risk model it is not

assumed that the considered haplotype effects could be expressed

as corresponding functions of allele effects.

In the next section we provide some details of the available data

sets, introduce a risk model for the genotype/haplotype effects on

age at the onset of the disease, and derive the corresponding

likelihood function and the joint posterior density of all model

parameters. Then the numerical results from the analysis are

presented. In the final part of the paper, we discuss some merits of

the proposed method for accounting for the effect of the

ascertainment, evaluate the empirical results, and suggest some

possibilities for future work in this area.

Materials and Methods

Data sources
We consider the situation in which ascertainment is based on all

incident cases in the target population during the enrollment

period (the recruitment window). This then leads to observed data

on sibships with a proband, and his/her siblings who have been at

risk for the disease under investigation. In our application, the

observed data consist of four parts:

1. Age at (possible) onset of T1D among all members of the

ascertained families, who have been at risk during the follow-up

period. Here, only diagnoses reported before the age of 15

years are considered. A total of 768 families are included in the

recruited group.

2. HLA genotypes of the members of the ascertained nuclear

families.

3. The numbers of the individuals in the background population

at risk, comprising of the individuals who were alive during the

calendar period included in the recruitment window (y = 1987,

1988, 1989) and belonging to the age groups a = 0,…,14.

4. The HLA genotypes from approximately 20,000 unrelated,

healthy Finns. This population reference group thus corre-

sponds to the control individuals utilized in case-control

association studies.

The Lexis diagram displayed in Figure 1 illustrates the

ascertainment procedure for sibships and the data needed to

Figure 1. Lexis diagram of the population-based ascertainment of Finnish sibships with Type 1 diabetes. An example of an ascertained
sibship included in the population-based disease registry data, because an individual (proband) younger than 15 years who was diagnosed with T1D
during the recruitment period 1.1.1987–30.4.1989.
doi:10.1371/journal.pone.0006836.g001
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construct the likelihood for an absolute risk model. Let i = 1, …, I

index all the ascertained families, j = 1, …, Ji indexing the

individuals (siblings including the proband) in the ith family, and

dij being the indicator for right censoring of the follow-up (dij = 1 if

individual j in family i was diagnosed with T1D in the recruitment

window, and dij = 0 if right censored. Let Xij represent the age at

onset or the age at a censoring event. Further, for the siblings in

the family data, let Gijl~ Gijlm,Gijlf

n o
be the phase unknown

marker alleles over the set of loci of interest, where l = 1,…, NL,

and let Gijlp be phased alleles where p = m, f index the parents of

the ith family. The alleles received from the mother (m) and the

father ( f ) are indexed accordingly, and an analogous indexing is

later used for haplotypes as well. Parental genotypes are denoted

by GM
ijlp,GF

ijlp. In order to actually model risks associated with

haplotypes, it is assumed that the haplotype phases have been

resolved computationally prior to the risk analysis. The HLA-A,

HLA-B and HLA-DRB1 loci are included in the current data of

the HLA region. The observed data of the ascertained sibships

(Parts 1 and 2) are thus collectively represented by the set

Xij ,dij ,Gijlp,GM
ijlp,GF

ijlp; i~1,:::,768,
n

j~1,:::,Ji, l~A,B,DRB1, p~m,f g

The T1D families were collected from the nationwide T1D

registry in Finland, ascertained within the DiMe study [10]

through a child under the age of 15 years and diagnosed between

January 1, 1987 and April 30, 1989. The Childhood Diabetes in

Finland (DiMe) study was a large population-based genetic-

epidemiologic family study of T1D. Nationwide, all T1D cases

under the age of 15 in Finland were diagnosed. The cut-off age

was chosen purely for practical reasons. Newly diagnosed children

under the age of 15 years with T1D were hospitalized in the

pediatric wards in Finland and therefore were easier to recruit

than older subjects with T1D. T1D status was checked against the

data of the National Drug Registry. Of the 801 cases in the study

800 had also been registered in the Drug Registry and one person

died soon after the diagnosis. The participation rate in the study

was approximately 95%. Parents and siblings of the 801 probands

were also asked to participate. Extensive questionnaires were filled

in and blood samples were taken from participants. Probands,

their parents and siblings were HLA genotyped at A, B, C and DR

loci using conventional serology (768 families). Details of study

procedures, especially data collection, are described elsewhere

[10]. For the ascertained families we constructed a follow-up of

T1D until 31.12.2001, by updating the T1D status and the date of

diagnosis from the National Hospital Discharge Registry (Part 1).

