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SUMMARY

All forms of diabetes mellitus (DM) are characterized
by the loss of functional pancreatic b cell mass, lead-
ing to insufficient insulin secretion. Thus, identification
of novel approaches to protect and restore b cells
is essential for the development of DM therapies.
Mesencephalic astrocyte-derived neurotrophic fac-
tor (MANF) is an endoplasmic reticulum (ER)-stress-
inducible protein, but its physiological role in
mammals has remained obscure. We generated
MANF-deficient mice that strikingly develop severe
diabetes due to progressive postnatal reduction of
b cell mass, caused by decreased proliferation and
increased apoptosis. Additionally, we show that lack
of MANF in vivo in mouse leads to chronic unfolded
protein response (UPR) activation in pancreatic islets.
Importantly, MANF protein enhanced b cell prolif-
eration in vitro and overexpression of MANF in the
pancreas of diabetic mice enhanced b cell regen-
eration. We demonstrate that MANF specifically
promotes b cell proliferation and survival, thereby
constituting a therapeutic candidate for b cell protec-
tion and regeneration.

INTRODUCTION

Diabetes mellitus (DM) is a group of metabolic disorders charac-

terized by the loss of functional pancreatic b cell mass, leading to

insufficient insulin secretion (Talchai et al., 2012; Weir and Bon-

ner-Weir, 2013). Current diabetes therapies cannot prevent b cell

death or promote regeneration of remaining b cells and rarely

result in complete long-term metabolic normalization. Thus,

one of the main strategies in improving current DM therapy is

to define and validate novel approaches to protect and restore

b cell mass (Donath and Halban, 2004). In both rodents and
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humans, b cells are formed by neogenesis from endocrine

progenitor cells that proliferate extensively during the end of

embryogenesis and early postnatal period to reach the proper

adult b cell mass (Dhawan et al., 2007; Meier et al., 2008).

A number of cellular insults can disrupt protein folding and

cause accumulation of unfolded proteins, triggering endo-

plasmic reticulum (ER) stress, and, if prolonged, lead to ER-

stress-induced apoptosis (Szegezdi et al., 2006). Accumulation

and aggregation of unfolded proteins result in dissociation of

general ER stress chaperone GRP78/Bip from ER stress sensors

PERK, ATF6, and IRE1 and activation of downstream signaling

unfolded protein response (UPR) cascades, finally resulting in

decreased protein synthesis, increased protein folding capacity,

and degradation of misfolded proteins (Szegezdi et al., 2006;

Walter and Ron, 2011). Importantly, alterations in proteins

involved in ER stress and UPR are linked to diabetes in humans

and mice, suggesting that unresolved ER stress is involved in

the pathogenesis of b cell loss in type 1 and type 2 diabetes

(Delépine et al., 2000; Eizirik et al., 2008, 2013; Hetz, 2012).

MANF together with cerebral dopamine neurotrophic factor

forms a new, highly evolutionarily conserved protein family, effi-

ciently protecting and repairing midbrain dopaminergic neurons

in animal models of Parkinson’s disease and protecting cardiac

myocytes in myocardial infarction and cortical neurons against

ischemic stroke (Airavaara et al., 2009; Glembotski et al., 2012;

Hellman et al., 2011; Lindholm et al., 2007, 2008; Lindholm

and Saarma, 2010; Petrova et al., 2003; Voutilainen et al.,

2009). However, the cytoprotective mechanisms of MANF are

not known.

MANFmRNA and protein are widely expressed inmost human

and mouse organs with high levels in glandular cells of secretory

tissues such as pancreas and salivary gland (Lindholm et al.,

2008). Intracellularly, MANF localizes to the luminal ER, where

it interacts with the chaperone GRP78 and is secreted in

response to experimental ER stress in vitro (Apostolou et al.,

2008; Glembotski et al., 2012; Lindholm and Saarma, 2010; Miz-

obuchi et al., 2007). Thus, recent studies suggest that MANF is

an ER-stress-inducible protein for several cell populations.
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Figure 1. Retarded Growth, Hyperglycemia,

and Hypoinsulinemia inManf-DeficientMice

(A) Schematic illustration of the wild-type Manf+/+

and mutant Manf�/� loci. A b-galactosidase re-

porter cassette (b-gal), strong splicing acceptor

site (En2SA), exon (E), Frt (F)-site, LoxP (L)-

site, bAct::Neo; human b-actin promoter-driven

neomycin resistance gene. Arrowheads indicate

priming sites used in genotyping by PCR and in

RT-PCR.

