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SUMMARY

Bin-Amphiphysin-Rvs (BAR) domain proteins are
central regulators of many cellular processes
involving membrane dynamics. BAR domains sculpt
phosphoinositide-richmembranes to generatemem-
brane protrusions or invaginations. Here, we report
that, in addition to regulating membrane geometry,
BAR domains can generate extremely stable lipid
microdomains by ‘‘freezing’’ phosphoinositide dy-
namics. This is a general feature of BAR domains,
because the yeast endocytic BAR and Fes/CIP4
homology BAR (F-BAR) domains, the inverse BAR
domain of Pinkbar, and the eisosomal BAR protein
Lsp1 inducedphosphoinositide clustering and halted
lipid diffusion, despite differences in mechanisms of
membrane interactions. Lsp1 displays comparable
low diffusion rates in vitro and in vivo, suggesting
that BAR domain proteins also generate stable phos-
phoinositide microdomains in cells. These results
uncover a conserved role for BAR superfamily pro-
teins in regulating lipid dynamics within membranes.
Stable microdomains induced by BAR domain
scaffolds and specific lipids can generate phase
boundaries and diffusion barriers, which may have
profound impacts on diverse cellular processes.
INTRODUCTION

Cellular processes, such as endocytosis, cell migration, and

morphogenesis, require precise regulation of plasma membrane

shape and dynamics. In addition to actin polymerization, which

produces forces for generation of plasmamembrane protrusions

and invaginations, these processes rely on proteins that bind

directly to membranes to sense membrane curvature and sculpt
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them into desired shapes (Graham and Kozlov, 2010; McMahon

and Gallop, 2005; Antonny, 2011). Among the central mem-

brane-sculpting proteins are the members of the Bin-Amphiphy-

sin-Rvs (BAR) domain superfamily. The BAR domain is a dimeric

a-helical protein motif, which interacts with membranes through

a curved interface. Furthermore, the BAR domains can oligomer-

ize into helical scaffolds to further promote membrane deforma-

tion (Frost et al., 2008; Mim et al., 2012; Peter et al., 2004;

Shimada et al., 2007; Takei et al., 1999). Depending on the

geometry of the lipid-binding interface and oligomerization prop-

erties of the domain, BAR superfamily domains can generate

either positive (BAR and most Fes/CIP4 homology BAR

[F-BAR] domains) or negative membrane curvature (most in-

verse BAR [I-BAR] domains) as well as stabilize planar mem-

brane sheets (the I-BAR domain of Pinkbar; Frost et al., 2009; Py-

käläinen et al., 2011; Suetsugu et al., 2010; Zhao et al., 2011). In

addition to electrostatic interactions with lipid head groups, a

subset of canonical BAR domains (N-terminal BAR [N-BAR] do-

mains) and certain I-BAR domains can insert amphipathic a he-

lices into the lipid bilayer. In N-BAR domain-induced membrane

tubules, the N-terminal amphipathic a helices provide important

interdomain contacts to stabilize the N-BAR scaffolds (Mim

et al., 2012). The membrane-inserting a helices of BAR domains

have also been reported to drive membrane scission, regulate

the diameter of membrane tubules, and sense positive mem-

brane curvature (Bhatia et al., 2009; Boucrot et al., 2012; Gallop

et al., 2006; Masuda et al., 2006; Saarikangas et al., 2009).

Formation of plasma membrane invaginations during endo-

cytosis is a complex process that requires both the actin poly-

merization machinery and generation of positive membrane

curvature by BAR and F-BAR domain proteins (Collins et al.,

2011; Kukulski et al., 2012; Qualmann et al., 2011). In budding

yeast, two F-BAR domain proteins, Syp1 and Bzz1, and a heter-

odimeric BAR domain protein, Rvs161/167, contribute to endo-

cytosis. These three membrane-sculpting proteins are recruited

to the endocytic sites with distinct timing. Syp1 is among the first

proteins to arrive, but it departs from the endocytic site before

formation of a deep membrane invagination and scission, which
ports 4, 1213–1223, September 26, 2013 ª2013 The Authors 1213

mailto:pekka.lappalainen@helsinki.fi
http://dx.doi.org/10.1016/j.celrep.2013.08.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2013.08.024&domain=pdf


coincide with the arrival of Bzz1 and Rvs161/167 at the site

(Weinberg and Drubin, 2012). Bzz1, acting at the invagination

base, stabilizes endocytic sites and functions with Rvs161/167,

localized along the tubule, to achieve proper endocytic mem-

brane geometry necessary for efficient scission (Kishimoto

et al., 2011). However, the biochemical differences between

various BAR and F-BAR domains that may underlie their sequen-

tial recruitment and specific functions in endocytic patches are

not known.

A recent study revealed that mammalian I-BAR domains and

the BAR domain of amphiphysin can induce the clustering of

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) (Saarikangas

et al., 2009). Furthermore, theoretical work proposed that mem-

brane-scission during endocytosis in budding yeast may result

from a lipid-phase boundary induced by PI(4,5)P2 clustering via

BAR domains at the neck of endocytic invagination (Liu et al.,

2009). However, whether the BAR domain scaffolds can limit

the lateral mobility of lipids in membranes to generate stable

lipid-phase boundaries and diffusion barriers has not been re-

ported. Here, we revealed that BAR domains assemble into sta-

ble scaffolds, which not only bend membranes but also inhibit

the lateral diffusion of phosphoinositide molecules by at least

two orders of magnitude. Generation of extremely stable pro-

tein-lipid microdomains appears to be a general feature of

BAR superfamily proteins, because all membrane-tubulating

BAR and F-BAR domains tested here, as well as the BAR domain

of Pinkbar, which stabilizes planar membrane sheets, efficiently

halted phosphoinositide diffusion. Our results suggest that BAR

domain scaffolds form lipid diffusion barriers and phase bound-

aries, which are likely to have profound importance in a wide va-

riety of cellular processes.

