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Abstract

Majority of the known breast cancer susceptibility genes have a role in DNA repair and the most important
high-risk genes BRCA1 and BRCA2 are specifically involved in the homologous recombination repair (HRR) of DNA
double-strand breaks. A central player in HRR is RAD51 that binds DNA at the damage site. The RAD51 paralogs
RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 facilitate the binding of RAD51 to DNA. While germline mutations in
RAD51C and RAD51D are associated with high ovarian cancer risk and RAD51B polymorphisms with breast cancer,
the contribution of RAD51, XRCC3, and XRCC2 is more unclear. To investigate the role of RAD51, XRCC3, and XRCC2
in breast cancer predisposition and to identify putative recurrent founder mutations in the Finnish population
where such mutations have been observed in most of the currently known susceptibility genes, we screened
182 familial Finnish breast or ovarian cancer patients for germline variation in the RAD51and XRCC3 genes and 342
patients for variation in XRCC2, with a subset of the patients selected on the basis of decreased RAD51 protein
expression on tumors. We also performed haplotype analyses for 1516 breast cancer cases and 1234 controls to
assess the common variation in these genes. No pathogenic mutations were detected in any of the genes and the
distribution of haplotypes was similar between cases and controls. Our results suggest that RAD51, XRCC3, and
XRCC2 do not substantially contribute to breast cancer predisposition in the Finnish population.
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Introduction
Most of the known breast cancer susceptibility genes
function in DNA damage repair. The most important
predisposition genes BRCA1 and BRCA2, conferring
high life-time risks of breast and ovarian cancer, are
involved in the homologous recombination repair (HRR)
of DNA double-strand breaks (DSB) (Mavaddat et al.
2010). The moderate-penetrance genes ATM, CHEK2,
PALB2, and BRIP1 also have a role in DNA repair. A
large proportion of the unexplained familial risk of
breast cancer is likely explained by clustering of several
common low-penetrance variants and so far, large num-
ber of low-risk loci have been identified (Michailidou
et al. 2013). However, the currently known high, mode-
rate, and low-penetrance alleles together only explain
approximately 35% of the familial risk of breast cancer
and thus, other susceptibility loci are likely to exist and
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genes involved in the homologous recombination repair
are attractive candidates.
A central player in the homologous recombination is

the RAD51 recombinase that binds to single-stranded
DNA at break sites (Suwaki et al. 2011). The binding of
RAD51 to DNA is facilitated by several proteins inclu-
ding BRCA2 and the five RAD51 paralogs RAD51B,
RAD51C, RAD51D, XRCC2, and XRCC3. Deleterious
germline mutations in the RAD51C and RAD51D genes
confer an increased risk of ovarian cancer (Loveday et al.
2011, 2012) whereas common polymorphisms in the
RAD51B gene are associated with male and female
breast cancer (Figueroa et al. 2011; Orr et al. 2012). The
contribution of RAD51, XRCC3, and XRCC2 to breast
cancer susceptibility remains unclear. Deleterious germ-
line mutations in the XRCC2 gene have been identified
in exome sequencing of familial breast cancer patients
but the association was not confirmed in a larger case–
control study (Park et al. 2012; Hilbers et al. 2012).
Several association studies of XRCC3 have yielded con-
troversial results yet a meta-analysis by He et al.
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suggests an association between common XRCC3 poly-
morphisms and breast cancer risk (He et al. 2012). A
likely deleterious missense mutation in the XRCC3 gene
has been identified in one breast and ovarian cancer
family (Golmard et al. 2013). In the RAD51 gene, one
possibly disease-associated missense mutation has been
identified in bilateral breast cancer patients whereas
three studies report no deleterious RAD51 mutations
among breast cancer cases (Kato et al. 2000; Lose et al.
2006; Rapakko et al. 2006; Le Calvez-Kelm et al. 2012).
The presence of recurrent founder mutations in the