(B) Growth curve of Manf+/+and Manf�/� litter-

mates. Embryonic day (E) 18.5 to postnatal day (P)

2 (inset), n = 5–41, both sexes. P14–P56, n = 9–16,

only males.

(C) Ad libitum-fed blood glucose levels, n = 16–34.

(D) Blood glucose levels 30 min after glucose bolus

injection, n = 4–12.

(E) Serum insulin levels from ad libitum-fed mice,

n = 8–20.

(F) Blood glucose levels measured after insulin

injection, n = 5 per group.

(G) Serum insulin levels in P56 mice measured

30 min after glucose bolus injection, n = 4.

(H) In vitro insulin release from islets in response

to low glucose (1.67 mmol/l; G1.67), high glucose

(16.7 mmol/l; G16.7), and high glucose with

IBMX (1 mmol/l), normalized to islet DNA content

after 1 hr.

(I) In vitro glucose-stimulated insulin release

compared to total islet insulin content, n = islets

from five to six pancreases/group. Mean ± SEM,

*p < 0.05, **p < 0.01, ***p < 0.001 versus corre-

sponding control.

See also Figures S1 and S2.
To understand the physiological role of MANF in vivo, we

generated MANF knockout mice (Manf�/�). Surprisingly,

Manf�/� mice develop insulin-deficient diabetes due to pro-

gressive postnatal reduction of b cell mass caused by

decreased b cell proliferation and increased apoptosis. We

also demonstrate that pancreatic islets of Manf�/� mice display

activation of UPR genes and proteins, implicating unresolved

ER stress as a primary cause of b cell failure. Consistently, re-

combinant MANF protein enhanced b cell proliferation in vitro.

Furthermore, after streptozotocin-induced diabetes, we found

enhanced b cell proliferation and reduced b cell death in the
Cell Reports 7, 366–
regions of pancreas that had been trans-

duced to overexpress MANF. Our results

demonstrate that MANF specifically pro-

motes b cell proliferation and survival,

thereby constituting a promising thera-

peutic agent for b cell protection and

regeneration.

RESULTS

Loss of MANF in Mice Results in
Growth Retardation and Diabetes
To understand the physiological role

of MANF in vivo, we generated MANF
knockout mice (Manf�/�) from an embryonic stem cell clone

MANF_D06 (EPD0162_3_D06; C57Bl/6N-Manf tm1a(KOMP)Wtsi),

containing a b-galactosidase reporter cassette with a strong

splice acceptor site inserted in the intron between exon 2

and exon 3 of the Manf gene, creating a constitutive null muta-

tion through splicing of exon 2 to the reporter cassette (Fig-

ure 1A). We confirmed that MANF full-length mRNA and protein

were not expressed in tissues of Manf�/� mice (Figures S1A

and S1B). We found that MANF-deficient mice display progres-

sive gender-independent growth retardation (Figure 1B). In

addition, the body size and fat pad weights were significantly
375, April 24, 2014 ª2014 The Authors 367



reduced in Manf�/� male mice compared to wild-type (WT)

mice (Figures S1D–S1F). At 8–12 weeks of age, the health

of the mutant mice quickly deteriorated and the animals were

euthanized.

The blood glucose levels of ad libitum fed animals were within

normal range for Manf�/� mice compared to wild-type Manf+/+

measured at postnatal day 1 (P1) and at P14 (Figure 1C). How-

ever, at P56, the Manf�/� mice were severely hyperglycemic

(Figure 1C) and they consumed significantly more water than

Manf+/+ littermates (Figure S1G). Glucose tolerance test showed

a severely compromised glucose clearance compared to

Manf+/+ mice already at P14 (Figure 1D). In addition, significantly

reduced levels of insulin were observed from sera of fed P28

Manf�/�mice compared toManf+/+ littermates, and at P56, insu-

lin was barely detectable (Figure 1E). Insulin tolerance test sug-

gested intact insulin sensitivity in the Manf�/� mice (Figure 1F).