RESULTS

Yeast Endocytic BAR and F-BAR Domains Are
Biochemically Distinct
To examine the general biochemical properties of the BAR/F-

BAR domains of budding yeast endocytic proteins Syp1, Bzz1,

and Rvs161/167 and to reveal their possible differences, these

domains were produced as nontagged versions and as GFP/

mCherry-fusion proteins in E.coli. As reported previously, the

purified F-BAR domain of Syp1 and BAR domain of Rvs161/

167 (Reider et al., 2009; Youn et al., 2010), as well as the pre-

viously uncharacterized F-BAR domain of Bzz1, induced

tubulation of PI(4,5)P2-containing vesicles. Based on electron

microscopy analysis, the diameters of membrane tubules gener-

ated by the three domains were similar to each other (20 nm ±

2.5 nm; Figure S1A). However, time-lapse imaging of giant unila-

mellar vesicles (GUVs) in the presence of the protein domains

suggested that the heterodimeric Rvs161/167 BAR domain is

slightly more efficient in tubulating membranes compared to

the two endocytic F-BAR domains (Figures S1B and S1C).

Furthermore, slightly higher concentration of Syp1 F-BAR

domain (�1 mM) was required for efficient membrane tubulation

compared to Rvs161/167 BAR domain and Bzz1 F-BAR domain

(�0.5 mM) (data not shown).

Interestingly, these domains displayed prominent differences

in their lipid specificities (Figures 1A and S2). Based on vesicle
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cosedimentation assays, interaction of the Rvs161/167 BAR

domain with vesicles was strongly enhanced by PI(4,5)P2,

whereas the membrane-binding of Bzz1 F-BAR domain was

not augmented by high PI(4,5)P2 density of the membranes,

and the membrane binding of the Syp1 F-BAR domain was

slightly inhibited at high (>8%) PI(4,5)P2 density (Figure 1A).

Because a large fraction of Bzz1 F-BAR domain sedimented,

even in the absence of vesicles, its lipid specificity was also

examined by tryptophan fluorescence assay, which provided

very similar results to the cosedimentation assay (Figure S2D).

Possible specificity of the Rvs161/167 BAR domain toward

certain phosphoinositides was further examined by a vesicle

cosedimentation assay. The data revealed that this domain

binds to vesicles containing 10% phosphoinositides with an af-

finity of PI(3,4,5)P3 > PI(4,5)P2 > PI3P (Figures S2E and S2F).

Consistent with the biochemical data, time-lapse imaging of

GUVs incubated simultaneously with Syp1 F-BAR and Rvs161/

167 BAR domains revealed that, although the two domains

can initially colocalize on membrane microdomains and tubules

(arrows in Figure 1B), the Rvs161/167 BAR domain efficiently re-

places the Syp1 F-BAR domain from the surface of the PI(4,5)P2-

containing vesicles within 1 to 2 min (Figures 1B and 1C).

Furthermore, a vesicle cosedimentation experiment demon-

strated that the Rvs161/167 BAR domain and Syp1 F-BAR

domain compete with each other for membrane binding (Fig-

ure S1D). Therefore, similar to the situation at the endocytic sites,

Rvs161/167 can replace Syp1 on membrane tubules.

In addition to their distinct lipid specificities, the three do-

mains displayed different effects on membrane properties,

including membrane fluidity and phospholipid order as detected

by diphenylhexatriene (DPH) anisotropy and Laurdan general-

ized polarization, respectively (Parasassi et al., 1990; Zaritsky

et al., 1985). The BAR domain of Rvs161/167 increased the

DPH anisotropy, suggesting that it may interact with the acyl-

chain region of the lipid bilayer (Figure S3A). In addition, Laurdan

generalized polarization was increased, indicating augmented

lipid packing in the interfacial region of membranes (Figure S3C),

which can be caused by both protein insertion and PI(4,5)P2

clustering. Interestingly, these effects were diminished when

the N-terminal helix of the BAR domain was deleted or the

amphipathic nature of the helix was disrupted (Figures S3B

and S3D; data not shown), suggesting that the N-terminal helix

is important for causing the changes of these membrane phys-

iochemical properties. Furthermore, mutations in the N-terminal

helix diminished the affinity of the Rvs161/167 BAR domain to

phosphoinositide-rich membrane by �10-fold (Figure S2F).

Importantly, changes of tryptophan (Trp3 of Rvs161) spectra

(Figure S4A) and quenching of Trp3 by lipids brominated

along the acyl-chains (Figure S4B) provided strong evidence

that the N-terminal a helix of Rvs161 indeed inserts into the

hydrophobic core region of the lipid bilayer. The effects of

the Rvs161/167 BAR domain on membrane fluidity and lipid

order are dependent on lipid composition. The BAR domain

of Rvs161/167 affect the membrane fluidity and lipid order

only in the presence of PI(4,5)P2 in the membrane (Figures

S3E and S3F), further indicating that proper membrane inter-

action of the Rvs161/167 BAR domain is dependent on the

phosphoinositide.
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Figure 1. Yeast Endocytic BAR/F-BAR Domains Display Differences in Their Lipid Specificities

(A) The F-BAR/BAR domains of Syp1, Bzz1, and Rvs161/167 display different PI(4,5)P2 specificities, as measured by a vesicle cosedimentation assay. The

membrane binding of Syp1 F-BAR domain was slightly inhibited at high (>8%) PI(4,5)P2 density. In contrast, interaction of the BAR domain of Rvs161/167 with

vesicles was significantly enhanced by PI(4,5)P2, whereas the membrane binding of Bzz1 F-BAR domains was not augmented by high PI(4,5)P2 density in the

membranes. The data are from three independent experiments, and the error bar indicates ± SD. The dotted line (control) indicates the amount of protein

sedimenting in the absence of lipids.

