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Summary 
 

Pain is an unpleasant feeling bound to affect us, both humans as animals, during our 

lifetimes. Thousands of people are suffering from chronic pain around the world, and 

chronic pain in animals and ways to treat it is rapidly gaining more and more interest. The 

pain network is a vastly intricate one, with complex interactions between a plethora of 

neurons and cells. Modern science has yet to shine a light on the complete process of pain 

sensation. Acupuncture has been used for thousands of years in treating pain amongst other 

problems and is today approved by the World Health Organization as a treatment for 

certain types of pain among other conditions. Wide research has been carried out during 

the last few decades as acupuncture is gaining ground in the Western world and while 

evidence of its analgesic effects and some mechanisms of action (e.g. endogenous opioid-

release) have been found through studies, our understanding of the response elicited by 

acupuncture still remains incomplete. In the current study, material was gathered in form of 

questionnaires, which owners to dogs treated with acupuncture filled out. We then assessed 

the efficacy of acupuncture as a treatment method for dogs suffering from chronic pain by 

analysing improvements in mobility, quality of life and pain by means of the Helsinki 

Chronic Pain Index (HCPI), visual analogue scales (VAS) (n=5-9) and a comparative 

enquiry (n=85). Although no statistically significant differences were found, results were 

constantly indicative of improvement, and significant differences might have been found 

were it not for the small numbers of cases in the HCPI- and VAS-studies. While no 

conclusions can be drawn from the current study, the results may be guardedly interpreted 

as indicative of the analgesic abilities of acupuncture in treating chronic pain in dogs.  
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Introduction 

Both humans and animals suffer from chronic pain, often resulting in attenuation of the use 

or direct misuse of the locomotor apparatus, i.e. altered movement-patterns because of 

pain. Treatment of this type of chronic pain is seldom simple, with a wide array of 

treatment-methods to choose from, some more efficient than others. A highly debated pain 

treatment method is acupuncture, knowledge and use of which has expanded widely in the 

Western hemisphere during recent decades. The aim of this licentiate thesis is to present 

some of what research has found regarding pain, acupuncture and acupuncture analgesia 

and assess the use and perhaps efficacy of acupuncture in treatment of dogs with chronic 

pain, the hypothesis being that acupuncture does alleviate chronic pain. 

 

 

1 PAIN 

 

Pain, defined by the International Association for the Study of Pain (International 

Association for the Study of Pain 2012) as ”an unpleasant sensory and emotional 

experience associated with actual or potential tissue damage, or described in terms of such 

damage”, is something that those capable of experiencing - humans as well as animals - are 

extremely likely to encounter during their lifetimes. Pain is an important symptom of many 

diseases, its function being to prevent (further) tissue damage and promote the healing of 

injured tissue (Raouf et al. 2010). The perception of pain is highly subjective (Beecher 

1952) and therefore difficult to measure. Moreover, the pain experience is thought to 

consist of three dimensions; a sensory-discriminative, a motivational-affective and a 

cognitive-evaluative dimension (Melzack and Casey 1968), which makes the pain 

sensation that much more complex to study and to understand. This complexity is reflected 

in, for example, the thousands of people around the world suffering from poorly 

manageable chronic pain (Breivik et al. 2006, Johannes et al. 2010). While the prevalence 

of chronic pain in dogs is unknown, the ability to recognise and assess it is growing and the 

importance of treating it is rapidly becoming clearer to both owners and veterinarians. 
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1.1 Classification of pain 

Pain can be categorized in a variety of ways, and it seems the classification of pain 

continuously changes parallel to the growing knowledge about pain. One way of broadly 

categorizing pain is into the three groups of nociceptive, inflammatory and pathological 

pain (Woolf 2010). Nociceptive pain is the sensation which stems from the body's 

detection of a noxious stimulus, i.e. a warning signal of potential tissue damage. The 

sensation results in a withdrawal reflex, with the aim to protect the body from further 

injury. Inflammatory pain rises from the immune system's response to tissue damage or 

infection. Inflammation hypersensitizes the injured area making it extra painful, thus 

aiding in the healing process by protecting it from further stimulus or damage (Woolf 

2010). 

 

In contrast to nociceptive and inflammatory pain, which serve the purpose of protecting the 

body, pathological pain is rather a state where the nociceptive signal processing in the 

nervous system has maladapted such that the pain threshold is lowered and the nociceptive 

signals are amplified in the central nervous system (CNS) (Woolf 2010). This can occur in 

case of nerve injury (neuropathic pain) and in some diseases where no damage or 

inflammation is present (dysfunctional pain, e.g. fibromyalgia, irritable bowel syndrome) 

(Woolf 2010). Cancer pain seems to be a unique type of (pathological) pain (Honore et al. 

2000, Schmidt et al. 2010). 

1.2 Acute and chronic pain 

The division of pain into acute and chronic is not as easy as it seems. Chronic pain has 

been classified as pain that extends past the normal expected time of healing (Bonica 

1953), with normal healing times defined as e.g. one, three or six months, depending on the 

disease process in question (International Association for the Study of Pain 1994). Some 

diseases, however, continue to generate pain even though healing has never occured (e.g. 

osteoarthritis), or heal first after which it may recur (e.g. migraines). 
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1.3 The pain pathway 

The organism's pain-receptive, -referring and -translating pathway, or network if you will, 

is a vastly intricate one. The next chapter will focus on this pain pathway, going through its 

neuroanatomy and furthermore the biochemistry embedded in it as it looks in the light of 

science today. As we will see, the path of the noxious stimulus goes from nociceptor to the 

spinal cord to the brain, where it is processed. The brain then sends signals for the body to 

react (e.g. increase in heart rate) as well as modulates the pain (e.g. release of analgesic 

components) by sending descending signals through basically the same pathway from 

whence the stimulus came. 

1.3.1 Nociception at peripheral terminals 

Noxious stimulus is detected and encoded by specialized peripheral sensory neurons called 

nociceptive neurons or nociceptors (Sherrington 1906). Nociceptors, which are primary 

afferent neurons, are found all throughout the body; in the skin (Sherrington 1906), muscle 

(Mense and Schmidt 1977), joints (Burgess and Clark 1969) and the viscera (Ness and 

Gebhart 1990). The most distal part of the nociceptors that detects the noxious stimulus, 

the receptive terminal, consists of free nerve endings branched tree-like from the axon. The 

endings end in an end bulb, and some endings possess additional axonal expansions that 

contain different types of messenger molecules. The nociceptive neurons often contain 

neuropeptides, such as substance P (SP) or calcitonin gene-related peptide (CGRP) (Mense 

2008). 

 

Nociceptors are generally silent, and evoke action potentials only when stimulated 

sufficiently (Sherrington 1906). Nociceptors are activated by high-threshold stimuli as 

opposed to ”normal” sensory receptors, that are very sensitive to stimuli and activate from 

low-threshold stimuli (Bessou and Perl 1969). Nociceptors also generally react to more 

than one modality of stimulus, e.g. heat, mechanical and chemical stimuli, and are 

therefore also called polymodal receptors (Bessou and Perl 1969, Davis et al. 1993). The 

more research has been carried out on nociceptors, the more it has become clear that 

nociceptors are a vastly heterogenous group, that by their action probably have a larger role 

in the nuances of pain (e.g. aching, pricking, throbbing, burning) than we realize. 
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Nociceptors can be subdivided in several manners according to characteristics such as 

conduction velocity, form of stimulus that evokes a response (e.g. heat, mechanical), 

response characteristics and distinct chemical markers (e.g. membrane receptors or 

peptides they are releasing) (McMahon et al. 2013).  Grouping nociceptive afferents by 

conduction velocity, there are two main groups; the fast conducting, myelinated A- and the 

slower conducting, unmyelinated C-fibre afferents (conduction velocities >2 m/s and <2 

m/s respectively). The C-fibre afferents are believed to conduct a burning pain sensation, 

whereas the A-fibre afferents are believed to evoke pricking or aching pain in addition to 

the feeling of sharpness (McMahon et al. 2013). Nociceptors can further be divided into 

mechanically sensitive afferents (MSAs) and mechanically insensitive afferents (MIAs) 

based on their ability to detect (noxious) mechanical stimuli (Meyer et al. 1991). Most 

nociceptors belong to the MSAs, but some belong to the MIAs, meaning that they have a 

very high threshold or no sensitivity at all for mechanical stimuli. They can, however, 

detect other stimuli (Meyer et al. 1991).  

 

Nociceptors are also divided into peptidergic and non-peptidergic, based on binding to 

isolectin B4 (IB4) (Silverman and Kruger 1988b). Non-peptidergic neurons contain 

fluoride-resistant acid phosphatase (FRAP) (Silverman and Kruger 1988a) and bind to IB4 

(Silverman and Kruger 1988b), whereas peptidergic neurons don´t bind to IB4 and contain 

SP and CGRP among other peptides. Considerable coincidence between positive IB4-

binding and/or FRAP- and SP- & CGRP-containment in nociceptors has been found in rats 

though, but less so in mice (Carr et al. 1990, Wang et al. 1994, Bergman et al. 1999). The 

signal transducing receptors expressed on the peripheral terminals of nociceptors differ 

between peptidergic and non-peptidergic neurons, which partly might explain why the 

sensitivity to a given stimulus differs between nociceptors (Vulchanova et al. 1998, Zwick 

2002). Species differences in receptor-expression and co-existence among various markers 

also is apparent (Zylka et al. 2003). 
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Figure 1. Nociception at the peripheral terminal. Tissue damage leads to activation of e.g. mast cells 

among others, which release pro-inflammatory mediators. The mediators activate the peripheral 

nociceptive terminal by depolarizing it through its receptors, generating an orthodromical action 

potential as well as the release of the pro-inflammatory substances substance P (SP) and calcitonin 

gene-related peptide (CGRP). Sensitization of the nociceptors also occurs as a result. IL-1β= 

interleukin 1β, 5-HT= serotonin, PGs= prostaglandins, NGF= nerve growth factor, TNF-α= tumor 

necrosis factor α, TRP= transient receptor potential channel, GPCRs= G protein-coupled receptors, 

NaV= voltage-gated ion (Na) channel, P2X= purinergic receptor, RTK= receptor tyrosine kinase.  

 

When a stimulus is sufficiently noxious and long enough to produce an action potential in a 

nociceptor, it starts a complex array of reactions first at the peripheral terminal and, 

depending on if the stimulus is sufficient enough, all the way through the pain pathway 

(see Figure 1). Nociceptor endings lie adjacent to other cells, like for example 

keratinocytes, Langerhans cells and mast cells in the skin (Lumpkin and Caterina 2007), 

with whom they can, and do, interact. As mentioned, nociceptors express different kinds of 

receptors. The special group of receptors that convert the energy from the noxious stimulus 

into an action potential, and consequently pain, are called transducers (McMahon et al. 

2013). The transducers are activated by different modalities and intensities of stimulus, and 

many to more than one form of stimulus, e.g. transient receptor potential vanilloid 1 

(TRPV1), a rather common receptor, is activated by noxious heat and chemical stimuli 

(Caterina and Schumacher 1997, Caterina et al. 2000).  After the membrane potential has 

risen above the action potential threshold with the help of transducers alongside voltage-

gated ion channels (Basbaum et al. 2009), the action potential is conducted towards the cell 

soma. At the same time, the action potential might also move anti-dromically (Ferrell and 
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Russell 1986), i.e. away from the soma, into other peripheral branches of the axon, getting 

them to release different peptides, like e.g. SP, CGRP, somatostatin (SST) and neurokinins 

A and K (NKA and NKK) causing a neurogenic inflammation peripherally (McMahon et 

al. 2013). Anti-dromic activity might also arise from the spinal cord (Sluka et al. 1993). 

 

In the resulting neurogenic inflammation, CGRP is the prime mover for vasodilatation (i.e. 

hyperaemia), whereas SP and NKA are the main mediators in the (first phase) plasma 

extravasation (i.e. oedema; in a later stage inflammatory mediators like bradykinin, 

serotonin (also referred to as 5-HT) and histamine uphold extravasation non-

neurogenically (Lischetzki et al. 2001), even though all of these peptides seem to have 

some role in both neurogenic vasodilatation and extravasation (Holzer 1992). Substance P 

also induces the accumulation of leukocytes to the inflamed tissue (Walsh et al. 1995). 

Substance P and CGRP then trigger the release of various inflammatory mediator 

substances from leukocytes (Holzer 1992) among other cells. Substance P additionally is 

able to degranulate mast cells, also releasing inflammatory mediators (Hagermark et al. 

1978). This inflammatory soup contains mediators like bradykinin, prostaglandins, 

thromboxanes, cytokines and interleukins, serotonin and histamine from e.g. mast cells, 

leukocytes, fibroblasts, keratinocytes and platelets (McMahon et al. 2013). What most of 

the constituents in the inflammatory soup have in common, is that they sensitize the 

nociceptors (see Hyperalgesia & sensitization) via different manners and receptors, either 

directly or indirectly. This can happen by for example lowering the nociceptor's threshold 

for stimuli, like e.g. prostaglandins (England et al. 1996). The mediators mostly act 

synergistically (histamine potentiates nociceptor response to bradykinin (Mizumura et al. 

1995), but may also antagonize one another (activation of histamine H3 receptors 

attenuates the release of inflammatory peptides and consequently reduces pain and 

inflammation (Cannon et al. 2007). 

 

In contrast to the receptors on the peripheral terminal of the nociceptive afferent that 

transduce and conduct the pain signal forward, there are also those who modulate the 

signal and work in an anti-nociceptive manner. They belong to the group G-protein-

coupled receptors or GPCRs and involve opioid, cannabinoid, SST, α2-adrenergic, 

muscarinic acetylcholine, γ-aminobutyric acid (GABAB) and metabotropic glutamate 

receptors (mGluRs) (McMahon et al. 2013). The GPCRs bind to and alter the function of 
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ion channels (Mark and Herlitze 2000, Pan et al. 2008), whose function is absolutely 

necessary for neurotransmitter release and signal conduction. The ligands binding to the 

GPCRs are released from the same cells as the pro-inflammatory mediators mentioned 

above, e.g. opioid peptides are released from leukocytes (Schafer et al. 1994). 

 

Nociception is the first stop when moving towards a painful experience. As we have seen, 

it is a rather complex event, with receptors and mediators working to forward the signal to 

the central nervous system (CNS) at the same time as others try to attenuate the signal and 

hinder it from continuing. 

1.3.2 Dorsal root ganglion & spinal cord 

The neuronal cell population in the dorsal horn consists of four different types of neurons; 

1) the central terminals of the primary afferent nociceptors, which arborize and terminate 

in different laminae; 2) interneurons, which send signals inside the spinal cord; 3) 

projection neurons, which have axons going rostrally through the spinal cord and into the 

brain; and 4) descending neurons projecting from various areas of the brain, very important 

in descending pain modulation (McMahon et al. 2013). The different kinds of cells 

interconnect, forming a very complex neuronal circuitry, e.g. most dorsal horn neurons 

probably synapse with primary afferents as well as excitatory and inhibitory interneurons 

(see below) (Todd 2010). The dorsal horn thus works as a two-way street in the pain 

pathway, relaying pain signals from the periphery to the brain, while modulating the 

descending pain response. Making it even more complex, non-neuronal cells, i.e. glial cells 

among others, aid in pain processing and modulation (McMahon et al. 2013). This 

intricately woven neuronal circuitry in the spinal/trigeminal dorsal horn is yet to be 

understood completely. 

 

The cell bodies of the nociceptive afferents are located in the dorsal root ganglion (DRG) 

for afferents innervating the body, and in the trigeminal ganglion for nociceptors 

innervating the face. Two main axon branches come out of the cell bodies, one projecting 

peripherally to innervate the target organ, and one central, which projects into the spinal 

cord or the trigeminal subnucleus caudalis to relay nociceptive signals further up the pain 

pathway (Basbaum et al. 2009). The afferents enter the spinal dorsal horn and synapse on 
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second-order neurons in one of 10 distinct laminae, i.e. areas, into which the dorsal horn is 

divided (Rexed 1952, Molander et al. 1984). The place of the central terminal of the 

primary afferent in the dorsal horn depends on the type of nociceptor in question (see 

Figure 2); myelinated A-fibre nociceptors seem to mainly terminate in laminae I, II and V 

(Light and Perl 1979, Woodbury and Koerber 2003), while C-fibre afferents mainly 

terminate in laminae I and II, with some terminals dispersed in deeper laminae (III-V) 

(Silverman and Kruger 1988b, Plenderleith et al. 1990, Averill et al. 1995, Woodbury et al. 

2000). Some neurons encode stimuli in the noxious as well as innocuous range and are 

consequently called wide dynamic range neurons (WDRs). These neurons terminate 

mainly in deeper laminae (Mendell 1966). The molecules released from neuronal and non-

neuronal cells into the spinal cord form a vast and still growing list- with many of the same 

mediators mentioned at the peripheral nociceptive terminal upon activation- and science 

has still to shine a light on the exact roles and interactions of all the mediators and 

transmitters involved in spinal nociceptive modulation. The effect of the released 

substances can be either anti-nociceptive or pro-nociceptive, or both (McMahon et al. 

2013). 

 

Figure 2. Afferent terminals in spinal cord and principal termination sites. Cell somas are located in 

the dorsal root ganglion (DRG) and the different neuron types terminate in different laminae (L I-V) of 

the spinal dorsal horn; peptidergic C-fibres terminate in lamina I and the outer part of lamina II (o/L 

II), while non-peptidergic C-fibres terminate mainly in the inner lamina II (i/L II). Thin Aδ-fibres 

mediating pain terminate in laminae o/L II and IV-V and thicker Aβ-fibres terminate mainly in deeper 

laminae (III-V). Stars represent cannabinoid receptors, circles represent transient receptor potential 

vanilloid 1 (TRPV1) and squares represent fatty acid amid hydrolase (FAAH), a catabolic enzyme for 
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cannabinoid receptor ligands. From (Starowicz and Przewlocka 2012).  

 

Interneurons are in majority concerning neural cells in the spinal dorsal horn (Koltzenburg 

2000, McMahon et al. 2013). There are two kinds of interneurons; excitatory and 

inhibitory. The inhibitory interneurons use GABA and/or glycine as their neurotransmitter 

(Todd and Sullivan 1990, Polgar et al. 2003), whereas excitatory interneurons use 

glutamate (Yasaka et al. 2010). Inhibitory interneurons have five major tasks to perform; 1) 

to attenuate the responses of nociceptors to noxious stimuli (Zieglgänsberger and Sutor 

1983, Saadé et al. 1985), 2) to silence the neurons in the absence of noxious stimuli (many 

nociceptive dorsal horn neurons are silent in the absence of noxious stimuli, and therefore 

need perpetual inhibition to keep them from firing spontaneously) (Cervero et al. 1976, 

Iggo et al. 1988, Ruscheweyh and Sandkuhler 2003, Schoffnegger et al. 2008), 3) 

inhibitory interneurons separate different sensory modalities by inhibiting excitatory 

interneurons that link together low-threshold Aβ-afferents and nociceptive-specific 

neurons. These excitatory interneurons are normally silent (due to inhibition), but 

attenuated inhibition could thus lead to pain from otherwise innocuous stimuli (McMahon 

et al. 2013). 4) Inhibitory interneurons hinder the spread of nociceptive input to other 

sensory modalities or parts of the body. The sensory afferents in the spinal dorsal horn are 

organized somatotopically and according to sensory modality (Wilson et al. 1986, 

Takahashi et al. 2007). Blocking of the GABAA and glycine receptors in the dorsal horn 

(i.e. blocking of inhibition) leads to a state, where the excitation of the afferent stimulation 

site can spread practically anywhere in the dorsal horn (Ruscheweyh and Sandkuhler 

2005). 5) Lastly, to prevent too high post-synaptic Ca2+-levels (which consequently lead to 

easier depolarization) in longer-lasting pain states, inhibitory interneurons hinder a post-

synaptic Ca2+-influx either by directly altering the activity of the Ca2+-permeable channel 

(post-synaptic inhibition) or pre-synaptically by reducing the release of neurotransmitters, 

which trigger the activity of the Ca2+-channel and thus leads to a Ca2+-influx (McMahon et 

al. 2013). 

 

Neurons in the spinal cord that connect directly to areas in the brain are called projection 

neurons. These are found primarily in lamina I of the dorsal horn, as well as scattered 

across the deeper laminae III-VI and the ventral horn (McMahon et al. 2013). The caudal 

ventrolateral medulla (CVLM), the nucleus of the solitary tract (NTS), the lateral 
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parabrachial area (LPB), the periaqueductal grey matter (PAG) and certain thalamic nuclei 

make up the principal target areas of the lamina I projection neurons in the brain (Gauriau 

and Bernard 2003). A substantial part of lamina I projection neurons project to more than 

one supraspinal area (e.g. LPB, PAG & thalamus), which could make for interneuronal 

differences in function, depending on which area(s) the neuron projects to (Al-Khater and 

Todd 2009). While most neurons project only contralaterally from their dorsal horn origin, 

some of them have bilateral projections (Spike et al. 2003). The majority of projection 

neurons in lamina I are activated by noxious stimuli, even though some are activated by 

innocuous cold (Willis et al. 1974, Han et al. 1998, Bester et al. 2000, Zhang and Giesler 

2005, Andrew 2009). In the dorsal horn, only neurons that respond to noxious stimuli 

express the neurokinin 1 receptor (NK1R), which is the primary target of SP (Salter and 

Henry 1991). Studies in the rat spinal cord show that about 80% of lamina I projection 

neurons express NK1R (Todd et al. 2000, Spike et al. 2003, Al-Khater et al. 2008). 

Excitatory interneurons have also been shown to express NK1R (Littlewood et al. 1995), 

but to a vastly lesser extent compared to projection neurons (Al Ghamdi et al. 2009). 

Targeted ablation of NK1R-expressing cells in lamina I inhibits development of 

hyperalgesia (see Hyperalgesia & sensitization) in neuropathic and inflammatory pain 

models (Mantyh and Rogers 1997, Nichols and Allen 1999), which makes these cells 

highly interesting in the process of chronification of pain. An overview of the cellular 

interaction in the spinal cord can be seen in Figure 3. 

 

Non-neuronal cells involved in pain processing and modulation in the spinal cord include 

glial (i.e. microglia, astrocytes and oligodendrocytes) and white blood cells (McMahon et 

al. 2013). Oligodendrocytes myelinate axons of neurons and have no known role in pain 

processing in current knowledge (Haydon 2001). Astrocytes make up for about 50% of the 

glial cell population in the CNS, while microglia make up for some 10-20% (Raivich et al. 

1999). Microglia, in their resting state, constitute part of the immune surveillance of the 

CNS with their macrophage-like function (Eglitis and Mezey 1997, Kurz 1998). Microglia 

express a wide range of receptors, including receptors for several neurotransmitters, e.g. 

glutamate and GABA, and activation of different kinds or combinations of receptors 

consequently lead to different biochemical responses (Noda et al. 2000, Hagino et al. 2004, 

Kuhn et al. 2004). 
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Figure 3. Neuronal and glial interaction in the spinal cord. The net stimulation/inhibition determines if 

an action potential is generated and sent to supraspinal sites from the post-synaptic nerve cell 

(projection neuron). P2x3/4 = purinergic receptors, CB = cannabinoid receptors, nACh R = nicotinic 

acetylcholine receptors, NK-1 = neurokinin 1 receptor, NE = norepinephrine/noradrenaline, mGluRs = 

metabotropic glutamate receptors, GABA = γ-aminobutyric acid, AMPA = α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor, NMDA = N-methyl-D-aspartate receptor, Ca-/K-/NaV 

channels = voltage-gated ion channels, 5-HT = serotonin, opioid Rs = opioid receptors. 

(http://projects.hsl.wisc.edu/GME/PainManagement/session2.2.html, 10.3.2016) 

  

 

Astrocytes lie tightly adjacent to neurons and microglia, and each astrocyte have contact 

with thousands of synapses (Bushong et al. 2002). Astrocytes release glutamate into the 

synapses (Montana et al. 2004, Nadkarni and Jung 2004, Zhang et al. 2004a) and are also 

primarily in charge of the reuptake of it (Hertz et al. 1978, Minelli et al. 2001), as neuronal 

glutamate reuptake is deficient. In this manner, astrocytes alter the synaptic activity, and 

deficits in either release or uptake of glutamate by the astrocytes could thus lead to altered 

pain states. Since neurons don't possess the enzyme pyruvate carboxylase, which is needed 

http://projects.hsl.wisc.edu/GME/PainManagement/session2.2.html
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for the synthesis of glutamate from glucose (Yu et al. 1983, Shank et al. 1985, Kaufman 

and Driscoll 1992, Gamberino et al. 1997, Waagepetersen et al. 2001), they depend on 

astrocytes for the production of the neurotransmitter (Halassa et al. 2007). Astrocytes, like 

microglia, possess a wide array of receptors on their membranes, e.g. GABA (Pastor et al. 

1995).  