Circulating glucose-stimulated insulin levels were dramatically

decreased in P56Manf�/� mice (Figure 1G). Although remaining

islets derived from diabetic P35 Manf�/� mice secreted less in-

sulin than WT islets after an overnight culture period (Figure 1H),

their capacity to secrete insulin relative to cellular insulin content

did not differ in response to glucose or glucose plus IBMX

(Figure 1I).

The diabetic phenotype was confirmed in independent condi-

tional PGKCre/+::Manfflox/flox(fl/fl) and pancreas-specific Pdx1Cre/+::

Manfflox/flox(fl/fl) mouse lines (Supplemental Results; Figures S2A–

S2I). Importantly, the diabetic phenotype was not observed

when MANF was deleted mainly in central nervous system

NestinCre/+:: Manf (fl/fl) mice, highlighting the indispensable role

of pancreatic MANF in regulation of b cell mass (Supplemental

Results; Figures S2J–S2K).

Postnatal Reduction in Pancreatic b Cell Mass in
Manf�/� Mice Results from Decreased b Cell
Proliferation and Enhanced Apoptosis
Immunohistological analysis revealed a progressive postnatal

reduction in b cell mass, loss of islet architecture, and

decreased intensity of insulin immunoreactivity in Manf�/�

mice (Figures 2A–2G). At P56, most of the islet insulin-positive

b cells were lost from Manf�/� pancreases (Figures 2E and

2F). Quantification of b cell mass revealed no difference be-

tween genotypes at embryonic day 18.5 (E18.5), whereas

already by P1, the reduction in Manf�/� pancreases was 50%

and by P56, 85% (Figure 2G). Proliferation is important for the

b cell expansion during late embryogenesis and in the neonatal

period to reach the proper b cell mass (Dhawan et al., 2007).

There were no differences between genotypes in the number

of proliferating (bromodeoxyuridine+ or Ki67+) insulin-positive

b cells quantified from pancreases at E18.5 (Figures 2H, S3A,

and S3B), but a significant reduction in Ki67+ b cells was

observed in P1 and P14 Manf �/� mice (Figure 2H). Importantly,

the number of proliferating exocrine acinar cells did not differ

between genotypes (Figure 2I). Quantification of TUNEL+ b cells

revealed increased b cell apoptosis in Manf�/� pancreas at P14

and P56 that coincided with the reduction of b cell mass

(Figures 2J and S3C). Glucagon immunohistochemistry showed

a normal a cell mass, indicating that the phenotype is b cell spe-

cific (Figures S3D–S3J).
368 Cell Reports 7, 366–375, April 24, 2014 ª2014 The Authors
Despite Its Universal Expression Pattern, MANF
Deficiency Affects b Cells
Expression of MANF has previously been detected in several

tissues, including pancreatic acinar cells at E17 and in adult

pancreatic islet cells (Lindholm et al., 2008; Mizobuchi et al.,

2007). We studied in more detail the expression of MANF in

mouse pancreas by double immunohistochemistry with insulin

and MANF antibodies. High MANF expression was colocalized

with insulin-positive b cells in mouse islets (Figure S4B, arrow-

head). However, MANF-positive immunostaining was also de-

tected in exocrine acinar cells (Figure S4B, arrow). Importantly,

none to very weak background staining of MANF was de-

tected in Manf�/� pancreas (Figure S4E). Similarly to expres-

sion in mouse, we detected MANF expression in the islets

and exocrine tissue of human adult pancreas tissue (Figures

S4G–S4I).

Consistent with progressively reduced b cell mass from P1

Manf�/� pancreas, there was significantly reduced expression

of glucose transporter 2 (Glut2), insulin1/insulin2 (Ins1/2), and

Pdx1 and a trend toward reduced glucokinase (Gck) expression

in islets of P1 Manf�/� mice (Figures 3B–3D). Importantly,

reduced expression of these b cell markers was not observed

in pancreases of E18.5 mice (Figure 3A). Along with other b

cell-specific genes, also MafA mRNA expression was signifi-

cantly reduced already in P1 Manf�/� islets (Figures 3B–3D).