(B) When added simultaneously on vesicles, the BAR/F-BAR domains of Rvs161/167 (Rvs-Cherry) and Syp1 (Syp1-GFP) initially bind to GUVs and colocalize to

PI(4,5)P2-rich tubules (indicated by arrows). However, the Syp1 F-BAR domain dissociates from themembrane within 1 to 2min, whereas the BAR domain of Rvs

161/167 remains bound to the surface of GUVs. The scale bar represents 10 mm.

(C) Quantification of the relative fluorescence intensities of the two domains on GUVs demonstrates that Rvs161/167 BAR domain replaces the Syp1 F-BAR

domain from the membrane. Please note that the slight decrease in the Rvs161/167 mCherry fluorescence most likely results from photobleaching during the

monitoring period. The lipid composition was POPC:POPE:POPS:PI(4,5)P2 = 50:20:20:10. The concentration of the proteins was 1 mM.
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Figure 2. Yeast Endocytic BAR/F-BAR Do-

mains Promote PI(4,5)P2 Clustering and

Induce the Formation of Lipid Microdo-

mains

(A) PI(4,5)P2 clustering examined at the nanometer

scale by measuring the quenching of BODIPY-

TMR-PI(4,5)P2. The F-BAR/BAR domains of Syp1,

Bzz1, and Rvs161/167 promoted the quenching of

BODIPY-conjugated PI(4,5)P2 in a concentration-

dependent manner, indicating that they induce

phosphoinositide clustering by bringing BODIPY-

TMR-PI(4,5)P2 molecules in close proximity to

each other. The lipid composition was POPC:

POPE:POPS:PI(4,5)P2:bodipy-TMR-PI(4,5)P2 =

50:20:20:9.5:0.5. All error bars indicate ± SD.

(B) The F-BAR/BAR domains of Syp1, Bzz1, and

Rvs161/167 clustered PI(4,5)P2, PI(3,4,5)P3, and

PI3P with an efficiency of PI(3,4,5)P3 > PI(4,5)P2 >

PI3P. The lipid composition was POPC:POPE:

POPS:BODIPY-phosphoinositide = 59:20:20:1,

and the lipid concentration was 40 mM.

(C) The steady-state homo-FRET fluorescence

anisotropy of Rvs-Cherry decreased in the pres-

ence of PI(4,5)P2-containing vesicles, suggesting

that Rvs161/167 BAR domain self-assembled into

oligomers in the presence of PI(4,5)P2. The con-

centration of Rvs-Cherry was 0.5 mM.

(D) Formation of lipid microdomains at micrometer

scale revealed by light microscopy imaging of

GUVs. The F-BAR/BAR domains of Syp1, Bzz1,

and Rvs161/167 generated visible TopFluor-

PI(4,5)P2 clusters on GUVs. However, the zwitter-

ionic lipid phosphatidylethanolamine (PE) re-

mained mostly uniformly distributed on the GUV

membrane with some PE clustering to the

membrane tubules. The lipid composition was

POPC:POPE:POPS:PI(4,5)P2:TopFluor-PI(4,5)P2

:Rhodamine-PE = 50:19:20:9:1: 1. The final con-

centration of the Rvs161/167 BAR domain was

1 mM. All experiments were carried out at room

temperature. The scale bar represents 10 mm.
In contrast, the F-BAR domains of Syp1 and Bzz1 did not have

detectable effects on the acyl-chain region as measured by

changes in DPH anisotropy and Laurdan generalized polariza-

tion (Figures S3A and S3C). However, the F-BAR domains of

Syp1 and Bzz1 displayed strong membrane curvature-sensing

activity (Figure S5). These results are in apparent contradiction

with previous measurements, concluding that hydrophobic in-

sertions are essential for sensing of membrane curvature in other

BAR domains (Bhatia et al., 2009). Thus, further studies are

required to reveal the exact mechanism by which the F-BAR

domains of Syp1 and Bzz1 sense membrane curvature. One

possible explanation could be ‘‘protein crowding’’, which was

recently shown to induce membrane curvature (Stachowiak

et al., 2012) and may also assist in curvature sensing. Alterna-

tively, the F-BAR domains of Syp1 and Bzz1 may display very

shallow insertion into the lipid bilayer, which would not be de-

tected by DPH anisotropy and Laurdan generalized polarization

methods.

Together, these data demonstrate that the BAR and F-BAR

domains of the three budding yeast endocytic proteins display

significant differences in their lipid specificities and in mecha-
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nisms of membrane interactions. These biochemical differences

may at least partially account for the specific roles and recruit-

ment timing of these proteins in endocytosis.

PhosphoinositideClustering Is aGeneral Feature of BAR
Superfamily Domains
Mammalian I-BAR domains and the BAR domain of amphiphysin

induce phosphoinositide clustering (Saarikangas et al., 2009). To

determinewhether this is a general activity of all BAR superfamily

domains, we examined the PI(4,5)P2-clustering activities of

Syp1, Bzz1, and Rvs161/167 BAR/F-BAR domains by a fluoro-

metric assay and by time-lapse imaging of fluorescently labeled

lipids on GUVs. The F-BAR/BAR domains of Syp1, Bzz1, and

Rvs161/167 promoted quenching of BODIPY-conjugated

PI(4,5)P2 in a concentration-dependent manner, indicating that

these domains induce phosphoinositide clustering at a nano-

meter scale (Figure 2A). Besides PI(4,5)P2, the F-BAR/BAR

domains of Syp1, Bzz1, and Rvs161/167 also cluster PI(3,4,5)

P3 and PI3P with an efficiency of PI(3,4,5)P3 > PI(4,5)P2 > PI3P

(Figure 2B), suggesting that the phosphoinositide clustering is

mainly mediated through electrostatic interactions.
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Homo-fluorescence resonance energy transfer (FRET) anisot-

ropy experiments on the Rvs161/167 BAR domain suggested

that individual BAR domain heterodimers assemble into oligo-

mers on phosphoinositide-rich membranes (Figure 2C), as pre-

viously shown for mammalian BAR and F-BAR domains by

cryoelectron microscopy (Frost et al., 2008; Mim et al., 2012).