An individual was thus considered censored if he/she reached the

age of 15 without having been diagnosed to have T1D, or was less

than 15 years old and was not yet diagnosed on 31.12.2001.

In summary, we have for the comprehensive statistical analysis

of HLA-A, HLA-B, and DRB1 loci, a total of 768 ascertained

families comprising 1,944 probands or siblings. HLA genotypes

were available from 1,342 probands or siblings (684 families, see

Table S1). The DiMe study protocol has been described in detail

elsewhere [14] and it has been approved by the ethics committees

of the participating hospitals. Informed consent was obtained from

the families taking part in the study. The HLA genotyping (Part 2)

of these families was done in the National Public Health Institute

Laboratory using classical serology. Haplotypes within the sibships

in the ascertained family data were established using the

SimWalk2 software [15], based on the available information

about the parental HLA genotypes.

In order to include demographic information in the likelihood

(Part 3), we assume that the sizes of the birth cohorts are known

for the relevant time period. Here they are denoted by

Nb; b~1972, 1973, . . . , 1989f g (see Figure 1). Let the starting

and end points of the recruitment window be denoted by c0 and c1,

respectively, and let w be the maximum age at which a subject

may be ascertained (here less than 15 years). As the ascertainment

is population-based, with a negligible magnitude of missing cases

during the recruitment period, it is possible to incorporate in the

risk model information about all individuals who were born during

a certain calendar time interval and who had passed the

recruitment window without being ascertained. This corresponds

to all subjects born in the population between the calendar time

points c0-w and c1. We divide subjects born in the general

population such that they could have become probands but did

not, into three sets according to the recruitment window as shown

in Fig. 1. Subjects born during the time interval (c0-w, c1-w) are in

the sequel indexed by k1, respectively subjects born during (c1-w, c0)

are in the sequel indexed by k2, and finally, subjects born during

the recruitment period (c0, c1) are indexed by k3. The demographic

information allows us to treat these individuals systematically in

the risk model via the known sizes of the birth cohorts.

The genetic information concerning HLA for the demo-

graphic data (Nb) is in our model formulation inferred from the

genotypic data in the population reference sample (Part 4).

From the BMDR we obtained comparable genotypes for HLA-

A, HLA-B and DRB1 loci for 19,386 unrelated individuals.

The BMDR database includes healthy individuals who had

agreed to volunteer for possible bone marrow donation. The

Finnish BMDR registry is owned by the Finnish Red Cross

Blood Service and it is not a public database. The primary

purpose of this registry is to search for potential bone marrow

donors for transplantations. All individuals who have joined

the BMDR registry have given their written consent for

anonymous registry based research. Anybody full filling the

health criteria (roughly equivalent to those required for blood

donation) and willing to donate stem cells (or ‘‘bone marrow’’)

for stem cell transplantation can join the registry. The registry

does not accept joining that is based on, or motivated, by

‘targeted’ donation to e.g. relative or friend only, but the

registree must be willing to donate to any patient. The bone

marrow transplantations between related individuals are

handled separately from the BMDR. Hence, we had no reason

to believe that members of the BMDR are more related to each

other than general population. From subjects who had given

written consent, about 10 mL of peripheral blood was drawn

for standard HLA typing. HLA typing included the standard

serological HLA-A and -B typings and either serological (early

samples) or DNA-based DRB1 typing. Genotype consistent

HLA haplotypes for the BMDR data were constructed with the

PHASE software [16]. In order to be able to compare HLA

genotypes/haplotypes between different data sources or typing

methods, all HLA types were converted to pooled alleles (see

supplementary material), if necessary, to the serological main

specificities according to the official HLA nomenclature [17].