GLUT2 immunohistochemistry showed clearly reduced mem-

brane localization and expression of GLUT2 protein in P14 and

P56 Manf�/� b cells (Figures 3E–3J). Taken together, our data

indicate that the timing of the progressive loss of b cell pheno-

type occurs postnatally in Manf�/� islets.

Loss of MANF Results in Activated Endoplasmic
Reticulum Stress and Unfolded Protein Response
Pathways
We next investigated ER stress and UPR pathways in Manf�/�

E18.5 pancreases and isolated islets. Significantly higher levels

of Chop and spliced Xbp1, but not Atf4, Grp78, or Atf6a, were

observed already in E18.5 Manf�/� pancreases compared to

WT (Figure 4A). There was a trend toward higher levels of Atf4,

Grp78,Chop, spliced Xbp1, andAtf6amRNA expression in islets

from P1Manf�/� mice compared to WT (Figure 4B). A significant

elevation of mRNA levels for Atf4, Grp78, Chop, and Atf6a was

found in the islets isolated from P14 Manf�/� pancreases

compared to WT islets (Figure 4C). Taken together, our results

demonstrate that loss of b cell phenotype is preceded by upre-

gulation of genes in IRE1 pathway starting at E18.5 followed by

activation of PERK and ATF6 pathways (Figure 4F).

Furthermore, quantification of phosphorylated (p)eIF2a band

intensities in relation to total levels of (t)eIF2a by western blot

analysis revealed a higher level of phosphorylated eIF2a in

P14, P28, and P56 Manf�/� islets (Figures 4D and 4E), demon-

strating that the PERK pathway was constitutively activated in

the postnatal Manf�/� islets (Figure 4F).

Recombinant MANF Induces Proliferation of Pancreatic
b Cells In Vitro and In Vivo
We assessed whether recombinant human MANF protein could

directly affect mouse b cell proliferation in vitro. Compared to



Figure 2. Decline in b Cell Mass in Manf-Deficient Mice Is Caused by Reduced b Cell Proliferation and Increased b Cell Death

(A–F) Insulin immunohistochemistry on pancreas sections from Manf+/+ (A, C, and E) and Manf�/� (B, D, and F) animals at P1 (A and B), P14 (C and D), and P56

(E and F). Arrow in (F) points to b cell with reduced insulin staining. The scale bar represents 50 mm.

(G) Progressive reduction in b cell mass in Manf�/� mice from P1, n = 5 per group.

(H) b cell proliferation assessed by Ki67 and insulin staining, n = 3–5 per group.

(I) Acinar cell proliferation assessed from Ki67-positive DAPI-stained nuclei from pancreatic exocrine tissue, n = 5 to 6 per group.

(J) Islet b cell death assed by TUNEL and insulin double-staining, n = 5 per group. Mean ± SEM, **p < 0.01, ***p < 0.001 versus corresponding control.

See also Figure S3.
islets cultured without added growth factors, MANF significantly

increased b cell proliferation (Figure 5A). Importantly, MANF

together with placental lactogen (PL), a potent mitogen for b

cells, further increased the number of proliferating b cells.

Hence, extracellular MANF has a direct proliferative effect on

mouse b cells, implying the presence of a yet unidentified recep-

tor for MANF on the b cells capable of mediating intracellular

mitogenic signaling cascades.