Therefore, this domain may also induce formation of larger phos-

phoinositide clusters through self-assembly. In support of this

possibility, PI(4,5)P2 clustering by the F-BAR/BAR domains of

Syp1, Bzz1, and Rvs161/167 was also detected by fluorescence

microscopy (Figure 2D). When the Rvs161/167 BAR domain was

added to GUVs containing fluorescently labeled lipids, the zwit-

terionic lipid phosphatidylethanolamine (PE) remained mostly

uniformly localized around the GUV membrane, whereas

PI(4,5)P2 formed visible clusters (Figure 2D). Together, these

data show that the BAR and F-BAR domains of yeast endocytic

proteins induce PI(4,5)P2 clustering, thus suggesting that phos-

phoinositide clustering is a general property of all BAR superfam-

ily domains.

Generation of Extremely Stable PI(4,5)P2 Microdomains
by BAR Domains
The plasma membrane of living cells is organized into specific

heterogeneous domains with distinct protein and lipid composi-

tions. However, the degree to which membrane-attached pro-

teins can affect the lateral diffusion of lipids is poorly understood.

For example, the possible effects of BAR domain proteins on

lipid dynamics have not been reported. To examine whether

BAR and F-BAR domains can significantly affect PI(4,5)P2 dy-

namics in the membrane, we carried out fluorescence recovery

after photobleaching (FRAP) analysis of GUVs in the presence

of fluorescently conjugated lipids and proteins. In the control

vesicles, TopFluor-PI(4,5)P2 displayed fast recovery at the pho-

tobleached region, consistent with rapid lateral diffusion of lipid

molecules (Figure 3A). Strikingly, both PI(4,5)P2 and the associ-

ated proteins displayed extremely slow recovery in the mem-

brane clusters and tubular regions induced by the BAR/F-BAR

domains of Syp1, Bzz1, and Rvs161/167 (Figures 3B and 3D).

Furthermore, in the cases where only a segment of the mem-

brane tubule was photobleached, the TopFuor-PI(4,5)P2 probe

did not display redistribution within the tubule during the recov-

ery period (arrowheads in Figure 3B). These results provide evi-

dence for an almost complete lack of lateral diffusion of PI(4,5)P2

in the BAR domain-induced membrane tubules. To exclude the

possibility that the diminished lateral diffusion of PI(4,5)P2 in

membrane tubules is caused by membrane curvature generated

by these proteins, wemeasured the protein dynamics and lateral

diffusion of PI(4,5)P2 on planar membranes induced by the BAR

domain of Pinkbar (Figures 3C and 3D). Similar to endocytic BAR

and F-BAR domains, the BAR domain of Pinkbar and PI(4,5)P2

displayed very slow recovery on planar membranes, suggesting

that severely reduced diffusion of phosphoinositides associated

with the BAR domain scaffolds is not dependent on membrane

curvature.

It is, however, important to note that efficient inhibition of lipid

diffusion is dependent on protein density and oligomerization.

This is because, at nontubular regions of the Rvs161/167-,

Bzz1-, and Syp1-containing vesicles, where the protein was pre-
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sumably not assembled into stable scaffolds, the lateral diffusion

of lipids was only mildly affected (Figures S6A and S6B). Further-

more, a BAR domain mutant of Pinkbar (W141S) that is less effi-

cient in forming oligomers (Pykäläinen et al., 2011) displayed less

pronounced effects on phosphoinositide dynamics as compared

to the wild-type BAR domain of Pinkbar (Figure S6D). It is also

important to note that, in the protein/PI(4,5)P2 clusters, �15%–

35% of the lipid molecules displayed rapid diffusion (Figures

S6F and S6G). This rapidly recovering PI(4,5)P2 population

may correspond to those lipid molecules in the photobleached

region that are not associated with BAR domain scaffolds. By

excluding the rapidly recovering population, only extremely

slow recovery of the remaining lipid molecules was detected at

the photobleached region, suggesting that lateral diffusion of

lipids in the BAR/F-BAR domain-induced membrane tubules is

reduced by at least two orders of magnitude (Figures 3D, S6F,

and S6G).

We next examined the effects of the Rvs161/167 BAR domain

on the dynamics of other lipid species, which do not concentrate

to BAR domain scaffolds. FRAP assays using nitrobenzoxadia-

zole (NBD) head group-labeled PE revealed that the lateral diffu-

sion of this zwitterionic lipid was also severely diminished in

membrane clusters/tubules induced by the Rvs161/167 BAR

domain, because �40% of the fluorescence did not recover

during the monitoring period (Figures 4A and 4B). In order to

examine the possible effects of the relatively large artificial

head group on the diffusion of NBD head group-labeled PE,

we studied the dynamics of acyl chain-labeled PE and phospha-

tidylcholine (PC). Importantly, these acyl-chain-labeled lipids

displayed only approximately 5-fold decreased dynamics in

the BAR domain clusters as compared to control vesicles, and

unlike head group-labeled PE, they reached full fluorescence re-

covery during the 10minmonitoring period (Figures 4C andS6E).

