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SUMMARY

Cellular information processing via reversible protein
phosphorylation requires tight control of the localiza-
tion, activity, and substrate specificity of protein
kinases, which to a large extent is accomplished by
complex formation with other proteins. Despite their
critical role in cellular regulation and pathogenesis,
protein interaction information is available for only a
subset of the 518 human protein kinases. Here we
present a global proteomic analysis of complexes
of the human CMGC kinase group. In addition to
subgroup-specific functional enrichment and modu-
larity, the identified 652 high-confidence kinase-
protein interactions provide a specific biochemical
context for many poorly studied CMGC kinases.
Furthermore, the analysis revealed a kinase-kinase
subnetwork and candidate substrates for CMGC
kinases. Finally, the presented interaction proteome
uncovered a large set of interactions with proteins
genetically linked to a range of human diseases,
including cancer, suggesting additional routes for
analyzing the role of CMGC kinases in controlling
human disease pathways.

INTRODUCTION

Reversible phosphorylation of proteins is a key mechanism to

regulate the activity of enzymes and control the localization

and stability of proteins and their interactions with other proteins.

These events in turn control information processing by cellular

signal pathways to regulate metabolism, cell division, apoptosis,

andmore. Protein phosphorylation is catalyzed by 518members

of the human protein kinase family, representing one of the

largest protein families in human cells (Manning et al., 2002).

Deregulation of human kinases has been causally linked to a va-

riety of human malignancies (Lahiry et al., 2010; Manning, 2009),

including cancer, and kinases represent 20% of all putative drug

targets (Futreal et al., 2004; Hopkins and Groom, 2002). Under-
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standing the mechanisms that control kinase activity and sub-

strate specificity is therefore of central interest to biomedical

research. Studies using classical biochemical approaches

have shown that kinases exert their function in the context of

kinase protein complexes formed by specific associations with

a range of other proteins, including regulatory subunits, kinase

inhibitors, scaffold proteins, and proteins that target the complex

to specific subcellular sites, as well as substrates. In spite of their

eminent biological importance and in contrast to the situation in

yeast, where several large-scale affinity purification and mass

spectrometry (AP-MS) studies have provided insight into how

the yeast kinome is connected to other proteins (Breitkreutz

et al., 2010; Gavin et al., 2006), our general knowledge of human

protein kinase complexes is very limited. This is due to the focus

of small-scale studies on kinases that have been genetically

linked to essential processes or diseases, and the lack of global

studies on human kinase complexes (Edwards et al., 2011).

Investigators have used an array of techniques to determine

protein-protein interactions (PPIs) and define protein complexes.

Currently, however, AP-MS is the only method that is capable of

isolating and identifying protein complexes from human cells un-

der near-physiological conditions (Gingras et al., 2007). Recent

advances in AP protocols, MS instrumentation, and computa-

tional tools resulted in the identification of high-confidence

interaction (HCI) proteomes of different human protein groups

(Behrends et al., 2010; Breitkreutz et al., 2010; Choi et al.,

2011; Glatter et al., 2009; Sardiu et al., 2008; Sowa et al., 2009).

Here we present a systematic protein interaction study of

the human CMGC (cyclin-dependent kinase [CDK], mitogen-

activated protein kinase [MAPK], glycogen synthase kinase

[GSK3], CDC-like kinase [CLK]) group of protein kinases. This

evolutionarily conserved group consists of 62 members (http://

uniprot.org), which are assigned to nine families. The CDKs

andMAPKs are the two largest and best-studied CMGC groups.

Besides control of the cell cycle, CDKs are known to control

the activity of human tumor suppressors and thus have been

of prime interest in molecular cancer research. The MAPKs

regulate a variety of cellular processes and participate exten-

sively in the control of cell-fate decisions across all eukaryotic

phyla. Other interesting CMGC families include the dual-speci-

ficity tyrosine-regulated kinases (DYRK) and the serine-arginine
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protein kinases (SRPK); however, these kinases are much less

studied and only sparse information on how they engage in inter-

actions with other proteins is available in public databases.

In this work, we systematically determined the protein interac-

tions of all of the 57 CMGC kinases expressed in human tissues

(http://genesapiens.org). CMGC kinase group members fre-

quently have related interaction profiles that are enriched for

specific Gene Ontology (GO) groups that link the CMGC kinase

families to various biochemical processes in transcription, RNA

processing, cellular communication, the regulation of the cell

cycle, and more. The most prominent protein group among

CMGC-binding proteins is the kinases themselves, suggesting

that the human kinome as a whole forms large regulatory net-

works. Here we present a combined computational and experi-

mental approach for identifying kinase-substrate candidates.

Finally, the identified biochemical context points to a multitude

of molecular links between CMGC kinases and proteins associ-

ated with human diseases. We note that several groups of pro-

teins that are linked to similar disease phenotypes tend to cluster

around specific CMGC kinase complexes. We found an overrep-

resentation of cancer-associated proteins (CAPs) in CMGC

kinase complexes. Therefore, this work represents an important

resource to direct future studies aimed at identifying approaches

to interfere with human pathologies linked to perturbed CMGC

interaction proteomes.

RESULTS AND DISCUSSION

Systematic Analysis of Human CMGC Kinome
Complexes
Despite their central role in the control of biological processes

and diseases, human protein kinases have not previously been

subjected to a systematic analysis. Here, we applied a recently

developed, integrated experimental and computational AP-MS

method to characterize the human CMGC kinase interactome

(Breitkreutz et al., 2010; Choi et al., 2011; Glatter et al., 2009).