Let GC
rl ~ GC

rlm,GC
rlf

n o
; r ~1 , . . . , 19836 , l~A, B, DRB1

n o
be the set of genotypes for the unrelated individuals in the

BMDR database, using a notation analogous to the familial

data. These reference individuals are known not to have

acquired T1D before age w. The genotype and haplotype

frequencies for this reference population are collectively

denoted by qC
g ~ qC

g1, . . . ,qC
gng

� �
and qC

h ~ qC
h1, . . . ,qC

hnh

� �
,

respectively.
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Modeling of genetic risks and of the family-based
ascertainment procedure

Hazard model. Establishing associations between T1D and

the classical highly polymorphic linked marker loci within the HLA

region is a challenging task from a statistical perspective, due to the

large number of parameters in the risk model formulation that need

to be estimated. The first part of the risk model specifies the hazard

of acquiring T1D for individual j in family i, as a function of age a.

For both the genotype and haplotype effect models we use a discrete

time hazard model and index age by a = 0,…,14 corresponding to

the age intervals 0,1½ Þ, 1,2½ Þ, . . . 14,15½ Þ. For the genotype effect

model, the hazard is assumed to be of form

lija~la exp b Gijlm,Gijlf

� �� �
ð1Þ

Here la is a baseline hazard in the population and b[Gijlm,Gijlf]

are the genotype effects representing the molecular marker

information at l = HLA-A, HLA-B, HLA-DRB1, each locus being

considered and analyzed separately. For the analysis of the effects

of the HLA- A, -B and DRB1 haplotypes, we use the

corresponding ‘‘marginal’’ model in which the effect is always

randomly attributed to one of the two haplotypes Hijm,Hijf

n o
of a

considered individual. More precisely, we consider effects of the

form b [Hijp], p = m, f, where the index p, or phase, is treated as

missing data in the corresponding Bayesian model, assigning the

prior probability of 0.5 to both m and f.

Likelihood expression
An assumption of the conditional independence of individual

disease onset times, conditionally given the model parameters,

leads to the following likelihood expression for the combined set of

data:

P
I

i~1
P
Ji

j~1
P

Xij{1

a~0
1{lija

� �� �
l
dij

ijXij
1{lijXij

� �1{dij

| P
k1 :bk1

[ c0-w,c1-wð Þ
1- Sk1

c0{bk1
; bð Þ{Sk1

15; bð Þ½ �ð Þ

| P
k2 :bk2

[ c1-w,c0ð Þ
1- Sk2

c0{bk2
; bð Þ{Sk2

c1{bk2
; bð Þ½ �ð Þ

| P
k3 :bk3

[ c0,c1ð Þ
Sk3

c1{bk3
; bð Þ

ð2Þ

The first factor in this likelihood expression is the direct

contribution of the DiMe family data, with i = 1, …, I indexing all

the ascertained families, j = 1, …, Ji indexing the individuals

(siblings including the proband) in the ith family, and dij being the

indicator for right censoring of the follow-up (dij = 1 if individual j

in family i was diagnosed with T1D in the recruitment window,

and dij = 0 if right censored, cf. Figure 1).

The next three factors in (2) are the contributions of the

individuals, indexed here with k1, k2 and k3, in the background

population. These indexes represent the non-ascertained individu-

als, who could have been diagnosed with T1D in the ‘‘ascertainment

window’’, but who were in fact not ascertained to the DiMe sample.

These non-ascertained individuals are considered individually in the

‘‘full likelihood’’ function (2). Let c0{bk1
be the age of individual k1,

who was born at bk1
, at the beginning of the recruitment period.

Similarly c0{bk2
and c1{bk2

are the ages of an individual k2 born

at bk2
at the beginning and at the end of the recruitment interval,

and c1{bk3
is the age of an individual born at bk3

at the end of the

recruitment interval. Then 1{ Sk1
c0{bk1

; bð Þ{Sk1
15; bð Þ½ �,

1{ Sk2
c0{bk2

; bð Þ{Sk2
c1{bk2

; bð Þ½ � and Sk3
c1{bk3

; bð Þ are

the corresponding probabilities of not being diagnosed with T1D

in that interval, expressed here as a function of the parameters b of

the hazard model (1).