Thus, although BAR domain scaffolds can efficiently inhibit the

dynamics of PI(4,5)P2, they display significantly smaller effects

on the lateral diffusion of nonbound lipids.

Collectively, these data demonstrate that the budding yeast

endocytic BAR and F-BAR domains and the BAR domain of

mouse Pinkbar can assemble into very stable scaffolds onmem-

branes. By efficiently inhibiting the lateral diffusion of PI(4,5)P2,

the BAR domain scaffolds can generate extremely stable lipid

microdomains.

Eisosomal BAR Domain Protein Lsp1 Forms Stable
Scaffolds In Vitro and in Cells and Efficiently Inhibits the
Lateral Diffusion of Lipids
Endocytosis is a dynamic process, which requires a large num-

ber of proteins. The membrane-bound scaffolds formed by the

endocytic BAR/F-BAR domain proteins are transient, and their

assembly and disassembly during this process are precisely

regulated (Henne et al., 2010; Kaksonen et al., 2005; Taylor

et al., 2011). However, budding yeast also harbors another

structurally similar plasma membrane invagination structure,

which is very stable. These structures, called eisosomes, may

function in lipid storage and homeostasis (Walther et al.,

2006; Zió1kowska et al., 2012). The membrane invaginations

in eisosomes are primarily generated by two BAR domain pro-

teins, Pil1 and Lsp1, which can assemble into similar oligomeric
ports 4, 1213–1223, September 26, 2013 ª2013 The Authors 1217



Figure 3. BAR Domains Induce the Forma-

tion of Stable Lipid Microdomains by Signif-

icantly Diminishing the Lateral Diffusion of

PI(4,5)P2

(A) In a control vesicle, rapid recovery of TopFluor-

PI(4,5)P2 was observed during the 50 s period

following photobleaching.

(B) Both PI(4,5)P2 and associated proteins dis-

played very slow recovery in membrane clusters

and tubular regions induced by the Rvs161/167

BAR domain. Although partial recovery could be

observed in the planar region of the photo-

bleached area 2 min after the photobleaching, no

recovery was detected at the membrane tubules.

Please note that the unbleached tips of the tubules

remain green during the recovery period, but the

green TopFluor-PI(4,5)P2 does not detectably

diffuse into the BAR domain-induced membrane

tubules during the recovery period (arrowhead).

Thus, the PI(4,5)P2 molecules do not display

detectable diffusion within the BAR domain-

induced membrane tubules.

(C) The BAR domain of Pinkbar and PI(4,5)P2 dis-

played very slow recovery on planar membranes,

suggesting that the BAR domain of Pinkbar forms

stable scaffolds on membrane that efficiently

decrease the diffusion of phosphoinositides.

(D) Quantification of the recovery of TopFluor-

PI(4,5)P2 and protein fluorescence in control

vesicles in BAR/F-BAR domain cluster/tubule, as

well as in planar membranes induced by the BAR

domain of Pinkbar. In each case, the data are

mean of at least five independent experiments and

the error bars indicate ± SD. Further information

on the analysis of FRAP data can be found in

Figure S6. The lipid composition was POPC:

POPE:POPS:PI(4,5)P2:TopFluor-PI(4,5)P2 = 50:

20:20:9:1. The protein concentrations were 1 mM.

The scale bar represents 10 mm.
helical scaffolds to the endocytic BAR and F-BAR domains

(Frost et al., 2008; Kabeche et al., 2011; Karotki et al., 2011;

Mim et al., 2012; Olivera-Couto et al., 2011; Zió1kowska

et al., 2011). Thus, we examined the effects of the Lsp1 BAR

domain on the organization and dynamics of phosphoinositides

in vitro. Similarly to the BAR domain of Rvs161/167, the BAR

domain of Lsp1 decreased membrane fluidity, indicating that,

in addition to interaction with the lipid head groups, it pene-

trates into the acyl-chain region of the bilayer (Figure 5A).
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Lsp1 BAR domain also promoted

the quenching of BODIPY-conjugated

PI(4,5)P2 in a concentration-dependent

manner, indicating that it induces the

clustering of PI(4,5)P2 (Figure 5B). Impor-

tantly, FRAP analysis on GUVs revealed

that the BAR domain of Lsp1 forms sta-

ble scaffolds, which efficiently inhibit the

lateral diffusion of PI(4,5)P2 (Figures 5C

and 5E). FRAP analysis on budding yeast

cells expressing an RFP fusion of the

full-length Lsp1 protein revealed that
this protein also assembles into similar stable clusters at the

plasma membrane of cells as on the GUVs in vitro (Figures

5D and 5F). Taken together, these data show that the eisoso-

mal BAR domain scaffolds also generate extremely stable lipid

microdomains in vitro. Importantly, full-length Lsp1 displays

similar dynamics in vivo compared to its isolated BAR domain

on GUVs, suggesting that this protein efficiently also diminishes

the lateral diffusion of lipids at the plasma membrane of living

cells.



Figure 4. The F-BAR/BAR Domains of Syp1,

Bzz1, and Rvs161/167 Inhibit the Lateral

Diffusion of Zwitterionic Lipid PE in the

Membrane Clusters and Tubules

(A) A FRAP assay measuring the diffusion of NBD

head group-labeled PE revealed that the lateral

diffusion of this zwitterionic lipid was diminished in

membrane clusters/tubules induced by the

Rvs161/167 BAR domain.