The method is schematically illustrated in Figures 1A–1C. We

generated isogenic HEK293 cell lines for each of the 57 studied

kinases, and the kinase in question was inducibly expressed with

a Twin-Strep-tag and hemagglutinin (SH) tag (Table S1) to a level

that approximately matched that of the intrinsic kinase (Glatter

et al., 2009; Figure S1). Kinase complexes were purified by

double-AP and tryptic peptide samples were subjected to liquid

chromatography-MS (LC-MS) in technical replicates (overall

reproducibility > 86%).

The double-AP yielded less background contaminants but had

similar sensitivity compared with the single Strep purification

(Figures S1C and S1D). We used the generated LC-MS data to

identify the sample proteins, which we then further classified

as high-confidence interacting proteins (HCIPs) or nonspecific

interactors using the recently developed SAINT algorithm (Choi

et al., 2011; Figures 1A–1C). Overall, the AP-MS analysis of the

57CMGCgroupmembers resulted in a high-confidence network

of 481 proteins and 652 kinase-protein interactions (for details on

filtering, see Tables S1 and S2).

We applied two independent methods—coimmunoprecipita-

tion (coIP) in HEK293T cells and bimolecular fluorescence

complementation (BiFC) assays in HeLa cells—to validate the
C

specificity of the obtained CMGC interactome data set (Figures

S2 and S3). Twenty-three tested interactions were validated

with either coIP or BiFC, and 19 of 23 (83%) were validated

with both of the tested methods, which corresponds well to

the validation rates reported recently in other HCIP studies using

AP-MS (Behrends et al., 2010; Sowa et al., 2009).

On average, CMGC kinases undergo complex formation with

11 HCIPs (Figure 1D). This number is similar to what has been

reported for other human baits in large-scale AP-MS studies

(Behrends et al., 2010; Sowa et al., 2009). The number of HCIs

per bait, however, varies significantly across the different

CMGC families. SRPKs showed more than three times the

number of binding partners per bait compared with other

CMGC kinases, whereas CDKL and RCK kinases revealed only

a few binding partners (Figure 1E). The largest CMGC family,

CDK, interacts with almost half of the CMGC interaction network

components (219), but the average number of interactions per

bait in the CDK family does not deviate from the average.

The functional diversity of the CMGC kinase-binding proteins

is illustrated in a network graph in Figure 1F, where interacting

proteins are grouped based on their GO classifications (simpli-

fied GO Biological Processes [GO-BP]; Keshava Prasad et al.,

2009). Since the CMGC group includes kinases with established

roles in cell-cycle regulation and signaling, it is not surprising that

many CMGC HCIPs have functions in cell communication (80

HCIPs), cell growth (24), and cell cycle (19). An unexpectedly

large number of HCIPs are involved in transcription and RNA-

related processing (147 [31% of all the HCIPs]; Figure 1F).

Subsequent hierarchical clustering based on GO-BP (Figure 1G)

and GO Molecular Functions (GO-MF; Figure S4) revealed that

CDK family members, as expected, preferentially bind to pro-

teins associated with cell-cycle regulation. As many as 51% of

CMGC kinases have a minimum of three HCIPs associated

with cell communication or signal transduction. The other large

ontology group in the CMGC interactome is ‘‘regulation of

nucleic acid metabolism,’’ which covered 53% of HCIPs linked

mainly to complexes of SRPKs and CLKs. The GO-BP analysis

links many poorly studied kinases to distinct cellular functions.

For example, proteins that bind to DYRK1A and DYRK1B have

roles in the regulation of cell growth, a function that was not pre-

viously reported for these kinases.

Comparison with Previously Identified CMGC Kinase
Interactions, and the Modular Topology of the CMGC
Interactome
Overall, we identified 531 protein interactions for CMGC kinases

and 121 interactions already annotated in public interaction

databases (Cowley et al., 2012; Turner et al., 2010). We also esti-

mated the fraction of public interactions not covered by our

study. However, an objective evaluation of PPI data coverage

is complicated by the heterogeneous source and the unknown

false-positive rate of public PPI data. To address these issues,

we used public data annotated in the PINA database (Cowley

et al., 2012), which allowed us to filter the public interactome

for the number of independent reports supporting a given inter-

action as a proxy for data robustness. When we considered all

physical PPIs (including yeast two-hybrid data) supported by

at least two independent reports, our study covered 16% of
ell Reports 3, 1306–1320, April 25, 2013 ª2013 The Authors 1307
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Figure 2. Relationship of the CMGC AP-MS Data to Previously Published PPI Information

(A) Overview of HCIs identified in CMGC kinases. Interactions identified in this study are shown in blue, and red indicates the PPIs reported in public databases.

(B) Comparison of DYRK interactomes. Known interactions between the HCIPs are shownwith a dotted line. Sequence similarity between DYRK family members

is illustrated as a dendrogram (upper panel).

(C) Overview of HCIs of individual CMGC kinases grouped with their corresponding families.

(D) A subnetwork of the CDK2 interactome illustrates the interactions with cyclins (green), CDK inhibitors (red), regulatory subunit (light blue), components of the

SCF (blue), and Rb family members (gray).

(E) CDK11A interacts with CKII subunits (red), RNA-binding proteins (turquoise), zinc finger proteins (blue), and importin subunits (lilac).

See also Figures S2 and S7, and Tables S2 and S7.
public PPI data. However, the coverage moved up to 49% when

we considered only robust PPIs that are supported bymore than

six publications (for details see Table S2). We also found that the

public interactions that overlapped with our study were pub-

lished on average 10.7 times, in contrast to the set of public in-

teractions not found in our study, which were referenced only

2.9 times on average. This illustrates the overall robustness of

the presented PPI data.