Finnish population creates an advantage for the identifi-
cation of new susceptibility genes. We have previously
identified Finnish founder mutations in the ovarian can-
cer susceptibility genes RAD51C and RAD51D (Pelttari
et al. 2011, 2012) and recently, we identified a recurrent
nonsense mutation in the FANCM gene that associated
especially with triple-negative breast cancer (Kiiski et al.
2014). In Finland, recurrent mutations explain most of
the familial breast cancer risk caused by the currently
known susceptibility genes, such as BRCA1, BRCA2,
PALB2, and CHEK2 (Sarantaus et al. 2000; Erkko et al.
2007; Vahteristo et al. 2002), whereas in other more di-
verse populations several rare mutations in each gene
have been identified.
Inactivating mutations in tumor suppressor genes usu-

ally lead to decreased protein expression and further to
tumor progression (Vogelstein and Kinzler 2004). Loss-
of-function mutations have been identified in all the
known breast cancer susceptibility genes involved in
DNA damage response. We have previously shown that
carriers of the truncating CHEK2 c.1100delC mutation
often have reduced or absent CHEK2 protein expression
in breast tumors (Vahteristo et al. 2002). We have also
previously identified two germline mutations in the
MRE11 gene among breast cancer patients whose tu-
mors showed decreased expression of the MRN complex
proteins MRE11, RAD50, and NBS1 that play an impor-
tant role in the DNA damage response (Bartkova et al.
2008). The breast tumors were studied by immunohisto-
chemical staining of MRE11, RAD50, and NBS1, and pa-
tients whose tumors had reduced expression of all three
proteins were selected for further germline DNA ana-
lysis. These results indicate that loss or reduction of pro-
tein expression in the tumor may be a sign of underlying
inactivating germline mutations.
To evaluate the contribution of RAD51, XRCC3, and

XRCC2 mutations to breast cancer predisposition, we
screened 182 familial Finnish breast or ovarian cancer
patients for germline variation in the RAD51 and
XRCC3 genes and 342 patients for the XRCC2 gene. To
facilitate the mutation discovery, a subset of the patients
was selected on the basis of decreased RAD51 protein
expression on their breast tumors. We also studied the
common variation in these genes with a haplotype ana-
lysis in 1516 breast cancer cases and 1234 controls.

Materials and methods
Subjects
The patient samples originated from two unselected
series of breast cancer cases and additional familial
breast and ovarian cancer patients collected at Helsinki
University Hospital Departments of Oncology and Cli-
nical Genetics (Eerola et al. 2000; Fagerholm et al. 2008).
The unselected breast cancer cases were ascertained at
Helsinki University Hospital Department of Oncology in
1997–1998 and 2000 (n = 884) (Syrjäkoski et al. 2000;
Kilpivaara et al. 2005) and Department of Surgery in
2001–2004 (n = 986) (Fagerholm et al. 2008) including
79% and 87%, respectively, of all consecutive, newly
diagnosed breast cancer cases during the collection pe-
riods. BRCA1 and BRCA2 mutation carriers were ex-
cluded from the familial patient series as previously
described (Vahteristo et al. 2001, 2002; Vehmanen et al.
1997). RAD51 protein expression was analyzed in 1240
paraffin-embedded invasive breast tumors from these
patients as described (Fagerholm et al. 2013).
The RAD51 and XRCC3 genes were screened in 182

and the XRCC2 gene in 342 BRCA1/2-negative familial
breast or ovarian cancer patients. Out of these, 71 were
selected on the basis of absent or decreased RAD51 ex-
pression on tumors. The RAD51-XRCC3 screening in-
cluded two ovarian cancer probands and four cases
affected with both breast and ovarian cancer and the
XRCC2 screening included five cases with breast and
ovarian cancer; the rest of the screened patients were
breast cancer cases. The patients had a strong family
background of breast cancer with at least three breast or
ovarian cancers among first or second degree relatives,
including the proband. A haplotype analysis was per-
formed in 1516 breast cancer cases (including 592 fa-
milial BRCA1/2-negative patients) and 1234 population
controls that had been genotyped on the iCOGS chip
(Michailidou et al. 2013). The population controls were
healthy female blood donors from the same geographic
region.
This study was performed with written informed con-

sents from the patients and with permission from the
Ethical review board of Helsinki University Hospital.