 

Upon e.g. peripheral nerve injury or inflammation, astrocytes and microglia are activated 

through neurotransmitters among other mediators. This leads to an increase in cell count 

for mentioned cells as well as complex intracellular signalling pathways that ultimately 

lead to synthesis and release of pro-inflammatory mediators like IL-1β, IL-6, TNF-α, 

prostaglandins and nitric oxide (NO) (Zhuang et al. 2005). The released inflammatory 

mediators further alter the activity at the synapses that the glial cells connect to, as well as 

the expression of membrane receptors on glial cells. Glutamate reuptake from the synapses 

is also decreased as a consequence of activation, which has an excitatory effect on the 

affected synapses. As astrocytes stay activated even during prolonged states of nociceptive 

input, it seems probable that they could play a role in generating and maintaining chronic 

pain (Sung et al. 2003, Tawfik et al. 2006, Ru-Rong and Suter 2007). Microglia also exert 

anti-inflammatory effects while activated, by clearing dying and damaged cells and cellular 

debris by phagocytosis (De Simone et al. 2004) and synthesizing and releasing anti-

inflammatory mediators (Hacker et al. 2006), like interleukin 10 (IL-10) (Olson and Miller 

2004). 

 

White blood cells (WBCs) are normally scarce in the CNS, but following peripheral nerve 

injury, chemokines released from e.g. neurons or glial cells direct leukocytes to central 

terminals of the injured nerve (Fabry et al. 1995, Mark and Miller 1999). However, WBCs 

mainly seem to contribute to the hyperalgesia present in the state of neuropathic pain 

following nerve injury (Cao and DeLeo 2008, Costigan et al. 2009).  

 

Nociceptive processing and modulation in the spinal cord is also influenced by descending 

monoaminergic pathways originating in the brain (Reynolds 1969, McMahon et al. 2013). 

The axons projecting from supraspinal sources may contain and release mainly serotonin, 

noradrenaline or dopamine (Fuxe 1965, Commissiong et al. 1978, Bowker et al. 1981). 
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Descending axons can modulate pain transmission by stimulating the terminals of primary 

afferents, projection neurons, inhibitory or excitatory interneurons or other descending 

neurons in the spinal cord (Millan 2002). They can also exert their effect on non-neuronal 

components in the dorsal horn, like e.g. astrocytes (Jalonen et al. 1997) and modulate pain 

indirectly through them. Descending pain modulation can be inhibitory or excitatory in 

nature, depending on which receptors and receptor-subtypes the neurotransmitters bind to, 

since some receptors or their subtypes mediate descending inhibition, while others 

facilitate nociceptive transmission (Zemlan et al. 1983, Bobker and Williams 1989, Zhuo 

and Gebhart 1990, Zhuo and Gebhart 1991). The supraspinal sites from where the 

descending neurons project will be discussed in the next chapter. 

 

1.3.3 The brain and brainstem 

Pain-associated neurons projecting from the spinal cord to supraspinal targets are 

organized in bundles, thus creating different pathways. These include- as far as we know 

today- mainly the spinothalamic (STT) and the spinobulbar & -medullary pathways 

(McMahon et al. 2013). Other, less pronounced pathways have also been identified (e.g. 

spinohypothalamic and spinocervicothalamic pathways and the post-synaptic dorsal 

column system), but the specifics of these are yet to be defined. The neurons in some of the 

bundles are- and continue to be during ascension to and termination in supraspinal targets- 

topographically organized, while some are more disorganized in this manner (McMahon et 

al. 2013). While many cells projecting through these pathways originate in the superficial 

or deep dorsal horn, neurons from the ventral horn of the spinal cord also join in. The 

different pathways, consisting of neurons encoding noxious as well as innocuous stimuli 

and terminating either directly or indirectly in various parts of the brain or brainstem, thus 

are thought to be responsible for the multiple aspects of pain (e.g. sensory, emotional) 

(McMahon et al. 2013). There is also evidence of cross-activation between separate 

pathways (Djouhri et al. 1997). Species differences in the organization of the pathways and 

the termination of the neuronal cells in the brain have been shown to exist and even be 

quite extensive between some species (McMahon et al. 2013).  

 

The spinothalamic pathway, which- as the name suggests- ascends from the spinal cord to 

the thalamus (Th), is the one most extensively studied and most important spinal-
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supraspinal pathway considering pain and temperature sensation (Trevino et al. 1973, 

McMahon et al. 2013). The pathway originates in three regions within the spinal cord; the 

superficial dorsal horn lamina I, the deep dorsal horn laminae IV-V and the medial ventral 

horn laminae VII-VIII (Trevino et al. 1973). The different groups consist of cells with 

differing afferent input and consequently functional activity (Christensen and Perl 1970). 

The lamina I neurons constitute nearly 50% of the cell population of the STT, while the 

other groups make up about 25% each (McMahon et al. 2013). 

 

Figure 4. Ascending projections to brain areas indicated to be involved in nociception. Notice the 

contralateral ascent of projection neurons. PB= parabrachial nucleus, PAG= periaqueductal gray, HT= 

hypothalamus, Amyg= amygdala, BG= basal ganglia, ACC= anterior cingulate cortex, PCC= posterior 

cingulate cortex, PPC= posterior parietal cortex, M1 and SMA= primary and supplementary motor 

cortices, S1 and S2= primary and secondary somatosensory cortices, PFC= prefrontal cortex. From 

(Apkarian et al. 2005). 

 

The lamina I STT-neurons mainly include three different types of cells; 1) nociceptive-

specific neurons with input mainly from Aδ-fibers, 2) polymodal nociceptive neurons with 

input mainly from C-fibre afferents and 3) neurons activated by innocuous thermal stimuli 
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(Craig 2003). The vast majority of lamina I STT-neurons project to the contralateral 

thalamus, with only a fraction projecting ipsilaterally (Carstens and Trevino 1978, Willis et 

al. 1979). It's been concluded that the lamina I nociceptive-specific and polymodal 

nociceptive neurons are associated with first, fast-onset sharp pain and second, slower-

onset, burning pain, respectively (Andrew and Craig 2002, Craig and Andrew 2002). The 

STT group of laminae IV-V neurons receive their input mainly from Aβ-fibers from the 

skin, although many also have monosynaptic input from nociceptive Aδ-fibres as well as 

polysynaptic input from C-fibres, the latter ones originating in the skin as well as deeper 

tissues. While some neurons of the group are activated by low-threshold (innocuous) 

mechanical stimuli or high-threshold (noxious) mechanical or heat stimuli, most neurons 

respond to both, i.e. they are WDRs (McMahon et al. 2013). Lamina V neurons have been 

proven to be involved in motor reflex activity, like withdrawal reflexes in response to 

painful stimuli (Schouenborg et al. 1995). The neurons projecting from laminae VII-VIII 

are large cells which transmit noxious and innocuous stimuli from skin as well as deeper 

tissues (Meyers and Snow 1982). They possess large somatic receptive fields (Meyers and 

Snow 1982) and may be excited or inhibited by various somatic input (e.g. stimuli 

regarding proprioception or the viscera) (Giesler et al. 1981). The different cell groups 

terminate in different nuclei of the thalamus (discussed later) (Craig 2003). 

 

Spinobulbar projections ascend to the brain stem to regions regulating homeostasis and 

behavioural state and some also continue to higher brain centers (Craig 2003). Cells in the 

spinobulbar tract are distributed in the spinal cord in a fashion similar to that of STT-cells, 

i.e. they arise mainly from laminae I, V and VII (Wiberg et al. 1987). The response 

characteristics of the spinobulbar cells also are quite alike those of spinothalamic cells 

(Yezierski and Schwartz 1986, Ammons 1987, Wilson et al. 2002). The spinobulbar 

neurons have their termination sites predominantly in four major areas of the brain stem; 

the catecholamine cell group region, the parabrachial nucleus (PB), the periaqueductal gray 

(PAG) and the brain stem reticular formation (Wiberg et al. 1987, Craig 2003). Lamina I 

neurons ascend to the catecholamine cell groups, the PB and the PAG, but not to the 

reticular formation (Craig 2003), whereas laminae V and VII neurons primarily project to 

the reticular formation as well as the lateral reticular nucleus and the tectum with sparse 

projections to the PB, the PAG and the catecholamine cells (Yezierski 1988, Andrew et al. 

2003). Figure 4 shows some projections to and activation of brain areas known to be 
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activated by nociceptive stimuli. 

 

Figure 5. Overview of the nociceptive network including the inhibitory descending pathway. + stands 

for stimulation and – for inhibition. 1˚= first order neuron, 2˚= second order neuron, CNS = central 

nervous system, DRG = dorsal root ganglion, 5-HT = serotonin. 

(http://neuroanatomyblog.tumblr.com/image/27908577874, 10.3.2016) 

 

The catecholamine groups, which include the locus coeruleus, the ventrolateral medulla 

and the nucleus of the solitary tract among other nuclei, are an integral component of 

homeostatic and cardiorespiratory function (Sato and Schmidt 1973, Craig 2003). 

Activation of these groups by means of stressful situations, like e.g. pain, may result in 

activation of the hypothalamus (Craig 2003) and/or somato-autonomic spino-bulbo-spinal 

reflex arcs modulating homeostasis (Sato and Schmidt 1973) and descending modulation 

of nociception (inhibition or excitation) (Millan 2002). The PB cells serve as an integral 

component for nociceptive and general visceral afferent activity. They also conduct 

information indirectly to forebrain autonomic, neuroendocrine and emotional control areas 

(McMahon et al. 2013). The PB cells interconnect with reticular formation and 

catecholamine group cells, supposedly as part of maintenance of homeostasis (Chamberlin 

http://neuroanatomyblog.tumblr.com/image/27908577874


17 

 

and Saper 1992), and they project to several regions in the brain including the 

hypothalamus, amygdala and the thalamus, which relays the insular cortex (McMahon et 

al. 2013). The PAG is an essential mesencephalic part in controlling homeostasis and 

limbic motor output and it has both ascending and descending projections (Bandler et al. 

2000). Stimulation of the PAG may result in aversive behaviour, cardiovascular changes 

and opioid or non-opioid-mediated analgesia (Bandler et al. 2000). PAG plays a major role 

in descending analgesia by means of its projections to the nucleus raphe magnus (NRM) in 

the rostral ventromedial medulla (RVM), pons and medulla (Basbaum and Fields 1978, 

Millan 2002). Especially the descending connection from the PAG to RVM is essential, 

since major output from the PAG to the spinal cord goes via the RVM and lesions in or 

inactivation of the RVM results in attenuated analgesia after PAG stimulation (Fields et al. 

1991, McMahon et al. 2013). The RVM plays a major role in descending modulation 

(inhibition) of pain, not only because of the input from the PAG, but because of the cell 

populations that inhabit it (Fields and Heinricher 1985, Millan 2002). Three distinct groups 

of neurons can be characterized based on their reaction to noxious heat prior to the 

withdrawal reflex; ON-cells discharge just before the reflex; OFF-cells stop their discharge 

prior to the reflex; NEUTRAL-cells show no consistent change in firing at the withdrawal 

reflex (Fields and Heinricher 1985). Modulation of pain depends on the net firing; more 

ON-cells firing leads to facilitated nociception while OFF-cells firing in majority leads to 

attenuated nociception (McMahon et al. 2013). The parts of the PAG receiving spinal input 

have been shown to ascend further to the hypothalamus and thalamus (Mantyh 1983). The 

cells in the reticular formation play a role in the motivational-affective as well as 

autonomic responses to painful stimuli (Almeida et al. 2004). 

 

The thalamus is the main relay station for nociceptive stimuli reaching for cortical sites, 

and it is involved in reception, integration as well as transfer of the stimuli, and it is in this 

part of the pain pathway that the affective-motivational and sensory-discriminative 

components of the pain experience are integrated in the painful stimulus. The thalamus 

receives projections to its several nuclei from many sources (e.g. STT, PAG), and in turn 

have a vast network of projections to cortical (e.g. somatosensory cortices) as well as 

subcortical (e.g. HT, PAG, amygdala) regions of the brain. The wide array of 

interconnections of the thalamus puts it at the centre of the intricate pain processing system 

that is the brain (Almeida et al. 2004, Yen and Lu 2013). 
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Cortical structures most consistently activated in imaging studies of pain include the 

prefrontal cortex (PFC), the anterior cingular cortex (ACC), the insular cortex (IC) and the 

primary and secondary somatosensory cortices (S1 & S2). Encoding of the nociceptive 

stimulus in these areas leads to the complex pain experience. The input reaching these 

somatosensory (S1, S2 and IC), limbic (IC, ACC) and associative (PFC) regions of the 

brain stems from several nociceptive pathways as described before (Apkarian et al. 2005). 

Figure 5 shows an overview of the whole pain system from nociception to perception and 

modulation.  

1.4 Plasticity of the pain pathway 

The complex pain encoding network is a highly plastic one, constantly encoding noxious 

stimuli and reacting to it based on e.g. the length or the intensity of the stimuli. The body 

responds to noxious stimuli, e.g. wound injury, by modulating the incoming stimuli both 

locally and centrally. The modulation might be either pro- or anti-nociceptive, but more 

often is pro-nociceptive. 

 

1.4.1 Hyperalgesia, allodynia & central sensitization  

Following an injury/nociceptive response, the injured area and its surroundings become 

hyperalgesic (Lewis 1935). Hyperalgesia, as the name suggests, is defined by the IASP as 

”increased pain from a stimulus that normally provokes pain” (International Association 

for the Study of Pain 2012) (i.e. suprathreshold stimuli to high-threshold nociceptors). 

Hyperalgesia at the site of the injury is called primary hyperalgesia, as opposed to 

secondary hyperalgesia, which is hyperalgesia of the uninjured but injury-adjacent tissue 

(Lewis 1935). Primary hyperalgesia usually develops for heat and mechanical stimuli (Raja 

et al. 1984), but may vary depending on the specific tissue in question (Campbell and 

Meyer 1983). Primary hyperalgesia is, at least partly, driven by changes in peripheral 

nociceptors that have become sensitized (Meyer and Campbell 1981), leading to e.g. 

lowered thresholds, augmented responses to suprathreshold stimuli and expanded receptive 

fields (Thalhammer and LaMotte 1982, Raja et al. 1984, Reeh et al. 1987, Cooper et al. 

1993).  
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Secondary hyperalgesia, which develops in the area surrounding injury, is a phenomenon 

arising from the CNS (Treede et al. 1992). The area of secondary hyperalgesia becomes 

sensitized to mechanical stimuli, but not to heat stimuli. In fact, stimulus-responses to heat 

stimuli in the area might be attenuated, making it hypoalgesic to heat-stimuli (Raja et al. 

1984, Ali et al. 1996). Enhanced responsiveness, i.e. sensitization of nociceptors in the case 

of secondary hyperalgesia thus is due to sensitization of CNS-neurons relaying noxious 

stimuli, not peripheral nociceptors (Simone et al. 1991). Secondary hyperalgesia, or 

primary mechanical hyperalgesia for that matter, can further be divided into punctate and 

stroking hyperalgesia, which arise through different neural mechanisms, where punctate 

hyperalgesia is the result of sensitization of nociceptors in the CNS (LaMotte et al. 1991). 

Stroking hyperalgesia, also termed allodynia, is ”pain due to a stimulus that does not 

normally provoke pain” (International Association for the Study of Pain 2012) and an 

altogether different form of pain generation. Whereas punctate and heat hyperalgesia stem 

from the sensitization of nociceptors, allodynia originates in low-threshold 

mechanoreceptors that normally responds to innocuous touch-stimuli. These low-threshold 

Aβ-fibres are integrated into the pain network because of central sensitization, thus 

enabling a normal touch sensation to become painful (Koltzenburg et al. 1992, Torebjork et 

al. 1992, Seal et al. 2009). 

Central sensitization is a complex and important phenomenon especially in chronic pain 

disorders, e.g. in neuropathic pain states (Woolf 2011). Central sensitization is defined as 

”increased responsiveness of nociceptive neurons in the central nervous system to their 

normal or subthreshold afferent input” (International Association for the Study of Pain 

2012). In order for central sensitization to arise in the CNS, sensory input to peripheral 

terminals, i.e. activation of the pain pathway, is required (LaMotte et al. 1991, Torebjork et 

al. 1992). Input to the pain network, e.g. injury to the skin, strengthens the synaptic activity 

in the spinal cord nociceptive neurons and this lasts for at least several minutes after the 

end of the noxious stimulus (Woolf 1983, Woolf 1991, Treede et al. 1992). The augmented 

synaptic transmission occurs in the very neurons that are activated in the dorsal horn 

(homosynaptic potentiation or wind-up) (Mendell 1966, Woolf and Swett 1984, Dickenson 

and Sullivan 1987) as well as in non-activated nociceptive and non-nociceptive neurons 

(heterosynaptic potentiation) in both the ventral and the dorsal horn of the spinal cord 

(Thompson et al. 1993). The increase in synaptic activity may be due to higher membrane 

excitability or an increased release of neurotransmitter pre-synaptically and/or an increased 
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response to the neurotransmitter post-synaptically (Woolf and King 1990, Woolf and 

Thompson 1991, Thompson et al. 1993, Wang et al. 2005, Li and Baccei 2009, Tao 2010) 

as well as a reduced level of inhibition in the spinal cord (Sivilotti and Woolf 1994, Moore 

et al. 2002, Baba et al. 2003, Miraucourt et al. 2009). A major component for the induction 

and persistence of central sensitization is the activation of NMDA-receptors (Woolf and 

Thompson 1991). Antagonism of the NMDA-receptors in turn diminishes the centrally 

sensitized state (Woolf and Thompson 1991). 

As most synaptic input normally is subthreshold (Woolf and King 1987, Woolf and King 

1989) and thus doesn't evoke an action potential, with the changes described above the 

input now might elicit a response in form of an action potential and subsequent activation 

of nociceptive pathways that otherwise wouldn't be activated from that particular stimulus, 

leading to changes in both the pain network and the sensation of pain (Woolf et al. 1994). 

As we can see, central sensitization is not merely a threshold-lowering process, but a 

modality-changing (touch to pain) entity which alters the basic function of pain, which also 

can be seen as changes in activity in the cortical areas involved in the brain (Maihofner et 

al. 2006). The phenomenon of central sensitization is normally transient in nature, i.e. 

subsequent activation of spinal cord nociceptors is required for it to persist, or the 

responsiveness of the nociceptors normalizes (Cook et al. 1987). However, in some 

pathological pain states, e.g. dysfunctional pain in fibromyalgia, the state of central 

sensitization is persistent even without sensory input to the pain pathway, making the 

individual chronically painful (Wolfe et al. 1990, Gibson et al. 1994, Lorenz et al. 1996). 

 

2 ACUPUNCTURE 

 

Acupuncture is a series of techniques used to treat illnesses and usually involves the use of 

needles (Ulett et al. 1998). Acupuncture is best known as part of traditional Chinese 

medicine (TCM) practices, even though there is early evidence of people using 

acupuncture-related techniques to treat disease also outside Asia, e.g. Brazil, Africa, the 

Eskimos (Gori and Firenzuoli 2007). Acupuncture is thought to have been used and 

developed in China for some 3000 years (Schoen 2001). The first depiction of acupuncture 

in Western medicinal literature stems from circa 1680 by the Dutch physician Ten Rhijne 
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(Baldry and Thompson 2005). The interest for Eastern medicine and acupuncture grew 

quite rapidly among European and American physicians during the first half of the 19th 

century, only to be left dormant for about a century. The latter half of the 20th century 

witnessed the ”comeback” of TCM and especially acupuncture in Western medicine. Since 

then, particularly during the last couple of decades, extensive, evidence-based research into 

the neurophysiology and use of acupuncture has been carried out by means of Western 

research standards and the popularity of acupuncture on the Western hemisphere keeps on 

growing (Schoen 2001, White and Ernst 2004). The World Health Organization (WHO) 

has accepted acupuncture as an effective treatment method for some pain conditions (e.g. 

low back pain) based on clinical trials (World Health Organization WHO 2002). In the next 

chapter I will present some basic principles of acupuncture including some comparisons 

between TCM and Western medicine (WM) and more importantly, the neurophysiologic 

mechanisms behind the efficacy. According to TCM nearly any disease can be treated with 

acupuncture, but as most of the research to date is focused on the analgesic effect of 

acupuncture, I too will concentrate on the process resulting in attenuated pain sensation. 

 

2.1 Basic principles of acupuncture 

Acupuncture treatment is based on the stimulation of acupuncture points or acupoints. 

According to TCM, most acupuncture points reside along 14 main meridians. 12 of these 

meridians are thought to regulate, communicate with and reflect the status of visceral 

organs. The meridians are organ-specific, e.g. Kidney, Spleen and Lung and these are 

bilateral. The remaining two major meridians are located along the dorsal and ventral 

midline respectively (Schoen 2001). Though some organs and their meridians share the 

same name, e.g. liver, one cannot equalize the liver in WM to that of TCM. Whereas an 

organ in WM is based on its anatomy, structure and function, organs in TCM are defined 

only by their function with only some, if any, relations to anatomy. This makes the TCM 

organ systems difficult to extrapolate to WM and therefore also TCM-treatments hard to 

understand in a WM perspective (Kaptchuk 2000). 

In TCM philosophy, there are two opposing and complementary forces, Yin and Yang, 

coexisting in nature. These forces act together to regulate the flow of the ”vital force”, also 

known as Qi. When an individual is healthy, Yin and Yang are in balance compared to each 

other, and the flow of Qi is smooth and regular (Kaptchuk 2000). On the other hand, 



22 

 

imbalance of Yin and Yang lead to disturbances or obstruction in the Qi-flow and 

consequently illness or disease. Qi is thought to flow through the meridians from the 

internal organs to the skin. Stimulation of acupoints (see below) along the meridians with 

faulty Qi-flow is supposed to restore balance between Yin and Yang and normalize Qi-flow 

thus returning the body to good health (Kaptchuk 2000, Wang et al. 2008). 

 

2.2 Acupoints 

According to TCM-teachings, specific points residing along the meridians reflect the 

condition of the visceral organs. These points are generally called acupuncture points or 

acupoints (Kaptchuk 2000). Some research has been done into the specificity of acupoints 

in regards to function, structure and characteristics, but the findings as of yet have been 

inconclusive. No evidence has been found that all acupoints would show any (uniform) 

specific features that differ from other tissues, although one should keep in mind that the 

research done on this subject still is quite limited and the existence of specific acupoints, 

according to WM, still a matter of controversy (Ramey 2001, Ernst 2006, Zhao et al. 2012, 

Li et al. 2015). 

The anatomical studies on acupuncture points have gathered some evidence that acupoints 

would contain higher densities of nerve endings and neural and vascular structures (Hwang 

1992, Li et al. 2004, Zhu et al. 2004, Wick et al. 2007, Zhang et al. 2011a). Mast cells have 

also been proposed to occur at higher concentrations at acupoints when comparing to other 

tissue/non-acupoints and it seems acupoint stimulation instigates the degranulation of these 

mast cells, leading to subsequent activation of other cells (Hwang 1992, Zhang et al. 2008). 

Connective tissue has been proposed and discussed as a structural and functional 

component in acupoints, and indeed, one study showed an 80% correlation between the 

location of intermuscular or intramuscular connective tissue and the sites of acupoints 

(Langevin and Yandow 2002). Some evidence of correlation between myofascial trigger 

points (MTrPs) and acupoints has also been found; between 71% and 99.5% of acupoints 

corresponded to MTrPs through clinical indication of pain (Melzack et al. 1977, Dorsher 

2008) and MTrPs also have been proposed as a mechanism for musculoskeletal pain 

(Melzack et al. 1977, Ge et al. 2008).  

The electrical characteristics of acupoints have been a subject of interest during recent 

years. While some studies have found significantly low impedance in the skin at acupoints 
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compared to the skin at non-acupoints in healthy test subjects (Zhang et al. 2004b, 

Silberstein 2009), others found no correlation between acupoints and skin resistance 

(Pearson et al. 2007, Wei et al. 2012). One study found that acupoints have an either lower 

or higher impedance than do non-acupoints (Kramer et al. 2009), which would concur with 

the notion of Qi deficient or Qi excessive acupoints. Another concluded that the impedance 

in the skin at acupoints along the Lung-meridian in asthmatics was significantly higher 

than that of healthy controls (Ngai et al. 2011). A review on the topic found that in 5 out of 

9 studies, a significant correlation between low skin impedance and acupoints was 

reported, while the remaining 4 studies could not find a definitive correlation (Ahn et al. 

2008). However, the review pointed out that the research-quality of the studies carried out 

on the matter was quite low, even for the studies included in the review. Therefore, a 

conclusive correlation between skin electrical characteristics and acupoints remains to be 

found, even though research points towards a correlation. While a definitive conclusion on 

the matter awaits, measuring skin impedance is used as a way to locate acupoints and even 

diagnose disorders (Falk et al. 2000, Ngai et al. 2011, Turner et al. 2013). 

Another intriguing acupuncture-related phenomenon is acupoint sensitization as a 

reflection of visceral disorders (Li et al. 2013). Studies have found either elevated 

temperatures or pain-sensitization at acupuncture points following visceral disease (Kwon 

et al. 2007, Li et al. 2013). This phenomenon might be explained by ways of WM in 

referred pain. Referred pain from visceral organs often lead to hyperalgesia in skin and 

muscle as well as segmental muscle contracture (Giamberardino and Vecchiet 1995, 

Morrison et al. 1995, Verne et al. 2003). The theory is, that continuous stimulation of 

visceral nociceptive afferents in states of disease lead to a sensitization of neurons in the 

dorsal spinal horn and even supraspinal nuclei, creating hypersensitized sites. Some 

peripheral (skin/muscle) and visceral afferents converge in the dorsal horn and thus end in 

the same segment and area of the dorsal horn. These convergent peripheral afferents have 

been shown to become sensitized following sensitization of visceral afferents. This in turn 

causes e.g. dermal hyperalgesia and could thusly be an explanation of acupoint 

sensitization (Garrison et al. 1992, Giamberardino et al. 1996, Roza et al. 1998, Li et al. 