Our observed effects of MANF removal from b cells in vivo and

exogenous recombinant MANF protein on b cells in vitro sug-

gested that MANFmight be therapeutic in a rodent model of dia-

betes. We therefore tested whether overexpression of MANF by
intrapancreatic delivery of aMANF-expressing adenoassociated

virus serotype 6 (AAV6) in mice affects b cell proliferation

and survival after streptozotocin-induced b cell depletion. Three

weeks after AAV6-MANF or AAV6-RFP (a control red fluorescent

protein) administration, animals were injected with low-dose

streptozotocin (STZ) for 5 consecutive days to induce b cell defi-

ciency (Figure 5B). Robust, patchy expression of MANF or RFP

(Figures S5B, S5F, and S5J) was observed in islet b cells

(transduction efficiency 4.3% ± 1.5%) and exocrine tissue

(4.2% ± 1.5% cells transduced), confirming a successful deliv-

ery and overexpression of MANF and RFP. Consistent with

elevated blood glucose levels and reduced serum insulin levels,
Cell Reports 7, 366–375, April 24, 2014 ª2014 The Authors 369



Figure 3. Expression of b Cell-Specific Genes Is Reduced in Manf�/� Islets

Quantitative RT-PCR for mRNA levels of b cell-specific genesGlut2, Ins1/2,Pdx-1,MafA, andGck in E18.5 pancreases (A) and islets from P1 (B), P14 (C), and P56

(D) pancreases, n = 4–10 per group. Mean ± SEM, *p < 0.05, **p < 0.01, versus the corresponding control. GLUT2 immunohistochemistry of pancreas sections

from WT and Manf�/� mice at P1 (E and H), P14 (F and I), and P56 (G and J); scale bar, 100 mm.

See also Figure S4.
STZ-induced b cell loss was detected in the islets from mice

treated with STZ (Figures S5H and S5L–S5N).

Insulin immunoreactive islets were larger in the STZ-injected,

AAV6-MANF-treated pancreatic sections compared to the

AAV6-RFP-treated mice (Figures 5C, S5H, and S5L). Although
370 Cell Reports 7, 366–375, April 24, 2014 ª2014 The Authors
the blood glucose and insulin levels were comparable between

AAV6-MANF and AAV6-RFP STZ-injected groups, we found

a significantly higher b cell proliferation rate in the STZ-in-

jected, AAV6-MANF-treated groups compared to both the

buffer-injected (nonlesioned) AAV6-RFP and the STZ-injected



AAV6-RFP groups (Figures 5D, S5M, and S5N), demonstrating

that overexpression of MANF could enhance b cell proliferation

and regeneration in vivo. Importantly, we found no significant dif-

ference in the number of proliferating exocrine acinar cells be-

tween treatment groups, suggesting that the proliferative effect

of MANF was specific for endocrine pancreas (Figure 5E). Addi-

tionally, AAV6-MANF significantly protected against b cell death

compared to the AAV6-RFP STZ-injected group (Figure 5F).

Taken together, our results demonstrate that gene therapy using

MANF is able to induce b cell proliferation and regeneration

and protect b cells from apoptosis in an experimental diabetes

model.

DISCUSSION

In order to understand the physiological role of MANF in mam-

mals, we generated MANF-deficient mice. Surprisingly, MANF

deficiency in mice leads to a progressive loss of b cells, resulting

in diabetes mellitus due to reduced b cell proliferation and

enhanced b cell death. The severe diabetic phenotype of global

Manf�/� mice was unexpected because inactivation of MANF in

fruit fly and knockdown of Manf mRNA expression in zebrafish

causes a dopaminergic phenotype (Chen et al., 2012; Palgi

et al., 2009). Conditional removal of MANF specifically from the

pancreas in Pdx1Cre/+:: Manffl/fl mice leads to a diabetic pheno-

type similar to the global knockout mice. However, inactivation

of MANF by Nestin-Cre expression did not result in a diabetic

phenotype. In Nestin-Cre mice, Cre recombinase activity is de-

tected in the CNS by E11, in mesenchymal and epithelial cells

of the early pancreatic primordium, and in scattered acinar cells

of the exocrine pancreas in adults, but not in islet endocrine

cells (Delacour et al., 2004). Thus, our results obtained from con-

ditional removal of MANF strongly suggest that MANF produced

locally in the islets is important for the b cell proliferation and

survival.

Previous studies have shown that MANF is upregulated in ER

stress in vitro and can protect several cell populations from ER-

stress-induced cell death in vivo (Airavaara et al., 2009; Aposto-

lou et al., 2008; Glembotski et al., 2012; Voutilainen et al., 2009).