Sequencing
The protein coding regions of the RAD51, XRCC3, and
XRCC2 genes were amplified by PCR in genomic DNA
samples isolated from peripheral blood of the patients.
The primers were designed with Primer3 software
(http://bioinfo.ut.ee/primer3/). The PCR conditions are
described in Additional file 1: Table S1. The PCR frag-
ments were purified with ExoSAP-IT (Affymetrix) and
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subsequently sequenced using ABI BigDyeTerminator
3.1 Cycle Sequencing kit (Life Technologies). The capillary
sequencing was performed at the Institute for Molecular
Medicine Finland (FIMM), University of Helsinki, using
3730xl DNA Analyzer (Life Technologies). The sequence
chromatograms were analyzed with FinchTV (Geospiza)
and Variant Reporter software (Life Technologies).
Bioinformatics and statistical methods
The pathogenicity of identified missense variants was
evaluated with MutationTaster (Schwarz et al. 2010),
SIFT, and PON-P (Olatubosun et al. 2012). The haplo-
type analysis was performed using PHASE v2.1.1 soft-
ware (Stephens et al. 2001; Stephens and Scheet 2005)
and the frequencies of haplotypes were compared bet-
ween all breast cancer cases versus controls and familial
breast cancer cases versus controls. The haplotypes were
constructed using all single-nucleotide polymorphisms
(SNPs) included in the iCOGS chip (Michailidou et al.
2013) that were located at the RAD51 (n = 14), XRCC3
(n = 10), and XRCC2 (n = 10) gene loci and were not
monomorphic in our study population. To test the
association of the individual polymorphisms included in
the haplotype analysis with breast cancer risk, two-sided
p-values with odds ratios (OR) and 95% confidence in-
tervals (CI) for each SNP were calculated using χ2 test
or Fisher’s exact test when the count in any of the cells
was five or less. Bonferroni’s adjustment was used for
multiple-testing correction. We also studied the asso-
ciation of the missense mutations with 10-year breast
cancer-specific survival using univariate Cox’s propor-
tional regression models. The follow-up times were left-
truncated at the date of ascertainment to account for the
latency between diagnosis and study recruitment. The
association analyses were performed using the R version
3.0.2 statistical software (http://www.r-project.org/).
Results
In the sequencing of the RAD51 gene, only intronic and
untranslated region (UTR) variants were identified. In
XRCC3 and XRCC2, one known missense variant was
identified in each gene (Table 1). Both missenses were
predicted to be polymorphisms, tolerated, and neutral by
MutationTaster, SIFT, and PON-P, respectively, and both
were detected at comparable frequencies (31.3% for
rs861539 in XRCC3 and 4.7% for rs3218536 in XRCC2)
as in the Finnish population of the 1000Genomes (31.7%
for rs861539 and 4.8% for rs3218536) and of the Exome
Aggregation Consortium (ExAC) (31.8% for rs861539 and
3.5% for rs3218536) (Exome Aggregation Consortium
(ExAC), Cambridge, MA; http://exac.broadinstitute.org
[January 2015]), and in the Sequencing Intiative Suomi
(SISu) (30.1% for rs861539 and 3.9% for rs3218536)
(http://sisu.fimm.fi/ [January 2015]) (Lim et al. 2014)
dataset.
The association of RAD51, XRCC3, and XRCC2 haplo-

types with breast cancer risk was studied among 1516
breast cancer cases (including 592 familial cases) and
1234 population controls. The haplotypes were con-
structed with PHASE v2.1.1 software using 14 poly-
morphic sites for RAD51 and ten for XRCC3 and
XRCC2. Eleven RAD51, twelve XRCC3, and eight
XRCC2 haplotypes were predicted among the samples
(Table 2). The distribution of the haplotypes did not
differ between all the breast cancer cases and controls
(p = 0.45, p = 0.49 and p = 0.55 for RAD51, XRCC3, and
XRCC2, respectively) nor between the familial cases
and controls (p = 0.66, p = 0.14 and p = 0.80 for RAD51,
XRCC3, and XRCC2, respectively). We also tested
the association of individual SNPs included in the
haplotype analysis with breast cancer but none of
them showed significant association (p = 0.060-0.951)
(Table 3). After Bonferroni’s correction for multiple
testing, p-value < 0.00167 was considered significant.
Since the XRCC2 p.(Arg188His) variant (rs3218536)