2013). Even though it has been shown that analgesia generated by acupuncture is most 

efficient when stimulating nerves ending in the same spinal segment as the nerves 

generating pain, many acupoints distant to the site of pain are effective in alleviating it (Wu 

et al. 1974, Bing et al. 1990, Zhu et al. 2004).  
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Whereas no compelling evidence for a specific anatomic or biochemical structure for 

acupoints has been found, it may be that the acupoints differ from other tissues simply by 

means of functionality; the response intensity of acupoints is differerent from that of other 

tissues, ergo the distinction between acupoints and other points could be in the degree of 

response (Cheng 2009). 

 

2.3 The acupuncture pathway 

2.3.1 Peripheral tissues 

What actually happens following the needle insertion through the skin and into an 

acupoint? Early research showed an increase in the pain threshold following acupuncture 

(Chiang et al. 1973).  This effect, however, was not seen after application of a local 

anaesthetic to the deeper muscular layer of the acupoint, whereas blockade of the 

superficial cutaneous nerves did not block the effect (Chiang et al. 1973). These early 

results concluded that an intact neural pathway must be present for acupuncture to be able 

to exert its analgesic effects (Chiang et al. 1973). Subsequent research has affirmed this 

and specified that intact nociceptive pathways are the essential part for acupuncture to 

induce analgesia (Pan et al. 1997).  

Following insertion and manipulation (twisting and twirling up and down) of the needle 

into an acupoint a feeling of soreness, numbness, heaviness or distension might occur 

(Zhao 2008). This feeling, called De-Qi according to TCM, is suggested to be essential for 

the efficacy of acupuncture analgesia (Wang et al. 1985, Haker and Lundeberg 1990, Hui 

et al. 2005). The origin of the sensation has been proposed to be impulses from muscles 

following acupuncture stimulation, especially since a study found the sensation to be 

abolished after a local anaesthetic was injected into the deeper tissues of the acupoint 

(Shen et al. 1973). Other deeper tissues have not been ruled out, but the activity of 

polymodal-type receptors in deep tissues have in fact been proposed to play a key role in 

the sensation (Kawakita et al. 2002). More recently, connective tissue has been suggested 

as playing a role in the De-Qi-feeling by signalling to the CNS (Langevin et al. 2001, 

Langevin and Yandow 2002), as have mast cells, seeing as the densities of mast cells are 

clearly larger at acupoints comparing to non-acupoints and the analgesic effect is markedly 

attenuated by the inhibition of mast cell degranulation prior to needle insertion (Zhang et 
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al. 2008). 

The needle penetrating the skin and deeper tissues at the acupoint asserts mild mechanical 

stimulation activating A-type fibres (Aβ- and Aδ-fibres), with local injuries in deeper 

tissues leading to the release of different inflammatory mediators such as histamine, 

adenosine triphosphate (ATP), 5-HT and bradykinin, activating nearby nociceptors either 

directly or indirectly (Zhao 2008, McMahon et al. 2013). Activation/degranulation of mast 

cells by mechanical stimulation releases adenosine among other compounds (Yao et al. 

2014). Although adenosine has been known for a long time, it is only quite recently that its 

role as a signalling molecule was elucidated and accepted (Bodin and Burnstock 2001). 

Adenosine directly activates sensory nerves through purinergic receptors (Yao et al. 2014). 

The peripheral opioid system acts to attenuate inflammatory pain (Stein 1991, Stein et al. 

2003) and studies show that peripheral release of opioids are involved in the generation of 

EA analgesia (Sekido et al. 2003, Zhang et al. 2005). 

It seems that C-fibre activation is involved in and even essential for analgesia by traditional 

manual acupuncture (MA), while analgesia induced by electroacupuncture (EA), i.e. 

stimulating currents lead through needles in acupoints, seems to be based upon the 

activation of Aβ- and Aδ-fibres mainly (Zhao 2008). Concurrent use of both MA and EA 

provides more potent analgesia than single use of one or the other (Kim et al. 2000). 

 

2.3.2 Spinal cord 

The impulses generated by the acupuncture needle (or EA) move towards the spinal cord, 

where nerves from the same level of the body end in the same spinal cord segment (see 

also 2.2 Acupoints) (Zhao 2008). The impulses into the spinal cord triggers the release of 

different neurotransmitters much like an nociceptive impulse would, leading to activation 

of a variety of spinal cord neurons (Wang et al. 2008) and subsequent transmitting of the 

signal to higher centres in the CNS, mainly through the ventrolateral funiculus (VLF) in 

the spinal cord. The VLF also happens to be the spinal pathway for noxious and 

temperature sensation, again proving the convergent acupuncture and pain signalling 

pathways (Chiang et al. 1975, Zhao 2008). While descending inhibition acting in the spinal 

cord is a major part of acupuncture analgesia, this chapter will focus on the ascending 

acupuncture signals and descending inhibition will be discussed in the next chapter. 
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Opioid receptors (µ-, δ- and κ-receptors) are widely distributed at peripheral afferent 

terminals and in pain-related areas of the CNS and are closely involved in anti-nociception 

(McMahon et al. 2013). An early study in 1973 investigated the analgesic effect of 

acupuncture by treating rabbits with acupuncture, and then infusing cerebrospinal fluid 

(CSF) from them into the lateral ventricle of rabbits that had not received acupuncture 

treatment. The pain thresholds of the recipient rabbits were increased whereas no increase 

in thresholds were seen in the controls who had received either saline or CSF from non-

acupuncture rabbits (Research Group of Acupuncture Analgesia 1974). Following studies 

found that acupuncture analgesia could be abolished by the opioid-antagonist naloxone and 

soon researchers also recognized an increase in endogenous opioid-levels in the CSF 

following acupuncture treatment (Pomeranz and Chiu 1976, Mayer et al. 1977, Sjölund et 

al. 1977). We now know that the endogenous opioid release constitutes of enkephalins, 

dynorphin, endomorphin and β-endorphin, and the stimulation frequency in 

electroacupuncture (EA) affects the proportion in which the opioids are released, e.g. low-

frequency stimulation (2 Hz) leads to higher proportions of enkephalin, endomorphin and 

β-endorphin, whereas high stimulation frequency (100 Hz) results in high levels of 

dynorphin (Fei et al. 1987, He and Han 1990, Han et al. 1999). Endogenous opioid release 

is perhaps the most widely known and accepted mechanism of acupuncture analgesia 

(Peets and Pomeranz 1978, Clement-Jones et al. 1980, Lee and Beitz 1993, Han 2003, Fry 

et al. 2014). Repeated treatment has been shown to cause tolerance to EA analgesia, and is 

thought to be mediated by down-regulation of opioid receptors as well as anti-opioid 

substances (Han et al. 1979b, Han et al. 1981). Thus, opioid-mediated analgesia is an 

essential part of acupuncture (and EA) analgesia, especially in the CNS (Zhao 2008).  

Afferent nociceptive terminals contain large amounts of excitatory amino acids like 

glutamate and the superficial dorsal horn of the spinal cord is densely populated with their 

receptors, such as the NMDA-receptor (Liu et al. 1994, Li et al. 1997). As we know, these 

receptors (especially NMDA) play a major role in both physiological pain processing and 

transmission as well as in pathological states such as central sensitization in chronic pain 

(see chapters 1.3.2 and 1.4.1). Studies have shown that the expression of NMDA-receptors 

in the spinal dorsal horn was attenuated by EA in inflammatory (Choi et al. 2005a, Choi et 

al. 2005b) and neuropathic pain models (Sun et al. 2004). In another neuropathic pain 

model, EA attenuated mechanical allodynia when given on its own. However, when EA 

was given together with a NMDA receptor antagonist, the anti-allodynic effect was clearly 
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enhanced (Huang et al. 2004). An inflammatory pain model found similar results; while 

NMDA (or AMPA) receptor antagonists given intrathecally had no effect on thermal 

hyperalgesia following inflammation when administered alone, they significantly 

potentiated the effect of EA to the hyperalgesia (Zhang et al. 2002b, Zhang et al. 2003). 

Interestingly, the same effect has not been found in studies on normal rats, where the 

administration of NMDA receptor antagonists prior to EA has impaired EA analgesia, 

suggesting different mechanisms in altering NMDA receptor mediated signalling in the 

spinal cord in normal and painful animals (Choi et al. 2005b, Kim et al. 2012). 

We know that spinal glial cells interact with neurons as a part of spinal pain processing and 

as it seems, glial cells in the spinal cord (mainly astrocytes and microglia) have a part to 

play in generating and maintaining a state of chronic pain (Milligan and Watkins 2009). An 

animal model for inflammatory pain showed that a glial metabolic inhibitor administered 

intrathecally by itself did not alter the thermal hyperalgesia or mechanical allodynia, 

whereas electroacupuncture alone reduced the levels of the aforementioned. Concomitant 

administration of EA and the glial metabolic inhibitor, however, had a significantly 

elevating effect on EA analgesia (Sun et al. 2006). A similar study done with minocycline, 

a microglial inhibitor, found that both EA and minocycline alone reduced nociceptive 

hypersensitivity and microglial activation significantly, and the EA analgesic effects were 

markedly potentiated when given simultaneously with minocycline (Shan et al. 2007). A 

recent study in a neuropathic pain model by spinal injury found that acupuncture greatly 

alleviated pain levels and effectively inhibited microglial activation in the spinal cord 

(Choi et al. 2012). 

 

2.3.3 Effects in brain and brain stem 

Multiple brain areas have been proposed to play a role in acupuncture signalling and 

analgesia, such as the RVM (mainly NRM), PAG, locus coeruleus (LC), arcuate nucleus 

(Arc), preoptic area (Po), centromedian nucleus (CM), nucleus submedius (Sm), habenular 

nucleus (Hab), nucleus accumbens (Ac), caudate nucleus (Cd), amygdala, ACC, and 

hypothalamic paraventricular nucleus (PVH) (Bing et al. 1991, Takeshige et al. 1991, Yang 

et al. 1992, Takeshige et al. 1993, Guo et al. 1996, Hui et al. 2005, Yan et al. 2005). The 

hypothalamic – pituitary – axis (HPA) also is activated following acupuncture, possibly 

playing a role in acupuncture analgesia (Pan et al. 1994, Pan et al. 1996). While the exact 
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interactions between the areas in this intricate network are not fully understood yet, studies 

have made some conclusions regarding the most important activated areas, e.g. 

hypothalamic activation including the Arc as part of activation of the descending inhibition 

system (Yu and Han 1989, Wu et al. 1999). Furthermore, it seems that brain activation 

patterns following acupuncture differ between chronically painful and healthy subjects 

(Napadow et al. 2007). At the moment it has been proposed that acupuncture activates 

mainly somatosensory areas in the brain while deactivating the limbic system (Hui et al. 

2010). Figure 6 shows a schematic of brain areas commonly activated by acupuncture 

stimulation. 

Many of the brain regions processing acupuncture signals express opioid peptides, like for 

example the Cd, Ac, Arc, PAG and NRM, where inactivation of opioid receptors lead to 

decreased analgesic effect following acupuncture (He 1987, Zhao 2008). Early work 

concluded that the PAG contain opioid receptors and plays a major role in producing 

analgesia and we now know it is an important part of the descending inhibitory system 

from the brain to the spinal cord (Tsou and Jang 1964, Reynolds 1969, McMahon et al. 

2013). Further studies revealed that EA analgesia was attenuated or potentiated, 

respectively, when opioid receptor antagonists or compounds preventing the degradation of 

opioid peptides were injected into the PAG, linking EA analgesia to the PAG in part (Xie et 

al. 1983, Han et al. 1984, Kishioka et al. 1994). The PAG and the NRM in the RVM are 

known to be interconnected so that stimulation of the PAG leads to increased firing of the 

NRM neurons, leading to analgesia (Zhao 2008). A study in rats showed that EA leads to 

activation of NRM neurons, producing analgesia, but following micro-injection of an 

opioid receptor antagonist into the PAG, this analgesia was attenuated (Liu 1996). The 

arcuate nucleus also seems to be involved in this axis, as activation of NRM neurons by 

EA was further potentiated by Arc stimulation and this could be reversed using naloxone, 

an opioid antagonist (Yin et al. 1988). Additional studies showed that lesions to or 

inactivation of opioid receptors in the Arc abolishes EA analgesia (Wang et al. 1990). 

Conclusively, opioid-mediated stimulation at the level of the brain and brainstem plays a 

pivotal role in activating mechanisms of acupuncture analgesia, like e.g. descending 

inhibition through the hypothalamus (Arc) – PAG – NRM - axis. 
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Figure 6. Schematic of the multiple afferent pathways facilitating the acupuncture signal from 

different peripheral sites to the brain. Grey shadows in brain are areas commonly seen activated 

following acupuncture stimulation in neuroimaging studies. DCEAS = dense cranial 

electroacupuncture stimulation. From (Zhang et al. 2012). 

 

Acupuncture also exerts its analgesic effects through activation of the monoaminergic 

descending pain pathway (Murotani et al. 2010, Silva et al. 2011). The primary 

neuromodulators of this pathway, serotonin and noradrenaline, show an increase in 

concentration following acupuncture stimulation, as does the activation of serotonergic 
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receptors (Sprott et al. 1998, Yoshimoto et al. 2006, Zhang et al. 2011b). Serotonin has 

been shown to have analgesic properties in this descending system (Sprott et al. 1998), and 

noradrenaline has been proposed as an inhibitor of inflammatory pain (Zhang et al. 2012). 

Induction of this pathway produces analgesia, which can be dramatically reduced by 

serotonin receptor antagonists, proposing a major role for this pathway in acupuncture-

induced analgesia (Sprott et al. 1998, Chang et al. 2004, Fry et al. 2014). 

The descending inhibitory system consists of multiple nuclei and areas in the brain, such as 

NRM, PAG, LC and Arc, and it has been concluded that this system indeed plays a pivotal 

role in the generation of acupuncture analgesia (Zhao 2008). Studies have shown that 

injuries to the dorsal lateral funiculus of the spinal cord- where the inhibitory system 

descends- decreases or abolishes acupuncture analgesia (Hu et al. 1980, Li et al. 2007). As 

we know, EA activates the NRM (Liu et al. 1986, Liu 1996), but a lesion to the NRM or 

the dorsal lateral funiculus (DLF) decreases the effect from acupuncture significantly, even 

though in the DLF-lesion NRM neurons still are activated, suggesting a role for NRM in 

activating the descending inhibition system (Du and Chao 1976, Liu et al. 1986). Serotonin 

and its receptors are abundant in the NRM and EA is known to increase concentrations of 

serotonin and its metabolic products, especially in the NRM and in the spinal cord (Han et 

al. 1979a, Chang et al. 2004). Selective ablation of serotonin in the brain reduced EA 

analgesia markedly, whereas the use of a serotonin receptor antagonists almost fully 

eliminated the EA induced analgesia, hinting towards how important this system is for 

acupuncture analgesia (Han et al. 1979a, Chang et al. 2004). 

 

2.3.4 Miscellaneous 

Several other transmitters and bioactive compounds than those mentioned above have also 

been the target of extensive research. One that has gathered much interest is the 

cholecystokinin octapeptide (CCK-8), which is extensively distributed in different parts of 

the CNS and exerts anti-opioidergic activity through activation of the CCK-receptor, hence 

belonging to the pro-nociceptive phalanx of the pain processing system (Itoh et al. 1982, 

Watkins et al. 1985, Han 1995). An early study regarding acupuncture analgesia concluded 

that so-called non-responder rats, i.e. rats that only had minor analgesic effect as a result 

after EA, had a prominent rise in spinal CCK-release whereas responder rats, which had 

good analgesic effect following EA only had a slight increase in the spinal release of CCK 
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(Zhou et al. 1993). Later research in rats intriguingly showed that intracerebroventricular 

(i.c.v) administration of antisense oligonucleotides to CCK mRNA decreased both CCK 

mRNA and CCK-8 concentrations in the brain thereby turning non-responders into 

responders and potentiating the analgesic effect for EA analgesia and morphine, an opioid 

receptor agonist (Tang et al. 1997). Subsequent research on the topic has found that in non-

responder rats, CCK receptor mRNA increases following high-frequency EA and that 

intrathecal injection of CCK-8 and CCK receptor antagonists reduces and potentiates EA 

analgesia, respectively (Ko et al. 2006, Huang et al. 2007). Due to the findings above it has 

been proposed that CCK release and CCK receptor density in the brain would, at least 

partly, count for individual differences in acupuncture analgesia.   

In conclusion, the main networks propagating acupuncture analgesia is the opioid-

mediated system and the descending inhibitory system mediated mainly by serotonin and 

noradrenaline acting towards anti-nociception in the CNS, while CCK exerts its pro-

nociceptive effects on the opioid-mediated system in the CNS. Deactivation of the limbic 

system decreases the emotional input to the sensation of pain.  

3 MATERIALS AND METHODS 

 

3.1 Material 

The material for the present, retrospective study was collected ad hoc during the years 

2007-2014 at the Acupuncture Clinic of the Veterinary Teaching Hospital of University of 

Helsinki (I myself was not involved in the gathering of data, I simply explored and 

analysed it). The owners of the animals brought to the clinic, who agreed to participate, 

filled out questionnaires in Finnish before the first visit (Appendix I), to get a sense of how 

the animal was doing before starting treatment, and subsequently prior to some of their 

follow-up visits (Appendix II). The questionnaire included questions related to mobility 

and quality of life as well as use of pain medications, supplements, other treatments etc. 

Animals with a wide variety of disease were brought to the clinic, but included in this 

study were only dogs suffering from chronic musculoskeletal disease and/or chronic pain 

affecting the locomotor apparatus. When exploring the data from the questionnaires, 

inconsistencies in the way the owners had filled out the questionnaires as well as missing 

data for some dogs were discovered. While some animals had actual diagnoses (e.g. 
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osteoarthritis, disc-related disease, spondylosis) as reported by the owner, others were 

simply reported by the owner as suffering from e.g. ”chronic pain” or ”stiffness and 

limping” for a longer period of time. Inconsistencies in the completion of questionnaires 

and subsequent missing data constitute a severe limitation of the possibilities for exploring 

data. Therefore, we decided to focus this study on exploring a possible reduction in chronic 

pain as measured by the Helsinki Chronic Pain Index (HCPI) (Hielm-Björkman et al. 

2009) and visual analogue scales (VAS) measuring mobility and quality of life for those 

cases possessing the sufficient data. Additionally, we took the last follow-up visits for each 

patient and explored those as well, so that the owner would have had as much time as 

possible to notice a possible effect of acupuncture treatment. From the 279 answers 

collected, only 118 could ultimately be used in this study. 23 answers were discarded due 

to the patient only having a 1st visit answer, 16 were discarded due to wrong diagnosis, 27 

answers were taken out because of wrong or incomplete filling of the questionnaire and 3 

were discarded because it was the wrong species (cat) and the remaining 92 answers we 

discarded were due to the patient’s owner answering multiple follow-up questionnaires, the 

use of which would have led to skewed results.  

The HCPI (Appendix I on pages 1, 2 and 3, Appendix II on pages 2, 3 and 4, questions 1, 

3, 4, 5, 7, 10, 11, 14, 15, 17 and 19, in Finnish) is a validated index to measure response to 

treatment, i.e. reduction or increase in pain levels in dogs suffering from chronic pain due 

to osteoarthritis (Hielm-Björkman et al. 2009). Even though all of the dogs in this study 

did not suffer from osteoarthritis, it was still used as a measurement for chronic pain. The 

HCPI consists of 11 questions, where the owner is to assess the status of the dog’s “mood”, 

“playfulness”, “walking”, “trotting”, “galloping”, “getting up”, “lying down”, “jumping”, 

“mobility after exercise”, “mobility after exercise + rest” and “vocalizing (pain)”. The 

owner is to check only 1 alternative out of 5 alternatives/question. The alternatives are one 

very positive, one positive, one quite neutral, one negative and one very negative and are 

scored 0-4; 0 for the most positive alternative and 4 for the most negative, giving the sum 

of the answers an index that ranges between 0-44, where dogs with scoring under 6 are 

considered pain-free and dogs with scoring above 12 are considered to suffer from chronic 

pain. Dogs with scores 6-11, however, make up for a grey zone and might or might not be 

painful (Hielm-Björkman et al. 2009). The VASs (Appendix I, page 3 and Appendix II, 

page 4) were measured for mobility (actual wording in Finnish: difficulties in mobility) 

and quality of life on a 100 mm (=10cm) line, such that the owner would mark an X on the 
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point of the line describing the dog’s status in relation to the best/worst status possible. The 

distance from the left end of the line to the X was measured with a ruler in each case and 

the answer coded in millimetres such that 0 mm represented the best scenario while 100 

mm represented the worst.  

On page 5 of the follow-up questionnaire (Appendix II, ”Vertaileva kysely”; freely 

translated as comparative enquiry), the owners were invited to answer a set of questions 

involving mobility, pain, quality of life and skin/fur condition. The owners were asked to 

compare the present state to that before starting acupuncture treatment, and to assess if the 

dog's condition in respect to the question was ”much better”, ”slightly better”, 

”unchanged”, ”slightly worse” or ”much worse”. Only one alternative per question could 

be checked. Due to focus on locomotor and pain problems, the answers about skin/fur 

condition were left out of this study.  

3.2 Statistical analysis 

Statistical analysis for this study was carried out using SPSS (IBM™ SPSS™ Statistics V. 

23.0). Descriptives were calculated for the average and differences between first and latter 

visits. As the data was normally distributed, independent samples t-test was used for inter-

group analysis in the comparative enquiry part, while paired samples t-test was used for 

analysis in the HCPI –and VAS-groups. P < 0.05 was deemed as a statistically significant 

difference. 

 

 

4 RESULTS 

 

The cases with data to sum up a HCPI-score for first and subsequent visits, made it 

possible to study four different groups (see tables 1 and 2 for results). In the first group 

(HCPI-group 1), the baseline-HCPI and –VAS were compared to those of the second visit. 

Number of cases in this group were 7, of whom 3 were males (42.9%) and 4 females 

(57.1%). The ages of the dogs ranged between 3 and 10, with a mean of 6.36. Four of the 

dogs (57.1%) had owner-reported osteoarthritis (OA), while 3 of the dogs (42.9%) suffered 

from chronic pain in general. 3 of the dogs received non-steroidal anti-inflammatory drugs 
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(NSAIDs) (2 daily, 1 sporadically), while 3 dogs received no pain medication and 1 dog 

received both NSAIDs and gabapentin daily at the first visit. On the second visit, 4 of the 

dogs did not receive any pain medication, while 2 got NSAIDs (1 daily, 1 sporadically) and 

1 dog received NSAIDs + gabapentin regularly. Supplements were given to all dogs in this 

group. For all dogs, the interval between the first and second visit was 7 days.  

The second group (HCPI-group 2) had their baseline-HCPI and VAS-scores compared to 

the third-visit scores. Cases in this group amounted to 9, with 5 males (55.6%) and 4 

females (44.4%) and an age-range of 0.75-13, the mean being 6.92. 4 dogs (44.4%) were 

suffering from OA while the rest (5 cases, 55.6%) suffered from diffuse chronic pain 

and/or weakness/stiffness in general. Out of these cases, 4 did not receive any pain 

medication, while 2 were receiving NSAIDs when necessary, 2 were getting NSAIDs and 

gabapentin and one was receiving tramadol at the first visit. At the later visit 5 dogs did not 

receive any pain medication, while 1 was getting NSAIDs, 1 tramadol and 2 NSAIDs + 

gabapentin on a daily basis. All dogs in the group except for one received supplements 

regularly. The number of days between the first and the third visit ranged between 13 and 

49, the mean being 18.89 days and the median being 14 days. 

HCPI-group 3 contained 5 cases, for whom the baseline-HCPI and –VAS were measured 

against those of the fourth visit. Two cases were male and 3 female (60%). Two were 

suffering from OA while the remaining 3 cases had diffuse chronic pain as reported by the 

owner. Ages in this group ranged from 3 to 13 with a mean of 6.90. 2 cases received 

NSAIDs, one tramadol and 2 did not receive any pain medication at the first visit, while at 

the later visit only 1 dog received pain medication (NSAIDs) and the rest did not receive 

any. Four dogs were given supplements at the first visit, while one dog did not get any. At 

the later visit, only two of the dogs still were given supplements and three of them were 

not. Number of days between the two visits were between 20 and 57, with a median of 31 

and a mean of 34.2 days. 

The fourth HCPI-group (HCPI-group 4) had 7 cases, of whom 3 were male and 4 female. 

In this group the values of the first visit were compared to the values at a visit 3-6 months 

later, with a range of 105-174 days between visits, the mean being 127 days. The dogs 

were between 3 and 14 years of age, with a mean of 8.36 years. Four dogs suffered from 

OA while 3 dogs suffered from owner-reported diffuse chronic pain. Two of the dogs did 

not receive any pain medication at the first visit, 3 dogs got pain medication sporadically (2 

got NSAIDs, 1 got tramadol) and the remaining 2 got pain medication daily (1 got 
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tramadol, 1 got gabapentin). At the later visit 5 dogs did not receive pain medication at all, 

whereas 1 still got it sporadically (NSAIDs) and 1 daily (gabapentin). 