Interestingly, MANF protein level was also increased in the b cells

of diabetic Akita mice in which ER stress is caused by the accu-

mulation of proinsulin in the ER (Mizobuchi et al., 2007). Further-

more, MANF total knockdown in fruit fly embryos has revealed

increased expression of several genes involved in ER stress

and increased eIF2a phosphorylation (Palgi et al., 2012).

Here, we show that lack ofMANF in vivo leads to ER stress and

chronic UPR activation in pancreatic islets. The activation of

UPR is clearly evident already at E18.5 by increased expression

of spliced Xbp1 and Chop mRNA, followed by the upregulation

of the general ER stress marker Grp78 and genes in the PERK

and ATF6 pathways. Importantly, we found no difference in b

cell mass or in the number of proliferating b cells quantified

fromWT andManf�/� pancreases at E18.5. Similarly, b cell-spe-

cific genes Glut2, Ins1/2, Pdx1, and Gck were not significantly

downregulated in Manf�/� pancreas at E18.5, indicating that

ER stress precedes the impaired b cell function.

As MANF is widely expressed in several tissues, the question

arises why global MANF knockdown results in such a robust
b cell phenotype. Increased phosphorylation of eIF2a that is

known to lead to a global decrease in mRNA translation initiation

is tolerated poorly by b cells (Cnop et al., 2007). In addition, pro-

longed ATF6 activation downregulates transcription factors

PDX1 andMAFA, both critical for promoting expression of insulin

and important for b cell function (Artner et al., 2010; Seo et al.,

2008). Thus, the current evidence suggests that UPR activation

detected already at E18.5 in Manf�/� islets affects the expres-

sion of b cell-specific proteins, leading to decreased insulin

expression, reduced b cell proliferation, and increased b cell

death.

Several factors contributing to the regulation of b cell

mass, including insulin-like growth factors (IGF-I and IGF-II),

glucagon-like peptide-1, prolactin, growth hormone, and

placental lactogens, are potential therapeutic targets for expan-

sion of the human b cell mass (Tarabra et al., 2012). However,

therapeutic use of some of these hormones and growth factors

has been limited by the lack of specificity, stimulation of uncon-

trolled b cell growth, and adverse effects on b cell function.

Furthermore, knockdown studies have revealed that many of

these factors are not essential for physiological b cell expansion

and survival (Tarabra et al., 2012; Vasavada et al., 2006).

Recently, a potential specific growth factor for b cells, named be-

tatrophin (alias ANGPTL8), was identified (Yi et al., 2013). How-

ever, the finding that deletion of ANGPTL8 did not affect b cell

mass or glucose metabolism (Wang et al., 2013) indicates that

its physiological action on b cells is very different from MANF.

Here, we show that recombinant MANF is a potent stimulator

of b cell proliferation in vitro, constituting a protein with therapeu-

tic potential for stimulating b cell renewal. Additionally, our work

provides tools for finding the mechanism of MANF action by

identifying its receptor(s) and signaling pathways in b cells.

Our in vivo gene therapy experiment using AAV-6 MANF

showed that, despite low transduction efficiency (only �4% of

the b cells) of pancreatic cells, MANF promotes normal islet

morphology and specifically enhances b cell proliferation and

protects b cells in mice in an experimental diabetes model.

Future experiments using higher virus titers, longer MANF over-

expression, and different diabetic models are clearly needed to

validate the therapeutic potential of MANF.

The severe postnatal decline in b cell mass in theManf�/�mice

and our in vitro and in vivo data indicate thatMANFmay be one of

the most potent secreted growth factors for regulating both b

cell proliferation and for maintaining b cell mass in mice. Finally,

high MANF expression in human pancreas suggests that MANF

might have similar b cell mitogenic effects also in humans. Future

studies will evaluate the potential of MANF to protect and

regenerate functional b cells as a therapeutic agent for treating

diabetes.