The overlap between our data and already reported interac-

tions varies significantly across the different CMGC members
Figure 1. Proteomic Analysis of CMGC Kinase Complexes

(A–C) Schematic overview of (A) the generation of the 57 isogenic HEK293 cell li

strategy and LC-MS/MS analysis of the purified kinase complexes, and (C) ident

(D) Distribution of the number of HCIs identified across CMGC kinases (baits).

(E) Average number of HCIs for each CMGC kinase family.

(F) Network model of the CMGC kinase interaction landscape. The CMGC kinas

grouped according to their simplified GO process annotation.

(G) Hierarchical clustering of CMGC kinases and GO-BP terms associated with

assigned to each particular GO term.

See also Figure S1 and Table S1.

C

(Figure 2A). This can be explained by the fact that various families

have been studied to different extents and by different methods

in the past.

The DYRKs are a particularly rich source for interaction infor-

mation. The DYRK subnetwork is composed of 60 proteins

and 78 interactions, of which only two could be found in public

databases (Figure 2B). Most of the interactions we found consti-

tute complexes containing the highly related class I family

members DYRK1A and DYRK1B. DYRK1A and DYRK1B com-

plexes have 20 proteins in common, and these proteins are not
nes for inducible expression of SH-tagged CMGC bait kinases, (B) double-AP

ification of HCIs from AP-MS data using statistical filtering.

e families are organized based on their sequence similarity and the HCIPs are

the corresponding HCIPs. The color gradient illustrates the number of HCIPs
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found in complexes with the class II family members DYRK2,

DYRK3, and DYRK4. For example, DYRK1A and DYRK1B com-

plexes both contain LZTS2, a putative tumor suppressor that

suppresses Wnt signaling by promoting nuclear exclusion of

CTNNB1 (Thyssen et al., 2006). We also found interesting differ-

ences between DYRK1A and DYRK1B. For example, DYRK1B

complexes contain MYST1 and MSL3, two proteins from the

human MSL complex that are involved in chromatin remodeling,

and ARNTL, a bHLH-PAS transcription factor that is essential for

the control of circadian rhythm (Bunger et al., 2000). Further-

more, DYRK1B kinase complexes contain the oncogene c-SKI,

which binds the SMAD complex and suppresses the transform-

ing growth factor b (TGFb) target gene promoter (Akiyoshi et al.,

1999; Javelaud et al., 2011). In contrast, DYRK1A was found

in complexes containing the farnesyltransferases FNTA and

FNTB. The interactomes of the class II members DYRK2,

DYRK3, and DYRK4 are quite different from each other. They

form fewer interactions and only two proteins (TECR and

USP11) are shared with class I DYRK complexes. The observed

differences are consistent with the idea that class I and class II

DYRKs diverged early in evolution (Aranda et al., 2011) and

have undergone functional diversification by acquiring new pro-

tein interactions.

The public interaction data indicated that a number of kinases

display a highly interlinked modular topology, suggesting that

these proteins are organized in larger complexes. This was

apparent within the SRPK, CLK, and CDK families (Figure 2C).

Among the 131 proteins associated with SRPK and the related

CLK family members, we found proteins that partition in several

distinct RNA processing complexes, including the Nop56p-

associated pre-rRNA complex; the U2, U4/U6, and U5 spliceo-

some complexes; and the EJC/TREX complex (Hayano et al.,

2003; Hegele et al., 2012). Among the well-studied CDK family

members, we could identify expected complexes with regulatory

subunits, cyclins, and CDK inhibitors. Figure 2D illustrates the

interactions found for CDK2. For poorly studied CDK family

members, we found a higher fraction of previously unknown

additional interactions. CDK11A, for example, revealed interac-

tions with casein kinase subunits, a panel of zinc finger tran-

scription factors, and nuclear transport proteins, which point to

previously unrecognized roles for CDK11A in the control of tran-

scription and nuclear transport (Figure 2E).

Relationships among CMGC Interaction Proteomes
To analyze the relationships among the interactomes of

different CMGC group members, we performed hierarchical

clustering of CMGC kinases and their HCIPs (Figure 3A). We

found that individual CMGC kinases can form unique com-
Figure 3. Hierarchical Clustering of the CMGC HCIPs

(A) Heatmap generated from hierarchical clustering of the 481 HCIPs and the 5

The color of each individual HCIP (rows) corresponds to its relative abundance,

(columns).

(B) GSK3A and GSK3B form overlapping but also distinct interactions, reflecting

(C) CDK7, a component of the general transcription factor TFIIH, has a uniq

components of the TFIIH complex.

(D) CDK8 and CDK19 form a highly related cluster that corresponds to the transc

manner with either CDK8 or CDK19. Blue edges indicate interactions identified i

See also Figure S3.

C

plexes that are highly specific for that particular kinase, such

as CDK7 or nemo-like kinase (NLK). We also noticed that

related kinases often share a significant fraction of HCIPs.

Closer inspection of these related interactomes revealed inter-

esting differences that may point to different biochemical roles

for related CMGC group members. For example, GSK-3 a

(GSK3A) and GSK-3 b (GSK3B) share many HCIPs (specifically

GSKIP, FRAT1, PPP1R2, AXIN1, AXIN2, and PRKACA) that are

bound even with similar relative abundances as estimated by

spectral counting (Figure 3B). However, only GSK3B could be

detected in complexes with b-catenin (CTNNB1) and adenoma-

tous polyposis coli (APC; Figure 3B), indicating a nonredundant

function of GSK3B in Wnt signaling. This finding is consistent

with the key role assigned to GSK3B in regulating Wnt/

b-catenin signaling. In the absence of Wnt signaling, GSK3B

binds to the ‘‘destruction complex,’’ which in addition contains

AXIN1, APC, and casein kinase I (CKI). As part of this complex,

GSK3B phosphorylates b-catenin, leading to its subsequent

ubiquitination and proteasomal degradation (Dajani et al.,

2003). The GSK3B example illustrates how subtle difference

in protein complex formation may result in functional diversifica-

tion. It also suggests that such specific differences in the

presented PPI data may be helpful for functionally dissecting

other highly related CMGC group members that are less well

characterized than GSK3B.