Analysing the HCPI and VAS values for the different visits within groups one can see that 

the mean of both HCPI-scores as well as VAS-scores have decreased. However, no 

statistically significant difference could be found for any of the values or between any of 

the groups. 

 

Table 1. Means and standard deviations for HCPI- and VAS-scores, comparing the first visit with 

subsequent ones. HCPI= Helsinki chronic pain index. SD= standard deviation. M-VAS= mobility VAS. Q-

VAS= quality of life VAS 

    HCPI M-VAS Q-VAS 

    Mean SD Mean SD Mean SD 

Group 1 1st visit 12.71 4.57 41.29 24.34 34.14 21.29 

  2nd visit 9.86 4.10 36.71 24.79 22.71 18.23 

Group 2 1st visit 12.33 7.57 41.22 21.79 32.67 19.92 

 3rd visit 11.89 5.78 34.78 20.49 27.56 14.80 

Group 3 1st visit 14.60 9.24 40.60 24.47 28.80 25.00 

  4th visit 11.20 4.32 34.60 22.77 24.60 17.14 

Group 4 1st visit 14.00 7.72 45.71 25.72 32.86 20.33 

 Later visit 11.00 4.83 25.29 18.08 29.43 14.95 

 

Table 2. P-values from comparing first and later visits for the different groups. P < 0.05 = significant 

difference. HCPI= Helsinki chronic pain index. M-VAS= mobility VAS. Q-VAS= quality of life VAS. 

  P(HCPI)  P(M-VAS)  P(Q-VAS)  

Group 1  0.091  0.642  0.082  

Group 2  0.731  0.110  0.359  

Group 3  0.362  0.545  0.580  

Group 4  0.242  0.119  0.722  

 

In the final part of this study, since the number of cases in the HCPI-groups were so small, 

we gathered together as many data-rich cases of the comparative enquiry as possible, and 

after selecting all the last available visits of follow-up patients with an owner-reported 

chronic pain diagnosis (e.g. osteoarthritis) or owner-reported chronic pain symptoms 

affecting the locomotor apparatus, 85 eligible cases remained, none of which were 

completely filled out questionnaires. Thus, in the analyses presented below, the number of 

cases (answers) varies from question to question. The group of 85 dogs consisted of 46 



36 

 

(54.1%) females and 39 males (45.9%). Ages of the dogs ranged from 2-16 years, with a 

mean of 7.95 and median of 7 years. Owners reported 39 dogs (45.9%) suffering from 

osteoarthritis, 8 (9.4%) from spondylosis, 11 (12.9%) from pain/symptoms related to 

intervertebral discs (e.g. disc protrusion) and 27 (31.8%) dogs suffering from chronic pain 

and/or stiffness/weakness in general, with no reported definitive diagnosis. Supplements, 

such as glucosamines and omega fatty acids, were regularly given to 58 of the dogs 

(68.2%), while 27 dogs (31.8%) did not receive any. The results from the basic statistical 

analysis of the material available are shown in table 3. 

 

Table 3. Frequencies of answers to the different questions, given as number of cases, with the percentage 

related to all answers in captions. Number of answers to the particular question in captions after question. 

Question Much better 

Slightly 

better Unchanged 

Slightly 

worse 

Much 

worse 

Mobility (n=85) 25 (29.4%) 29 (34.1%) 22 (25.9%) 6 (7.1%) 3 (3.5%) 

Walking up stairs (n=82) 14 (17.1%) 15 (18.3%) 51 (62.2%) 1 (1.2%) 1 (1.2%) 

Walking down stairs (n=81) 11 (13.6%) 13 (16.0%) 53 (65.4%) 4 (4.9%) 0 (0 %) 

Lying down (n=83) 9 (10.8%) 18 (21.7%) 53 (63.9%) 2 (2.4%) 1 (1.2%) 

Getting up (n=84) 10 (11.9%) 17 (20.2%) 52 (61.9%) 4 (4.8%) 1 (1.2%) 

Climbing (n=81) 9 (11.1%) 18 (22.2%) 52 (64.2%) 2 (2.5%) 0 (0 %) 

Jumping (n=81) 11 (13.6%) 23 (28.4%) 40 (49.4%) 7 (8.6%) 0 (0 %) 

Walking (n=85) 12 (14.1%) 31 (36.5%) 35 (41.2%) 6 (7.1%) 1 (1.2%) 

Trotting (n=82) 10 (12.2%) 26 (31.7%) 40 (48.8%) 6 (7.3%) 0 (0 %) 

Galloping (n=80) 5 (6.3%) 21 (26.3%) 50 (62.5%) 3 (3.8%) 1 (1.3%) 

Pacing (n=70) 4 (5.7%) 11 (15.7%) 53 (75.7%) 1 (1.4%) 1 (1.4%) 

"Bunny jumping" (n=70) 6 (8.6%) 14 (20.0%) 47 (67.1%) 1 (1.4%) 2 (2.9%) 

Moving on own initiative (n=83) 14 (16.9%) 20 (24.1%) 42 (50.6%) 7 (8.4%) 0 (0 %) 

Mobility after rest (n=79) 11 (13.9%) 24 (30.4%) 41 (51.9%) 3 (3.8%) 0 (0 %) 

Mobility after exercise (n=75) 10 (13.3%) 20 (26.7%) 41 (54.7%) 2 (2.7%) 2 (2.7%) 

Mobility after exercise + rest 

(n=84) 14 (17.3%) 22 (27.2%) 42 (51.9%) 2 (2.5%) 1 (1.2%) 

Pain- overall (n=78) 24 (30.8%) 31 (39.7%) 18 (23.1%) 4 (5.1%) 1 (1.3%) 

Pain stretching hindlegs (n=66) 8 (12.1%) 16 (24.2%) 38 (57.6%) 3 (4.5%) 1 (1.5%) 

Panting (n=73) 9 (12.3%) 15 (20.5%) 46 (63.0%) 2 (2.7%) 1 (1.4%) 

Vocalizing (pain) (n=68) 9 (13.2%) 11 (16.2%) 46 (67.6%) 1 (1.5%) 1 (1.5%) 

Mood (n=85) 23 (27.1%) 34 (40.0%) 22 (25.9%) 6 (7.1%) 0 (0 %) 

Sociability (n=84) 16 (19.0%) 27 (32.1%) 37 (44.0%) 4 (4.8%) 0 (0 %) 

Playfulness (n=83) 20 (24.1%) 30 (36.1%) 29 (34.9%) 4 (4.8%) 0 (0 %) 

Quality of life (n=85) 26 (30.6%) 39 (45.9%) 15 (17.6%) 4 (4.7%) 1 (1.2%) 



37 

 

 

When asked about pain medication recently, 22 owners (25.9%) reported the dog getting 

pain medication daily or almost daily during the last month. Of these dogs 8 got some kind 

of NSAID, 9 got gabapentin, 1 got opioids (tramadol), 1 got corticosteroids and 2 got a 

combination of NSAIDs and gabapentin. 46 out of 85 (54.1%) dogs had not gotten any 

pain medication at all recently, while the remaining 17 dogs (20.0%) had gotten pain 

medication sporadically over the last month.  

The material from the comparative enquiry was further analysed by grouping the dogs 

according to different criteria to detect possible differences between the groups. Firstly, the 

dogs were grouped by diagnosis. Since definitive diagnoses were not available from the 

material, the dogs were simply divided into an osteoarthritis group (OA-group, N=39) and 

other chronic pain group (OCP-group, N=46). No statistically significant difference was 

found between the two groups (p> 0.329 for all questions). 

Secondly, the dogs were grouped by whether or not they had received pain medication. As 

noted above, 46 dogs had not gotten any pain medication recently, while 39 dogs had 

received some (22 dogs often and 17 sporadically). A significant difference was found only 

for the “galloping” question (p=0.019), where the non-medicated group had a lower mean, 

i.e. possible improvement compared to the medicated group. No other statistically 

significant differences were found between the two groups. 

Lastly, two groups were created and compared on the basis of whether the dog had 

received supplements or not. While 27 dogs had not received any supplements, the 

remaining 58 dogs got some kind of supplement. Significant differences occurred for the 

items “galloping” (p=0.010), “bunny jumping” (p=0.026), “pain- overall” (p=0.045) and 

“vocalizing (pain)” (p=0.022). In each of these questions the mean was lower (i.e. on the 

“better” side) in the non-supplement group. No other statistically significant differences 

were detected between the two groups.   

 

 

5 DISCUSSION 
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5.1 Current study 

Granted, due to the nature of the study reported above, the statistical significance for the 

analyses carried out are not very convincing and thus, far-reaching conclusions can hardly 

be drawn. However, the results of the study may be interpreted as indicative for the 

efficacy of acupuncture in the treatment of chronic pain. No statistically significant 

differences were noted in the HCPI-groups, but the baseline levels of all four HCPI groups 

had means >12 that indicate chronic pain (12.33-14.60), whereas all means were lower 

than the pain threshold of 12 (9.89-11.89) after the acupuncture treatments (scoring of 6-11 

might or might not be painful, as noted above). Also, the indicators measured using visual 

analogue scales were consequently better at the later visits, some with quite big differences 

(e.g. Q-VAS in group 1; 34.14 at first visit and 22.71 at second visit or M-VAS in group 4; 

45.71 at first visit and 25.29 at latter). In addition to that, pain medication was reduced in 

all HCPI-groups when comparing 1st and subsequent visits. However, the owners coming 

to the clinic are asked not to reduce the pain medication during the first 3 visits, unless the 

dogs are showing adverse signs to them (e.g. gastric irritation/ulcer, liver or kidney-

failure), so the reduction in medication in HCPI-groups 1 and 2 could be due to adverse 

reactions. Taken together, the results could indicate an improvement in pain levels in these 

dogs. The low number of cases in each group probably played a part in the statistically 

insignificant results, and with a greater number of cases, the results might have been 

different, i.e. shown a statistically significant difference. 

Looking at the results of the comparative enquiry, although around 50-60% of the owners 

answered “unchanged” to most questions, the great majority of the remaining cases were 

put on the “better” side, with only sporadic cases ending up on the “worse” side. One must 

take into consideration though, that an answer of “unchanged” is hard to interpret, since we 

do not know if the dog actually has had difficulties with the particular question/problem 

based on the comparative enquiry, and thus “unchanged” might be bad if the dog really has 

a problem, but good if there was no problem/difficulty to begin with. A few questions 

particularly stood out in a positive manner, as “quality of life”, “pain- overall”, “mood”, 

“mobility” and “playfulness” gained 76.5%, 70.5%, 67.1%, 63.5% and 60.1% on the 

“better” side, respectively. The positive results to these questions, some of which do not 

assess a particularly specific problem, but rather maybe reflect health and well-being in a 

broader sense in a dog, again, could be indicative of acupuncture relieving chronic pain 

and thus affecting the overall well-being of the dog. This is in accordance with a previous 
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study where dog owners were not able to assess increased or decreased pain in their dogs 

as they did not recognize the symptoms associated with chronic pain; they could, however, 

assess symptoms such as quality of life, mobility, mood etc. (Hielm-Björkman et al. 2003, 

Hielm-Björkman et al. 2011) 

Assessing the questions to which statistical differences were found; a significant difference 

to the “galloping” question when dividing the dogs into pain medicated or non-medicated 

groups could just be a coincidence, since no significant statistical difference was found to 

the other questions. As for the four questions for which a difference was found when 

comparing supplement vs no supplement groups, the size of the groups was quite uneven 

(58 vs 27). Considering how many had answered the particular questions- “galloping” (54 

vs 26), “bunny jumping” (51 vs 19), pain -overall (55 vs 23) and “vocalizing (pain) (50 vs 

18) - and considering the fact that around 50-60% answered “unchanged” to most 

questions, it is not inconceivable to think that a few “better” answers in the smaller group 

would account for a significant difference.   

It seems, based on the results of this study that the mobility, painfulness and quality of life 

improved in many of the dogs included. As these variables all are indicative of pain, they 

indicate a positive effect after acupuncture. However, a multitude of factors could have 

impacted the results seen in this study. With great discrepancies in the answering of the 

questionnaires, the material at hand was not very good, especially in the process of 

statistically ruling out the effects of some other factors. Owners also reported a plethora of 

other treatments that had been used, including physiotherapy, osteopathy, chiropractic, 

homeopathic medicines, insertion of gold implants, swimming etc. In some cases the 

treatment had been implemented even years before the day of the filling of the 

questionnaire, but in most cases there was no mention of when the treatment had been 

applied. Many owners also reported giving their dogs a wide array of supplements, most 

commonly glucosamines, methylsulfonylmethane (MSM), chondroitin sulphate and omega 

fatty acids, but there was no mention of how long they had used these supplements.  

In addition to these factors, there are several other ones that could interfere with the results. 

The owner could have simply forgotten what the baseline-mobility and –pain was when 

answering the comparative enquiry, and therefore thinks it has gotten better (or worse). As 

some of the dogs had been getting acupuncture for quite some time, even years, at the time 

of answering, assessing the baseline status at the first visit becomes an immensely 

challenging task. The owner might also be biased in the sense that he or she really 
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believes/hopes acupuncture is going to help the dog so he/she sees the dog’s condition as 

being better than it actually might be. Another aspect of this could be a so called 

“secondary placebo effect”, where the owner might have been feeling bad because of the 

dog’s chronic pain or e.g. limping, and when treatment starts, the owner gets happier, 

which in turn could affect the mood of the dog for the better, thus making the dog’s 

condition at least partly “improved” in the eyes of the owner. Awareness of the disease in 

question could also be a factor weighing in on the results in a positive manner, i.e. if the 

owner has gotten good information about e.g. osteoarthritis and how to prevent the 

progression of the disease, he/she might have made even major changes in the everyday 

life of the dog not mentioned in the questionnaire, which, again, might be seen as 

improvement. Lastly, the owner’s ability to assess the pain level of the dog influences the 

results in studies like this. Even though the owners probably know the ways their dog 

behaves, moves and reacts to pain etc., chronic pain still is challenging to recognize if the 

owners do not know what they are looking for.  

Evaluating the results of this current study in the light of all the factors that might be 

playing in, these results can be interpreted as indicative at best in aspect of reduction in 

chronic pain levels and improvement of mobility and quality of life solely due to 

acupuncture. The questionnaires used in this study seem straightforward to me and the 

wording of the questions leaves little or no room for misinterpretations by the person 

filling out the questionnaire, in this case the owner. The questionnaires used in the study at 

hand could in my opinion well be used in future studies, since the missing data and 

inconsistencies were not due the questionnaires themselves. However, instead of having 

open answers to questions about e.g. supplements and (pain) medication, these questions 

could also be carried out as multiple choice questions. This could make it easier to group 

the cases. A future study based on these questionnaires would require better planning for 

the study though, to make sure that the answers to first and subsequent visits are filled out 

properly and to as great an extent as possible. 

5.2 Acupuncture research 

Acupuncture analgesic mechanisms and the efficacy thereof have been subject to extensive 

research, especially during the last few decades. However, neither conclusive proof nor 

disproof have been found, owing partially to the difficulty of setting up a reliable 

randomized, controlled study (Deng et al. 2015). A particular problem arises from the fact 
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that studies with a non-acupuncture control group often show positive results regarding 

acupuncture analgesia, while studies with a sham-acupuncture control group tend to show 

that there is not a significant difference between the two groups (Itoh et al. 2008). The task 

of creating and standardizing a working and reliable form of sham acupuncture has proven 

more elusive than expected, and different methods have been tried during recent years, 

including acupuncture at a non-meridian, non-acupoint, shallow insertion of the needle and 

“placebo-needles”, where the needle doesn’t penetrate the skin but only pricks it and the 

needle retracts up into the handle (Langevin et al. 2006). It has been shown, though, that 

invasive as well as non-invasive sham acupuncture produces biophysical responses at the 

place of stimulation as well as activation in some of the same brain regions as in pain 

modulation (Pariente et al. 2005, Langevin et al. 2006). The analgesic effect (in humans) 

resulting from acupuncture treatment has been suspected to contain a moderate if not large 

amount of placebo-effect, owing to e.g. expectancy and belief in the treatment (Vickers et 

al. 2012). The placebo-effect exerted by sham acupuncture has been shown to be greater 

than that of a placebo-pill (Kaptchuk et al. 2006). Also, neuroimaging studies have shown 

that the brain areas activated by placebo differ from the pain-modulating brain areas 

activated by an acupuncture-specific effect, the specific mechanism of which is yet to be 

fully elucidated, but include e.g. short and long-term changes in µ-opioid receptor activity 

in certain parts of the brain (Harris et al. 2009, Kong et al. 2009a, Kong et al. 2009b). 

Since verum acupuncture and sham acupuncture both seem to induce analgesia, though 

sometimes at different intensities, one theory is that sham acupuncture would elicit the 

same response as real acupuncture, but to a lesser extent (Hammerschlag and Zwickey 

2006). 

The treatment protocol, i.e. the way and how often acupuncture treatment is given, has also 

shown to be of importance. As mentioned above, EA-stimulation at different frequencies 

elicits the release of endogenous opioids at different ratios (Fei et al. 1987, He and Han 

1990, Han et al. 1999). A neuroimaging study showed that treatment durations of various 

lengths impacted the effects in the brain in different ways (Li et al. 2006). Of two studies 

(Macklin et al. 2006, Flachskampf et al. 2007), both treating hypertension with 

acupuncture, one came to the conclusion that acupuncture was no better in treating 

hypertension than was sham acupuncture, while the other study reported a significant 

difference between the two groups. The treatment protocols were different for the two 

studies, especially in the frequency at which acupuncture was given; the study which 
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concluded a significant difference present when comparing verum and sham acupuncture, 

gave acupuncture treatment more often and more times altogether than did the researchers 

in the other study, which could be indicative of “too little treatment/too low dose” in the 

study where there was no difference (Macklin et al. 2006, Flachskampf et al. 2007). 

Various needle-manipulation techniques during treatment and minor variances in these 

have been proven to give rise to different kinds and intensities of cellular responses at the 

site of stimulation (Langevin et al. 2007). This could mean that the efficacy of acupuncture 

is partly dose- and technique-dependent. 

While the placebo-effect comprises a major challenge in human studies of acupuncture 

mechanisms and efficacy, the same can’t be said for animal studies. However, it does not 

mean that acupuncture studies in animals are without challenges, such as the animal’s 

possible response to the situation e.g. fear following restraint, differences in disease 

severity or even interpreting the results (measuring pain). Whereas acupuncture studies 

with sham acupuncture groups as control usually can find no difference between the real 

and the sham acupuncture groups, studies done on animals in the same manner tend to 

show a positive difference for acupuncture compared to the controls (Langevin et al. 2006). 

I do not see it as inconceivable, though, that a dog receiving multiple acupuncture 

treatments which have relieved pain, could develop a placebo effect due to positive 

expectancy as it comes to the clinic for its next treatment. This could further complicate the 

acupuncture research in animals and should be taken into consideration. 

While it has been difficult to show that an acupoint gives rise to a certain response in the 

body different to that of a non-acupoint, several animal models have shown variations 

therein, strengthening the theory of acupoint specificity as being a relevant factor for the 

efficacy of treatment (Lee and Beitz 1993, Koo et al. 2002, Lao et al. 2004, Tjen-A-Looi et 

al. 2004, Zhao et al. 2006). Some factors might, however, be attributable to or at least play 

a role in these results; animals used in these types of studies have never before been 

exposed to acupuncture treatment; the disease severity as well as type of pathology might 

be highly controllable to fit the study, e.g. injection of specific amounts of inflammatory 

agents; animals used for experiments are usually genetically homogenous, showing little 

differences between individuals and thus diminishing the standard deviation in the 

statistical analyses; as the purpose with animal experiments often is to elucidate a 

mechanism of action, animals that have failed to elicit a desired response might be 

underreported altogether (Langevin et al. 2006).  
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As mentioned earlier, illness in TCM-theory is due to an imbalance of Yin and Yang and 

disruption of Qi-flow in the body, i.e. the homeostasis is disturbed. The disturbance in Qi-

flow sensitizes acupoints along the particular meridian where the disturbance occurs. Since 

the meaning of acupuncture is to restore homeostasis in the body, could it mean that the 

more severe the disease gets, i.e. further away from homeostasis, the better acupuncture 

actually works? In that case differences should easily be seen in studies with non-

acupuncture controls, as also seems to be the case (Deng et al. 2015). This theory together 

with the theory of any point on the body eliciting a response, only to a lesser extent than a 

real acupoint (Hammerschlag and Zwickey 2006), could further partially explain why the 

difference between real and sham acupuncture usually is not found in studies; if the whole 

body is sensitized, even sham acupuncture or non-acupuncture could give rise to a reaction 

strong enough to diminish the statistical difference between verum acupuncture and 

control. Even though it seems clear that the placebo effect has a major impact on the 

outcome of treatment, one should keep in mind that it might not account for all the cases 

where the effects of real and sham acupuncture have been declared statistically equivalent.  

Much like with pharmaceuticals, there are clear individual as well as gender differences in 

the responsiveness to acupuncture treatment (Lund and Lundeberg 2010). Sources report a 

non-responsiveness between 10% and 30% for humans and animals (Han 1994, Langevin 

et al. 2006), which definitely could account for some of the discrepancies and downright 

contradictory results appearing in studies during recent years. If a person (or animal) 

doesn’t respond to treatment, it could mean that the dosage might be too small, i.e. the 

treatment not efficient enough to resolve the problem, and, thus, more treatment is required 

e.g. as longer sessions or a higher frequency of treatments. Another possible factor that 

could be interfering with the results might be “wrong” treatment according to TCM, 

assuming that acupoint specificity is essential for the treatment. Say that a person is being 

treated for a headache (symptom), the treatment according to TCM-teachings should 

normalize the Qi-flow and regain homeostasis of the body. However, the result of the 

disturbance of Qi-flow (illness) has led to the symptom of headache, but many different 

disturbances in Qi-flow can probably lead to the symptom of headache, e.g. stagnation of 

Qi in the liver meridian or too little Qi in the kidney meridian. The selection of acupoints 

in TCM is based on where the diagnosed disturbance in Qi-flow is, i.e. if the Qi-flow in the 

liver meridian is abnormal, treatment/stimulation of the kidney meridian might not help. 

Rather than acupuncture being a work/does not work treatment, it is becoming clearer that, 
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again, acupuncture treatment might resemble pharmaceutical treatment more than 

expected, i.e. right medicine at the right dose is needed to treat a certain illness. This way, 

maybe if we can encode the exact mechanism of action for acupuncture that could lead to 

specific acupuncture treatments. However, it could also be the case that acupuncture has 

different modes of action depending on the disease in question, e.g. the responses 

occurring in the body following acupuncture treatment for hypertension could be different 

than the responses following treatment of chronic pain. As the point of acupuncture 

treatment is to regain homeostasis, it seems strange to think that normalizing blood-

pressure from either hyper- or hypotension could be the work of the same exact 

mechanism. If the mechanisms really are different, it is essential for future studies to look 

at the pathologic process in question when assessing the efficacy of treatment to 

understand if it works, why it works and how it works. 

A quite recent study proposed a new anatomical-physiological model for how acupuncture 

analgesia works (Silberstein 2009). In this model, a cutaneous, pain-transmitting C-fibre 

afferent with its soma in the dorsal root ganglion rises to a subepidermal spot, where it 

bifurcates in a T-shaped manner with the branches going parallel to the skin. Merkel cells 

in the skin are known to be intimately associated with C-fibre nerve endings (Zhang et al. 

2002a) and Merkel cells possess the ability of neurotransmitter release (Haeberle et al. 

2004). This way, the firing of a Merkel cell would lead to signal transmission in two 

directions; to the cell soma of the neuron and to the next Merkel cell. Silberstein suggests a 

neural network continuously transmitting excitatory impulses at some distance from the 

terminals of local nociceptors. This ongoing firing of impulses stimulating local 

nociceptors, in this case C-fibres, would be balanced by continuous firing of Aβ-fibres. An 

acupuncture needle put into the bifurcation of the afferent C-fibre axon would thus disrupt 

the signals going through it (nociception) and therefore lead to pain relief. If, correct, this 

theory would give rise to a fourth dimension of the autonomic nervous system (ANS), the 

first three being the sympathetic, parasympathetic and enteric nervous system. The author 

used the term visceral afferent nervous system to describe the model presented above 

(Silberstein 2009).     