Note that since the hazard model (1) also contains in its

arguments the genotype/haplotype of the considered individual,

which is unknown for individuals of types k1, k2 and k3, they need

to be integrated away from the corresponding expressions of the

survival function. For the distribution of the genotypes/haplotypes

we made, for computational reasons, a shortcut and used their

empirical frequencies in the BMDR data base as the prior. (A

theoretically more satisfying solution could have been to postulate

the Dirichlet(1,…,1) prior for the frequencies and then update

their estimates by sampling, concurrently with the estimation of

other model parameters and using the BMDR genotypes/

haplotypes as data. However, in view of the size of this data base

we thought that doing so would not be worth the extra effort).

Note also that, with the genotype/haplotype information being

integrated away, all individuals of type k1 born at the same time

bk1
are treated as exchangeable, and therefore the corresponding

product in (2) becomes a power, where the exponent is the number

of individuals (excluding those belonging to the DiMe families)

born at bk1
. These numbers are obtained directly from the

demographic data.

Bayesian inference
Next, we describe how the likelihood (2) can be calculated and

how the resulting parameter estimates are obtained. Applying the

Bayesian approach to statistical inference, the likelihood is

complemented with the joint prior distributions of all model

parameters and latent variables of interest. Here this is done by

following the principles of hierarchical Bayesian modeling and by

specifying the distributions appearing on the right hand side of the

following expression

p b, Gmiss

Xij ,dij ,Gijlp; i~1, . . . ,768, j~1, . . . ,Ji ,l~A,B,DRB1, p~m,f
	 


,

Nb; b~1972, . . . , 1989f g ,

GC
rlp; r~1, . . . ,19863, l~A,B,DRB1, p~m,f

n o

1
CCCA

���������

0
BBB@

! p bð Þ p Gmiss GM ,GF
��� �

p X , djb,G,GC ,Nb

� �
,

ð3Þ

in the OpenBugs MCMC software [18], where Gmiss are the

missing HLA genotypes/haplotypes in the ascertained sibships.

The prior distributions used for the model parameters b and

missing HLA genotypes were specified as follows. The age specific

log baseline hazards were assigned independent Gaussian priors

according to log(la) with mean -8 and precision (reciprocal of

variance) equal to 0.000001, where a = 0,…,14. The genotype/

haplotype effects were assigned independent truncated normal

(210,10) prior distributions with mean 0.0 and precision

0.000001. This is, effectively, the uniform distribution over the

interval (210, 10). Particularly when noting that b is in the hazard

model (1) in the exponent, this interval can be said to cover more

than adequately all plausible values of genotype or haplotype

effect.

The prior of the missing HLA genotypes Gmissð Þ in the family-

based data was treated according to available parental HLA

genotype information. Two distinct situations of missing HLA

genotypes can be identified among the ascertained sibships:

1) Both parents were genotyped, but not all children. Here

Mendel’s law of segregation was utilized to assign the two

parental alleles with equal probabilities, and then applying

Population-Based Ascertainment
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the method of data augmentation, as a part of the resulting

Bayesian computation.

2) Genotype information was missing from at least one parent

and no children were genotyped. Here, the logically

consistent way to treat the missing data problem would

involve using Bayes’ formula, with the haplotype frequencies

of the parents of the ascertained families as a ‘‘prior’’

probability distribution, while Mendel’s law defines the

likelihood. However, in the 40 ascertained families, where

parental HLA information was missing and some sibs were

genotyped, the inference was implemented as in 1), despite

the fact that some inconsistent genotypes may then be

obtained. This was done in order to avoid a further increase

in the computational burden of implementing the already

complex model when using OpenBugs software [18].