CDK-Containing Transcription Complexes
Three members of the CDK family (CDK7, CDK8, and CDK19)

form complexes with established roles in basic RNA pol II tran-

scription. We noted that the identified HCIPs of CDK7 (CDK8

and CDK19) were highly connected based on public PPI data,

indicating the formation of large complexes engaged in tran-

scription. Since complex formation with these three kinases

has been well studied in the past, we used these examples to

benchmark the robustness and sensitivity of our experimental

approach. CDK7 is known to form a trimeric complex with cyclin

H (CCNH) and MNAT1 (Figure 3C), also referred to as the CDK-

activating kinase or CAK (Kaldis, 1999). CAK phosphorylates

other CDKs within the activation segment (T-loop) and acts as

a component of the general polymerase II transcription factor

TFIIH, where it phosphorylates the C-terminal domain of the

RNApol II large subunit (Roy et al., 1994; Figure 3C). The helicase

xpd/ERCC2 plays a structural role in tethering the CDK7-cyclin

H-MNAT1 trimer to the core subunits of TFIIH (Chen et al.,

2003; Coin et al., 1999). Our analysis revealed all ten subunits

of TFIIH and CAK, of which the CAK subunits represent the

most abundant protein interacting with CDK7 (Gibbons et al.,

2012).
7 CMGC kinases reveals clusters of related kinases that share interactions.

quantified using normalized spectral counts, in each CMGC kinase complex

their different roles in Wnt signaling.

ue interactome ‘‘fingerprint’’ comprised exclusively of interactions with the

riptional MED complex. The MED complex associates in a mutually exclusive

n this study and known interactions are shown by black dotted lines.

ell Reports 3, 1306–1320, April 25, 2013 ª2013 The Authors 1311



TEK

MKNK2

MAPK8

MKNK1 RPS6KA3 MAPKAPK2

MAPK1

RPS6KA2

FGFR1

CDK12

CDK11A CDK8CDK15

CDK9

CLK3

DCLK3CDK13

CDK4

CDK16CDK20

CDK5CDK2 PRPF4B

CDC2 GSK3B

CDK7CDKL3PKMYT1

CDK6 CDK19 DYRK1A

CLK2 DYRK1B

MAPK15

SRPK3

GSK3A

SRPK2

PRKACA

MAPK12

SRPK1

DYRK4 ARAFPASK

DYRK2 NLK

CAMK1

HIPK4

TTN

MAPKAPK5

MAPK11

MAPK4

MAPK14

MAPK3

MAPKAPK3RPS6KA4

MAPK6

MAPK9 MAPK13

CSNK2A2

PRKG2

CDKL5CDK14

MAP2K3

MAPK10

CSNK2A1

CMGC 

CAMK  

AGC  

other 

STE  

Tyr

TKL

A

B

(legend on next page)

1312 Cell Reports 3, 1306–1320, April 25, 2013 ª2013 The Authors



CDK8 and CDK19 and their regulatory subunit cyclin C

(CCNC) are components of theMediator (MED) coactivator com-

plex (Sato et al., 2004). The precise composition of this subunit,

as well as potential differences in MED complex formation, has

not been described yet. The MED complex supports transcrip-

tional activation via binding to the activation domain of transcrip-

tion factors and to the general pol II transcription machinery. The

MED core is composed of a head module, a middle module, and

a tail module (Guglielmi et al., 2004), and can bind to RNA poly-

merase II (pol II) to form a holoenzyme. Alternative forms of the

MED complex have been proposed that are free of pol II but

include a kinase module, Cyclin C, and two additional subunits:

MED12 and MED13 (Guglielmi et al., 2004). The two additional

core complex subunits, MED25 andMED26, which function spe-

cifically in transcriptional activation, are not present in the

kinase-associated MED (Ding et al., 2009; Yang et al., 2004).

Consistent with this model, we found that both CDK8 and

CDK19 form mutually exclusive complexes with all subunits of

the alternative form of MED complex lacking MED25 and

MED26. In addition, we found that CDK8 and CDK19 associate

with the MED subunits in similar relative amounts, as estimated

from normalized spectral counts (Figure 3D), indicating that the

two paralogous kinases do not undergo differential MED com-

plex formation. The presented data represent themost complete

set of interactions between the CDK8/19 and MED subunits

currently available, and illustrate the robustness and sensitivity

of the experimental and computational workflow used in this

study.

Topology of CMGC Kinase-Kinase Interactions
We next clustered the occurrence of specific structural domains

in the proteins found in CMGC kinase complexes across all

CMGC kinases (Figure 4A). The most frequently found domains

were the RNA recognition motif (RRM) domain (n = 55) and pro-

tein kinase domain (n = 45). The majority of proteins containing

an RRM domain were associated with SRPKs and CLKs.

Remarkably, almost half of the CMGC kinases were interacting

with proteins that contain a protein kinase domain, suggesting

that human CMGC kinases have a previously unidentified prefer-

ence for interacting with other protein kinases, which is reminis-

cent of the kinase-kinase network reported in a global analysis of

yeast kinase complexes (Breitkreutz et al., 2010).