has been previously associated with poor breast cancer
survival (Lin et al. 2011), we performed 10-year
breast cancer-specific survival analyses for the XRCC2
p.(Arg188His) missense variant as well as the XRCC3
p.(Thr241Met) (rs861539) variant that were both detected
in the sequencing of the genes and also included in the
haplotype analysis. Patients with available follow-up infor-
mation from the sequencing dataset and from the haplo-
type analysis (n = 1635, events = 106 for XRCC2; n = 1542,
events = 80 for XRCC3) were combined for the survival
analysis, including 1183 or 1176 cases from the unselected
series and 452 or 366 additional familial cases for the
XRCC2 and XRCC3 analysis, respectively. Given that most
of the familial patients were prevalent cases with more
than six months between breast cancer diagnosis and re-
cruitment to the study, the data was left-truncated at the
date of ascertainment. Neither of the missenses associated
with breast cancer survival (hazard ratio (HR) = 0.67, 95%
CI = 0.32-1.40, p = 0.288 for rs3218536; HR = 0.92, 95%
CI = 0.66-1.29, p = 0.627 for rs861539).

Discussion
We screened the RAD51, XRCC3, and XRCC2 genes for
germline variation in familial BRCA1/2-negative breast
or ovarian cancer patients in order to evaluate the role
of these genes in breast cancer predisposition in Finland
and to identify putative recurrent founder mutations. To
facilitate the variant discovery, we selected patients with
strong family background of breast cancer from the
homogeneous Finnish population where recurrent founder
mutations in most of the breast cancer genes are present.
In addition, a subset of the patients had decreased RAD51
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Table 1 Identified germline variants in RAD51, XRCC3, and XRCC2 genes

Gene Genomic locationa HGVSb Function rs-number AAc Aad Aae MAFf 1000G-FIN MAFg

RAD51 15:40987528 c.-98G > C 5´UTR rs1801320 154 27 1 0.080 0.113

RAD51 15:40987565 c.-61G > T 5´UTR rs1801321 103 56 23 0.280 0.312

RAD51 15:40987568 c.-58C > G 5´UTR 181 1 0 0.003

RAD51 15:40987725 c.-3 + 102C > T intronic rs3092981 151 22 9 0.110 0.183

RAD51 15:40991153 c.87 + 110A > G intronic rs2304579 153 28 1 0.082 0.113

RAD51 15:40998303 c.226-72delA intronic rs55943660 156 26 0 0.071 0.108

RAD51 15:40998342 c.226-33 T > G intronic rs45457497 136 43 3 0.135 0.129

RAD51 15:41001187 c.344-36 T > G intronic rs45455000 153 26 3 0.088 0.108

RAD51 15:41020898 c.531-12C > T intronic 181 1 0 0.003

XRCC3 14:104177282 c.55 + 88C > G intronic 181 1 0 0.003

XRCC3 14:104174944 c.108G > A p.(=) 181 1 0 0.003

XRCC3 14:104174824 c.193 + 34C > T intronic rs1799795 171 11 0 0.030 0.032

XRCC3 14:104173300 c.406 + 40C > T intronic rs374684710 177 5 0 0.014

XRCC3 14:104169435 c.561 + 75G > A intronic 181 1 0 0.003

XRCC3 14:104165753 c.722C > T p.(Thr241Met) rs861539 91 68 23 0.313 0.317

XRCC3 14:104165647 c.774 + 54G > A intronic rs150986165 181 1 0 0.003 0.005

XRCC3 14:104165611 c.774 + 90G > T intronic 181 1 0 0.003

XRCC3 14:104165465 c.821 + 5G > A intronic 181 1 0 0.003

XRCC3 14:104165411 c.822-57C > T intronic rs17101777 181 1 0 0.003

XRCC3 14:104165107 c.*28C > T 3'UTR 181 1 0 0.003

XRCC3 14:104165100 c.*35A > G 3'UTR 181 1 0 0.003

XRCC2 7:152373252 c.-88G > C downstream rs3218384 203 117 22 0.235 0.204

XRCC2 7:152373233 c.-69 T > G 5'UTR rs3218385 324 16 2 0.029 0.032

XRCC2 7:152357877 c.40-10C > T intronic rs3218472 333 9 0 0.013 0.011

XRCC2 7:152346007 c.563G > A p.(Arg188His) rs3218536 310 32 0 0.047 0.048
aThe genomic location is denoted according to NCBI37/Hg19 genome build and the variant coding refers to transcripts ENST00000267868 in RAD51,
ENST00000352127 in XRCC3, and ENST00000359321 in XRCC2; bvariant description according to HGVS nomenclature; number of ccommon homozygotes,
dheterozygotes, and erare homozygotes; fminor allele frequency (MAF) observed in this study; gMAF in 1000Genomes Finnish population.
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protein expression on their breast tumors as we hypothe-
sized that loss of protein expression might be a sign of
underlying inactivating germline mutations. We also per-
formed haplotype analyses in an extensive series of breast
cancer cases and population controls to study the com-
mon variation in these genes.
No truncating mutations were identified in any of the