Acupuncture has proven an elusive adversary in the quest for science to totally understand 

it. It is becoming clearer all the time that acupuncture research in the future has to change 

its tactics, since the outcome thus far has been inconclusive and even contradictory. This, 

however, is not exclusive for acupuncture research; complete mechanisms of actions 
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remains to be elucidated for commonly used NSAIDS (Lees et al. 2004) as well as 

neuropathic pain medications such as gabapentin (Kukkar et al. 2013). Since animal and 

human studies both have their own strengths and challenges, combining the results of the 

two groups perhaps could elucidate the mystery of acupuncture further. This, of course, 

assuming that researchers play to the strengths of human and animal studies respectively, 

e.g. studying mechanisms of action in animals and when that is clear, determining efficacy 

in studies conducted with humans. Standardization of trials would also be valuable, but 

might be hard to execute at the moment, as it would first need a clearer mapping of all 

already known working mechanisms and then a hypothesis of understanding the 

mechanism of acupuncture; is it really a certain, similar response each time or is it indeed a 

disease-specific response? 
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6 ABBREVIATION INDEX 

5-HT = serotonin 

Ac = nucleus accumbens 

ACC = anterior cingular cortex 

Amyg = amygdala 

AMPA receptor = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor  

ANS = autonomic nervous system 

Arc = arcuate nucleus 

ATP = adenosine triphosphate 

BG = basal ganglia 

CCK-8 = cholecystokinin octapeptide 

Cd = caudate nucleus 

CGRP = calcitonin gene-related peptide 

CM = centromedian nucleus 

CNS = central nervous system 

CSF = cerebrospinal fluid 

CVLM = caudal ventrolateral medulla 

DLF = dorsolateral funiculus 

DRG = dorsal root ganglion 

EA = electroacupuncture 

FAAH = fatty acid amid hydrolase 

FRAP = fluoride-resistant acid phosphatase 

GABA = γ-aminobutyric acid 

GPCR = G-protein coupled receptor 

Hab = habenular nucleus 

HCPI = Helsinki chronic pain index 

HT = hypothalamus 

IB4 = isolectin B4 

IC = insular cortex 

i.c.v. = intracereborventricular 

IL = interleukin 

LC = locus coeruleus 

LPB = lateral parabrachial area 

mGluR = metabotropic glutamate receptor 

MIA = mechanically insensitive afferents 

MSA = mechanically sensitive afferents 

MSM = methylsulfonylmethane 

MTrP = myofascial trigger point 

M1 = primary motor cortex 

nACh R = nicotinic acetylcholine receptor 

NGF = nerve growth factor 

NKA/NKK = neurokinin A/K 

NK1R = neurokinin 1 receptor 

NMDA receptor = N-methyl-D-aspartate receptor 

NO = nitrous oxide 

NRM = nucleus raphe magnus 

NSAIDs = non-steroidal anti-inflammatory drugs 

NTS = nucleus of the solitary tract 

OA = osteoarthritis 
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PAG = periaqueductal grey 

PB = parabrachial nucleus 

PCC = posterior cingulate cortex 

PFC = prefrontal cortex  

PO = preoptic area 

PVH = hypothalamic paraventricular nucleus 

RVM = rostroventral medulla 

Sm = nucleus submedius 

SMA = supplementary motor cortex 

SP = substance P 

SST = somatostatin 

STT = spinothalamic tract 

S1 = primary somatosensory cortex 

S2 = secondary somatosensory cortex 

TCM = traditional Chinese medicine 

Th = thalamus 

TNF-α = tumour necrosis factor α 

TRPV1 = transient receptor potential vanilloid 1 

VAS = visual analogue scale 

WBCs = white blood cells 

WDRs = wide dynamic range neurons 

VLF = ventrolateral funiculus 

WM = western medicine 

 

  



48 

 

7 REFERENCES 

Lähteet 

Ahn, A. C., Colbert, A. P., Anderson, B. J., Martinsen, O. G., Hammerschlag, R., Cina, S., 

Wayne, P. M. & Langevin, H. M. 2008. Electrical properties of acupuncture points 

and meridians: a systematic review. Bioelectromagnetics 29: 245-456. 

Al Ghamdi, K. S., Polgar, E. & Todd, A. J. 2009. Soma size distinguishes projection 

neurons from neurokinin 1 receptor-expressing interneurons in lamina I of the rat 

lumbar spinal dorsal horn. Neuroscience 164: 1794-1804. 

Ali, Z., Meyer, R. A. & Campbell, J. N. 1996. Secondary hyperalgesia to mechanical but 

not heat stimuli following a capsaicin injection in hairy skin. Pain 68: 401-411. 

Al-Khater, K., Kerr, R. & Todd, A. J. 2008. A quantitative study of spinothalamic neurons 

in laminae I, III, and IV in lumbar and cervical segments of the rat spinal cord. Journal 

Of Comparative Neurology 511: 1-18. 

Al-Khater, K. & Todd, A. J. 2009. Collateral projections of neurons in laminae I, III, and 

IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial 

area. Journal Of Comparative Neurology 515: 629-646. 

Almeida, T. F., Roizenblatt, S. & Tufik, S. 2004. Afferent pain pathways: a 

neuroanatomical review. Brain research 1000: 40-56. 

Ammons, W. S. 1987. Characteristics of spinoreticular and spinothalamic neurons with 

renal input. Journal of neurophysiology 58: 480-495. 



49 

 

Andrew, D. 2009. Sensitization of lamina I spinoparabrachial neurons parallels heat 

hyperalgesia in the chronic constriction injury model of neuropathic pain. Journal of 

Physiology 587: 2005-2017. 

Andrew, D. & Craig, A. D. 2002. Responses of spinothalamic lamina I neurons to 

maintained noxious mechanical stimulation in the cat. Journal of neurophysiology 87: 

1889-1901. 

Andrew, D., Krout, K. E. & Craig, A. D. 2003. Differentiation of Lamina I Spinomedullary 

and Spinothalamic Neurons in the Cat. Journal of Comparative Neurology 458: 257-

271. 

Apkarian, A. V., Bushnell, M. C., Treede, R. & Zubieta, J. 2005. Human brain 

mechanisms of pain perception and regulation in health and disease. European Journal 

Of Pain 9: 463-484. 

Averill, S., McMahon, S. B., Clary, D. O., Reichardt, L. F. & Priestley, J. V. 1995. 

Immunocytochemical localization of trkA receptors in chemically identified 

subgroups of adult-rat sensory neurons. European Journal Of Neuroscience 7: 1484-

1494. 

Baba, H., Ji, R. R., Kohno, T., Moore, K. A., Ataka, T., Wakai, A., Okamoto, M. & Woolf, 

C. J. 2003. Removal of GABAergic inhibition facilitates polysynaptic A fiber-

mediated excitatory transmission to the superficial spinal dorsal horn. Molecular and 

Cellular Neuroscience 24: 818-830. 

Baldry, P. & Thompson, J. W. 2005. Acupuncture, trigger points and musculoskeletal pain: 

a scientific approach to acupuncture for use by doctors and physiotherapists in the 



50 

 

diagnosis and management of myofascial trigger point pain. 3rd edition. Edinburgh: 

Elsevier/Churchill Livingstone ; New York: Elsevier/Churchill Livingstone: 

Elsevier/Churchill Livingstone. 

Bandler, R., Keay, K. A., Floyd, N. & Price, J. 2000. Central circuits mediating patterned 

autonomic activity during active vs. passive emotional coping. Brain research bulletin 

53: 95-104. 

Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. 2009. Cellular and molecular 

mechanisms of pain. Cell 139: 267-284. 

Basbaum, A. I. & Fields, H. L. 1978. Endogenous pain control mechanisms: review and 

hypothesis. Plastic and Reconstructive Surgery 4: 451-462. 

Beecher, H. K. 1952. Experimental pharmacology and measurement of the subjective 

response. Science 116: 157-162. 

Bergman, E., Carlsson, K., Liljeborg, A., Manders, E., Hokfelt, T. & Ulfhake, B. 1999. 

Neuropeptides, nitric oxide synthase and GAP-43 in B4-binding and RT97 

immunoreactive primary sensory neurons: normal distribution pattern and changes 

after peripheral nerve transection and aging. Brain research 832: 63-83. 

Bessou, P. & Perl, E. R. 1969. Response of cutaneous sensory units with unmyelinated 

fibers to noxious stimuli. Journal of neurophysiology 32: 1025-1043. 

Bester, H., Chapman, V., Besson, J. & Bernard, J. 2000. Physiological properties of the 

lamina I spinoparabrachial neurons in the rat. Journal of neurophysiology 83: 2239-

2259. 



51 

 

Bing, Z., Villanueva, L. & Le Bars, D. 1990. Acupuncture and diffuse noxious inhibitory 

controls: naloxone-reversible depression of activities of trigeminal convergent 

neurons. Neuroscience 37: 809-818. 

Bing, Z., Villanueva, L. & Le Bars, D. 1991. Acupuncture-evoked responses of subnucleus 

reticularis dorsalis neurons in the rat medulla. Neuroscience 44: 693-703. 

Bobker, D. & Williams, J. T. 1989. Serotonin agonists inhibit synaptic potentials in the rat 

locus ceruleus in vitro via 5-hydroxytryptamine sub(1A) and 5-hydroxytryptamine 

sub(1B) receptors. Journal of Pharmacology and Experimental Therapeutics 250: 37-

43. 

Bodin, P. & Burnstock, G. 2001. Purinergic Signalling: ATP Release. Neurochemical 

research 26: 959-969. 

Bonica, J. J. 1953. The Management of Pain. Philadelphia: Lea & Febiger. 

Bowker, R. M., Westlund, K. N. & Coulter, J. D. 1981. Origins of serotonergic projections 

to the spinal cord in rat: An immunocytochemical-retrograde transport study. Brain 

Res. 226: 187-199. 

Breivik, H., Collett, B., Ventafridda, V., Cohen, R. & Gallacher, D. 2006. Survey of 

chronic pain in Europe: Prevalence, impact on daily life, and treatment. European 

Journal of Pain 10: 287-333. 

Burgess, P. R. & Clark, F. J. 1969. Characteristics of knee joint receptors in the cat. 

Journal Of Physiology 203: 317-335. 



52 

 

Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. 2002. Protoplasmic 

astrocytes in CA1 stratum radiatum occupy separate anatomical domains. Journal Of 

Neuroscience 22: 183-192. 

Campbell, J. N. & Meyer, R. A. 1983. Sensitization of unmyelinated nociceptive afferents 

in monkey varies with skin type. J Neurophysiol 49: 98-110. 

Cannon, K. E., Leurs, R. & Hough, L. B. 2007. Activation of peripheral and spinal 

histamine H3 receptors inhibits formalin-induced inflammation and nociception, 

respectively. Pharmacology, biochemistry, and behavior 88: 122-129. 

Cao, L. & DeLeo, J. A. 2008. CNS-infiltrating CD4 + T lymphocytes contribute to murine 

spinal nerve transection-induced neuropathic pain. European journal of immunology 

38: 448-458. 

Carr, P. A., Yamamoto, T. & Nagy, J. I. 1990. Calcitonin gene-related peptide in primary 

afferent neurons of rat: Co-existence with fluoride-resistant acid phosphatase and 

depletion by neonatal capsaicin. Neuroscience 36: 751-760. 

Carstens, E. & Trevino, D. L. 1978. Laminar origins of spinothalamic projections in cat as 

determined by retrograde transport of horseradish-peroxidase. JOURNAL OF 

COMPARATIVE NEUROLOGY 182: 161-165. 

Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-Zeitz, K. 

R., Koltzenburg, M., Basbaum, A. I. & Julius, D. 2000. Impaired Nociception and 

Pain Sensation in Mice Lacking the Capsaicin Receptor. Science 288: 306. 

Caterina, M. J. & Schumacher, M. A. 1997. The capsaicin receptor: A heat-activated ion 

channel in the pain pathway. Nature 389: 816-824. 



53 

 

Cervero, F., Iggo, A. & Ogawa, H. 1976. Nociceptor-driven dorsal horn neurones in the 

lumbar spinal cord of the cat. Pain 2: 5-24. 

Chamberlin, N. & Saper, C. B. 1992. Topographic organization of cardiovascular 

responses to electrical and glutamate microstimulation of the parabrachial nucleus in 

the rat. Journal of Comparative Neurology 326: 245-262. 

Chang, F. C., Tsai, H. Y., Yu, M., Yu, P. & Lin, J. 2004. The Central Serotonergic System 

Mediates the Analgesic Effect of Electroacupuncture on Zusanli (ST36) Acupoints. 

Journal of Biomedical Science 11: 179-185. 

Cheng, K. J. 2009. Neuroanatomical basis of acupuncture treatment for some common 

illnesses. Acupuncture in medicine : journal of the British Medical Acupuncture 

Society 27: 61-64. 

Chiang, C. Y., Chang, C. T., Chu, H. L. & Yang, L. F. 1973. Peripheral afferent pathway 

for acupuncture analgesia. Sci Sin 16: 210-217. 

Chiang, C. Y., Liu, J. Y., Chu, T. H., Pai, Y. H. & Chang, S. C. 1975. Studies on spinal 

ascending pathway for effect of acupuncture analgesia in rabbits. Scientia Sinica 18: 

651-658. 

Choi, B., Kang, J. & Jo, U. 2005a. Effects of electroacupuncture with different frequencies 

on spinal ionotropic glutamate receptor expression in complete Freund's adjuvant-

injected rat. Acta Histochemica 107: 67-76. 

Choi, B., Lee, J. H., Wan, Y. & Han, J. S. 2005b. Involvement of ionotropic glutamate 

receptors in low frequency electroacupuncture analgesia in rats. Neuroscience letters 

377: 185-188. 



54 

 

Choi, D. C., Lee, J. Y., Lim, E. J., Baik, H. H., Oh, T. H. & Yune, T. Y. 2012. Inhibition of 

ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves 

neuropathic pain after spinal cord injury in rats. Experimental neurology 236: 268-

282. 

Christensen, B. N. & Perl, E. R. 1970. Spinal neurons specifically excited by noxious or 

thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 33: 293-307. 

Clement-Jones, V., McLoughlin, L., Tomlin, S., Besser, G. M., Rees, L. H. & Wen, H. L. 

1980. Increased beta-endorphin but not met-enkephalin levels in human cerebrospinal 

fluid after acupuncture for recurrent pain. Lancet (London, England) 2: 946-949. 

Commissiong, J. W., Galli, C. L. & Neff, N. H. 1978. Differentiation of dopaminergic and 

noradrenergic neurons in rat spinal cord. Journal of neurochemistry 30: 1095-1099. 

Cook, A. J., Woolf, C. J., Wall, P. D. & McMahon, S. B. 1987. Dynamic receptive field 

plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature 

325: 151-153. 

Cooper, B., Loughner, B., Friedman, R. M., Heft, M. W., LaBanc, J. & Fonte, A. 1993. 

Parallels between properties of high-threshold mechanoreceptors of the goat oral-

mucosa and human pain report. Experimental Brain Research 94: 323-335. 

Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-Gandhu, M., Herbert, T. 

A., Barrett, L., Brenner, G. J., Vardeh, D., Woolf, C. J. & Fitzgerald, M. 2009. T-Cell 

Infiltration and Signaling in the Adult Dorsal Spinal Cord Is a Major Contributor to 

Neuropathic Pain-Like Hypersensitivity. Journal of Neuroscience 29: 14415-14422. 



55 

 

Craig, A. D. 2003. Pain Mechanisms: Labeled Lines Versus Convergence in Central 

Processing. Annual Review of Neuroscience 26: 1-30. 

Craig, A. D. & Andrew, D. 2002. Responses of spinothalamic lamina I neurons to repeated 

brief contact heat stimulation in the cat. J Neurophysiol 87: 1902-1914. 

Davis, K. D., Meyer, R. A. & Campbell, J. N. 1993. Chemosensitivity and sensitization of 

nociceptive afferents that innervate the hairy skin of monkey. Journal of 

neurophysiology 69: 1071-1081. 

De Simone, R., Ajmone-Cat, M. A. & Minghetti, L. 2004. Atypical antiinflammatory 

activation of microglia induced by apoptotic neurons. Molecular neurobiology 29: 

197-212. 

Deng, S., Zhao, X., Du, R., He, S. I., Wen, Y., Huang, L., Tian, G., Zhang, C., Meng, Z. & 

Shi, X. 2015. Is acupuncture no more than a placebo? Extensive discussion required 

about possible bias. Exp Ther Med 10: 1247-1252. 

Dickenson, A. H. & Sullivan, A. F. 1987. Evidence for a role of the NMDA receptor in the 

frequency dependent potentiation of deep rat dorsal horn nociceptive neurones 

following c fibre stimulation. Neuropharmacology 26: 1235-1238. 

Djouhri, L., Meng, Z., Brown, A. G. & Short, A. D. 1997. Electrophysiological evidence 

that spinomesencephalic neurons in the cat may be excited via spinocervical tract 

collaterals. Experimental Brain Research 116: 477-484. 

Dorsher, P. T. 2008. Can Classical Acupuncture Points and Trigger Points Be Compared in 

the Treatment of Pain Disorders? Birch's Analysis Revisited. Journal of Alternative & 

Complementary Medicine 14: 353-359. 



56 

 

Du, H. J. & Chao, Y. F. 1976. Localization of central structures involved in descending 

inhibitory effect of acupuncture on viscero-somatic reflex discharges. Scientia Sinica 

19: 137-148. 

Eglitis, M. A. & Mezey, E. 1997. Hematopoietic cells differentiate into both microglia and 

macroglia in the brains of adult mice. Proceedings of the National Academy of 

Sciences of the United States of America 94: 4080-4085. 

England, S., Bevan, S. & Docherty, R. J. 1996. PGE2 modulates the tetrodotoxin-resistant 

sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-

protein kinase A cascade. Journal of physiology 495, Pt 2: 429-440. 

Ernst, E. 2006. Acupuncture - A critical analysis. Journal of internal medicine 259: 125-

137. 

Fabry, Z., Topham, D. J., Fee, D., Herlein, J., Carlino, J. A., Hart, M. N. & Sriram, S. 

1995. TGF-ß2 decreases migration of lymphocytes in vitro and homing of cells into 

the central nervous system in vivo. Journal of Immunology 155: 325-332. 

Falk, C. X., Birch, S., Avants, S. K., Tsau, Y. & Margolin, A. 2000. Preliminary results of 

a new method for locating auricular acupuncture points. Acupuncture & Electro-

Therapeutics Research 25: 165-177. 

Fei, H., Xie, G. X. & Han, J. S. 1987. Low and high frequency electroacupuncture 

stimulation release met-enkephalin and dynorphin A in rat spinal cord. Sci. Bull. 

China 32: 1496-1501. 



57 

 

Ferrell, W. R. & Russell, N. J. W. 1986. Extravasation in the knee induced by antidromic 

stimulation of articular C fibre afferents of the anaesthetized cat. Journal Of 

Physiology 379: 407-416. 

Fields, H. L. & Heinricher, M. M. 1985. Anatomy and physiology of a nociceptive 

modulatory system. Philos Trans R Soc Lond B Biol Sci. 308: 361-374. 

Fields, H. L., Heinricher, M. M. & Mason, P. 1991. Neurotransmitters in nociceptive 

modulatory circuits. Annual Review of Neuroscience 14: 219-245. 

Flachskampf, F. A., Gallasch, J., Gefeller, O., Gan, J., Mao, J., Pfahlberg, A. B., 

Wortmann, A., Klinghammer, L., Pflederer, W. & Daniel, W. G. 2007. Randomized 

trial of acupuncture to lower blood pressure. Circulation 115: 3121-3129. 

Fry, L. M., Neary, S. M., Sharrock, J. & Rychel, J. K. 2014. Acupuncture for analgesia in 

veterinary medicine. Top Companion Anim Med 29: 35-42. 

Fuxe, K. 1965. Evidence for the existence of monoamine neurons in the central nervous 

system. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie 65: 573-596. 

Gamberino, W. C., Berkich, D. A., Lynch, C. J., Xu, B. & LaNoue, K. F. 1997. Role of 

Pyruvate Carboxylase in Facilitation of Synthesis of Glutamate and Glutamine in 

Cultured Astrocytes. Journal of neurochemistry 69: 2312-2325. 

Garrison, D. W., Chandler, M. J. & Foreman, R. D. 1992. Viscerosomatic convergence 

onto feline spinal neurons from esophagus, heart and somatic fields: effects of 

inflammation. Pain 49: 373-382. 



58 

 

Gauriau, C. & Bernard, J. 2003. A comparative reappraisal of projections from the 

superficial laminae of the dorsal horn in the rat: The forebrain. Journal of Comparative 

Neurology 468: 24-56. 

Ge, H. Y., Fernández-de-Las-Peñas, C., Madeleine, P. & Arendt-Nielsen, L. 2008. 

Topographical mapping and mechanical pain sensitivity of myofascial trigger points 

in the infraspinatus muscle. European Journal of Pain 12: 859-865. 

Giamberardino, M. A., Dalal, A., Valente, R. & Vecchiet, L. 1996. Changes in activity of 

spinal cells with muscular input in rats with referred muscular hyperalgesia from 

ureteral calculosis. Neuroscience letters 203: 89-92. 

Giamberardino, M. A. & Vecchiet, L. 1995. Visceral pain, referred hyperalgesia and 

outcome: new concepts. Eur J Anaesthesiol Suppl. 10: 61-66. 

Gibson, S. J., Littlejohn, G. O., Gorman, M. M., Helme, R. D. & Granges, G. 1994. 

Altered heat pain thresholds and cerebral event-related potentials following painful 

CO2-laser stimulation in subjects with fibromyalgia syndrome. Pain 58: 185-193. 

Giesler, G. J., Yezierski, R. P., Gerhart, K. D. & Willis, W. D. 1981. Spinothalamic tract 

neurons that project to medial and/or lateral thalamic nuclei: Evidence for a 

physiologically novel population of spinal cord neurons. Journal of neurophysiology 

46: 1285-1308. 

Gori, L. & Firenzuoli, F. 2007. Ear acupuncture in European traditional medicine. Evid 

Based Complemen Alternat Med 4(suppl 1): 13-16. 

Guo, H. F., Tian, J., Wang, X., Fang, Y., Hou, Y. & Han, J. 1996. Brain substrates 

activated by electroacupuncture (EA) of different frequencies (II): Role of Fos/Jun 



59 

 

proteins in EA-induced transcription of preproenkephalin and preprodynorphin genes. 

Brain Res Mol Brain Res. 43: 167-173. 

Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Li-Chung, H., Wang, G. G., 

Kamps, M. P., Raz, E., Wagner, H., Hacker, G., Mann, M. & Karin, M. 2006. 

Specificity in Toll-like receptor signalling through distinct effector functions of 

TRAF3 and TRAF6. Nature 439: 204-207. 

Haeberle, H., Fujiwara, M., Chuang, J., Medina, M. M., Panditrao, M. V., Bechstedt, S., 

Howard, J. & Lumpkin, E. A. 2004. Molecular profiling reveals synaptic release 

machinery in Merkel cells. Proceedings of the National Academy of Sciences of the 

United States of America 101: 14503-14508. 

Hagermark, O., Hokfelt, T. & Pernow, B. 1978. Flare and Itch Induced by Substance P in 

Human Skin. Journal of Investigative Dermatology 71: 233-235. 

Hagino, Y., Kariura, Y., Manago, Y., Amano, T., Wang, B., Sekiguchi, M., Nishikawa, K., 

Aoki, S., Wada, K. & Noda, M. 2004. Heterogeneity and potentiation of AMPA type 

of glutamate receptors in rat cultured microglia. Glia 47: 68-77. 

Haker, E. & Lundeberg, T. 1990. Acupuncture treatment in epicondylalgia: a comparative 

study of two acupuncture techniques. The Clinical journal of pain 6: 221-226. 

Halassa, M. M., Fellin, T. & Haydon, P. G. 2007. The tripartite synapse: roles for 

gliotransmission in health and disease. Trends in molecular medicine 13: 54-63. 

Hammerschlag, R. & Zwickey, H. 2006. Evidence-Based Complementary and Alternative 

Medicine: Back to Basics. Journal of Alternative & Complementary Medicine 12: 

349-350. 



60 

 

Han, C. S., Chou, P. H., Lu, C. H., Yang, T. H., Lu, L. H. & Jen, M. F. 1979a. The role of 

central 5-HT in acupuncture analgesia. Sci. Sin., 22: 91-104. 

Han, J. S. 1994. Scientific study may pave the way for the use of acupuncture in pain 

medicine. Aps Journal 3: 92-95. 

Han, J. S. 1995. Cholecystokinin octapeptide (CCK-8): a negative feedback control 

mechanism for opioid analgesia. Prog Brain Res 105: 263-271. 

Han, J. S. 2003. Acupuncture: neuropeptide release produced by electrical stimulation of 

different frequencies. Trends in neurosciences 26: 17-22. 

Han, J. S., Li, S. J. & Tang, J. 1981. Tolerance to electroacupuncture and its cross 

tolerance to morphine. Neuropharmacology 20: 593-596. 

Han, J. S., Tang, J., Huang, B. S., Liang, X. N. & Zhang, N. H. 1979b. Acupuncture 

tolerance in rats: antiopiate substrates implicated. Chin Med J (Engl) 92: 625-627. 

Han, J. S., Xie, G. X., Zhou, Z. F., Folkesson, R. & Terenius, L. 1984. Acupuncture 

mechanisms in rabbits studied with microinjection of antibodies against beta-

endorphin, enkephalin and substance P. Neuropharmacology 23: 1-5. 

Han, Z., Jiang, Y. H., Wan, Y., Wang, Y., Chang, J. K. & Han, J. S. 1999. Endomorphin-1 

mediates 2 Hz but not 100 Hz electroacupuncture analgesia in the rat. Neuroscience 

letters 274: 75-78. 

Han, Z., Zhang, E. & Craig, A. D. 1998. Nociceptive and thermoreceptive lamina I 

neurons are anatomically distinct. Nature neuroscience 1: 218. 



61 

 

Harris, R. E., Zubieta, J., Scott, D. J., Napadow, V., Gracely, R. H. & Clauw, D. J. 2009. 

