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SUMMARY

Somaticmutations in exon 2of theRNApolymerase II
transcriptionalMediator subunitMED12occur at very
high frequency (�70%) in uterine leiomyomas. How-
ever, the influence of these mutations on Mediator
function and themolecular basis for their tumorigenic
potential remain unknown. To clarify the impact of
these mutations, we used affinity-purification mass
spectrometry to establish the global protein-protein
interaction profiles for both wild-type and mutant
MED12. We found that uterine leiomyoma-linked
mutations in MED12 led to a highly specific decrease
in its association with Cyclin C-CDK8/CDK19 and
loss of Mediator-associated CDK activity. Mechanis-
tically, this occurs through disruption of a MED12-
Cyclin C binding interface that we also show is
required for MED12-mediated stimulation of Cyclin
C-dependent CDK8 kinase activity. These findings
indicate that uterine leiomyoma-linked mutations in
MED12 uncouple Cyclin C-CDK8/19 from core Medi-
ator and further identify theMED12/Cyclin C interface
as a prospective therapeutic target in CDK8-driven
cancers.

INTRODUCTION

Uterine leiomyomas (fibroids) are monoclonal neoplasms of

the myometrium and represent the most common pelvic tumor

in reproductive-age women (Stewart, 2001). Although benign,

they are nonetheless associated with significant morbidity.

They are the primary indicator for hysterectomy and a major
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cause of gynecologic and reproductive dysfunction, ranging

from profuse menstrual bleeding and pelvic discomfort to infer-

tility, recurrent miscarriage, and preterm labor (Stewart, 2001).

Recently, we discovered that mutations in exon 2 of the Xq13

gene encoding the transcriptional Mediator subunit MED12

occur at very high frequency (�70%) in uterine leiomyomas

(Mäkinen et al., 2011). Along with their high-frequency occur-

rence, two additional genetic findings suggest that MED12 mu-

tations likely contribute to the genesis of uterine leiomyomas.

First, all observed MED12 exon 2 mutations affect highly evolu-

tionarily conserved regions of theMED12 protein, including three

principal hot spot mutations in codons 36, 43, and 44 (Mäkinen

et al., 2011). Second, localization of the missense mutations to

a small number of amino acids suggests that the MED12 muta-

tions are dominant and that MED12 acts as an oncogene (Vogel-

stein et al., 2013), providing a likely etiological basis previously

lacking for the majority of these clinically significant tumors.

Compatible with the key role of MED12 in controlling gene

expression, we have also shown that the RNA expression pat-

terns of MED12 mutant leiomyomas cluster tightly together

and form a clearly separate branch distinct from all other leio-

myomas (Mehine et al., 2013).

Mediator is a conservedmultisubunit signal processor through

which regulatory information conveyed by gene-specific tran-

scription factors is transduced to RNA polymerase II (pol II).

Structurally, Mediator is assembled from a set of core subunits

into three distinct modules, termed ‘‘head,’’ ‘‘middle,’’ and

‘‘tail,’’ that bind tightly to pol II in the so-called holoenzyme (Con-

away and Conaway, 2011; Kornberg, 2005; Larivière et al., 2012;

Malik and Roeder, 2010; Spaeth et al., 2011; Taatjes, 2010).

MED12, along with MED13, Cyclin C, and CDK8 or CDK19,

comprise a fourth ‘‘kinase’’ module that exists in variable associ-

ation with coreMediator. The kinase module was originally impli-

cated in negative regulation of pol II-dependent transcription
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(Akoulitchev et al., 2000; Knuesel et al., 2009a; van de Peppel

et al., 2005). Several more recent studies, however, have also

characterized a positive role for CDK8 activity in transcription

(Donner et al., 2010; Firestein et al., 2008; Morris et al., 2008).

MED12 links Cyclin C-CDK8 with coreMediator and also stim-

ulates Cyclin C-dependent CDK8 kinase activity (Ding et al.,

2008; Knuesel et al., 2009b). Although the mechanism by which

MED12 activates CDK8 is unknown, MED12-dependent CDK8

activation is nonetheless required for nuclear transduction of sig-

nals propagated by several different oncogenic pathways with

which MED12 is biochemically and genetically linked (Firestein

et al., 2008; Kim et al., 2006; Spaeth et al., 2011; Zhou et al.,

2006, 2012). Furthermore, MED12 itself is a target of oncogenic

mutation, including exon 2 mutations linked to uterine leiomyo-

mas (Barbieri et al., 2012; Je et al., 2012; Kämpjärvi et al.,

2012; Mäkinen et al., 2011). However, the impact of these muta-

tions onMED12 function and the molecular basis for their tumor-

igenic potential remain unknown.