In the final implementation we first obtained the posterior mean

of the baseline hazard for T1D using a model without the HLA

effects. In the reported analyses of the HLA genotype and

haplotype effects, the baseline hazard was held fixed at this

posterior mean. This strategy was chosen in view of the fact that

the Finnish birth cohorts, approximately 60,000 each and

effectively forming the risk sets of our population based analysis,

are so large that the joint estimation of the baseline hazards with

the other model parameters would have hardly led to numerically

different estimates. The reported analyses are based on 5,000

iterations (5,000 burn-in), and the estimates of genotype effects

passed the convergence diagnostics criteria of Geweke [19] (R-

program package CODA). In order to describe the age

dependency in the HLA genotypes, we calculated the genotype

and haplotype specific predictive disease free survival functions

and its’ 95% credible intervals. It is the expectation of disease free

survival function, with respect to the joint posterior distribution of

all model parameters [20].

Results

Given the complexity of the genetic information, only concise

summaries of the results can be reported here. The numbers and

percentages of particular genotype/haplotype carriers with T1D,

as well as the corresponding healthy carriers in the ascertained

sibships and in the BMDR sample, together with the associated

predictive probabilities of T1D free survival, are given in Table 1.

Predictive probabilities of T1D free survival are shown in Figure 2

for some high risk HLA DRB1 genotypes and in Figure 3 for a set

of selected haplotypes.

As could be expected from many earlier studies, the

heterozygous genotype DR3/DR4 at the DRB1 locus was

associated with the lowest predictive probability of the T1D free

survival to the age of 15, the estimate being 0.936 (0.926; 0.945

95% credible interval), compared to the average population T1D

free survival probability of 0.995. The effect of DR4 homozygote

was also strong with associated probability of 0.962 (0.954; 0.969)

for T1D free survival. Carriers of DR1/DR2, a common genotype

in the reference population and of DR2/DR6, had virtually no

risk of T1DM before the age of 15, with a predictive probability

for T1D free survival very close to 1. All DRB1 genotypes

associated with a lower predictive probability of T1D free survival

than the population average contained the DR4 allele: DR3/DR4,

DR4/DR4 DR4/DR8, DR4/DR6, DR4/DR7, DR1/DR4, and

DR4/DR5.

At the HLA B locus, the genotype associated with the smallest

predictive probability of T1D free survival to the age of 15 was

B8/B22, for which the estimate was 0.962 (0.944; 0.976). Two

common B-locus genotypes, viz. B7/B35 and B12/B35, were

observed to have only a few carriers among the diagnosed cases

while each had more than 50 carriers in the reference sample and

had therefore a predictive probability for T1D free survival that

was very close to one. Of the considered HLA-A locus genotypes,

A1/A9 genotype conferred the highest T1D risk, with a predictive

probability of 0.998 (0.994; 1.000) for T1D free survival among all

HLA-A genotypes.

Finally, the analysis of haplotypes revealed several haplotypes

with non-neutral association with T1D, in the sense of having a

smaller predictive probability of T1D free survival to 15 years than

the population average. Of these, the three highest ranked

haplotypes, with more than 50 carriers in the reference sample,

were A2/B22/DR4 0.935 (0.918; 0.950), A2/B18/DR4 0.944

(0.901; 0.976) and A2/B15/DR4 0.943 (0.924; 0.959). Notably, all

but one among the top ten ranked haplotypes contained the HLA

DR4 allele.

Discussion

To our knowledge, genetic risk estimation from an ascertained

familial data for a variable age at onset disease has not been earlier

approached by a full likelihood, or Bayesian, method utilizing

demographic information. The problem of non-random ascer-

tainment has been usually approached by formulating a

conditional likelihood [21], which leads to the removal of some

individuals from the study material in order to avoid an outcome-

based ascertainment bias. In our approach such an exclusion

procedure is not needed and all ascertained familial data can be

used in the statistical analysis. The basic modeling assumption in

the present work is that the putative effects associated with the

observed molecular information modulate a common age-

dependent baseline hazard in a multiplicative fashion. Also, we

do not assume any particular functional form for the genotype or

haplotype effects, i.e., they are not assumed to be decomposable

into some corresponding allelic effects.

Direct comparisons of our results to previously published studies

concerning genotype/haplotype risks of HLA for T1D are

difficult, as our analysis is restricted to the serotype level due to

restrictions in the available data, whereas the risk estimates are

currently provided at a finer molecular resolution. Thus our

analysis of the T1D data should be viewed primarily as an

example illustrating the potential of the likelihood based approach.