Traditional Chinese acupuncture and placebo (sham) acupuncture are differentiated by 

their effects on mu-opioid receptors (MORs). NeuroImage 47: 1077-1085. 

Haydon, P. G. 2001. Glia: listening and talking to the synapse. Nature Reviews 

Neuroscience 2: 185-193. 

He, C. M. & Han, J. S. 1990. Attenuation of low rather than high frequency 

electroacupuncture analgesia following microinjection of β-endorphin antiserum into 

the periaqueductal gray in rats. Acupunct. Sci. Int. J. 1: 19-27. 

He, L. F. 1987. Involvement of endogenous opioid peptides in acupuncture analgesia. Pain 

31: 99-121. 

Hertz, L., Schousboe, A., Boechler, N., Mukerji, S. & Fedoroff, S. 1978. Kinetic 

characteristics of the glutamate uptake into normal astrocytes in cultures. 

Neurochemical research 3: 1-14. 

Hielm-Björkman, A., Kuusela, E., Liman, A., Markkola, A., Saarto, E., Huttunen, P., 

Leppäluoto, J., Tulamo, R. & Raekallio, M. 2003. Evaluation of methods for 

assessment of pain associated with chronic osteoartritis in dogs. Journal of the 

American Veterinary Medical Association 222: 336-339. 

Hielm-Björkman, A. K., Kapatkin, A. S. & Rita, H. J. 2011. Reliability and validity of a 

visual analogue scale (VAS) used by owners to measure chronic pain attributable to 

osteoarthritis in their dogs. American Journal of Veterinary Research 72: 601-607. 

Hielm-Björkman, A. K., Rita, H. & Tulamo, R. 2009. Psychometric testing of the Helsinki 

chronic pain index by completion of a questionnaire in Finnish by owners of dogs 



62 

 

with chronic signs of pain caused by osteoarthritis. American Journal of Veterinary 

Research 70: 727-734. 

Holzer, P. 1992. Peptidergic sensory neurons in the control of vascular functions: 

mechanisms and significance in the cutaneous and splanchnic vascular beds. Reviews 

of physiology, biochemistry and pharmacology 121: 49-146. 

Honore, P., Rogers, S. D., Schwei, M. J., Salak-Johnson, J. L., Luger, N. M., Sabino, M. 

C., Clohisy, D. R. & Mantyh, P. W. 2000. Murine models of inflammatory, 

neuropathic and cancer pain each generates a unique set of neurochemical changes in 

the spinal cord and sensory neurons. Neuroscience 98: 585-598. 

Hu, S. J., Hu, J. J. & Fan, J. Z. 1980. The influence of dorsal half transection of the spinal 

cord on inhibitory effect of electroacupuncture upon the medbrain discharges. Acta 

Zool. Sin 26: 115-120. 

Huang, C., Hua, Z. P., Jiang, S. Z., Li, H., Han, J. & Wan, Y. 2007. CCK-8 receptor 

antagonist L365,260 potentiates the efficacy to and reverses chronic tolerance to 

electroacupuncture-induced analgesia in mice. Brain Res. Bull. 71: 447-451. 

Huang, C., Li, H., Shi, Y., Han, J. & Wan, Y. 2004. Ketamine potentiates the effect of 

electroacupuncture on mechanical allodynia in a rat model of neuropathic pain. 

Neuroscience letters 368: 327-331. 

Hui, K. K. S., Liu, J., Marina, O., Napadow, V., Haselgrove, C., Kwong, K. K., Kennedy, 

D. N. & Makris, N. 2005. The integrated response of the human cerebro-cerebellar 

and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. 

NeuroImage 27: 479-496. 



63 

 

Hui, K. K. S., Marina, O., Liu, J., Rosen, B. R. & Kwong, K. K. 2010. Acupuncture, the 

limbic system, and the anticorrelated networks of the brain. Autonomic Neuroscience: 

Basic & Clinical 157: 81-90. 

Hwang, Y. C. 1992. Anatomy and classification of acupoints. Problems in veterinary 

medicine 4: 12-15. 

Iggo, A., Molony, V. & Steedman, W. M. 1988. Membrane properties of nociceptive 

neurones in lamina II of lumbar spinal cord in the cat. Journal of Physiology (London) 

400: 367-380. 

International Association for the Study of Pain 1994. Classification of Chronic Pain. 2nd 

(revised) edition.  

International Association for the Study of Pain 2012. IASP, Taxonomy. http://www.iasp-

pain.org/Taxonomy?navItemNumber=576. Cited 17.11.2014.  

Itoh, K., Hirota, S., Katsumi, Y., Ochi, H. & Kitakoji, H. 2008. Trigger point acupuncture 

for treatment of knee osteoarthritis--a preliminary RCT for a pragmatic trial. 

Acupuncture in medicine : journal of the British Medical Acupuncture Society 26: 17-

26. 

Itoh, S., Katsuura, G. & Maeda, Y. 1982. Caerulein and CCK suppress beta-endorphin 

induced analgesia in the rat. Eur. J. Pharmacol. 80: 421-425. 

Jalonen, T. O., Margraf, R. R., Wielt, D. B., Charniga, C. J., Linne, M. & Kimelberg, H. K. 

1997. Serotonin induces inward potassium and calcium currents in rat cortical 

astrocytes. Brain research 758: 69-82. 

http://www.iasp-pain.org/Taxonomy?navItemNumber=576
http://www.iasp-pain.org/Taxonomy?navItemNumber=576


64 

 

Johannes, C. B., Le, T. K., Zhou, X., Johnston, J. A. & Dworkin, R. H. 2010. The 

Prevalence of Chronic Pain in United States Adults Results of an Internet-Based 

Survey. Journal Of Pain 11: 1230-1239. 

Kaptchuk, T. J. 2000. The Web That Has No Weaver; Understanding Chinese Medicine. 

2nd edition. New York, NY: McGraw-Hill. 

Kaptchuk, T. J., Stason, W. B., Davis, R. B., Legedza, A. R. T., Schnyer, R. N., Kerr, C. 

E., Stone, D. A., Nam, B. H., Kirsch, I. & Goldman, R. H. 2006. Sham Device v Inert 

Pill: Randomised Controlled Trial of Two Placebo Treatments. BMJ (British Medical 

Journal) 332: 391-397. 

Kaufman, E. E. & Driscoll, B. F. 1992. Carbon Dioxide Fixation in Neuronal and 

Astroglial Cells in Culture. Journal of neurochemistry 58: 258-262. 

Kawakita, K., Itoh, K., Okada, K., Sato, A., Li, P. & Campbell, J. L. 2002. The polymodal 

receptor hypothesis of acupuncture and moxibustion, and its rational explanation of 

acupuncture points. ACUPUNCTURE: IS THERE A PHYSIOLOGICAL BASIS? 

1238: 63-68. 

Kim, H., Kim, Y., Jang, J., Shin, H. & Choi, B. 2012. Effects of Electroacupuncture on N-

Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of 

Normal Rats. Evidence-Based Complementary And Alternative Medicine 2012: 1-9. 

Kim, J. H., Min, B. I., Schmidt, D., Lee, H. J. & Park, D. S. 2000. The difference between 

electroacupuncture only and electroacupuncture with manipulation on analgesia in 

rats. Neuroscience letters 279: 149-152. 



65 

 

Kishioka, S., Miyamoto, Y., Fukunaga, Y., Nishida, S. & Yamamoto, H. 1994. Effects of a 

mixture of peptidase inhibitors (amastatin, captopril and phosphoramidon) on Met-

enkephalin-, beta-endorphin-, dynorphin-(1-13)- and electroacupuncture-induced 

antinociception in rats. Jpn. J. Pharmacol. 66: 337-345. 

Ko, E., Kim, S. K., Kim, J., Lee, G., Han, J., Rho, S., Hong, M., Bae, H. & Min, B. 2006. 

The difference in mRNA expressions of hypothalamic CCK and CCK-A and -B 

receptors between responder and non-responder rats to high frequency 

electroacupuncture analgesia. Peptides 27: 1841-1845. 

Koltzenburg, M., Lundberg, L. E. R. & Torebjork, H. E. 1992. Dynamic and static 

components of mechanical hyperalgesia in human hairy skin. Pain 51: 207-219. 

Koltzenburg, M. 2000. Neural mechanisms of cutaneous nociceptive pain. Clinical Journal 

of Pain 16. 

Kong, J., Kaptchuk, T. J., Polich, G., Kirsch, I., Vangel, M., Zyloney, C., Rosen, B. & 

Gollub, R. 2009a. Expectancy and treatment interactions: A dissociation between 

acupuncture analgesia and expectancy evoked placebo analgesia. NeuroImage 45: 

940-949. 

Kong, J., Kaptchuk, T. J., Polich, G., Kirsch, I., Vangel, M., Zyloney, C., Rosen, B. & 

Gollub, R. L. 2009b. An fMRI study on the interaction and dissociation between 

expectation of pain relief and acupuncture treatment. NeuroImage 47: 1066-1076. 

Koo, S. T., Park, Y. I., Lim, K. S., Chung, K. & Chung, J. M. 2002. Acupuncture analgesia 

in a new rat model of ankle sprain pain. Pain (03043959) 99: 423-431. 



66 

 

Kramer, S., Winterhalter, K., Schober, G., Becker, U., Wiegele, B., Kutz, D. F., Kolb, F. 

P., Zaps, D., Lang, P. M. & Irnich, D. 2009. Characteristics of Electrical Skin 

Resistance at Acupuncture Points in Healthy Humans. Journal of Alternative & 

Complementary Medicine 15: 495-500. 

Kuhn, S. A., van Landeghem, F. K. H., Zacharias, R., Färber, K., Rappert, A., Pavlovic, S., 

Hoffmann, A., Nolte, C. & Kettenmann, H. 2004. Microglia express GABA(B) 

receptors to modulate interleukin release. Molecular And Cellular Neuroscience 25: 

312-322. 

Kukkar, A., Bali, A., Singh, N. & Jaggi, A. S. 2013. Implications and mechanism of action 

of gabapentin in neuropathic pain. Archives of Pharmacal Research 36: 237-251. 

Kurz, H. 1998. Embryonic CNS macrophages and microglia do not stem from circulating, 

but from extravascular precursors. Glia 22: 98-102. 

Kwon, Y. D., Lee, J. H. & Lee, M. S. 2007. Increased temperature at acupuncture points 

induced by weight reduction in obese patients: a preliminary study. International 

Journal of Neuroscience 117: 591-595. 

LaMotte, R., Shain, C. N., Simone, D. A. & Tsai, E. F. 1991. Neurogenic hyperalgesia: 

Psychophysical studies of underlying mechanisms. Journal of neurophysiology 66: 

190-211. 

Langevin, H. M., Bouffard, N. A., Churchill, D. L. & Badger, G. J. 2007. Connective 

tissue fibroblast response to acupuncture: dose-dependent effect of bidirectional 

needle rotation. Journal of Alternative & Complementary Medicine 13: 355-360. 



67 

 

Langevin, H. M., Churchill, D. L. & Cipolla, M. J. 2001. Mechanical signaling through 

connective tissue: a mechanism for the therapeutic effect of acupuncture. FASEB 

journal : official publication of the Federation of American Societies for Experimental 

Biology 15: 2275-2282. 

Langevin, H. M., Hammerschlag, R., Lao, L., Napadow, V., Schnyer, R. N. & Sherman, K. 

J. 2006. Controversies In Acupuncture Research: Selection of Controls and Outcome 

Measures In Acupuncture Clinical Trials. Journal of Alternative & Complementary 

Medicine 12: 943-953. 

Langevin, H. M. & Yandow, J. A. 2002. Relationship of acupuncture points and meridians 

to connective tissue planes. The Anatomical Record 269: 257-265. 

Lao, L., Zhang, R., Zhang, G., Wang, X., Berman, B. M. & Ren, K. 2004. A parametric 

study of electroacupuncture on persistent hyperalgesia and Fos protein expression in 

rats. Brain research 1020: 18-29. 

Lee, J. & Beitz, A. J. 1993. The distribution of brain-stem and spinal-cord nuclei 

associated with different frequencies of electroacupunctureanalgesia. Pain 52: 11-28. 

Lees, P., Landoni, M. F., Giraudel, J. & Toutain, P. L. 2004. Pharmacodynamics and 

pharmacokinetics of nonsteroidal anti-inflammatory drugs in species of veterinary 

interest. Journal of Veterinary Pharmacology & Therapeutics 27: 479-490. 

Lewis, T. 1935. Experiments relating to cutaneous hyperalgesia and its spread through 

somatic fibres. Clinical Science 2: 373-423. 



68 

 

Li, A., Wang, Y., Xin, J., Lao, L., Ren, K., Berman, B. M. & Zhang, R. 2007. 

Electroacupuncture suppresses hyperalgesia and spinal Fos expression by activating 

the descending inhibitory system. Brain research 1186: 171-179. 

Li, A., Zhang, J. M. & Xie, Y. K. 2004. Human acupuncture points mapped in rats are 

associated with excitable muscle/skin-nerve complexes with enriched nerve endings. 

Brain research 1012: 154-159. 

Li, F., He, T., Xu, Q., Lin, L. T., Li, H., Liu, Y., Shi, G. X. & Liu, C. Z. 2015. What is the 

Acupoint? A preliminary review of Acupoints. Pain Medicine 16: 1905-1915. 

Li, H., Ohishi, H., Kinoshita, A., Shigemoto, R., Nomura, S. & Mizuno, N. 1997. 

Localization of metobotropic glutamate receptor, mGluR7, in axon terminals of 

presumed nociceptive, primary afferent fibers in the superficial layer of the spinal 

dorsal horn: an electron microscope study in the rat. Neurosci. Lett. 233: 153-156. 

Li, J. & Baccei, M. L. 2009. Excitatory synapses in the rat superficial dorsal horn are 

strengthened following peripheral inflammation during early postnatal development. 

Pain 143: 56-64. 

Li, K., Shan, B., Xu, J., Liu, H., Wang, W., Zhi, L., Li, K., Yan, B. & Tang, X. 2006. 

Changes in fMRI in the Human Brain Related to Different Durations of Manual 

Acupuncture Needling. Journal of Alternative & Complementary Medicine 12: 615-

623. 

Li, L., Lingling, Y., Peijing, R., Hui, B., Xia, L., Bing, Z. & Rixin, C. 2013. Visceral 

Nociceptive Afferent Facilitates Reaction of Subnucleus Reticularis Dorsalis to 



69 

 

Acupoint Stimulation in Rats. Evidence-based Complementary & Alternative 

Medicine (eCAM) 2013: 1-7. 

Light, A. R. & Perl, E. R. 1979. Spinal termination of functionally identified primary 

afferent neurons with slowly conducting myelinated fibers. Journal of Comparative 

Neurology 186: 133-150. 

Lischetzki, G., Rukwied, R., Handwerker, H. O. & Schmelz, M. 2001. Nociceptor 

activation and protein extravasation induced by inflammatory mediators in human 

skin. European Journal Of Pain-London 5: 49-57. 

Littlewood, N. K., Todd, A. J., Spike, R. C., Watt, C. & Shehab, S. A. S. 1995. The types 

of neuron in spinal dorsal horn which possess neurokinin-1 receptors. Neuroscience 

66: 597-608. 

Liu, H., Wang, H., Sheng, M., Jan, L. Y., Jan, Y. N. & Basbaum, A. I. 1994. Evidence for 

presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn. 

Proceedings of the National Academy of Sciences, USA 91: 8383-8387. 

Liu, X. 1996. The modulation of cerebral cortex and subcortical nuclei on NRM and their 

role in acupuncture analgesia. Zhen ci yan jiu = Acupuncture research / Zhongguo yi 

xue ke xue yuan Yi xue qing bao yan jiu suo bian ji] 21: 4-11. 

Liu, X., Zhu, B. & Zhang, S. 1986. Relationship between electroacupuncture analgesia and 

descending pain inhibitory mechanism of nucleus raphe magnus. Pain 24: 383-396. 

Lorenz, J., Grasedyck, K. & Bromm, B. 1996. Middle and long latency somatosensory 

evoked potentials after painful laser stimulation in patients with fibromyalgia 

syndrome. Electroencephalography and clinical neurophysiology 100: 165-168. 



70 

 

Lumpkin, E. A. & Caterina, M. J. 2007. Mechanisms of sensory transduction in the skin. 

Nature 445: 858-865. 

Lund, I. & Lundeberg, T. 2010. On the threshold - evaluation of variability in effects of 

acupuncture in a gender perspective. Chinese Medicine 5: 32-41. 

Macklin, E. A., Wayne, P. M., Kalish, L. A., Valaskatgis, P., Thompson, J., Pian-Smith, 

M. C. M., Zhang, Q., Stevens, S., Goertz, C., Prineas, R. J., Buczynski, B. & Zusman, 

R. M. 2006. Stop Hypertension with the Acupuncture Research Program (SHARP): 

results of a randomized, controlled clinical trial. Hypertension 48: 838-845. 

Maihofner, C., Handwerker, H. O. & Birklein, F. 2006. Functional imaging of allodynia in 

complex regional pain syndrome. Neurology 66: 711-717. 

Mantyh, P. W. 1983. Connections of midbrain periaqueductal gray in the monkey. I. 

Ascending efferent projections. Journal of neurophysiology 49: 567-581. 

Mantyh, P. W. & Rogers, S. D. 1997. Inhibition of hyperalgesia by ablation of lamina I 

spinal neurons expressing the substance P recepto. Science 278: 275-279. 

Mark, K. S. & Miller, D. W. 1999. Increased permeability of primary cultured brain 

microvessel endothelial cell monolayers following TNF-a exposure. Life Sciences 64: 

1941-1953. 

Mark, M. D. & Herlitze, S. 2000. G-protein mediated gating of inward-rectifier K+ 

channels. European Journal of Biochemistry 267: 5830-5836. 

Mayer, D. J., Price, D. D. & Rafii, A. 1977. Antagonism of acupuncture analgesia in man 

by the narcotic antagonist naloxone. Brain research 121: 368-372. 



71 

 

McMahon, S. B., Koltzenburg, M., Tracey, I. & Turk, D. C. 2013. Wall and Melzack´s 

Textbook of Pain. 6th edition. Philadelphia: Saunders, an imprint of Elsevier Ltd. 

Melzack, R. & Casey, K. L. 1968. Sensory, motivational, and central control determinants 

of pain: a new conceptual model. In: Kenshalo, D. R. (ed.). The skin senses. 1st 

edition.Charles C. Thomas, pp. 432.  

Melzack, R., Stillwell, D. M. & Fox, E. J. 1977. Trigger points and acupuncture points for 

pain: Correlations and implications. Pain 3: 3-23. 

Mendell, L. M. 1966. Physiological properties of unmyelinated fiber projections to the 

spinal cord. Exp. Neurol. 16: 316-332. 

Mense, S. 2008. Anatomy of Nociceptors. In: Basbaum, A. I., Kaneko, A., Shepherd, G. 

M. & Westheimer, G. (eds.). The Senses: A Comprehensive Reference. Academic 

Press, pp. 11-41.  

Mense, S. & Schmidt, R. F. 1977. Muscle pain: Which receptors are responsible for the 

transmission of noxious stimuli. In: Rose, F. C. (ed.). Physiological aspects of clinical 

neurology. Blackwell scientific publications, pp. 265-278.  

Meyer, R. A. & Campbell, J. N. 1981. Myelinated nociceptive afferents account for the 

hyperalgesia that follows a burn to the hand. Science 213: 1527-1529. 

Meyer, R. A., Davis, K. D., Cohen, R. H., Treede, R. D. & Campbell, J. N. 1991. 

Mechanically insensitive afferents (MIAs) in cutaneous nerves of monkey. Brain Res 

561: 252-261. 



72 

 

Meyers, D. E. R. & Snow, P. J. 1982. The morphology of physiologically identified deep 

spinothalamic tract cells in the lumbar spinal cord of the cat. Journal of Physiology 

329: 373-388. 

Millan, M. J. 2002. Descending control of pain. Progress in neurobiology 66: 355-474. 

Milligan, E. D. & Watkins, L. R. 2009. Pathological and protective roles of glia in chronic 

pain. Nat Rev Neurosci. 10: 23-36. 

Minelli, A., Barbaresi, P., Reimer, R. J., Edwards, R. H. & Conti, F. 2001. The glial 

glutamate transporter GLT-1 is localized both in the vicinity of and at distance from 

axon terminals in the rat cerebral cortex. Neuroscience 108: 51-59. 

Miraucourt, L. S., Moisset, X., Dallel, R. & Voisin, D. L. 2009. Glycine Inhibitory 

Dysfunction Induces a Selectively Dynamic, Morphine-Resistant, and Neurokinin 1 

Receptor- Independent Mechanical Allodynia. Journal of Neuroscience 29: 2519-

2527. 

Mizumura, K., Minagawa, M., Koda, H. & Kumazawa, T. 1995. Influence of histamine on 

the bradykinin response of canine testicular polymodal receptors in-vitro. 

Inflammation Research 44: 376-378. 

Molander, C., Xu, Q. & Grant, G. 1984. The cytoarchitectonic organization of the spinal 

cord in the rat. I. The lower thoracic and lumbosacral cord. Journal of Comparative 

Neurology 230: 133-141. 

Montana, V., Yingchun Ni, V., Xue, H., Parpura, V. & Sunjara, V. 2004. Vesicular 

glutamate transporter-dependent glutamate release from astrocytes. Journal Of 

Neuroscience : The Official Journal Of The Society For Neuroscience 24: 2633-2642. 



73 

 

Moore, K. A., Kohno, T., Karchewski, L. A., Scholz, J., Baba, H. & Woolf, C. J. 2002. 

Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in 

the superficial dorsal horn of the spinal cord. Journal Of Neuroscience 22: 6724-6731. 

Morrison, J. F., Sato, A., Sato, Y. & Yamanishi, T. 1995. The influence of afferent inputs 

from skin and viscera on the activity of the bladder and the skeletal muscle 

surrounding the urethra in the rat. Neuroscience research 23: 195-205. 

Murotani, T., Ishizuka, T., Nakazawa, H., Wang, X., Mori, K., Sasaki, K., Ishida, T. & 

Yamatodani, A. 2010. Possible involvement of histamine, dopamine, and noradrenalin 

in the periaqueductal gray in electroacupuncture pain relief. Brain research 1306: 62-

68. 

Nadkarni, S. & Jung, P. 2004. Dressed neurons: modeling neural-glial interactions. 

Physical Biology 1: 35-41. 

Napadow, V., Kettner, N., Liu, J., Li, M., Kwong, K. K., Vangel, M., Makris, N., Audette, 

J. & Hui, K. K. S. 2007. Hypothalamus and amygdala response to acupuncture stimuli 

in carpal tunnel syndrome. Pain 130: 254-266. 

Ness, T. J. & Gebhart, G. F. 1990. Visceral pain: a review of experimental studies. Pain 41: 

167-234. 

Ngai, S. P. C., Jones, A. Y. M. & Cheng, E. K. W. 2011. Lung meridian acupuncture point 

skin impedance in asthma and description of a mathematical relationship with FEV. 

Respiratory Physiology & Neurobiology 179: 187-191. 

Nichols, M. L. & Allen, B. J. 1999. Transmission of Chronic Nociception by Spinal 

Neurons Expressing the Substance P Receptor. Science 286: 1558. 



74 

 

Noda, M., Nakanishi, H., Nabekura, J. & Akaike, N. 2000. AMPA-kainate subtypes of 

glutamate receptor in rat cerebral microglia. Journal Of Neuroscience 20: 251-258. 

Olson, J. K. & Miller, S. D. 2004. Microglia initiate central nervous system innate and 

adaptive immune responses through multiple TLRs. Journal of Immunology 173: 

3916-3924. 

Pan, B., Castro-Lopes, J. M. & Coimbra, A. 1994. C-fos expression in the hypothalamo-

pituitary system induced by electroacupuncture or noxious stimulation. Neuroreport 5: 

1649-1652. 

Pan, B., Castro-Lopes, J. M. & Coimbra, A. 1997. Chemical sensory deafferentation 

abolishes hypothalamic pituitary activation induced by noxious stimulation or 

electroacupuncture but only decreases that caused by immobilization stress. A c-fos 

study. Neuroscience 78: 1059-1068. 

Pan, B. H., Castro-Lopes, J. M. & Coimbra, A. 1996. Activation of anterior lobe 

corticotrophs by electroacupuncture or noxious stimulation in the anaesthetized rat, as 

shown by colocalization of fos protein with ACTH and beta-endorphin and increased 

hormone release. Brain research bulletin 40: 175-182. 

Pan, H., Wu, Z., Zhou, H., Chen, S., Zhang, H. & Li, D. 2008. Modulation of pain 

transmission by G-protein-coupled receptors. Pharmacology And Therapeutics 117: 

141-161. 

Pariente, J., White, P., Frackowiak, R. S. J. & Lewith, G. 2005. Expectancy and belief 

modulate the neuronal substrates of pain treated by acupuncture. NeuroImage 25: 

1161-1167. 



75 

 

Pastor, A., Chvátal, A., Syková, E. & Kettenmann, H. 1995. Glycine- and GABA-activated 

Currents in Identified Glial Cells of the Developing Rat Spinal Cord Slice. European 

Journal of Neuroscience 7: 1188-1198. 