RESULTS AND DISCUSSION

Uterine Leiomyoma-Linked Mutations in MED12 Disrupt
its Association with Cyclin C-CDK8/CDK19
To identify proteins that bind differentially to wild-type (WT) and

oncogenic MED12, we engineered stable, tetracycline-inducible

Flp-In 293 T-REx cell lines expressing C-terminally Twin-Strep-

tag-modifiedWTMED12 or its most common leiomyomamutant

derivative (G44D) (see Experimental Procedures for details)

(Glatter et al., 2009; Varjosalo et al., 2013). Quantitative immu-

noblot analysis revealed that tagged WT and mutant MED12

proteins attained induced levels of expression (�0.8–1.6 3 105

molecules per cell) comparable to that of endogenous 293 cell

MED12 (�0.4–0.8 3 105 molecules per cell) (Figure S1A). Affin-

ity-purification mass spectrometry (MS) (Figure 1A; Figure S1B)

revealed a specific and reproducible (n = 3) reduction in the bind-

ing of Cyclin C, CDK8, and CDK19 to mutant versus WT MED12

(Figure 1B; Table S1).

Relative quantification of MED12-associated Mediator sub-

units confirmed a statistically significant loss of kinase module,

as opposed to core Mediator subunits, in mutant versus WT

MED12 affinity purifications (Figure 1C; Table S2). We confirmed

the reduced association of CDK8 and CDK19 with MED12 G44D

by immunoprecipitation (IP)-western blot (Figure 1D) and further

established that this defect extends to other uterine leiomyoma-

linked exon 2 mutations in MED12, including L36R, Q43P, and

G44S. Thus, FLAG-specific immunoprecipitates from HEK293

cells expressing FLAG-tagged MED12 mutant derivatives bore

significantly reduced levels of Cyclin C, CDK8, and CDK19, but

not core Mediator subunits, as well as diminished pol II C-termi-

nal domain (CTD)-directed kinase activity compared to those

from WT MED12-expressing cells (Figure 1E).

Uterine Leiomyoma-Linked Mutations in MED12 Disrupt
Its Direct Interaction with Cyclin C-CDK8
To determine whether leiomyoma-linked mutations in MED12

disrupt its direct interaction with Cyclin C-CDK8, we analyzed

recombinant kinase module variants reconstituted from baculo-

virus-expressed subunits. CDK8 immunoprecipitates from in-
sect cells coexpressing CDK8, Cyclin C, and eitherWT ormutant

MED12 derivatives (L36R, Q43P, or G44S) were monitored for

the presence of MED12 and the level of CDK8 kinase activity.

Note that these reconstitution assays were performed in the

absence of MED13, because the latter does not appreciably

impact the integrity or activity of a trimeric MED12/Cyclin

C/CDK8 submodule assembly (Figure S1C). Compared to WT

MED12, all three of the MED12 leiomyoma mutants were

severely compromised for both Cyclin C-CDK8 binding and acti-

vation (Figure 1F). We mapped the Cyclin C-CDK8 binding

domain on MED12 to within its N-terminal 100 amino acids en-

coded largely by exons 1 and 2 (Figures 2A and 2B) and further

confirmed that MED12 (1–100) binds to and activates Cyclin

C-CDK8 (Figure 2C). This suggests that exon 2 mutations in

MED12 likely disrupt its Cyclin C-CDK8 binding interface as

opposed to triggering conformational masking of a distant inter-

action site elsewhere in the protein. Together, these findings

identify a common functional defect associated with uterine

leiomyoma-linked mutations in MED12 and further suggest that

disruption of its Cyclin C-CDK binding activity contributes to

leiomyoma formation.