(B) Quantification of NBD-PE fluorescence recov-

ery in control vesicles and in Rvs161/167 BAR

domain-induced membrane tubules/clusters. It is

important to note that a smaller fraction of NBD

head group-labeled PE compared to PI(4,5)P2

(�40% versus 75%) displayed very slow lateral

diffusion in BAR domain-induced structures. This

is most likely due to less extensive enrichment of

PE in BAR domain-induced membrane tubules

compared to PI(4,5)P2 (see Figure 2D).

(C) Dynamics of the acyl-chain labeled PC

displayed only approximately 5-fold decrease in

lateral diffusion in BAR domain clusters compared

to control vesicles, and unlike head group labeled

PE, it reached full fluorescence recovery during the

10 min monitoring period. In all cases, the data

are mean of at least five independent experiments

and the error bar indicates ± SD. The lipid

composition was POPC:POPE:POPS:PI(4,5)

P2:NBD-PE/BODIPY-HPC = 50:19:20:10:1. The

concentration of the BAR domain of Rvs161/167

was 1 mM. The scale bar represents 10 mm.
DISCUSSION

BAR superfamily proteins are key regulators of plasma mem-

brane morphology and contribute to a wide range of cellular pro-

cesses, ranging from endocytosis to cell migration and adhesion

(Qualmann et al., 2011; Zhao et al., 2011). BAR domains sculpt

membranes to generate plasma membrane protrusions and

invaginations, but whether these proteins can also affect other

physicochemical properties of membranes has not been re-

ported. Strikingly, our data revealed that the protein scaffolds

formed by BAR superfamily domains ‘‘freeze’’ lipid dynamics

by nearly completely inhibiting the lateral diffusion of phosphoi-

nositides and can thus generate extremely stable protein-lipid

microdomains.

Generation of stable lipid microdomains appears to be a gen-

eral and specific feature of all BAR domain proteins. This is

because all BAR domains tested here generated extremely sta-

ble phosphoinositide microdomains, whereas a PI(4,5)P2-bind-

ing pleckstrin homology (PH) domain did not display detectable

effects on the lateral diffusion of phosphoinositides (Figure S6C).

Importantly, membrane curvature alone is not responsible for

diminished lipid diffusion in these structures, but BAR domain in-

teractions with the lipid head groups play an important role. This

is because, although lateral diffusion of lipid molecules in tubular

(diameter 10 nm) membranes is �2- to 3-fold slower compared

to planar membranes (Domanov et al., 2011), the diffusion of

phosphoinositides in the BAR/F-BAR domain -induced mem-
Cell Re
brane tubules (with a diameter of �20 nm) was at least two

orders of magnitude slower compared to control membranes.

Furthermore, the lateral diffusion of PI(4,5)P2 is dramatically

diminished on planar membranes induced by the BAR domain

of Pinkbar (Figures 3C and 3D). Thus, assembly of elongated

BAR and F-BAR domains, which interact with phosphoinositides

through a multivalent manner (Figures 2 and 5B), into helical

scaffolds around membrane tubules (Frost et al., 2008; Mim

et al., 2012) or as a sheet on a flat membrane (Pykäläinen

et al., 2011) will severely limit the diffusion of individual phosphoi-

nositide molecules. The effects of BAR domains on the lateral

diffusion of phosphoinositides are strongly dependent on protein

density and seem to require the assembly of oligomeric BAR

domain scaffolds. In agreement with this conclusion, a recent

study proposed that the amphiphysin-1 BAR domain functions

as amembrane curvature sensor at low protein density, whereas

a high local density of the domain is required for its ability to oli-

gomerize and induce membrane tubules (Sorre et al., 2012).

BAR domains may also have profound effects on membrane

dynamics in cells. The eisosomal BAR domains Pil1 (Brach

et al., 2011; Kabeche et al., 2011) and Lsp1 (Figure 5) form

very stable plasma membrane-associated scaffolds in yeast

cells, which are expected to display similar effects on lipid-dy-

namics, as we observed for Lsp1 scaffolds in vitro. Although

the BAR domain scaffolds in endocytosis are precisely

controlled and transient, these proteins are capable in forming

very stable structures in cells if their regulation is disturbed.
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Figure 5. The BAR Domain of Eisosomal

Protein Lsp1 Forms Stable Membrane

Microdomains, and the Protein Displays

Slow Dynamics at the Plasma Membrane

of Yeast Cells

(A) The BAR domain of Lsp1 decreasedmembrane

fluidity in a concentration-dependent manner, as

indicated by the increase in steady-state DPH

anisotropy. This suggests that the domain not only

interacts with the lipid head groups but also pen-

etrates into the acyl-chain region of the bilayer.

The lipid composition was POPC:POPE:POPS:

PI(4,5)P2 = 50:20:20:10. DPH was incorporated at

1/500 ratio, and the lipid concentration was 40 mM.

(B) The Lsp1 BAR domain efficiently induced the

clustering of PI(4,5)P2, as measured by the self-

quenching of BODIPY-TMR-PI(4,5)P2. The lipid

composition was as described in Figure 2A.

(C) FRAP analysis on GUVs revealed that the BAR

domain of Lsp1 forms stable protein scaffolds and

efficiently inhibits the lateral diffusion of PI(4,5)P2.

The scale bar represents 10 mm. The lipid

composition and protein concentration were as

described in Figure 3.

(D) In agreement with the biochemical data, full-

length Lsp1 displayed similar slow dynamics at the

plasma membrane of yeast cells.

(E) Quantification of the fluorescence recovery of

TopFluor-PI(4,5)P2 and the BAR domain of Lsp1 in

membrane clusters/tubules. Furthermore, quanti-

fication of the fluorescence recovery of TopFluor-

PI(4,5)P2 in control vesicles in the absence of the

BAR domain is shown. The values in the graph are

mean of at least five independent experiments,

and the error bar represents ± SD.