EXPERIMENTAL PROCEDURES

Manf-Targeted ESC Clone

The targeted mouse embryonic stem cell (ESC) clone MANF_D06

(EPD0162_3_D06, C57Bl/6N-Manf tm1a(KOMP)Wtsi) was generated by the

trans-National Institutes of Health (NIH) Knockout Mouse Project (KOMP)

and obtained from the KOMP Repository (http://www.komp.org). Genetically

modified ESCs were aggregated with morula-stage preimplantation embryos

(ICR strain) at the GM mouse unit of University of Helsinki.
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Figure 4. Unfolded Protein Response Genes Are Upregulated, and EIF2a Protein Is Phosphorylated in Islets from MANF-Deficient Mice

(A–C) Quantitative real-time PCR analysis of UPR genes Atf4, Grp78, Chop, Xbp1s, Xbpt, and Atf6a inManf+/+andManf�/� E18.5 pancreases (A) and islets from

P1 (B) and P14 (C) pancreases, n = 4–13 per genotype.

(D) Western blotting with indicated antibodies on islet lysates from P14, P28, and P56 mice. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

(E) Quantified intensities of western blot bands of phosphorylated (p)EIF2awas compared to total amount of (t)EIF2a and tEIF2a to intensities of GAPDH, n = islets

from two to three pancreases per genotype. Mean ± SEM, *p < 0.05 versus corresponding Manf+/+control.

(F) Analyzed ER stress pathways and UPR genes are indicated in red. Vertical arrow denotes increased and horizontal arrow unchanged expression in Manf�/�

islets compared to WT animals. Upon accumulation and aggregation of unfolded proteins, GRP78 dissociates from ER stress receptors PERK, ATF6, and IRE1,

(legend continued on next page)

372 Cell Reports 7, 366–375, April 24, 2014 ª2014 The Authors



Figure 5. MANF Rescues Islet Size and

Selectively Induces b Cell Proliferation

In Vitro and In Vivo

(A) MANF recombinant protein increases b cell

proliferation after 5 days in culture. Placental lac-

togen (PL), n = 5 wells per point.

(B) Time course of the in vivo experiment.

(C) Distribution of islet size in the AAV6-RFP-

Buffer, AAV6-RFP-STZ, and AAV6-MANF-STZ

animals. Each symbol in the graph represents one

islet, and average islet size per group is shown by

horizontal lines. n = 5–8 per group.

(D) b cell proliferation in AAV6-virus-injected,

nonlesioned, and STZ-treated mice assessed by

Ki67 and insulin double staining, n = 6 per group.

(E) Acinar cell proliferation in AAV6-virus-injected,

nondiabetic, and STZ-treated mice, n = 6 per

group. NS, not significant.

(F) Islet cell death assessed by TUNEL followed by

insulin staining, n = 5 to 6 per group. Mean ± SEM,

**p<0.01, ***p<0.001versuscorrespondingcontrol.

See also Figure S5.
Animals

All experimental procedures involving mice were approved by the Finnish

Animal Ethics Committee of the State Provincial Office of Southern Finland.

Mice were maintained in pathogen-free facility with a 12 hr light/dark cycle

and unlimited access to food (Harlan; Teklad Global; 16% protein rodent

diet; 2916) and water. In all studies comparing Manf+/+ and Manf�/� mice,

we used sex-matched siblings derived from crossings of Manf heterozygous

(Manf+/�) animals in hybrid C57Bl6 3 ICR mixed background. The day of

vaginal plug was designated as E0.5. Age-matched NMRI male mice for the

in vivo MLD-STZ experiment were obtained from Harlan Teklan, UK. Pancre-

atic islets were isolated from age-matched 8-week-old C57Bl/6JRccHsd

(Harlan) female mice in b cell proliferation assay.

Genomic DNA Isolation and Genotyping

DNA was isolated from earmarks, and genotyping was carried out by PCR us-

ing primers described in Supplemental Experimental Procedures.