MED12 Activates CDK8 through Direct Interaction with
Cyclin C
To clarify the molecular basis by which exon 2 mutations in

MED12 disrupt its direct interaction with Cyclin C-CDK8, we first

resolved kinase module subunit interactions using recombinant

baculovirus-expressed proteins. Immunopurification of the ki-

nase module from insect cells expressing all possible combina-

tions of its four constituent subunits permitted resolution of its

hierarchical subunit organization. This analysis revealed that

MED12 binds toCyclin C, which in turn binds toCDK8 (Figure 3A;

Figure S2A). MED12 also binds to MED13, which does not bind

to either Cyclin C or CDK8 (Figure 3A; Figures S2A and S2B).

Importantly, we did not detect an interaction between MED12

and CDK8 in the absence of Cyclin C (Figure 3A; Figures S2A

and S2C), indicating that Cyclin C bridges MED12 and CDK8.

These findings confirm those recently described for subunit

assembly in S. cerevisiae and support a conserved molecular

organization between the yeast and human kinase modules

(Tsai et al., 2013).

To understand how MED12 binds to Cyclin C, we exploited

information derived from prior structural resolution of both

S. pombe and H. sapiens Cyclin C proteins (Hoeppner et al.,

2005; Schneider et al., 2011). These structures reveal the pres-

ence of a unique surface groove that is phylogenetically

conserved among Cyclin C family members but absent from

cell-cycle-type cyclins (Figure 3B). We hypothesized that this

surface groove could represent a binding interface through

which MED12 stimulates Cyclin C-dependent CDK8 kinase

activity. To test this hypothesis, we introduced substitution

mutations at residues both within (W177A, N181A, D182A, and

Y238A) and outside of (W6A and E98A) the structurally defined

Cyclin C surface groove (Figure 3B) and examined their impact

on MED12 binding and CDK8 activation. Accordingly, CDK8-

specific immunoprecipitates from insect cells coexpressing

CDK8, MED12, and either WT or mutant Cyclin C derivatives

were examined for both the presence of MED12 and the
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Figure 1. Leiomyoma-Linked Mutations in MED12 Disrupt its Interaction with Cyclin C-CDK8/19 and Diminish Mediator-Associated Kinase

Activity

(A) Schematic illustration of MED12 WT and G44D mutant protein-protein-interactome screen.

(B) Normalized abundance ofMED12WT andG44D-interaction proteins.Modular arrangement of theMediator is shown. Note thatMED12mutation G44D results

in specific decrease in binding of kinase module subunits.

(legend continued on next page)
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Figure 2. The MED12 N-Terminal 100 Amino Acids Bind to and Activates Cyclin C-CDK8

(A) Glutathione S-transferase (GST)-MED12 fragments as indicated were immobilized on glutathione-Sepharose and incubated with insect cell lysates

coexpressing Cyclin C/CDK8. Bound proteins were eluted with Laemmli sample buffer and resolved by SDS-10% PAGE prior to visualization by

Coomassie blue staining (left) or WB analysis (right) using antibodies specific for CDK8 and Cyclin C. INPUT, 10% of insect cell lysate used in GST pull-down

reactions.

(B) FLAG-specific immunoprecipitates from insect cells infected without (FLAG-Control) or with (FLAG-CDK8/CycC) baculoviruses expressing FLAG-CDK8 and

CycCH6 were incubated with the indicated 35S-labeled MED12 truncation fragments produced by transcription and translation in vitro. Bound proteins were

eluted with Laemmli sample buffer and resolved by SDS-12% PAGE prior to visualization by Phosphorimager analysis. INPUT, 10% of the in vitro translated

MED12 protein fragments used in binding reactions. Phosphorimager signals were quantified, and the level of binding for each MED12 fragment to CDK8/Cyclin

C is expressed relative to the 10% INPUT signal.

(C) (Left) Purified HA-MED12 (1–100) bearing tandem six-histidine and hemagglutinin (HA)-epitope tags was expressed in E. coli and purified on nickel-nitrilo-

triacetic acid prior to resolution by SDS-15% PAGE and visualization by Coomassie blue staining. Molecular weight marker positions (kDa) are indicated. (Right)

Baculovirus-expressed Cyclin C-H6/FLAG-CDK8 was immunoprecipitated from infected insect cell lysates in the absence (�) or presence (+) of HA-MED12

(1–100). FLAG-specific immunoprecipitates were processed by western blot using the indicated antibodies (top) or incubated with [g-32P]-ATP and purified

GST-CTD (bottom). INPUT corresponds to 5% of protein used in IP reactions. 32P-GST-CTD levels were quantified and expressed relative to the level in the

absence of MED12 (1–100). Data represent the average ± SEM of three independent experiments. p value calculated by Student’s t test.
level of CDK8 kinase activity. Three surface-groove mutants

(N181A, D182A, and Y238A), but no mutant outside the groove,

diminished MED12 binding and CDK8 kinase activity (Figure 3C)

without affecting CDK8 binding. These results identify the Cyclin

C surface groove as a principal binding interface through which

MED12 activates CDK8 and further reveal thatMED12 andCDK8

bind to Cyclin C through distinct surfaces.