To illustrate the kinase-kinase interactions in more detail, we

combined all detected kinase-kinase interactions with published

interaction information for the identified kinases in a network

graph (Figure 4B). Remarkably, the majority of the kinase-kinase

interactions (n = 44 interactions) represent CMGC kinases inter-

acting with other CMGC kinases. The second-largest kinase

group is the CAMK group (n = 24 interactions), followed by the
Figure 4. CMGC-Kinase-Kinase Highway

(A) Hierarchical clustering of protein domains present in the CMGC interacting pro

highlighted. The color gradient corresponds to the number of unique proteins th

(B) Network model illustrating physical interactions between CMGC kinases and

shown in the pie chart. The pie chart shows the distribution of interactions betwe

interactions from the public databases, and solid edges represent known (blue ed

data set.

See also Figure S4.

C

AGC group (n = 13 interactions). Most of the previously reported

kinase-kinase interactions clustered around the MAPK family.

The presented kinase-kinase network provides insights into the

organization of kinases into large regulatory kinase-kinase net-

works, and the mechanism of multisite substrate phosphoryla-

tion by kinase-kinase complexes.

Inferring Regulatory Networks within the CMGC
Interaction Proteome
Protein phosphorylation requires the formation of transient or

stable kinase-substrate complexes. The obtained AP-MS data

may therefore include new kinase-substrate relationships. In

order to narrow down the potential kinase-substrate space, we

pursued the following strategy: First we compiled all phospho-

peptides identified from the CMGC AP-MS data and all phos-

phopeptides from CMGC network nodes available from public

data (Hornbeck et al., 2012). Second, we predicted upstream

kinases for these phosphosites using the NetworKIN algorithm

to construct a hypothetical kinase-substrate network (Linding

et al., 2007). Finally, we merged this predicted network with

the CMGC AP-MS data to identify those kinase-protein interac-

tions that intersect with the predicted kinase-substrate interac-

tion and thus may represent high-confidence kinase-substrate

interactions.

In total, we identified 1,315 phosphopeptides (false discovery

rate [FDR] < 1%) corresponding to 503 unique phosphosites in

106 unique proteins from the CMGC AP-MS data. Of the 503

phosphosites identified, 380 had been reported previously (Fig-

ure 5A; TableS3). A large fraction (188/503) of the identified phos-

phosites was detected in protein kinases, and a fractionmapped

to the activation loop region in the CMGC kinases (Figure S5).

When we combined our data with public phosphosite informa-

tion, we obtained a total of 1,789 phosphosites for the 481

CMGC network components (Figure 5B; Hornbeck et al.,

2012). Using NetworKIN, we could predict candidate upstream

kinases for these sites (Table S4). Overall, our PPI data inter-

sected with 47 predicted kinase-substrate interactions. In addi-

tion to the kinase-substrate interaction predicted by NetworKIN,

our AP-MS data overlapped with 23 experimental kinase-sub-

strate interactions (Hornbeck et al., 2012), resulting in a total

overlap of 56 interactions between 17 kinases and their candi-

date substrates (Table S4). From the intersecting candidate

kinase-substrate network (Figure 5C) we identified several regu-

latory modules where a kinase could be assigned to a set of

candidate substrates (Figure 5C). For example, the relatively

poorly studied kinase CLK2 is associated with ten candidate

substrates, the majority of which can be linked to RNA process-

ing and transcription. Furthermore, our analysis revealed several

GSK3B sites on three components of theWnt signaling pathway,
teins. The domains foundmost frequently within CMGC interacting proteins are

at contain a particular domain and interact with an individual CMGC kinase.

other kinase family members. Node color corresponds to the kinase families

en various kinase family members and CMGC kinases. Dashed lines illustrate

ges) and additional (red edges) kinase-kinase interactions found in the AP-MS
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including the evolutionary conserved residues S33, S37, and T41

on b-catenin (Liu et al., 2002); the APCphosphorylation on S1501

(Ferrarese et al., 2007); and S188 of the proto-oncogene FRAT1

(Hornbeck et al., 2012). Besides Wnt signaling components, we

also found Protein phosphatase inhibitor 2 and Protein kinase

A-anchoring protein 11 (AKAP11) as candidate GSK3B sub-

strates. The cyclic AMP-dependent protein kinase (PRKACA)

and its regulatory subunit PRKR1A were also found in GSK3B

complexes, and PRKACA has been proposed to phosphorylate

GSK3B on S9 (Hornbeck et al., 2012).

The largest candidate kinase-substrate networks from our

analysis were found for CDK2, which suggests 14 substrates

(eight that have already been annotated as in vivo or in vitro sub-

strates, and six that represent additional substrate candidates

[CREBBP, CDKN1C, CCNB1, GOLGA2, CCNE2, and CDK13]).

The same approach also identified kinases predicted to phos-

phorylate other kinases in their T-loop (also referred to as the

activation loop) region and thus could act as upstream activating

kinases in regulatory networks. The examples identified revealed

a MAPK signaling module in which MAPK family members

appear to be sequentially phosphorylated at their T-loop site

by other MAPK family members (Figure 5C).

Consistent with our findings, MAP2K3 (also known as MKK3)

is known to activate MAPK14/p38-MAPKa via T-loop phosphor-

ylation of T180 and Y182 of MAPK14 (Dérijard et al., 1995;

Raingeaud et al., 1995). Following its activation, MAPK14 can

phosphorylate a number of substrates, including other MAPK

family members (Cuadrado and Nebreda, 2010). Our analysis

showed that MKNK1 and MAPKAP3 form stable complexes

with the two p38 kinases (MAPK14 and MAPK11) and are pre-

dicted to be phosphorylated in their T-loop region by the associ-

ated p38 kinases. By applying the combined AP-MS/NetworKIN

analysis, in addition to known p38 substrates (e.g., EEF2 and

RPS6KA4), we identified additional candidate substrates. These

include the candidate MAPK14 substrates USP11 (a deubiquiti-

nating enzyme implicated in NF-kappa-B activation; Yamaguchi

et al., 2007) and IQGAP1 (implicated as a scaffold for MAPK

signaling; Roy et al., 2004, 2005), as well as the MAPK11 candi-

date substrates ARHGAP12 (a Rho-type GTPase-activating pro-

tein) and Cul7 (an Skp, Cullin, F-box-containing complex [SCF]

E3 ubiquitin ligase component that is genetically linked to 3-M

syndrome; Huber et al., 2005).