(F) Quantification of the fluorescence recovery of

full-length Lsp1 at the plasma membrane of yeast

cells. The values in the graph are mean of ten in-

dependent FRAP experiments, and the error bars

represent ± SD.
For example, a recent study revealed that a small molecule

inhibition of the clathrin function resulted in the formation of

very stable FCHo2 F-BAR domain scaffolds in mammalian cells

(von Kleist et al., 2011) and that F-BAR domain protein FBP17

displays slow turnover in membrane tubules in a cell-free system

(Wu et al., 2010). Furthermore, previous studies suggested that

the diffusion of lipids at the plasma membrane varies signifi-

cantly between different surface domains (Wolfe et al., 1998)

and that distinct PI(4,5)P2 pools are present at the inner leaflet
1220 Cell Reports 4, 1213–1223, September 26, 2013 ª2013 The Authors
of the plasma membrane (Golebiewska

et al., 2008). Finally, the lateral diffusion

of PI(4,5)P2 in cardiomyocyte membranes

and at the plasma membrane of patho-

genic fungus Candida albicans were

reported to be surprisingly slow (Cho

et al., 2005; Vernay et al., 2012), sug-

gesting that, in living cells, the dynamics

of lipids at the plasma membrane are

greatly affected by interactions with
various membrane-binding proteins, including the BAR domain

scaffolds.

Generation of stable membrane microdomains by BAR su-

perfamily proteins may have an important biological role in

various processes. Inhibition of lateral diffusion of phosphoino-

sitides is expected to generate lipid-phase boundaries at both

ends of the BAR domain scaffold. These sites may act as hot

spots for vesicle scission in endocytosis, as proposed by Liu

et al. (2009), because of high line tension at domain



Figure 6. A Schematic Model of the Effects

of F-BAR/BAR Domains on the Distribution

and Dynamics of PI(4,5)P2 in Endocytic In-

vaginations

(A) Syp1 is the first BAR superfamily protein to

arrive at the sites of endocytosis in budding yeast.

Although the F-BAR domain of Syp1 does not

display specificity for PI(4,5)P2, it efficiently inhibits

the lateral diffusion of phosphoinositides in the

clusters (blue arrow). Thus, the Syp1 oligomer may

form a lipid diffusion barrier between the tip of the

invagination (black arrow) and the surrounding

regions of the plasma membrane (pink arrows).

(B) During the subsequent phase of endocytosis,

Bzz1 binds at the invagination base through its

F-BAR domain to stabilize the endocytic site with

Rvs161/167, which localizes along the membrane

tubule through its BAR domain. The Bzz1-Rvs161/

167 scaffold efficiently inhibits the lateral diffusion

of PI(4,5)P2 in this region (blue arrow) and may thus be involved in vesicle scission. The phosphoinositides and membrane proteins outside this region can diffuse

freely (pink arrows) but cannot enter to the neck region, due to a lipid diffusion barrier formed by Bzz1 and Rvs161/167. Similarly, phosphoinositides and

membrane proteins can diffuse within the tip of the endocytic bud (black arrow) but cannot exit the site, due to the lipid diffusion barrier.
boundaries. However, a recent study provided evidence that

insertion of amphipathic motifs to the bilayer would drive

vesicle scission during endocytosis (Boucrot et al., 2012).

These two possible vesicle scission mechanisms are not

necessarily mutually exclusive. Thus, future studies are needed

to elucidate their relative contributions, combined with the

force provided by actin polymerization, to vesicle scission dur-

ing endocytosis. In addition to the role in vesicle scission, the

stable membrane microdomains induced by BAR domains are

expected to function as lipid diffusion barriers. Our data show

that BAR domain scaffolds efficiently inhibit the diffusion of

PI(4,5)P2 without drastically affecting the dynamics of those

lipid species (e.g., PE and PC) that do not display specific in-

teractions with the BAR domain scaffold. Furthermore, we pro-

pose that the stable BAR/F-BAR domain scaffolds and the un-

derlying PI(4,5)P2 microdomains may limit the diffusion of

transmembrane proteins and cytoplasmic membrane-

anchored proteins. This could be important for trapping certain

membrane proteins at the tip of the endocytic bud, as well as

for preventing the entry of other membrane anchored mole-

cules into this region (see Figure 6), although additional

in vitro and in vivo work is required to reveal the exact organi-

zation and function of BAR domain proteins at the endocytic

sites. Thus, BAR superfamily proteins may form diffusion bar-

riers in smaller scale structures compared to septins, which

are membrane-associated proteins that form diffusion barriers,

for example, at the primary cilia and at the neck of budding

yeast cells (Saarikangas and Barral, 2011). In the case of eiso-

somes, the stable BAR domain-induced tubular lipid microdo-

mains may be important in storage of lipids and membrane-

anchored proteins.

Our data also demonstrate that the BAR/F-BAR domains of

Syp1, Bzz1, and Rvs161/167 display significant differences in

their lipid specificities, as well as in interactions with the acyl-

chain region of the lipid bilayer. These differences may at least

partially account for the specific roles of the three proteins dur-

ing distinct steps of the endocytic internalization process. For

example, clear PI(4,5)P2 specificity of the Rvs161/167 BAR
Cell Re
domain heterodimer compared to Syp1 F-BAR domain is in

line with the increase in PI(4,5)P2 levels in conjunction with

coat and actin assembly during endocytosis in budding yeast

(Sun et al., 2007; Sun and Drubin, 2012). It is, however, impor-

tant to note that Syp1, Bzz1, and Rvs161/167 are relatively

large multidomain proteins that also harbor other interaction

motifs. Syp1, for example, contains another short membrane-

binding motif following the F-BAR domain (Reider et al.,

2009). Thus, these additional motifs are likely to affect the

membrane-binding properties of the full-length proteins and

to thus introduce further complexity to the membrane interac-

tion mechanisms of these three endocytic BAR/F-BAR domain

proteins. Interestingly, although only the Rvs161/167 BAR

domain displayed clear preference toward vesicles with high

PI(4,5)P2 density, the F-BAR domains of Syp1 and Bzz1 can

also induce PI(4,5)P2 clustering in vitro (Figures 1A and 2A).