To confirm these findings in vivo, we expressed FLAG-tagged

WT Cyclin C or its MED12 binding-deficient mutant derivative

(N181A) in HEK293 cells and monitored their chromatographic

elution profiles by gel filtration analysis. Whereas WT Cyclin C

coeluted along with other Mediator subunits in a �2 MDa Medi-

ator peak, Cyclin C N181A was excluded entirely from these

fractions (Figures S3A and S3B), indicating that surface-groove
(C) Average change of binding of MED12 G44D mutant to different Mediator mod

only statistically significant change was found with the kinase module (p = 2 3 1

analysis.

(D) Immunoprecipitation (IP)-western blot (WB) verification of the loss of CDK8/C

(E) FLAG-tagged WT MED12 or its indicated mutant derivatives were immunop

cipitates were processed by WB using the indicated antibodies (middle panel) or

(bottom). INPUT (top) corresponds to 10% of cell lysate used in IP reactions. 32P

MED12 IP. Data represent the average ± SEM of three independent experiments.

***p < 0.001). Note that the CDK19WBwas derived from the same IP but a differen

(F) Baculovirus-expressed FLAG-CDK8, Cyclin C-H6, and MED12-HA (WT or m

FLAG-specific immunoprecipitates were processed by WB using the indicated

corresponds to 10% of cell lysate used in IP reactions. WBs were quantified and l

and expressed relative to their corresponding normalized levels in the CDK8/Cyc

quantified and expressed relative to the level in the CDK8/CycC/MED12 WT IP. D

denote statistically significant differences versus WT (Student’s t test, *p < 0.05,

See also Figure S1 and Tables S1–S3.
mutations disrupt the association of Cyclin C with MED12, its

principal anchor in Mediator. This interpretation is congruent

with coimmunoprecipitation analyses from FLAG-tagged WT

and mutant Cyclin C-expressing cells. FLAG-specific immuno-

precipitates from N181A and D182A-expressing cells harbored

CDK8, but not MED12 or other Mediator subunits that were

readily detected in those from WT and E98A-expressing cells

(Figure 3D). Concordantly, Cyclin C-associated CDK8 kinase ac-

tivity was significantly reduced in FLAG-specific immunoprecip-

itates from cells expressing N181A and D182A compared to WT

or E98A derivatives (Figure 3D). Together, these results identify

the Cyclin C surface groove as a principal binding interface

through which MED12 both anchors Cyclin C-CDK8 into Medi-

ator and stimulates Cyclin C-dependent CDK8 kinase activity.
ules. Data represent the average ± SD of three independent experiments. The

0�5). For the other modules, p > 0.2. See Table S2 for description of statistical

DK19 binding to the G44D mutant MED12 from 293 Flp-In cells.

recipitated from transfected HEK293 cell lysates. FLAG-specific immunopre-

incubated with [g-32P]-ATP and purified glutathione S-transferase (GST)-CTD

-GST-CTD levels were quantified and expressed relative to the level in the WT

Asterisks denote statistically significant differences versusWT (Student’s t test,

t gel to preclude interference from the signal produced by similarly sized CDK8.

utant as indicated) were immunoprecipitated from infected insect cell lysates.

antibodies (top) or subjected to in vitro kinase assay (bottom) as in (E). Input

evels of MED12 and Cyclin C (CycC) in each IP were normalized to CDK8 levels

C/MED12 WT IP (middle). 32P-GST-CTD levels in each IP/kinase reaction were

ata represent the average ± SEM of three independent experiments. Asterisks

***p < 0.001).
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Figure 3. The Cyclin C Surface Groove Is Required for MED12

Binding and CDK8 Activation

(A) Schematic summary of binding interactions within the Mediator kinase

module.