Islet Isolation and In Vitro Insulin Release

Pancreases frommice were treated with collagenase P digestion (Collagenase

P; Roche Diagnostics) followed by hand-picking of islets under a stereomicro-

scope (Miettinen et al., 2006). Human pancreatic tissue was obtained at au-

topsy at the Helsinki University Central Hospital, and isolated human islets

were received from Uppsala, Sweden through the European Consortium for

Islet Transplantation. In vitro insulin release assaywas performed as previously

described (Miettinen et al., 2006).
activating downstream signaling UPR cascades. Phosphorylated PERK blocks global mRNA translation by p

ATF4 escapes eIF2a translational control and in turn induces transcription of proapoptotic gene,Chop. Active

chaperone genes such as Grp78 and Xbp1 and controls genes involved in the ER-associated degradation. A

Xbp1, generating spliced Xbp1 (Xbp1s), which when translated to a transcription factor activates genes fo

folding. Figure modified from Szegezdi et al. (2006).
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RNA Isolation, Reverse Transcription,

and Quantitative PCR

RNA isolation, reverse transcription, quantitative

PCR, and primers are described in Supplemental

Experimental Procedures.

Food and Water Intake and Energy

Expenditure

Feeding and drinking, energy expenditure (O2 con-

sumption and CO2 production using indirect calo-
rimetry), respiratory exchange ratio, and locomotor activity were measured

using CLAMS monitoring system (Columbus Instruments) in 6-week-old

mice. For detailed description, see Supplemental Experimental Procedures.

Western Analysis

Western blot was performed according to standard protocols and as

described in the Supplemental Experimental Procedures.

Immunohistochemistry and Quantification of b and a Cell Mass and

Islet Size

Immunohistochemistry was performed according to standard procedures,

and b and a cell mass analysis and islet size measurements were performed

as described in the Supplemental Experimental Procedures.

Analysis of Blood Samples

Blood samples from mice were collected from the tail vein or terminal blood

from heart and assayed for glucose (Accucheck Aviva Glucometer; Roche

Diagnostics) and insulin (ultrasensitive mouse insulin ELISA; Crystal Chem).

For glucose challenge test, P14 mice were fasted for 1 hr and P56 mice 5 to

6 hr before animals were injected intraperitoneally (i.p.) with 2 g/kg bodyweight

of glucose (in 0.9% NaCl). Insulin tolerance test was performed on 2 hr-fasted

P42male mice by injection of 1U/kg i.p. insulin (diluted in 0.9% saline; Humulin

Regular; Eli Lilly) and monitoring of blood glucose levels from tail vein every

15 min for 60 min.
hosphorylating eIF2a subunit. Transcription factor

ATF6 translocates to the nucleus, where it induces

ctivated IRE1a removes by splicing an intron from

r ER-associated decay and chaperons for protein
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AAV Vector Construction and In Vivo Administration of AAV Vectors

The construction of the AAV packaging plasmids, generation of AAV vectors,

and retrograde pancreatic duct injections were carried out as described in

Supplemental Experimental Procedures. Three weeks after AAV administra-

tion, AAV6-MANF and AAV6-RFP animals were injected on 5 consecutive

days with a low dose of streptozotocin (40 mg/kg/day, i.p., freshly dissolved

in 0.1 M citrate buffer [pH 4.5]).

In Vitro b Cell Proliferation Assay

Islets from female, virgin, 8-week-old mice were isolated as described above.

Equal numbers of islets per well were treated for 5 days with recombinant

human placental lactogen (500 ng/ml; Affiland) or recombinant human MANF

(100 ng/ml; Icosagen) or amixture of both. The relative numbers of proliferating

b cells were quantified from wells of five repeats per treatment (details in

Supplemental Experimental Procedures).

Statistical Analysis

Unless otherwise stated, significance of differences between groups was

analyzed by Student’s unpaired two-tailed t test using Microsoft Excel

software. Differences between more than two groups were calculated by

one-way ANOVA followed by appropriate post hoc test using SPSS PASW

Statistics 18 program. For statistical analysis of islet size distribution, we

used GraphPad Prism 5, data were subjected to Kruskal-Wallis one-way

ANOVA test, and differences were evaluated by Dunn’s Multiple Comparison

Test. Results are expressed as mean ± SEM. Results were considered signif-

icant at p < 0.05.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, Supplemental

Experimental Procedures, and five figures and can be found with this article

online at http://dx.doi.org/10.1016/j.celrep.2014.03.023.
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