Structurally, this may be explained by much smaller positively

charged phosphoinositide-binding interface on the F-BAR

domain of Syp1 compared to the BAR domain of Rvs161/167

(Reider et al., 2009). This site is expected to induce phosphoi-

nositide clustering at low PI(4,5)P2 densities, whereas higher

PI(4,5)P2 density on the membrane could induce repulsion

forces between negatively charged phosphate groups of

PI(4,5)P2 and the neutral/negatively charged amino acids

outside the phosphoinositide-binding pocket of Syp1. It is,

however, also important to note that the self-assembly mecha-

nisms of N-BAR and F-BAR domains are different. Protein scaf-

folds formed by endophilin N-BAR domain are held together

through interactions between endophilin’s amphipathic N-ter-

minal helices, whereas the F-BAR domain scaffolds are stabi-

lized through lateral contacts between the coiled-coil regions

of the domains (Frost et al., 2008; Mim et al., 2012). Impor-

tantly, membrane insertion of the N-terminal a helix of

Rvs161/167, endophilin, and amphiphysin BAR domains is

enhanced by PI(4,5)P2 (Figures S3E and S3F; Yoon et al.,

2012), demonstrating that, in addition to the coiled-coil region,

also the N-terminal helix contributes to phosphoinositide spec-

ificity of N-BAR domains.
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In conclusion, this work provides evidence that, in addition to

their membrane curvature sensing/generating activity, BAR do-

mains also induce the formation of extremely stable membrane

microdomains. The phosphoinositide microdomains induced

by the membrane-associated BAR domain scaffolds are

distinct from classical lipid rafts, which arise through preferen-

tial association of sterols, sphingolipids, and specific integral

membrane proteins (Lingwood and Simons, 2010). Although

our experiments with the eisosomal BAR domain protein Lsp1

suggested that BAR domains can also form stable membrane

scaffolds in vivo to limit lipid diffusion, future studies will be

needed to elucidate the extent to which BAR domains affect

lateral diffusion of lipids in cells and the biological roles of

this activity. These studies will require development of new

methods that would allow the dynamics of specific lipid species

in living cells to be studied. Moreover, future studies are

needed to reveal the exact nature of the BAR/F-BAR domain

scaffolds at the neck of endocytic invaginations, and to un-

cover how these scaffolds affect the diffusion of membrane

proteins during endocytosis.

EXPERIMENTAL PROCEDURES

Lipid-Binding Assays

The lipid-binding assays were performed as described in Saarikangas et al.

(2009). The tryptophan fluorescence assay for examining the interaction of

Bzz1 F-BAR domain with vesicles was carried out as described in Zhao

et al., (2010). In the replacement cosedimentation assay, 1 mM Syp1 F-BAR

domain was incubated with 250 mM liposomes for 10min followed by the addi-

tion of the BARdomain of Rvs161/167. The sample was incubated for 10min at

room temperature, and the vesicles and bound proteins were sedimented by

centrifugation.

Homo-FRET anisotropy of Rvs-Cherry

The steady state homo-FRET anisotropy of Rvs-Cherry was measured by Per-

kin-Elmer LS 55 spectrometer. Rvs161 was tagged with Cherry at its C termi-

nus. The heterodimeric Rvs161/167 BAR domain was excited at 585 nm and

emission was set at 604 nm, with both bandwidths of 5 nm. The concentration

of Rvs-Cherry was 0.5 mM. Homo-FRET anisotropy was not applied for Syp1

and Bzz1 F-BAR domains, because they are homodimers and thus contain

two closely connected cherry molecules already in solution.

FRAP and Live-Imaging of GUVs

Imaging of GUVs was performed on a confocal microscope (Leica TCS SP5)

equipped with Leica Confocal Software. A HCX PL APO 63X/1,2 W Corr/0,17

CS (water) Lbd. bl. objective was used for all experiments. In the GUV binding

assay, the protein concentration was 1 mM. In the Syp1-GFP and Rvs161/

167-Cherry competition assay, both proteins were premixed at equal con-

centration and added to the GUV at a final concentration of 1 mM. GFP,

TopfluorPIP2, and NBD-PE were imaged using a 488 nm laser line, and

Cherry-fusion proteins were imaged using a 561 nm laser line. Three pre-

bleach images were taken, and after which, five bleaching scans (3.9 s

each) with 100% intensity of 488 nm laser lines over the region of interest

were performed. Recovery of fluorescence was monitored ten times every

3.9 s, 60 times every 1 s, and 20 times every 30 s. The intensity of the

bleached area was normalized to the nonbleached GUV fluorescence inten-

sity to diminish error caused by normal photobleaching during the monitoring

period. The value before bleach was normalized to 1.0, and mean plots were

calculated from five to nine different FRAP experiments. All the error bars

indicate ± SD. The data were fitted with SigmaPlot 11.0 to a single f = a *

(1 – exp(–b * x) exponential equation. Mobile fractions and recovery half-

times (t1/2) were obtained for each recovery curve, and the means and stan-

dard deviations were calculated.
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Zió1kowska, N.E., Karotki, L., Rehman, M., Huiskonen, J.T., and Walther, T.C.

(2011). Eisosome-driven plasma membrane organization is mediated by BAR

domains. Nat. Struct. Mol. Biol. 18, 854–856.
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