genes. In RAD51, only intronic and UTR variants were
identified which is in line with the previous studies
where no cancer-predisposing mutations were identified
among early-onset breast cancer patients (Lose et al.
2006; Rapakko et al. 2006; Le Calvez-Kelm et al. 2012).
However, one of the detected 5’UTR polymorphisms,
rs1801320, has been found to affect the splicing of
RAD51 within the 5’UTR and to modify breast cancer
risk among BRCA2 mutation carriers (Levy-Lahad et al.
2001; Antoniou et al. 2007). In XRCC3 and XRCC2, known
missense variants p.(Thr241Met) and p.(Arg188His),
respectively, were detected. Both of these variants were
detected at comparable frequencies as in the Finnish
population of the 1000Genomes, ExAC, and SISu datasets
and neither was predicted to be pathogenic in silico. A
large association study by Breast Cancer Association Con-
sortium (BCAC) found no association with breast cancer
risk for neither of the variants (Breast Cancer Association
Consortium 2006). However, a meta-analysis by He et al.,
including also the BCAC study, suggests the XRCC3
p.(Thr241Met) variant is associated with a mild increase
in breast cancer risk (OR = 1.10, 95% CI = 1.03-1.16)
(He et al. 2012). In our data set, the p.(Thr241Met) and
p.(Arg188His) variants did not associate with an increased
breast cancer risk nor did they form risk-associated haplo-
types. Furthermore, the overall distribution of RAD51,
XRCC3, or XRCC2 haplotypes did not differ between all
breast cancer cases and controls or between familial cases
and controls. Previously, XRCC2 p.(Arg188His) has been



Table 2 Detected haplotypes with frequency estimates for population controls and breast cancer cases