(B) Structure of H. sapiens Cyclin C-CDK8 (25) (Protein Data Bank accession

number 3RGF). Cyclin C, blue; CDK8, gray. Targeted residues that lie within

(W177, N181, D182, and Y238) and outside (W6 and E98) the groove are

rendered yellow.

(C) Baculovirus-expressed MED12-HA, FLAG-CDK8, and CycC-H6 (WT or

mutant as indicated) were immunoprecipitated from infected insect cell

lysates. FLAG-specific immunoprecipitates were processed by western blot

(WB) using the indicated antibodies (top) or incubated with [g-32P]-ATP

and purified glutathione S-transferase -CTD (bottom). Input (IN) corresponds

to 10% of cell lysate used in IP reactions. WBs and kinase reactions

were quantified, and binding and kinase levels calculated as described in the

legend to Figure 1F. Data represent the average ± SEM of three independent

experiments. Asterisks denote statistically significant differences versus WT

(Student’s t test, **p < 0.01, ***p < 0.001).

(D) FLAG-tagged WT Cyclin C or its indicated mutant derivatives were

immunoprecipitated from transfected HEK293 cell lysates. FLAG-specific

immunoprecipitates were processed by WB using the indicated antibodies

(top) or subjected to in vitro kinase assay as in (C). INPUT corresponds to 10%

of cell lysate used in IP reactions. 32P-GST-CTD levels were quantified and

expressed relative to the level in the WT Cyclin C IP.

See also Figures S2 and S3 and Table S3.
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Our findings that oncogenic exon 2 mutations in MED12 un-

couple Cyclin C-CDK8/19 from core Mediator implicate aberrant

CDK8/19 activity in uterine leiomyomagenesis and suggest po-

tential new targets for therapeutic intervention in a tumor type

that negatively impacts hundreds of millions of women world-

wide. Because CDK8 and CDK19 are both expressed in normal

myometrium (and leiomyomas), it is not presently clear to what

extent the oncogenic potential of MED12 mutations derive

from disruption of Mediator-associated CDK8 versus CDK19 ac-

tivity. Further studies will be necessary to address this important

issue. Our findings further clarify the network of molecular inter-

actions required for Mediator kinase activity and identify the

MED12/Cyclin C interface as a prospective therapeutic target

in CDK8-driven cancers.

EXPERIMENTAL PROCEDURES

Cloning and Mutagenesis for the MED12 Flp-In 293 T-REx Cells

Site-directed mutagenesis of MED12 to generate the G44D mutant was

performed using the primers listed in Table S3. After mutagenesis, the cDNA

constructs were cloned into gateway compatible entry vector and finally to

pTO_HA_StrepIII_c_GW_FRT destination vector (Varjosalo et al., 2013).

Affinity Purification

For each individual pull-down, a cell pellet derived from 5 3 15 cm dishes

(approximately 5 3 107 cells) was lysed for 10 min on ice in 5 ml HNN lysis

buffer (50 mM HEPES [pH 8.0], 150 mM NaCl, 5 mM EDTA, 0.5% NP-40,

50 mM NaF, 1.5 mM Na3VO4, 1.0 mM phenylmethanesulfonylfluoride, and

10 ml/ml protease inhibitor cocktail [Sigma]). Insoluble material was removed

by centrifugation at 13,000 rpm for 20 min at 4�C. A total of 200 ml Strep-Tactin

Sepharose beads (400 ml slurry) was transferred to a Bio-Spin chromatography

column (Bio-Rad) and washed with 3 3 1 ml HNN buffer and 3 3 1 ml HNN

buffer without detergent and inhibitors, and bound proteins were eluted with

33 300 ml freshly prepared 0.5 mM D-biotin (Thermo Scientific) in HNN buffer

into a fresh 1.5 ml Eppendorf tube.

Mass Spectrometry

Samples were prepared for liquid chromatography MS as follows: dithiothrei-

tol was added to the eluates to a final concentration of 10mM, and the samples

were incubated for 1 hr at 56�C. To block cysteine residues, iodoacetamide

was added to a final concentration of 55 mM and the samples incubated at

room temperature in the dark for 30 min. A total of 1 mg trypsin was added,

and the samples were incubated overnight at 37�C. Tryptic digests were

quenched with 10% trifluoroacetic acid (TFA), concentrated and purified

by reverse-phase chromatography MicroSpin Column (C18, Nest Group)

and eluted with 90% CH3CN, 0.1% TFA. The volume of the eluted sample

was reduced to approximately 2 ml in a vacuum centrifuge and reconstituted

to a final volume of 40 ml with 0.1% TFA, 1%CH3CN and vortexed thoroughly.