The T1D data from the DiMe Study have been analyzed earlier

for the allelic, genotypic, and/or haplotypic relative risks, by

estimating separately the risk associated with each haplotype by

the ratio of frequencies of transmitted and non-transmitted

haplotypes [22,14], or by assuming multiplicative genotype and

haplotype dominance effects on TIDM relative risk [11–12]. The

major difference in our model compared to that of Thomas et al.

[12] is that we do not assume multiplicative dominance effects

between alleles at the same locus but rather model directly the

effects of genotypes. Despite this difference, we observe a similar

ranking of the locus and haplotype effects as in Thomas’s et al.,

with the DRB1 locus genotypes having the largest effect. Of all

genotypes and common haplotypes considered, the DR3/DR4

genotype was associated with the smallest probability of surviving

T1D free to the age of 15. The association between T1D and

HLA-DRB1 DR3/DR4 genotypes has been known for decades,

and the current population-based analysis supports this conclu-

sion. Note, however, that the estimated cumulative risk of 4.3%

associated with the DR3/DR4 heterozygote is much lower than

what has been reported in UK families (approximately 14.4%,

pooling DR3/DR4 subtypes) [23]. The failure of Pitkäniemi et al.
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[24], when analyzing the same data, to identify anything else than

DR3 and DR4 alleles to be statistically significant contributors to

the risk is likely due to the ascertainment correction and the

consequent substantial loss of data. Considering haplotypes, we

found the same T1D associated haplotype A2/B22/DR4

(probability 0.959 of being T1D free to the age of 15) that has

been identified earlier both by Tuomilehto-Wolf et al. [14] and by

Thomas et al. [12], along with several more rare haplotypes with

an even higher risk of T1D.

While gaining statistical power by incorporating the ascertain-

ment process in the full likelihood, this study has some clear

limitations. In terms of the analysis of T1D risk associated with

HLA genotypes, genotypes DRB1*04 subtypes were not available.

This is a limitation, because it is known to be the high risk

genotype and would have made the analysis population based

registry data more interesting. In the present study, we have not

included any non-genetic measured covariate effects in the model,

since there were no measurements available for the large reference

data. However, in the presence of such information, the hazard

model can be easily modified also to take such information into

account. In principle, the risk contribution of each allele at a

particular locus could be mediated through a latent partition of the

haplotypes into several risk categories, in a similar manner as was

done by Seaman et al. [25]. However, with the current computing

power available in single workstations, such an approach would be

very tedious to pursue in a numerically stable manner. Also, it

would be possible to refine our approach further by modeling the

familial structures in the general population, and then carry out

the corresponding MCMC simulations. This would increase the

computational burden significantly, and very likely lead to no real

Table 1. Numbers of genotype/haplotype carriers and predictive disease free survivals (95% credible intervals) of certain HLA-A, B
and DRB1 genotypes/haplotypes1.

HLA
Genotype/
Haplotype

# of
cases

% of
cases

# of healthy
carries in
ascertained
sibships

% of healthy
carries in the
ascertained
sibships

Number of
healthy carriers
in the BMDR

Predictive T1DM free
survival before age 5
(95% credible interval)

Predictive T1DM free
survival before age 10
(95% credible interval)

Predictive T1DM free
survival before age 15
(95% credible interval)

DRB1

3/4 173 23.44 42 6.84 481 0.984 (0.981;0.986) 0.958 (0.951;0.964) 0.936 (0.926;0.945)

4/4 88 11.92 42 6.84 417 0.990 (0.988;0.992) 0.975 (0.969;0.980) 0.962 (0.954;0.969)

4/8 71 9.62 50 8.14 561 0.995 (0.994;0.996) 0.987 (0.984;0.990) 0.980 (0.975;0.984)

…

3/3 8 1.08 6 0.98 231 0.999 (0.998;0.999) 0.996 (0.994;0.998) 0.994 (0.990;0.998)

…

1/2 2 0.27 15 2.44 1104 1.000 (1.000;1.000) 1.000 (1.000;1.000) 1.000 (0.999;1.000)