RAD51 haplotype Haplotype
count

Frequency
controls

Frequency
all cases

Haplotype
count

Frequency
controls

Frequency
fam cases

GCGCACTTAGAGAC 1510 26.66% 28.11% 999 26.66% 28.80%

GCGCATTTGGAGAC 1510 27.22% 27.63% 996 27.22% 27.36%

GCGTACTTAGGGAC 956 18.07% 16.81% 656 18.07% 17.74%

GTGCACTTAGAGAC 913 16.25% 16.89% 579 16.25% 15.03%

CCGCGCCGAAAGGG 431 8.51% 7.29% 301 8.51% 7.69%

GCTCATTTGGAGAC 138 2.76% 2.32% 97 2.76% 2.45%

GTGCACTTAGATAC 37 0.45% 0.86% 21 0.45% 0.84%

GCGCACTTAGGGAC 2 0.04% 0.03% 2 0.04% 0.08%

CCGCGCTTAGAGAC 1 0.04% 0% 1 0.04% 0%

GCGCACTTGGAGAC 1 0.001% 0.02% 0 0% 0%

CCGCGCCGAAAGAC 1 0% 0.03% 0 0% 0%

All BC cases vs controls: p = 0.45 Familial BC cases vs controls: p = 0.66

XRCC3 haplotype Haplotype
count

Frequency
controls

Frequency
all cases

Haplotype
count

Frequency
controls

Frequency
fam cases

CATGCGCGGG 1599 28.57% 29.58% 1071 28.56% 31.07%

TACGCGCTGG 1586 28.32% 29.25% 1046 28.32% 29.30%

CGTACGCGGG 1159 22.33% 20.05% 778 22.33% 19.17%

CATGCGCGGA 602 10.82% 10.98% 378 10.83% 9.26%

CGTGCGTGGG 227 4.13% 4.03% 151 4.14% 3.98%

TACGCGCTAG 200 3.28% 3.92% 139 3.28% 4.90%

CGTGCGCGGG 75 1.49% 1.25% 55 1.49% 1.52%

CGTACACGGG 29 0.49% 0.56% 18 0.49% 0.51%

CGTGTGCGGG 17 0.41% 0.23% 12 0.41% 0.17%

CGTGCGTGGA 4 0.12% 0.11% 2 0.11% 0.03%

TGCGCGCTGG 1 0.05% 0.005% 1 0.05% 0.003%

CATGCGCTGG 1 0% 0.02% 1 0% 0.04%

All BC cases vs controls: p = 0.49 Familial BC cases vs controls: p = 0.14

XRCC2 haplotype Haplotype
count

Frequency
controls

Frequency
all cases

Haplotype
count

Frequency
controls

Frequency
fam cases

GGGCGCACCT 3633 66.79% 65.48% 2438 66.80% 66.73%

GGGCGCACCG 1253 22.53% 22.97% 814 22.53% 21.79%

GGACGCACCT 247 4.13% 4.78% 159 4.13% 4.81%

GGGCCCATGT 123 2.15% 2.31% 84 2.15% 2.62%

AGGTGGACCT 123 2.25% 2.21% 83 2.25% 2.28%

GAGCGCGCGT 119 2.11% 2.21% 73 2.11% 1.77%

GGGCGCACGT 1 0.02% 0% 1 0.02% 0%

GAGCGCACCT 1 0% 0.02% 0 0% 0%

All BC cases vs controls: p = 0.55 Familial BC cases vs controls: p = 0.80

BC = breast cancer; Fam = familial.
Separate analyses were performed for all breast cancer cases versus controls and familial breast cancer cases versus controls. The SNPs included in the analysis
are described in Table 3.
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associated with poor breast cancer survival (Lin et al.
2011) but in our study, no survival effect was found for
this variant or for the XRCC3 p.(Thr241Met) variant.
Like most of the known breast cancer susceptibility
genes, RAD51, XRCC3, and XRCC2 also have a role
in DNA double-strand break repair by homologous



Table 3 SNPs from the haplotype analysis with ORs and p-values for breast cancer association