An SRPK-Substrate Network Is Linked to RNA
Processing
Substrate prediction tools such as NetworKIN and Scansite do

not cover SRPKs because only a few substrates are known for

the SRPK family and prediction is complicated by a mechanism

of progressive substrate phosphorylation of multiple serines
Figure 5. Candidate CMGC Kinase-Substrate Network Predicted by a

(A) CMGC AP-MS analysis revealed 503 unique phosphosites, 123 of which hav

(B) Computational strategy to predict upstream kinases for the phosphosites pres

combined with annotated phosphosites to predict candidate kinase relationships

also form stable complexes based on the CMGC AP-MS data set.

(C) Network diagrams illustrating kinase-substrate interactions (red edges) inters

graphs illustrate kinases (blue), substrates (blue), and phosphorylation sites (oran

toward the phosphorylation sites indicate known (orange) or predicted (opaque

See also Figure S5 and Tables S3 and S4.

C

(Aubol et al., 2003). To identify candidate substrates for SRPK1

and SRPK2, we used two criteria. The first is the ability to recon-

stitute substrate phosphorylation in vitro, and the second is the

physical association of the kinase with its substrate in vivo. We

performed systematic in vitro kinase (IVK) assays with SRPK1

and SRPK2 on protein microarrays containing >9,000 unique

human proteins (Figure 6A) and combined the results from these

experiments with the SRPK1/2 AP-MS data (Figure 6B). Using a

Z-score cutoff of 0.25, we identified 155 and 160 IVK substrates

for SRPK1 and SRPK2, respectively (Table S5). We found differ-

ences between SRPK1 and SRPK2, but also 72 shared sub-

strates (Figure 6B). Furthermore, the identified IVK substrates

were highly enriched for known splicing proteins (p = 1.80E-15;

Figure S6; Table S6). Among the three annotated substrates for

SRPK1andSRPK2 thatwerepresenton themicroarray,wecould

confirm SRSF1 and RBM8A as in vitro substrates. Besides

SRSF1, we identified 26 proteins linked to messenger RNA

(mRNA) splicing, 22 of which could be assigned to distinct func-

tional groups involved at different stepsofmRNAsplicing (Hegele

et al., 2012; Figure 6C). We noticed a significant overlap between

the proteins identified by IVK experiments and AP-MS. The inte-

gration of SRPK1 and SRPK2 IVK-substrate relationships with

the AP-MS data resulted in a networkmodel that consists almost

exclusively of proteins involved in mRNA splicing or RNA

processing (Figure 6D, light orange), 11 of which have been

described recently as components of the exon junction com-

plexes (EJC) interactome (Singh et al., 2012). These data suggest

that SRPK protein binding and kinase activity may be required to

coordinate distinctmolecular events involved inRNAprocessing.

Disease Phenotypes Linked to the CMGC Interaction
Proteome
The systematic mapping and high-throughput sequencing of

human disease loci provides insights into the role of cellular pro-

teins in human pathogenesis. However, the mechanistic basis of

how genomic lesions are translated into disease phenotypes is

poorly understood. We therefore integrated the information on

disease loci with the CMGC kinase-protein interaction data to

better understand how kinases may control disease pathways,

and to uncover modules of biochemically related proteins linked

to a specific disease phenotype.

Using annotated genetic disease information (OMIM and

COSMIC), we queried the CMGC AP-MS data set for the

presence of disease-associated proteins (DAPs) and studied

the topology of a protein interaction network formed between

kinases and DAPs. Altogether, we identified 91 DAPs that phys-

ically interacted with CMGC kinases, forming a network of 143

interactions (Figure 7A). By far themost prominent disease group

we found in the CMGC interaction proteome was cancer. Other
Combined Proteomics and Computational Approach

e not been detected before.

ent in the CMGC network components. Phosphosites found in this study were

using NetworKIN. The predictions were filtered for kinase-substrate pairs that

ecting with the AP-MS data set (blue edges). Nodes in the enlarged network

ge). T-loop phosphorylation sites are indicated as green nodes. Edges pointing

orange) phosphorylation events.
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Figure 6. SRPK1 and SRPK2 Physically and Functionally Interact with Different Classes of mRNA-Processing Proteins

(A) Identification of SRPK1 and SRPK2 IVK substrates using protein microarrays.

(B) Venn diagrams illustrating substrates and binding partners shared by SRPK1 and SRPK2.

(C) SRPK1 and SRPK2 IVK-substrate network involving distinct functional groups engaged during various steps of mRNA splicing.

(D) Integration of data from IVK assays and AP-MS data reveals a functional network involved in various steps of RNA processing (light orange nodes).

Components of the EJC interactome are indicated in red.