Pearson, S., Colbert, A. P., McNames, J., Baumgartner, M. & Hammerschlag, R. 2007. 

Electrical Skin Impedance at Acupuncture Points. Journal of Alternative & 

Complementary Medicine 13: 409-418. 

Peets, J. M. & Pomeranz, B. 1978. CXBK mice deficient in opiate receptors show poor 

electroacupuncture analgesia. Nature 273: 675-676. 

Plenderleith, M. B., Haller, C. J. & Snow, P. J. 1990. Peptide coexistence in axon terminals 

within the superficial dorsal horn of the rat spinal cord. Synapse 6: 344-350. 

Polgar, E., Hughes, D. I., Riddell, J. S., Maxwell, D. J., Puskar, Z. & Todd, A. J. 2003. 

Selective loss of spinal GABAergic or glycinergic neurons is not necessary for 

development of thermal hyperalgesia in the chronic constriction injury model of 

neuropathic pain. Pain (03043959) 104: 229. 

Pomeranz, B. & Chiu, D. 1976. Naloxone blockade of acupuncture analgesia: Endorphin 

implicated. Life Sciences 19: 1757-1762. 

Raivich, G., Bohatschek, M., Kloss, C. U., Werner, A., Jones, L. L. & Kreutzberg, G. W. 

1999. Neuroglial activation repertoire in the injured brain: graded response, molecular 

mechanisms and cues to physiological function. Brain Research Reviews 30: 77-105. 

Raja, S. N., Campbell, J. N. & Meyer, R. A. 1984. Evidence for different mechanisms of 

primary and secondary hyperalgesia following heat injury to the glabrous skin. Brain 

107: 1179-1188. 



76 

 

Ramey, D. W. 2001. Acupuncture points and meridians do not exist. Scientific Review of 

Alternative Medicine 5: 143-148. 

Raouf, R., Quick, K. & Wood, J. N. 2010. Pain as a channelopathy. The Journal of clinical 

investigation 120: 3745-3752. 

Reeh, P. W., Bayer, J., Kocher, L. & Handwerker, H. O. 1987. Sensitization of nociceptive 

cutaneous nerve fibers from the rat's tail by noxious mechanical stimulation. 

Experimental Brain Research 65: 505-512. 

Research Group of Acupuncture Analgesia 1974. The role of some neurotransmitters of 

brain in finger acupuncture anaesthesia. Pain 17: 112-130. 

Rexed, B. 1952. The cytoarchitectonic organization of the spinal cord in the cat. Journal of 

Comparative Neurology 96: 414-495. 

Reynolds, D. V. 1969. Surgery in the rat during electrical analgesia induced by focal brain 

stimulation. Science 164: 444-445. 

Roza, C., Laird, J. M. A. & Cervero, F. 1998. Spinal mechanisms underlying persistent 

pain and referred hyperalgesia in rats with an experimental ureteric stone. Journal of 

neurophysiology 79: 1603-1612. 

Ru-Rong, J. & Suter, M. R. 2007. p38 MAPK, microglial signaling and neuropathic pain. 

Molecular Pain 3: 33. 

Ruscheweyh, R. & Sandkuhler, J. 2003. Epileptiform activity in rat spinal dorsal horn in 

vitro has common features with neuropathic pain. Pain 105: 327-338. 



77 

 

Ruscheweyh, R. & Sandkuhler, J. 2005. Long-range oscillatory Ca super(2+) waves in rat 

spinal dorsal horn. European Journal of Neuroscience 22: 1967-1976. 

Saadé, N., Jabbur, S. J. & Wall, P. D. 1985. Effects of 4-aminopyridine, GABA and 

bicuculline on cutaneous receptive fields of cat dorsal horn neurons. Brain research 

344: 356-359. 

Salter, M. W. & Henry, J. L. 1991. Responses of functionally identified neurones in the 

dorsal horn of the cat spinal cord to substance P, neurokinin A and physalaemin. 

Neuroscience 43: 601-610. 

Sato, A. & Schmidt, R. F. 1973. Somatosympathetic reflexes: afferent fibers, central 

pathways, discharge characteristics. Physiological Reviews 53: 916-947. 

Schafer, M., Carter, L. & Stein, C. 1994. Interleukin 1 beta and corticotropin-releasing 

factor inhibit pain by releasing opioids form immune cells in inflamed tissue. 

Proceedings Of The National Academy Of Sciences Of The United States Of Ame 91: 

4219-4223. 

Schmidt, B. L., Hamamoto, D. T., Simone, D. A. & Wilcox, G. L. 2010. Mechanism of 

cancer pain. Molecular interventions 10: 164-178. 

Schoen, A. M. 2001. Veterinay Acupuncture; Ancient Art to Modern Medcine. 2nd 

edition. St Louis, Missouri: Mosby, Inc. 

Schoffnegger, D., Ruscheweyh, R. & Sandkuhler, J. 2008. Spread of excitation across 

modality borders in spinal dorsal horn of neuropathic rats. Pain (03043959) 135: 300-

310. 



78 

 

Schouenborg, J., Weng, H., Kalliomäki, J. & Holmberg, H. 1995. A survey of spinal dorsal 

horn neurones encoding the spatial organization of withdrawal reflexes in the rat. 

Experimental Brain Research 106: 19-27. 

Seal, R. P., Wang, X., Guan, Y., Raja, S. N., Woodbury, C. J., Basbaum, A. I. & Edwards, 

R. H. 2009. Injury-induced mechanical hypersensitivity requires C-low threshold 

mechanoreceptors. Nature 462: 651-655. 

Sekido, R., Ishimaru, K. & Sakita, M. 2003. Differences of Electroacupuncture-induced 

Analgesic Effect in Normal and Inflammatory Conditions in Rats. American Journal 

of Chinese Medicine 31: 955-965. 

Shan, S., Qi-Liang, M., Hong, C., Tingting, L., Mei, H., Haili, P., Yan-Qing, W., Zhi-Qi, 

Z. & Yu-Qiu, Z. 2007. Is functional state of spinal microglia involved in the anti-

allodynic and anti-hyperalgesic effects of electroacupuncture in rat model of 

monoarthritis? Neurobiology of disease 26: 558-568. 

Shank, R., Bennett, G. S., Freytac, S. O. & LeM. Campbell, G. 1985. Pyruvate 

carboxylase: An astrocyte-specific enzyme implicated in the replenishment of amino 

acid neurotransmitter pools. Brain research 329: 364-367. 

Shen, E., Wu, W. Y., Du, H. J., Wei, J. Y. & Zhu, D. X. 1973. Electromyographic activity 

produced locally by acupuncture manipulation (Chinese). Chinese Med. J. 53: 532-

535. 

Sherrington, C. S. 1906. The integrative action of the nervous system.  

Silberstein, M. 2009. The cutaneous intrinsic visceral afferent nervous system: A new 

model for acupuncture analgesia. Journal of theoretical biology 261: 637-642. 



79 

 

Silva, J. R. T., Silva, M. L. & Prado, W. A. 2011. Analgesia Induced by 2- or 100-Hz 

Electroacupuncture in the Rat Tail-Flick Test Depends on the Activation of Different 

Descending Pain Inhibitory Mechanisms. Journal Of Pain 12: 51-60. 

Silverman, J. D. & Kruger, L. 1988a. Acid Phosphatase as a Selective Marker for a Class 

of Small Sensory Ganglion Cells in Several Mammals: Spinal Cord Distribution, 

Histochemical Properties, and Relation to Fluoride-Resistant Acid Phosphatase 

(FRAP) of Rodents. Somatosensory & motor research 5: 219-246. 

Silverman, J. D. & Kruger, L. 1988b. Lectin and Neuropeptide Labeling of Separate 

Populations of Dorsal Root Ganglion Neurons and Associated “Nociceptor” Thin 

Axons in Rat Testis and Cornea Whole-Mount Preparations. Somatosensory & motor 

research 5: 259-267. 

Simone, D. A., Sorkin, L. S., Oh, U., Chung, J. M., Owens, C., LaMotte, R. H. & Willis, 

W. D. 1991. Neurogenic hyperalgesia: Central neural correlates in responses of 

spinothalamic tract neurons. Journal of neurophysiology 66: 228-246. 

Sivilotti, L. & Woolf, C. J. 1994. The contribution of GABAA and glycine receptors to 

central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. 

Journal of neurophysiology 72: 169-179. 

Sjölund, B., Terenius, L. & Eriksson, M. 1977. Increased Cerebrospinal Fluid Levels of 

Endorphins after Electro-Acupuncture. Acta Physiologica Scandinavica 100: 382-384. 

Sluka, K. A., Willis, W. D. & Westlund, K. N. 1993. Joint inflammation and hyperalgesia 

are reduced by spinal bicuculline. Neuroreport 5: 109-112. 



80 

 

Spike, R. C., Puskar, Z., Andrew, D. & Todd, A. J. 2003. A quantitative and morphological 

study of projection neurons in lamina I of the rat lumbar spinal cord. European Journal 

of Neuroscience 18: 2433-2448. 

Sprott, H., Franke, S., Kluge, H. & Hein, G. 1998. Pain treatment of fibromyalgia by 

acupuncture. Rheumatology international 18: 35-36. 

Starowicz, K. & Przewlocka, B. 2012. Modulation of neuropathic-pain-related behaviour 

by the spinal endocannabinoid/ endovanilloid system. Philosophical Transactions of 

the Royal Society B: Biological Sciences 367: 3286-3299. 

Stein, C. 1991. Peripheral analgesic actions of opioids. Journal of pain and symptom 

management 6: 119-124. 

Stein, C., Schafer, M. & Machelska, H. 2003. Attacking pain at its source: new 

perspectives on opioids. Nature medicine 9: 1003-1008. 

Sun, R., Wang, H., Wan, Y., Jing, Z., Luo, F., Han, J. & Wang, Y. 2004. Suppression of 

neuropathic pain by peripheral electrical stimulation in rats: mu-opioid receptor and 

NMDA receptor implicated. Experimental neurology 187: 23-29. 

Sun, S., Chen, W., Wang, P., Zhao, Z. & Zhang, Y. 2006. Disruption of glial function 

enhances electroacupuncture analgesia in arthritic rats. Experimental neurology 198: 

294-302. 

Sung, B., Lim, G. & Mao, J. 2003. Altered Expression and Uptake Activity of Spinal 

Glutamate Transporters after Nerve Injury Contribute to the Pathogenesis of 

Neuropathic Pain in Rats. Journal of Neuroscience 23: 2899. 



81 

 

Takahashi, Y., Aoki, Y. & Doya, H. 2007. Segmental somatotopic organization of 

cutaneous afferent fibers in the lumbar spinal cord dorsal horn in rats. Anatomical 

Science International 82: 24-30. 

Takeshige, C., Oka, K., Mizuno, T., Hisamitsu, T., Luo, C., Kobori, M., Mera, H. & Fang, 

T. 1993. The acupuncture point and its connecting central pathway for producing 

acupuncture analgesia. Brain research bulletin 30: 53-67. 

Takeshige, C., Tsuchiya, M., Guo, S. & Sato, T. 1991. Dopaminergic transmission in the 

hypothalamic arcuate nucleus to produce acupuncture analgesia in correlation with the 

pituitary gland. Brain research bulletin 26: 113-122. 

Tang, N. M., Dong, H. W., Wang, X. M., Tsui, Z. C. & Han, J. S. 1997. Cholecystokinin 

antisense RNA increases the analgesic effect induced by electroacupuncture or low 

dose morphine: conversion of low responder rats into high responders. Pain 71: 71-80. 

Tao, Y. X. 2010. Dorsal horn a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor trafficking in inflammatory pain. Anesthesiology 112: 1259-1265. 

Tawfik, V. L., Lacroix-Fralish, M. L., Bercury, K. K., Nutile-Mcmenemy, N., Harris, B. T. 

& Deleo, J. A. 2006. Induction of astrocyte differentiation by propentofylline 

increases glutamate transporter expression in vitro: Heterogeneity of the quiescent 

phenotype. Glia 54: 193-203. 

Thalhammer, J. G. & LaMotte, R. H. 1982. Spatial properties of nociceptor sensitization 

following heat injury of the skin. Brain research 231: 257-265. 

Thompson, S. W., Woolf, C. J. & Sivilotti, L. G. 1993. Small-caliber afferent inputs 

produce a heterosynaptic facilitation of the synaptic responses evoked by primary 



82 

 

afferent A-fibers in the neonatal rat spinal-cord in vitro. Journal of neurophysiology 

69: 2116-2128. 

Tjen-A-Looi, S. C., Li, P. & Longhurst, J. C. 2004. Medullary substrate and differential 

cardiovascular responses during stimulation of specific acupoints. American Journal 

of Physiology: Regulatory, Integrative & Comparative Physiology 287: R852-R862. 

Todd, A. & Sullivan, A. C. 1990. Light microscope study of the coexistence of GABA-like 

and glycine-like immunoreactivities in the spinal cord of the rat. Journal of 

Comparative Neurology 296: 496-505. 

Todd, A. J. 2010. Neuronal circuitry for pain processing in the dorsal horn. Nature 

Reviews Neuroscience 11: 823-836. 

Todd, A. J., McGill, M. M. & Shehab, S. A. S. 2000. Neurokinin 1 receptor expression by 

neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the 

brainstem. European Journal of Neuroscience 12: 689-700. 

Torebjork, H. E., Lundberg, L. E. R. & LaMotte, R. H. 1992. Central changes in 

processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in 

humans. Journal Of Physiology-London 448: 765-780. 

Treede, R. D., Meyer, R. A., Raja, S. N. & Campbell, J. N. 1992. Peripheral and central 

mechanisms of cutaneous hyperalgesia. Progress in neurobiology 38: 397-421. 

Trevino, D. L., Coulter, J. D. & Willis, W. D. 1973. Location of cells of origin of 

spinothalamic tract in lumbar enlargement of the monkey. Journal of neurophysiology 

36: 750-761. 



83 

 

Tsou, K. & Jang, C. S. 1964. Studies on the site of analgesic action of morphine by 

intracerebral micro-injection. Scientia Sinica 13: 1099-1109. 

Turner, L., Linden, W. & Marshall, C. 2013. Electrodermal Activity at Acupuncture Points 

Differentiates Patients with Current Pain from Pain-Free Controls. Applied 

Psychophysiology & Biofeedback 38: 71-80. 

Ulett, G. A., Han, J. & Han, S. 1998. Traditional and Evidence-Based Acupuncture: 

History, Mechanisms, and Present Status. Southern medical journal 91: 1115-1120. 

Verne, G. N., Robinson, M. E., Vase, L. & Price, D. D. 2003. Reversal of visceral and 

cutaneous hyperalgesia by local rectal anesthesia in irritable bowel syndrome (IBS) 

patients. Pain (03043959) 105: 223-230. 

Vickers, A. J., Cronin, A. M., Maschino, A. C., Lewith, G., MacPherson, H., Foster, N. E., 

Sherman, K. J., Witt, C. M. & Linde, K. 2012. Acupuncture for chronic pain: 

Individual patient data meta-analysis. Archives of Internal Medicine 172: 1444-1453. 

Vulchanova, L., Riedl, M. S., Shuster, S. J., Stone, L. S., Hargreaves, K. M., Buell, G., 

Surprenant, A., North, R. A. & Elde, R. 1998. P2X3 is expressed by DRG neurons 

that terminate in inner lamina II. European Journal Of Neuroscience 10: 3470-3478. 

Waagepetersen, H. S., Qu, H., Schousboe, A. & Sonnewald, U. 2001. Elucidation of the 

quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and 

astrocytes. Journal of neuroscience research 66: 763-770. 

Walsh, D. T., Weg, V. B., Williams, T. J. & Nourshargh, S. 1995. Substance P-induced 

inflammatory responses in guinea-pig skin: the effect of specific NK1 receptor 



84 

 

antagonists and the role of endogenous mediators. British journal of pharmacology 

114: 1343-1350. 

Wang, H., Kohno, T., Amaya, F., Brenner, G. J., Ito, N., Allchorne, A., Ji, R. R. & Woolf, 

C. J. 2005. Bradykinin produces pain hypersensitivity by potentiating spinal cord 

glutamatergic synaptic transmission. Journal Of Neuroscience : The Official Journal 

Of The Society For Neuroscience 25: 7986-7992. 

Wang, H., Rivero-Melian, C., Robertson, B. & Grant, G. 1994. Transganglionic transport 

and binding of the isolectin B4 from Griffonia simplicifolia I in rat primary sensory 

neurons. Neuroscience 62: 539-551. 

Wang, K. M., Yao, S. M., Xian, Y. L. & Hou, Z. L. 1985. A study on the receptive field of 

acupoints and the relationship between characteristics of needling sensation and 

groups of afferent fibres. Sci Sin B. 28: 963-971. 

Wang, Q., Mao, L. & Han, J. 1990. The arcuate nucleus of hypothalamus mediates low but 

not high frequency electroacupuncture analgesia in rats. Brain research 513: 60-66. 

Wang, S., Kain, Z. N. & White, P. 2008. Acupuncture analgesia: I. The scientific basis. 

Anesth Analg. 106: 602-610. 

Watkins, L. R., Kinscheck, I. B., Kaufman, E. F. S., Miller, J., Frenk, H. & Mayer, D. J. 

1985. Cholecystokinin antagonists selectively potentiate analgesia induced by 

endogenous opiates. Brain research 327: 181-190. 

Wei, J., Mao, H., Zhou, Y., Wang, L., Liu, S. & Shen, X. 2012. Research on nonlinear 

feature of electrical resistance of acupuncture points. Evidence-based Complementary 

and Alternative Medicine 2012: 1-6. 



85 

 

White, A. & Ernst, E. 2004. A brief history of acupuncture. Rheumatology 43: 662-663. 

Wiberg, M., Westman, J. & Blomqvist, A. 1987. Somatosensory projection to the 

mesencephalon: An anatomical study in the monkey. Journal of Comparative 

Neurology 264: 92-117. 

Wick, F., Wick, N. & Wick, M. C. 2007. Morphological Analysis of Human Acupuncture 

Points Through Immunohistochemistry. American Journal of Physical Medicine and 

Rehabilitation 86: 7-11. 

Willis, W. D., Kenshalo, D. R. & Leonard, R. B. 1979. The cells of origin of the primate 

spinothalamic tract. JOURNAL OF COMPARATIVE NEUROLOGY 188: 543-573. 

Willis, W. D., Trevino, D. L., Coulter, J. D. & Maunz, R. A. 1974. Responses of primate 

spinothalamic tract neurons to natural stimulation of hindlimb. Journal of 

neurophysiology 37: 358-372. 

Wilson, L. B., Andrew, D. & Craig, A. D. 2002. Activation of Spinobulbar lamina I 

neurons by static muscle contraction. Journal of neurophysiology 87: 1641-1645. 

Wilson, P., Meyers, D. E. R. & Snow, P. J. 1986. The detailed somatotopic organization of 

the dorsal horn in the lumbosacral enlargement of the cat spinal cord. Journal of 

neurophysiology 55: 604-617. 

Wolfe, F., Smythe, H. A., Yunus, M. B., Bennett, R. M., Bombardier, C. & Goldenberg, D. 

L. 1990. The american college of rheumatology 1990 criteria for the classification of 

fibromyalgia. Arthritis & Rheumatism 33: 160-172. 



86 

 

Woodbury, C. J. & Koerber, H. R. 2003. Widespread projections from myelinated 

nociceptors throughout the substantia gelatinosa provide novel insights into neonatal 

hypersensitivity. J Neurosci 23: 601. 

Woodbury, C. J., Ritter, A. M. & Koerber, H. R. 2000. On the problem of lamination in the 

superficial dorsal horn of mammals: A reappraisal of the substantia gelatinosa in 

postnatal life. JOURNAL OF COMPARATIVE NEUROLOGY 417: 88-102. 

Woolf, C. J. 1983. Evidence for a central component of post-injury pain hypersensitivity. 

Nature 306: 686-688. 

Woolf, C. J. 1991. Generation of acute pain - central mechanisms. British medical bulletin 

47: 523-533. 

Woolf, C. J. 2010. What is this thing called pain? The Journal of Clinical Investigation 

120: 3742-3744. 

Woolf, C. J. 2011. Central sensitization: Implications for the diagnosis and treatment of 

pain. Pain (03043959) 152: S2-15. 

Woolf, C. J. & King, A. E. 1987. Physiology and morphology of multireceptive neurons 

with C-afferent fiber inputs in the deep dorsal horn of the rat lumbar spinal cord. 

Journal of neurophysiology 58: 460-479. 

Woolf, C. J. & King, A. E. 1989. Subthreshold components of the cutaneous 

mechanoreceptive fields of dorsal horn neurons in the rat lumbar spinal cord. Journal 

of neurophysiology 62: 907-916. 



87 

 

Woolf, C. J. & King, A. E. 1990. Dynamic alterations in the cutaneous mechanoreceptive 

fields of dorsal horn neurons in the rat spinal cord. Journal of Neuroscience 10: 2717-

2726. 

Woolf, C. J., Shortland, P. & Sivilotti, L. G. 1994. Sensitization of high mechanothreshold 

superficial dorsal horn and flexor motor neurones following chemosensitive primary 

afferent activation. Pain 58: 141-155. 

Woolf, C. J. & Swett, J. E. 1984. The cutaneous contribution to the hamstring flexor reflex 

in the rat: an electrophysiological and anatomical study. Brain research 303: 299-312. 

Woolf, C. J. & Thompson, S. W. 1991. The induction and maintenance of central 

sensitization is dependent on N-methyl-D-aspartic acid receptor activation: 

Implications for the treatment of post-injury pain hypersensitivity states. Pain 44: 293-

299. 

World Health Organization WHO 2002. Acupuncture: Review and Analysis of Reports on 

Controlled Clinical Trials. 1st edition. Albany : World Health Organization: Geneva : 

World Health Organization. 

Wu, C., Chao, C., Zhao, Z. & Wei, J. 1974. Inhibitory effect produced by stimulation of 

afferent nerves on responses of cat dorsolateral fasciculus fibres to nocuous stimulus. 

Scientia Sinica 27: 688-697. 

Wu, M. T., Hsieh, J. C., Xiong, J., Yang, C. F., Pan, H. B., Chen, Y. C., Tsai, G., Rosen, B. 

R. & Kwong, K. K. 1999. Central nervous pathways for acupuncture stimulation: 

localization of processing with functional MR imaging of the brain - preliminary 

experience. Radiology 212: 133-141. 



88 

 

Xie, G. X., Han, J. S. & Höllt, V. 1983. Electroacupuncture analgesia blocked by 

microinjection of anti-beta-endorphin antiserum into periaquedutal grey of the rabbit. 

Int. J. Neurosci 18: 287-291. 

Yan, B., Li, K., Xu, J., Wang, W., Li, K., Liu, H., Shan, B. & Tang, X. 2005. Acupoint-

specific fMRI patterns in human brain. Neuroscience letters 383: 236-240. 

Yang, J., Song, C. Y., Lin, B. C. & Zhu, H. N. 1992. Effects of stimulation and 

cauterization of hypothalamic paraventricular nucleus on acupuncture analgesia. 

Sheng li xue bao : Acta physiologica Sinica] 44: 455-460. 

Yao, W., Yang, H., Yin, N. & Ding, G. 2014. Mast cell-nerve cell interaction at acupoint: 

modeling mechanotransduction pathway induced by acupuncture. International journal 

of biological sciences 10: 511-519. 

Yasaka, T., Tiong, S. Y. X., Hughes, D. I., Riddell, J. S. & Todd, A. J. 2010. Populations 

of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn 

revealed by a combined electrophysiological and anatomical approach. Pain 

(03043959) 151: 475-488. 

Yen, C. & Lu, P. 2013. Thalamus and pain. Acta Anaesthesiol Taiwan 51: 73-80. 

Yezierski, R. P. 1988. Spinomesencephalic tract: Projections from the lumbosacral spinal 

cord of the rat, cat, and monkey. Journal of Comparative Neurology 267: 131-146. 

Yezierski, R. P. & Schwartz, R. H. 1986. Response and receptive-field properties of 

spinomesencephalic tract cells in the cat. Journal of neurophysiology 55: 76-96. 



89 

 

Yin, Q. Z., Mao, J. R. & Guo, S. Y. 1988. Changes of reactions of neurons in dorsal raphe 

nucleus and locus coeruleus to electroacupuncture by hypothalamic arcuate nucleus 

stimulation. Funct. Neurol. 3: 263-273. 

Yoshimoto, K., Fukuda, F., Hori, M., Kato, B., Kato, H., Hattori, H., Tokuda, N., 

Kuriyama, K., Yano, T. & Yasuhara, M. 2006. Acupuncture stimulates the release of 

serotonin, but not dopamine, in the rat nucleus accumbens. Tohoku Journal of 

Experimental Medicine 208: 321-326. 

Yu, A., Drejer, J., Hertz, L. & Schousboe, A. 1983. Pyruvate carboxylase activity in 

primary cultures of astrocytes and neurons. Journal of neurochemistry 41: 1484-1487. 

Yu, L. C. & Han, J. S. 1989. Involvement of arcuate nucleus of hypothalamus in the 

descending pathway from nucleus accumbens to periaqueductal grey subserving an 

antinociceptive effect. The International journal of neuroscience 48: 71-78. 