Gene rs-number HGVS MAFcontrols MAFcases OR 95% CI p-value

RAD51 rs1801320 c.-98G > C 0.09 0.07 0.82 0.66-1.01 0.184

RAD51 rs3092981 c.-3 + 102C > T 0.17 0.18 1.07 0.91-1.27 0.614

RAD51 rs5030791 c.-3 + 203G > T 0.03 0.02 0.83 0.59-1.18 0.583

RAD51 rs2619681 c.-3 + 1398 T > C 0.18 0.17 0.88 0.75-1.05 0.352

RAD51 rs2304579 c.87 + 110A > G 0.09 0.07 0.82 0.67-1.01 0.184

RAD51 rs4924496 c.225 + 1936 T > C 0.29 0.29 1.06 0.90-1.24 0.549

RAD51 rs45503494 c.343 + 494 T > C 0.09 0.07 0.82 0.67-1.02 0.205

RAD51 rs45455000 c.344-36 T > G 0.09 0.07 0.82 0.67-1.02 0.202

RAD51 rs12592524 c.435 + 2149G > A 0.30 0.30 1.07 0.91-1.25 0.518

RAD51 rs4144242 c.436-4016G > A 0.09 0.07 0.82 0.67-1.02 0.202

RAD51 rs4924500 c.530 + 4654A > G 0.18 0.17 0.88 0.74-1.04 0.314

RAD51 rs45532539 c.531-3201G > T 0.004 0.009 1.92 0.97-4.10 0.062

RAD51 rs45507396 c.*929A > G 0.09 0.07 0.82 0.66-1.01 0.187

RAD51 rs45585734 c.*1113C > G 0.09 0.07 0.82 0.66-1.01 0.187

XRCC3 rs861539 c.722C > T 0.32 0.33 1.06 0.90-1.24 0.489

XRCC3 rs861537 c.562-1162G > A 0.29 0.26 0.89 0.76-1.04 0.060

XRCC3 rs861536 c.562-1651 T > C 0.32 0.33 1.06 0.90-1.24 0.475

XRCC3 rs12432907 c.561 + 1132G > A 0.23 0.21 0.92 0.78-1.08 0.092

XRCC3 rs3212092 c.561 + 866C > T 0.004 0.002 0.57 0.20-1.51 0.246

XRCC3 rs3212081 c.407-478G > A 0.005 0.006 1.15 0.55-2.49 0.704

XRCC3 rs3212079 c.407-801C > T 0.04 0.04 0.97 0.73-1.28 0.951

XRCC3 rs861531 c.406 + 533G > T 0.32 0.33 1.06 0.90-1.24 0.459

XRCC3 rs3212042 c.56-652G > A 0.03 0.04 1.17 0.86-1.58 0.456

XRCC3 rs3212028 c.-261 + 1368G > A 0.11 0.11 1.07 0.88-1.29 0.427

XRCC2 rs3218552 c.*1874G > A 0.02 0.02 0.95 0.66-1.37 0.879

XRCC2 rs3218550 c.*1772G > A 0.02 0.02 1.07 0.74-1.55 0.729

XRCC2 rs3218536 c.563G > A 0.04 0.05 1.08 0.82-1.43 0.256

XRCC2 rs3218504 c.122-4868C > T 0.02 0.02 0.94 0.65-1.36 0.878

XRCC2 rs6964582 c.122-5014G > C 0.02 0.02 1.02 0.70-1.47 0.676

XRCC2 rs3218501 c.122-5469C > G 0.02 0.02 0.93 0.64-1.34 0.839

XRCC2 rs3218491 c.121 + 4038A > G 0.02 0.02 1.04 0.72-1.52 0.817

XRCC2 rs3111465 c.40-4608 T > C 0.02 0.02 1.02 0.70-1.48 0.676

XRCC2 rs3094406 c.40-4998G > C 0.04 0.05 0.99 0.76-1.30 0.252

XRCC2 rs3218408 c.39 + 5510 T > G 0.23 0.23 1.09 0.93-1.28 0.447

The SNPs are presented in the same order as in the haplotypes in Table 2.
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recombination. XRCC2 and XRCC3, two of the five hu-
man RAD51 paralogs, help to load RAD51 on the site of
DNA damage (Suwaki et al. 2011). XRCC2 gene has
been recently linked to breast cancer since rare germline
mutations in the gene were identified in breast cancer
families (Park et al. 2012). However, no association with
breast cancer risk was detected in a subsequent large
case–control study (Hilbers et al. 2012) and another
study by Golmard et al. (Golmard et al. 2013) reports no
pathogenic XRCC2 mutations among early-onset or
familial breast cancer patients (Golmard et al. 2013).
Interestingly, one Fanconi anemia patient has been
found to carry a homozygous truncating XRCC2 muta-
tion (Shamseldin et al. 2012) while biallelic mutations in
four breast and ovarian cancer susceptibility genes,
BRCA2, BRIP1, PALB2, and RAD51C, are associated
with Fanconi anemia (Kee and D'Andrea 2012). Given
the unclear role of XRCC2 in breast cancer suscepti-
bility, we sequenced the gene in an extensive series of
342 patients with a strong family history breast cancer.



Pelttari et al. SpringerPlus  (2015) 4:92 Page 7 of 8
As the only identified coding variant was a neutral mis-
sense mutation, our results indicate that XRCC2 is not a
major breast cancer susceptibility gene, in line with the
studies by Hilbers et al. and Golmard et al. In contrast
to XRCC2, no truncating mutations in XRCC3 or
RAD51 genes have been reported and only one possibly
disease-associated missense in each gene has been de-
tected in breast cancer patients (Golmard et al. 2013;
Kato et al. 2000). Furthermore, the RAD51 missense mu-
tation was later also detected once among 1330 breasts
cancer cases as well as once among 1123 controls
(Le Calvez-Kelm et al. 2012). The absence of mutations
in our study as well as the results of the previous studies
indicates that XRCC3 and RAD51 are not major breast
cancer susceptibility genes.

Conclusions
In conclusion, the absence of mutations among breast
cancer families and similar distribution of haplotypes be-
tween breast cancer cases and controls suggests that
RAD51, XRCC3, and XRCC2 do not substantially con-
tribute to familial breast cancer predisposition in the
Finnish population. Taken together, it is unlikely that
RAD51, XRCC3, and XRCC2 have a significant contribu-
tion to breast cancer susceptibility. However, we cannot
exclude possible unique or very rare risk variants.

Additional file

Additional file 1: Table S1. Primers and PCR conditions for the
sequencing of the RAD51, XRCC3, and XRCC2 genes.
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