2/6 0 0 8 1.3 862 1.000 (1.000;1.000) 1.000 (1.000;1.000) 1.000 (1.000;1.000)

B

8/56 21 2.85 7 1.14 88 0.992 (0.988;0.995) 0.976 (0.964;0.985) 0.962 (0.944;0.976)

8/15 62 8.40 18 2.93 447 0.996 (0.994;0.997) 0.987 (0.983;0.990) 0.979 (0.974;0.984)

…

7/17 7 0.95 16 2.61 744 1.000 (1.000;1.000) 1.000 (0.999;1.000) 1.000 (0.998;1.000)

5/7 2 0.27 6 0.98 266 1.000 (0.999;1.000) 0.999 (0.998;1.000) 0.999 (0.997;1.000)

A

1/9 32 4.34 20 3.26 314 1.000 (0.999;1.000) 0.998 (0.996;1.000) 0.998 (0.994;1.000)

2/3 135 18.29 113 18.4 3292 0.999 (0.992;1.000) 0.998 (0.978;1.000) 0.996 (0.966;1.000)

A-B-DRB1

2 22 4 80 4.71 35 1.598 306 0.983 (0.979;0.987) 0.957 (0.946;0.967) 0.935 (0.918;0.950)

2 18 4 13 0.77 4 0.183 51 0.986 (0.974;0.994) 0.963 (0.934;0.984) 0.944 (0.901;0.976)

9 16 4 54 3.18 27 1.233 228 0.985 (0.980;0.990) 0.962 (0.950;0.973) 0.943 (0.924;0.959)

9 15 4 29 1.71 5 0.228 135 0.987 (0.981;0.992) 0.967 (0.952;0.980) 0.950 (0.927;0.970)

3 35 4 33 1.94 23 1.05 199 0.990 (0.986;0.994) 0.974 (0.963;0.983) 0.961 (0.944;0.975)

…

1 8 3 131 7.72 86 3.927 1867 0.998 (0.997;0.999) 0.995 (0.993;0.997) 0.992 (0.989;0.995)

…

3 35 1 60 3.53 70 3.196 3242 1.000 (1.000;1.000) 1.000(0.999;1.000) 1.000 (0.999;1.000)

3 7 2 5 0.29 32 1.461 1388 1.000 (1.000;1.000) 1.000 (1.000;1.000) 1.000 (1.000;1.000)

1Pooled allele labels based on the official HLA nomenclature (http://www.anthonynolan.org.uk/HIG/).
A9 = (9,23,24), A19 = (19,29,30,31,32,33), A28 = (28,68,69), B5 = (5,51,52),
B12 = (12,44,45), B14 = (14,64,65), B15 = (15,62,63,75), B16 = (16,38,39),
B17 = (17,57,58), B56 = (22,55,56), B21 = (21,41,50), B40 = (40,60,61),
DR2 = (2,15,16), DR3 = (3,17,18), DR5 = (5,11,12), DR6 = (6,13,14).
doi:10.1371/journal.pone.0006836.t001
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Figure 3. Predictive disease free survival of T1D for some high risk HLA A,B and DRB1 haplotypes.
doi:10.1371/journal.pone.0006836.g003

Figure 2. Predictive disease free survival of T1D for some high risk HLA DRB1 genotypes.
doi:10.1371/journal.pone.0006836.g002
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changes in the risk estimates. For the same reason, we did not

explicitly account in our modeling for the uncertainties in the

reconstruction of haplotypes from the BMDR data [26], although

such measures would have been available from the output of the

PHASE software.

We conclude that the likelihood-based Bayesian approach

considered here offers a flexible and coherent framework for

handling the uncertainty related to the risks associated with

various types of molecular and other factors. The same conclusion

has been reached recently within other areas of genetics [27], as

well as applied sciences in general.

Supporting Information

Table S1 The number of the ascertained subjects and families in

the DiMe Study according to the year of diagnosis of the proband

during the recruitment period from January 1, 1987 to April 30,
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Found at: doi:10.1371/journal.pone.0006836.s001 (0.05 MB
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