Mass spectrometry analysis was performed on an Orbitrap Elite ETD mass

spectrometer (Thermo Scientific) using the Xcalibur version 2.7.1 coupled to

a Thermo Scientific nLCII nanoflow system (Thermo Scientific) via a nanoelec-

trospray ion source. Solvents for liquid chromatography MS separation of the

digested samples were as follows: solvent A consisted of 0.1% formic acid in

water (98%) and acetonitrile (2%), and solvent B consisted of 0.1% formic acid

in acetonitrile (98%) and water (2%). From a thermostatted microautosampler,

8 ml of the tryptic peptide mixture (corresponding to 20% of the final eluate)

was automatically loaded onto a 15 cm fused silica analytical column with

an inner diameter of 75 mm packed with C18 reversed-phase material (Thermo

Scientific), and the peptides were eluted from the analytical column with a

40 min gradient ranging from 5% to 35% solvent B, followed by a 10 min

gradient from 35% to 80% solvent B at a constant flow rate of 300 nl/min.

The analyses were performed in a data-dependent acquisition mode using

a top 10 collision-induced dissociation (CID) method. Dynamic exclusion

for selected ions was 30 s. No lock masses were employed. Maximal ion



accumulation time allowed on the Orbitrap Elite ETD in CID mode was 100 ms

forMSn in the Ion Trap and 200ms in the Fourier transformmass spectrometer

(FTMS). Automatic gain control was used to prevent overfilling of the ion traps

and was set to 10,000 (CID) in MSnmode for the Ion Trap and 106 ions for a full

FTMS scan. Intact peptides were detected in the Orbitrap at 60,000 resolution.

Peak extraction and subsequent protein identification was achieved using

Proteome Discoverer software (Thermo Scientific). Calibrated peak files

were searched against the human component of UniProtKB/SwissProt data-

base (http://www.uniprot.org) by a SEQUEST search engine. Error tolerances

on the precursor and fragment ions were ±15 ppm and ±0.6 Da, respectively.

Database searches were limited to fully tryptic peptides with maximum one

missed cleavage, and carbamidomethyl cysteine and methionine oxidation

were set as fixed and variable modifications, respectively.

The normalization of protein abundance is described in Table S1.

Kinase Assays

For in vitro kinase assays, insect cell lysates expressingMED12-hemagglutinin

(WT or mutants), CDK8-FLAG, and Cyclin C-H6 (WT or mutants) were com-

bined in different combinations and subjected to FLAG IP for 1 hr at 4�C in

200 mM NaCl D buffer. Immune complexes were washed in 200 mM NaCl D

buffer and subjected to a kinase assay containing 25 mM Tris (pH 7.5),

20 mM MgCl2, 2.5 mCi [g-32P]-ATP, and 2 mg of purified glutathione S-trans-

ferase (GST)-3X-CTD. Reactions were incubated for 30 min at 30�C, eluted
in Laemmli sample buffer, processed by SDS-12% PAGE, stained with

Coomassie blue and visualized by phosphorimager analysis. 32P-labeled

GST-3X-CTD was quantified using ImageQuant software.

For in vivo-derived kinase assays, HEK293 cells were transfected with

pCDNA3.1-3xFLAGCyclin C (WT ormutant) or 3xFLAGMED12 (WT ormutant)

plasmids and nuclear extracts were harvested 48 hr later. Extracts were sub-

jected to FLAG IP in 200 mM D buffer overnight at 4�C. Immune complexes

were washed and subjected to a kinase assay containing 25 mM Tris

(pH 7.5), 20 mM MgCl2, 2.5 mCi [g-32P]-ATP, and 2 mg of purified GST-

3X-CTD. Reactions were incubated for 30min at 30�C, eluted in Laemmli sam-

ple buffer, processed by SDS-12% PAGE, stained with Coomassie stain, and

visualized by phosphorimager analysis. 32P-labeled GST-3X-CTD levels were

quantified using ImageQuant software.
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