Zemlan, F. P., Kow, L. M. & Pfaff, D. W. 1983. Spinal serotonin (5-HT) receptor subtypes 

and nociception. J Pharmacol Exp Ther 226: 477-485. 

Zhang, D., Ding, G., Shen, X., Yao, W., Zhang, Z., Zhang, Y., Lin, J. & Gu, Q. 2008. Role 

of mast cells in acupuncture effect: a pilot study. Explore (NY) 4: 170-177. 

Zhang, D., Yan, X., Zhang, X., Liu, C., Dang, R., Xiao, T. & Zhu, P. 2011a. Synchrotron 

radiation phase-contrast X-ray CT imaging of acupuncture points. Analytical and 

Bioanalytical Chemistry 401: 803-808. 

Zhang, G. G., Yu, C., Lee, W., Lao, L., Ren, K. & Berman, B. M. 2005. Involvement of 

peripheral opioid mechanisms in electroacupuncture analgesia. Explore (NY). 1: 365-

371. 



90 

 

Zhang, J., Huang, W. & Tuckett, R. P. 2002a. C-fiber modulation of the rat type I slowly 

adapting mechanoreceptor. Neuroscience 115: 797-804. 

Zhang, Q., Fukuda, M., Van Bockstaele, E., Pascual, O. & Haydon, P. G. 2004a. 

Synaptotagmin IV regulates glial glutamate release. Proceedings of the National 

Academy of Sciences of the United States of America 101: 9441-9446. 

Zhang, W. B., Jeong, D. M., Lee, Y. H. & Lee, M. S. 2004b. Measurement of 

subcutaneous impedance by four-electrode method at acupoints located with single-

power alternative current. AMERICAN JOURNAL OF CHINESE MEDICINE 32: 

779-788. 

Zhang, X. & Giesler, G. J. 2005. Response characterstics of spinothalamic tract neurons 

that project to the posterior thalamus in rats. Journal of neurophysiology 93: 2552-

2564. 

Zhang, Y., Li, A., Xin, J., Lao, L., Ren, K., Berman, B. M., Tan, M. & Zhang, R. X. 

2011b. Involvement of Spinal Serotonin Receptors in Electroacupuncture Anti-

Hyperalgesia in an Inflammatory Pain Rat Model. Neurochemical research 36: 1785-

1792. 

Zhang, Y., Ji, G., Wu, G. & Zhao, Z. 2002b. Excitatory amino acid receptor antagonists 

and electroacupuncture synergetically inhibit carrageenan-induced behavioral 

hyperalgesia and spinal fos expression in rats. Pain (03043959) 99: 525-535. 

Zhang, Y., Ji, G., Wu, G. & Zhao, Z. 2003. Kynurenic acid enhances electroacupuncture 

analgesia in normal and carrageenan-injected rats. Brain research 966: 300-307. 



91 

 

Zhang, Z. J., Wang, X. M. & McAlonan, G. M. 2012. Neural Acupuncture Unit: A New 

Concept for Interpreting Effects and Mechanisms of Acupuncture. Evidence-based 

Complementary & Alternative Medicine (eCAM) 2012: 1-23. 

Zhao, L., Chen, J., Liu, C., Li, Y., Cai, D., Tang, Y., Yang, J. & Liang, F. 2012. A Review 

of Acupoint Specificity Research in China: Status Quo and Prospects. Evidence-based 

Complementary & Alternative Medicine (eCAM) 2012: 1-16. 

Zhao, R. J., Yoon, S. S., Lee, B. H., Kwon, Y. K., Kim, K. J., Shim, I., Choi, K., Kim, M. 

R., Golden, G. T. & Yang, C. H. 2006. Acupuncture normalizes the release of 

accumbal dopamine during the withdrawal period and after the ethanol challenge in 

chronic ethanol-treated rats. Neuroscience letters 395: 28-32. 

Zhao, Z. 2008. Neural mechanism underlying acupuncture analgesia. Progress in 

neurobiology 85: 355-375. 

Zhou, Y., Sun, Y. H., Shen, J. M. & Han, J. S. 1993. Increased release of immunoreactive 

CCK-8 by electroacupuncture and enhancement of electroacupuncture analgesia by 

CCK-B antagonist in rat spinal cord. Neuropeptides 24: 139-144. 

Zhu, B., Xu, W. D., Rong, P. J., Ben, H. & Gao, X. Y. 2004. A C-fiber reflex inhibition 

induced by electroacupuncture with different intensities applied at homotopic and 

heterotopic acupoints in rats selectively destructive effects on myelinated and 

unmyelinated afferent fibers. Brain research 1011: 228-237. 

Zhuang, Z., Gerner, P., Woolf, C. J. & Ji, R. 2005. ERK is sequentially activated in 

neurons, microglia, and astrocytes by spinal nerve ligation and contributes to 

mechanical allodynia in this neuropathic pain model. Pain (03043959) 114: 149-159. 



92 

 

Zhuo, M. & Gebhart, G. F. 1990. Spinal cholinergic and monoaminergic receptors mediate 

descending inhibition from the nuclei reticularis gigantocellularis and 

gigantocellularis pars alpha in the rat. Brain research 535: 67-78. 

Zhuo, M. & Gebhart, G. F. 1991. Spinal serotonin receptors mediate descending 

facilitation of a nociceptive reflex from the nuclei reticularis gigantocellularis and 

gigantocellularis pars alpha in the rat. Brain research 550: 35-48. 

Zieglgänsberger, W. & Sutor, B. 1983. Responses of substantia gelatinosa neurons to 

putative neurotransmitters in an in vitro preparation of the adult rat spinal cord. Brain 

research 279: 316-320. 

Zwick, M. 2002. Glial cell line-derived neurotrophic factor is a survival factor for isolectin 

B4-positive, but not vanilloid receptor 1-positive, neurons in the mouse. Journal Of 

Neuroscience : The Official Journal Of The Society For Neuroscience 22: 4057-4065. 

Zylka, M. J., Xinzhong, D., Southwell, A. L. & Anderson, D. J. 2003. Atypical expansion 

in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. 

Proceedings of the National Academy of Sciences of the United States of America 

100: 10043-10048. 

 



Appendix I 

1 

 

AKUPUNKTIOKLINIKAN ALKUKAAVAKE 
 
Päiväys_________    Koiran nimi ________________________   Ikä ______ Sukup. ____  

 

Koiran diagnoosi/ mistä hoidetaan? ____________________________________________ 

 

Koiran lääkitys: ___________________________________________________________ 

 

Edelliset hoidot ja pvm: _____________________________________________________ 

 

Koiran pääoireet? __________________________________________________________ 

 

Omistajan Nimi_____________________________________________________    

    

Kaavakkeen täyttäjän allekirjoitus____________________________________ 

 

Muistakaa että:  

- Jokaiseen kysymykseen yksi vastaus. (Ei nolla eikä kaksi) 

- Aina vastaatte joka kysymykseen samalla lailla joka kerta (esim. koira ehkä hyppää sohvaan ja 

autoon eri lailla jolloin on tärkeätä että aina vastaatte kysymykseen ajatellen samaa tilannetta ja 

että vastaatte aina esim pitkän lenkin jälkeen eikä ennen, jolloin vertaileva tilanne aina on sama). 

- Aina sama ihminen / samat ihmiset vastaavat kyselyyn joka kerta, jolloin vastaukset ovat 

vertailukelpoisia 

- Merkatkaa miten olette käyttäneet kipulääkkeitä 

- Aina ilmoitatte, jos koiranne vahingossa on syönyt jotakin muuta ruokaa, ravintovalmisteita yms. 

- Aina ilmoitatte, jos koiranne vahingossa onkin saanut jotakin muuta hoitoa  

 

 

Potilaan yleistila nyt                  

 

Rastita yksi vaihtoehto / kysymys; se joka parhaiten vastaa koirasi tilaa menneellä viikolla. 

 

1. Mielentila on: 

 erittäin virkeä virkeä ei virkeä, eikä apea apea erittäin apea 

       
 

2. Koira heiluttaa häntäänsä: 

 hyvin usein usein silloin tällöin harvoin hyvin harvoin  

       
 

3. Koira leikkii: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan  

       
 

4. Koira kävelee: 

 hyvin mielellään ei mielellään,  vastahakoisesti hyvin  

 mielellään  eikä vastahakoisesti  vastahakoisesti 

       
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5. Koira ravaa (siirtää ristikkäistä etu- ja takajalkaa samanaikaisesti): 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan  

       
 

6. Koira peitsaa (siirtää samanpuoleista etu- ja takajalkaa samanaikaisesti): 

 hyvin harvoin harvoin silloin tällöin usein hyvin usein  

       
 

7. Koira laukkaa: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan  

       
 

8. Koiran tapa laukata muistuttaa takaa jänistä: molemmat takajalat liikkuvat yhdessä 

 hyvin harvoin harvoin silloin tällöin usein hyvin usein  

       
 

9. Koira liikkuu oma-aloitteisesti ulkona: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan  

       
 

10. Koira liikkuu kovan rasituksen ja senjälkeisen levon jälkeen: 

     erittäin helposti helposti kohtalaisesti vaikeasti hyvin vaikeasti  

       
 

11. Koira hyppää (esim. sohvaan, autoon tms.): 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan  

       
12. Koira kulkee rappusia ylös: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan  

       
 

13. Koira kulkee rappusia alas: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan  

       
 

14. Koira menee makuulle: 

 erittäin helposti helposti kohtalaisesti vaikeasti hyvin vaikeasti  

       
 

15. Koira nousee makuulta: 

 erittäin helposti helposti kohtalaisesti vaikeasti hyvin vaikeasti  

       
 

16. Koira läähättää kivun vuoksi: 

 ei juuri koskaan harvoin joskus usein hyvin usein 

       
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17. Koira valittaa kipuja: 

 ei juuri koskaan harvoin joskus usein hyvin usein 

       
  

18. Koira valittaa kun takajalkoja venytetään taakse: 

 ei juuri koskaan harvoin joskus usein hyvin usein 

       
 

19. Koira liikkuu kovan rasituksen jälkeen: 

     erittäin helposti helposti kohtalaisesti vaikeasti hyvin vaikeasti 

  

       
 

 

Koiran liikuntavaikeudet 

 

 

Arvioi koiran liikkumavaikeus piirtämällä rasti alla olevalle janalle, siihen missä se parhaiten kuvaa 

tämänhetkisen tilanteen: 

 

Ei mitään      _______________________________________________     Pahin mah- 

vaikeuksia                dollinen tilanne    

 

 

 

 

Elämänlaatu 

 

 

Arvioi koiran elämänlaatua piirtämällä rasti alla olevalle janalle, siihen missä se parhaiten kuvaa 

tämänhetkisen tilanteen: 

 

     paras         _______________________________________________    Pahin  

mahdollinen                                     mahdollinen 

 

 

 

Kun täytätte tämän kyselyn nyt, millaista todellista kiputilaa arvioisitte että vastauksenne 

vastaavat: 

 

 Vastaukset vastaavat tosi tilannetta, sillä koira ei ole syönyt kipulääkettä ollenkaan tai ei pitkään 

aikaan (yli 3 vrk) 

 

 Vastaukset osoittavat että koiran tila ehkä on hieman parempi kuin se olisi ilman mitään 

kipulääkettä, sillä se on ajoittain saanut kipulääkitystä 

 

 Vastaukset eivät välttämättä vastaa koiran todellista normaalia kiputilaa. Ne osoittavat 

todennäköisesti että koira on paremmassa kunnossa, sillä se on saanut kipulääkettä useasti 
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Koira sai                                                                                         (vaik. = vaikuttavaa) 

 edellisen kerran oikeata kipulääkitystä _______ tuntia /vrk /viikkoa / kk sitten 

 

Mitä sai silloin?_________________________________________ 

 

 

 

noin 4 viimeisen viikon kipulääkitykset: 

 

Koiralle viikoittain annettu kipulääkitys: Yksi viiva per antokerta. 

(Käytä tukkimiehen kirjanpitoa: Yksi antokerta on yksi viiva. Jos koira ei ole saanut lääkettä, jätä 

tyhjäksi) 

 

1 viikko sitten (ma-su):    ______________________ antokertaa 

2 viikkoa sitten (ma-su):  ______________________ antokertaa 

3 viikkoa sitten (ma-su):  ______________________ antokertaa 

4 viikkoa sitten (ma-su):  ______________________ antokertaa 

 

 

eli kuukauden aikana: 

 

 0 kertaa 1-2 kertaa 1 x /viikko 3-5 x / viikko melkein päivittäin 

       
 

 

 

Muu hoito edellisen 30 päivän aikana: 

_____________________________________________________________________________________

_____________________________________________________________ 

_________________________________________________________________________ 

_________________________________________________________________________ 

_________________________________________________________________________ 

_________________________________________________________________________ 

 

 

 

Aikaisempi akupunktio hoito: 

 

Onko koira saanut akupunktiota aikaisemmin? kyllä        ei      
 
Jos kyllä, mihin vaivaan?  

____________________________________________________  
 

Auttoiko se?     kyllä        ei      
 
 
Mistä kuulitte Akupunktiosta? ________________________________________________  
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Tällä kaavakkeella kartoitetaan koiranne yleistä hyvinvointia. Olkaa hyvä ja vastatkaa näihinkin 

kysymyksiin.  

 
 

 

1. Ruokahalu on edellisen kuukauden aikana ollut: 

        erittäin hyvä hyvä tyydyttävä huono erittäin huono 

       
  

2. Koira on edellisen kuukauden aikana oksennellut: 

 0 kertaa / kk 1-2 kertaa / kk 1 x / viikko 3-5 x / viikko melkein päivittäin 

       
 

3. Koira on edellisen kuukauden aikana ripuloinut: 

 0 kertaa / kk 1-2 kertaa / kk 1 x / viikko 3-5 x / viikko melkein päivittäin 

       
 

4. Koiralle on edellisen kuukauden aikana noussut iho-oireita ja/tai kutinaa 

 0 kertaa / kk 1-2 kertaa / kk 1 x / viikko 3-5 x / viikko melkein päivittäin 

       
 

5. Koira on edellisen kuukauden aikana saanut ravintolisiä (öljyjä, vitamiineja, nivelvalmisteita yms.)   

 0 kertaa / kk 1-2 kertaa / kk 1 x / viikko 3-5 x / viikko melkein päivittäin 

       
 

Mitä valmisteita ja miten usein ________________________________________________ 

_____________________________________________________________________________________

_____________________________________________________________ 

_________________________________________________________________________ 

 

 

Muuta huomioitavaa 

_____________________________________________________________________________________

_____________________________________________________________________________________

_________________________________________________ 

              

 Kiitoksia vaivannäöstä! Tuokaa tämä sisään 

akupunktiolääkärille. 
 

Lomakkeen voi myös postittaa meille osoitteeseen: 

 Anna Hielm-Björkman, ELT, CVA (IVAS)  

 Kliininen hevos- ja pieneläinlääketieteen laitos 

                    Eläinlääketieteellinen tiedekunta 

  PL57, 00014 Helsingin Yliopisto, Suomi 

  

tai lähettää sähköpostitse: 

Sähköposti: anna.hielm-bjorkman@helsinki.fi 
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AKUPUNKTIO-KIPUPOTILAAN SEURANTA 

 
 
Päiväys_________    Koiran nimi ________________________   Ikä ______ Sukup. ____  

 

Koiran diagnoosi/ mistä hoidetaan? ____________________________________________ 

 

Koiran lääkitys: ___________________________________________________________ 

 

Edelliset hoidot ja pvm: _____________________________________________________ 

 

Koiran pääoireet? __________________________________________________________ 

 

Omistajan Nimi_____________________________________________________    

    

Kaavakkeen täyttäjän allekirjoitus____________________________________ 

 

 

Täyttöohjeet: Kirjoittakaa teksti viivoille. Voitte joko printata ja täyttää kynällä ja tuoda klinikalle tai 

postittaa, tai täyttää elektronisesti käyttämällä X ja tummentamalla oikea vastaus näin: 

 

1. Mielentila on: 

 erittäin virkeä virkeä ei virkeä, eikä apea apea erittäin apea 

  X     

-------------------------------------------------------------------------------------------------------------- 

- Jokaiseen kysymykseen yksi vastaus. (Ei nolla eikä kaksi) 

- Aina vastaatte joka kysymykseen samalla lailla joka kerta (esim. koira ehkä hyppää sohvaan ja 

autoon eri lailla jolloin on tärkeätä että aina vastaatte kysymykseen ajatellen samaa tilannetta ja 

että vastaatte aina esim pitkän lenkin jälkeen eikä ennen, jolloin vertaileva tilanne aina on sama). 

- Sama ihminen / samat ihmiset vastaavat kyselyyn joka kerta, jolloin vastaukset ovat 

vertailukelpoisia 

- Merkatkaa miten olette käyttäneet kipulääkkeitä 

- Ilmoittakaa aina jos koiranne vahingossa on syönyt jotakin muuta lääkettä, ravintovalmisteita, 

hoitoa yms. 

 

 

Kun täytätte tämän kyselyn nyt, millaista todellista kiputilaa arvioisitte että vastauksenne 

vastaavat: 

 

 Vastaukset vastaavat tosi tilannetta, sillä koira ei ole syönyt kipulääkettä ollenkaan tai ei pitkään 

aikaan (yli 3 vrk) 

 

 Vastaukset osoittavat että koiran tila ehkä on hieman parempi kuin se olisi ilman mitään 

kipulääkettä, sillä se on ajoittain saanut kipulääkitystä 

 

 Vastaukset eivät välttämättä vastaa koiran todellista normaalia kiputilaa. Ne osoittavat 

todennäköisesti että koira on paremmassa kunnossa, sillä se on saanut kipulääkettä useasti 
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Potilaan yleistila nyt                  

 

Rastita yksi vaihtoehto / kysymys; se joka parhaiten vastaa koirasi tilaa menneellä viikolla. 

 

1. Mielentila on: 

 erittäin virkeä virkeä ei virkeä, eikä apea apea erittäin apea 

       
 

2. Koira heiluttaa häntäänsä: 

 hyvin usein usein silloin tällöin harvoin hyvin harvoin 

       
 

3. Koira leikkii: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan 

       
 

4a. Koira kävelee: 

 hyvin mielellään ei mielellään,  vastahakoisesti hyvin  

 mielellään  eikä vastahakoisesti  vastahakoisesti 

      
 

4b. Koira kävelee: 

 erittäin helposti helposti kohtalaisesti vaikeasti hyvin vaikeasti 

       
  

5a. Koira ravaa (siirtää ristikkäistä etu- ja takajalkaa samanaikaisesti): 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan 

      
 

5b. Koira ravaa (siirtää ristikkäistä etu- ja takajalkaa samanaikaisesti): 

 erittäin helposti vaikeasti hyvin  ei ollenkaan 

 helposti   vaikeasti    

        

 

6. Koira peitsaa (siirtää samanpuoleista etu- ja takajalkaa samanaikaisesti): 

 hyvin harvoin harvoin silloin tällöin usein hyvin usein 

       
 

7. Koira laukkaa: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan 

       
 

7b Koira laukkaa: 

 erittäin helposti vaikeasti hyvin  ei ollenkaan 

 helposti   vaikeasti    
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8. Koiran tapa laukata muistuttaa takaa jänistä: molemmat takajalat liikkuvat yhdessä 

 hyvin harvoin harvoin silloin tällöin usein hyvin usein 

       
 

9. Koira liikkuu oma-aloitteisesti ulkona: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan 

       
 

10. Koira liikkuu kovan rasituksen ja senjälkeisen levon jälkeen: 

      erittäin helposti ei helposti, vaikeasti hyvin  

 helposti  eikä vaikeasti   vaikeasti 

       
 

11a. Koira hyppää (esim. sohvaan, autoon tms.): 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan 

      
 

11b. Koira hyppää (esim. sohvaan, autoon tms.): 

 erittäin helposti vaikeasti hyvin  ei ollenkaan 

 helposti   vaikeasti     

       

  

12. Koira kulkee rappusia ylös: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan 

       
 

13. Koira kulkee rappusia alas: 

 hyvin mielellään mielellään vastahakoisesti hyvin vastahakoisesti ei ollenkaan 

       
 

14. Koira menee makuulle: 

 erittäin helposti ei helposti, vaikeasti hyvin  

 helposti  eikä vaikeasti   vaikeasti 

       
 

15. Koira nousee makuulta: 

 erittäin helposti ei helposti, vaikeasti hyvin  

 helposti  eikä vaikeasti   vaikeasti 

       
 

16. Koira läähättää kivun vuoksi: 

 ei juuri koskaan harvoin joskus usein hyvin usein 

       
 

17. Koira valittaa kipuja: 

 ei juuri koskaan harvoin joskus usein hyvin usein 

       
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18. Koira valittaa kun takajalkoja venytetään taakse: 

 ei juuri koskaan harvoin joskus usein hyvin usein 

       
 

19. Koira liikkuu kovan rasituksen jälkeen: 

      erittäin helposti ei helposti, vaikeasti hyvin  

 helposti  eikä vaikeasti   vaikeasti 

       
 

 

Koiran liikuntavaikeudet 

 

Arvioi koiran liikkumavaikeus piirtämällä rasti alla olevalle janalle, siihen missä se parhaiten kuvaa 

tämänhetkisen tilanteen: 

 

Ei mitään      _______________________________________________     Pahin mah- 

vaikeuksia                dollinen tilanne    

 

 

  

Elämänlaatu 

 

Arvioi koiran elämänlaatua piirtämällä rasti alla olevalle janalle, siihen missä se parhaiten kuvaa 

tämänhetkisen tilanteen: 

 

     paras         _______________________________________________    Pahin  

mahdollinen                                     mahdollinen 

 

 

 

Koiralle viimeisten viikkojen / kuukauden kipulääkitys:  

 

Koira sai                                                                                          

 edellisen kerran kipulääkitystä _______ tuntia /vrk /viikkoa / kk sitten 

 

Mitä sai silloin?_________________________________________ 

 

Jos kävit akupunktiossa 1-2 viikkoa sitten edellisen kerran, niin miten olet antanut kipulääkkeitä: 

 

 0 kertaa/viikko 1-2 kertaa/viikko 3-4 kertaa/viikko 5-6 kertaa/viikko päivittäin 

      
 

Jos olet käynyt akupunktiossa edellisen kerran yli kuukausi sitten, ( __________ viikkoa / kuukautta 

sitten) niin edellisen hoidon jälkeen olet antanut kipulääkkeitä keskimäärin: 

 

 0 kertaa 1-2 kertaa 1 x /viikko 3-5 x / viikko melkein päivittäin 

       
 

Mitä lääkettä sai silloin?_________________________________________ 
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VERTAILEVA KYSELY  
 

Seuravat kysymykset ovat vertailevia. Vertaatte koiranne nykytilaa siihen miten koira oli ennen kuin 

koiranne sai kultahippuhoidon / aloitti akupunktiohoidon:  

 

Onko koiranne  

 

 paljon vähän saman- vähän paljon 

 parempi parempi lainen huonompi huonompi 

 

Liikkuminen      

Rappusia ylös      

Rappusia alas      

Maaten alas      

Nousee ylös      

Ylöspäin kiipeily      

Hyppääminen      

Kävely      

Ravi      

Laukka      

Peitsaaminen      

Pupu-laukka      

Oma-aloitteinen liikkuminen      

 

Tilanteita: 

Levon jälkeen      

Kovan rasituksen jälkeen      

Rasitus + lepo, jälkeen      

 

Kipu - yleensä      

Kipu takajalkoja venyttäessä      

Läähättäminen      

Valittaminen kivusta      

Mielentila      

Sosiaalisuus      

Leikkisyys       

Elämänlaatu      

 

Turkki ja iho 

Turkin kiilto      

Turkin pehmeys      

Turkin tuuheus      

Ihon kunto      
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Tällä kaavakkeella seurataan koirien yleistä hyvinvointia. Olkaa hyvä ja vastatkaa näihinkin kysymyksiin.  

 

 

 

1. Ruokahalu on edellisen kuukauden aikana ollut: 

        erittäin hyvä hyvä tyydyttävä huono erittäin huono 

       
  

2. Koira on edellisen kuukauden aikana oksennellut: 

 0 kertaa / kk 1-2 kertaa / kk 1 x / viikko 3-5 x / viikko melkein päivittäin 

       
 

3. Koira on edellisen kuukauden aikana ripuloinut: 

 0 kertaa / kk 1-2 kertaa / kk 1 x / viikko 3-5 x / viikko melkein päivittäin 

       
 

4. Koiralle on edellisen kuukauden aikana noussut iho-oireita ja/tai kutinaa 

 0 kertaa / kk 1-2 kertaa / kk 1 x / viikko 3-5 x / viikko melkein päivittäin 

       
 

5. Koira on edellisen kuukauden aikana saanut niveliin tai lihaksiin vaikuttavia ravintolisiä  

 

 0 kertaa / kk 1-2 kertaa / kk 1 x / viikko 3-5 x / viikko melkein päivittäin 

       
 

Mitä ja miten usein _________________________________________________________ 

_____________________________________________________________________________________

_____________________________________________________________ 

 

 

Muuta (esim. muita hoitoja, lääkkeitä, uusia oireita, mikä parantunut?...) 

_____________________________________________________________________________________

_____________________________________________________________ 

_________________________________________________________________________ 

_____________________________________________________________________________________

_____________________________________________________________ 

                 

Kiitoksia vaivannäöstä! 

 
 

 