See also Figure S6 and Tables S5 and S6.
diseases linked to CMGC complexes includemental retardation,

microencephaly, retinitis pigmentosa, xeroderma pigmentosum,

and 3-M syndrome. If a group of proteins constitute a specific

complex that is linked to a particular disease pathway, it is

conceivable that mutations in the corresponding complex sub-

units might result in a similar disease phenotype. We therefore

analyzed the CMGC interaction proteomes for cases in which

a particular disease phenotype was clustered around specific

kinase complexes. Despite the limited availability of genetically

mapped disease information and the likely incompleteness of

the AP-MS interaction data, we could identify five clusters in

which a group of proteins binding to a particular CMGC kinase

mapped to a specific disease phenotype (Figure 7A). Specif-

ically, all proteins in the CMGC network (PRPF8, SNRNP200,

PRPF31, and PRPF6) associated with retinitis pigmentosa,

a progressive retinal dystrophy, were exclusively found in com-

plexes with PRPF4B. Likewise, we found Cul7, CCDC8, and

OBSL1—three proteins that are associated with 3-M syndrome,

a primordial growth retardation disorder (Hanson et al., 2011)—in

complexes with the p38 MAPKs MAPK11 and MAPK14.

Overall, 43 kinase-associated proteins identified in the AP-MS

data set are genetically linked to various forms of human cancer.

The observed frequency is about three times higher than ex-

pected from a random network of similar topology (Figure 7A,
1316 Cell Reports 3, 1306–1320, April 25, 2013 ª2013 The Authors
inset). Several CMGC kinases qualified as ‘‘cancer hubs’’ with

multiple interactions to cancer-linked proteins. Similarly to the

examples described above, some of these ‘‘cancer hubs’’

were associated with a set of cancer proteins pointing to a

particular type of cancer. For example, and in agreement with

previous results, we identified three proteins (ERCC2, ERCC3,

and ERCC5) in CDK7 complexes that are linked to xeroderma

pigmentosum, an autosomal recessive genetic disorder that is

linked to severe DNA repair defects and causes severe UV sensi-

tivity with increased risk for skin cancer (Giglia-Mari et al., 2004;

Jeronimo et al., 2007). Moreover, all of the five proteins (MLLT1,

MLLT3, AFF1, AFF3, and AFF4) linked to acute lymphoblastic

leukemia (ALL) and acute myeloid leukemia (AML) in the

CMGC network were identified in complexes with CDK9 (Fig-

ure 7B). In ALL and AML, the genes of these CDK9-binding pro-

teins undergo translocation with the histone methyltransferase

MLL. It is believed that these diseases are caused by epigenetic

changes that lead to overproliferation of immature white blood

cells (Benedikt et al., 2011).

Other CMGC kinases associate with multiple cancer proteins

that are linked to various cancer types. CDK6, for example, has

been found in complexes with the cyclin D2 (CCND2), cyclin

D3 (CCND3), and CDK inhibitor p18-INK6 (CDKN2C) linked

to various tumor types, including non-Hodgkin lymphomas
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Figure 7. Complex Formation between CMGC Kinases and Human Disease Proteins

(A) Physical interactions between CMGC kinases and proteins associated with human diseases. Known interactions are indicated by blue edges, and additional

interactions are highlighted in red and. Modules containing CMGC kinase-associated proteins genetically linked to the same disease phenotype indicated in

the figure are highlighted as orange squares. Inset at the bottom illustrates enrichment of cancer proteins in the CMGC interactome (green dotted line; n = 43;

p < 0.001) compared with the distribution of CAPs occurring in 10,000 random networks (481 proteins, 652 interactions).

(B) CDK9 interacts almost exclusively with proteins mutated in ALL.

(C) SRPK2 complex formation with human DAPs.

(D) DAPs in complexes with NLK. Numbers in parentheses refer to OMIM IDs.
(CCND2) and gliomas (CDKN2C). Likewise, GSK3A and GSK3B

interact with a set of proteins linked to colon cancer (APC and

CTNNB1), hepatocellular carcinoma (AXIN1), and thyroid carci-

noma (PRKAR1A; Forbes et al., 2008). Importantly, besides

these established cancer protein interactions, our data revealed

previously unrecognized interactions with CAPs and less studied

kinase subfamily members such as CLK2 and SRPK2. CLK2, for

example, forms interactions with three CAPs, including SETD2, a

histone lysine N-methyltransferase that was recently linked to

renal carcinoma (Dalgliesh et al., 2010). Likewise, SRPK1 and

SRPK2 interact with THRAP3, SRSF2, and U2AF1, and both

SRSF2 and U2AF1 are linked to chronic lymphocytic leukemia

(CLL), the second most common adult leukemia (Figure 7C). In

addition, NLK forms complexes with five DAPs, including

SMAD4, a protein that has been found to be significantlymutated

in humanpancreatic cancer (Figure 7D;Biankin et al., 2012; Hahn

et al., 1996). Becausemost of these interactions between CMGC

group members and DAPs have not yet been reported in public

interaction databases, the presented kinase-DAP interactome

represents a rich source for developing novel hypotheses about

the control of disease pathways by CMGC kinases.
C

Concluding Remarks
In this work we have provided a comprehensive analysis of the

CMGC kinase interaction proteome. Our study reveals 531 pro-

tein interactions for the CMGC kinase group and confirms 121

previously described interactions, suggesting that the previously

annotated interaction proteome for CMGC kinases, and thus for

the human kinome in general, is far from being complete. The

interactions we found are not equally distributed across the

CMGC kinase families but are enriched in subgroups that are

poorly represented in the current literature, such as the CLK,

HIPK, and DYRK families. This indicates that the protein-interac-

tion information for the CMGC kinase group that is available in

public databases is biased toward well-studied kinases. This

bias, together with limited interaction information, restrains the

development of models for regulatory pathways, highlighting

the need for systematic AP-MS studies to fill the gaps in our

knowledge about poorly studied protein groups.

Comparisons of orthologous protein-interaction data across

species can provide insights into evolutionary conservation and

changes in protein interactions and complexes. We compared

the CMGC interaction data from our study with orthologous
ell Reports 3, 1306–1320, April 25, 2013 ª2013 The Authors 1317



interaction data from budding yeast because yeast represents

the only eukaryotic organism for which proteome-wide interac-

tion data are currently available. We found conservation around

complexes of the CDK, MAPK, DYRK, SRPK, and CLK families,

but not for the other CMGC families (Figure S7; Table S7).

Approximately half of the orthologous interactions represented

in the current yeast interactome involve CDKs. They constitute

highly conserved complexes with cyclins and CDK regulatory

subunits, TFIIH, or transcriptional MED complexes involved

cell-cycle control and transcription, two basic biological func-

tions. Also, the orthologous interactions within manyMAPK fam-

ily members are well represented in existing yeast interaction

data and indicate an expansion of orthologous human MAPK

complexes compared with yeast. In contrast, orthologous inter-

actions with other family members are poorly represented in the

known yeast interactome or are not present at all (GSK3A,

GSK3B, HIPK4, and PRPF4B). These differences may indicate

evolutionary changes in the human interaction landscape, but

to some extent theymay also reflect limitations in protein interac-

tion data coverage. The presented data will facilitate efforts to

understand the functional diversification of a related group of

kinases by means of alternative complex formation. We noted

diverse but also highly related complex formation among closely

related CMGC groupmembers, which indicates functional diver-

sification but also redundancy of certain CMGCkinases.With the

contextual information presented here, it is now possible to

assign poorly characterized kinases to a specific functional

context and expand the potential roles of someof the established

CMGC group members. The CMGC interaction proteome may

include regulators of kinase activity as well as novel

kinase substrates. Obtaining reliable kinase-substrate informa-

tion represents a major challenge in the development of novel

regulatory pathway models to elucidate cellular regulation in

health and disease. To this end, we could show that at least a

fraction of kinase-associated proteins can also serve as kinase

substrates. Despite obvious restrictions imposed by complex

stability during AP, the limited dynamic range of MS analysis,

and the limited signaling states represented in exponentially

growing HEK293 cells, we were able to identify, besides well-es-

tablished kinase substrates, a number of candidate kinase sub-

strates by using an integrated proteomics and computational

approach. In parallel, by using a protein microarray approach,

we also showed that a significant fraction of proteins identified

in complexes of the SRPK group also act as kinase substrates

in vitro.

Kinases represent 20% of current drug targets and have been

genetically linked to a number of human disease phenotypes,

including cancer (Hopkins and Groom, 2002). Compounds that

either enhance or inhibit disease-relevant kinase-protein interac-

tionsmay provide a promising but as yet poorly explored route to

modulate kinase networks that are perturbed in human diseases.

The CMGC interaction proteome revealed 108 physical interac-

tions between CMGC group members and human DAPs not

found in public databases. The distribution of disease pheno-

types across the interaction landscape revealed several specific

diseases that were clustered around particular kinases and thus

may provide clues to the role of protein complexes in controlling

the emergence of specific disease phenotypes. Proteins associ-
1318 Cell Reports 3, 1306–1320, April 25, 2013 ª2013 The Authors
ated with human cancer were enriched in the CMGC kinase

network, which may hint at a role of the CMGC interaction prote-

ome in controlling tumor cell growth. Therefore, the presented

CMGC interaction proteome represents a knowledge base for

instructing future functional experiments to uncover the molecu-

lar mechanisms that control human tumor growth by specific

CMGC kinases, which in turn may provide new opportunities

for pharmacological intervention using drugs that modulate the

kinase interaction proteome.

EXPERIMENTAL PROCEDURES

Cell Culture

SH-tagged human CMGC kinases stably and inducibly expressing Flp-In 293

T-Rex cell lines were each expanded to�53 107 cells and 1 mg/ml tetracycline

was added for 24 hr to induce expression of SH-tagged bait proteins.

AP of Protein Complexes and MS Analysis

For AP, the 53 107 cells were lysed in 4 ml of lysis buffer (0.5% NP40, 50 mM

Tris-HCl, pH 8.0, 150mMNaCl, 50mMNaF, 1.5mMNaVO3, 5mMEDTA, sup-

plemented with 0.5 mM PMSF and protease inhibitors; Sigma). The cleared

lysate was loaded on spin columns (Bio-Rad) containing 200 ml Strep-Tactin

beads (IBA GmbH) and the beads were washed three times with 1 ml of lysis

buffer. Proteins were eluted from the Strep-Tactin beads with 2 mM biotin, fol-

lowed by incubation of the eluate with 100 ml anti-HA agarose (Sigma) for 2 hr

on a rotation shaker. The anti-HA agarose was washed three times with 1ml of

lysis buffer without protease inhibitor and detergent. Purified protein com-

plexes were eluted with 0.2 M glycine, pH 2.5, and subsequently neutralized

with 100 mM NH4HCO3. Cysteine bonds were reduced with 5 mM Tris(2-car-

boxyethyl)phosphine (TCEP) and alkylated with 10 mM iodoacetamide. The

proteins were then trypsinized to peptides, and the peptides were purified

with C18 microspin columns (Harvard Apparatus).

MS Analyses

The tryptic peptide samples were analyzed on a hybrid LTQ Orbitrap XL mass

spectrometer (Thermo Scientific) using Xcalibur version 2.0.7 coupled to an

Eksigent NanoLC-2D HPLC nanoflow system (dual pump system with one

analytical column; Eksigent) via a nanoelectrospray ion source using a liquid

junction (Thermo Scientific). Each purification sample was analyzed in tech-

nical replicates, and for each replicate 7% of the sample was loaded onto a

15 cm (B75 mm) fused silica analytical column (PicoFrit; New Objective)

packed with C18 reversed-phase material (Magic C18 AQ 3 mm; Michrom

BioResources). The peptides were eluted with 40 min gradient (constant flow

rate of 300 nl/min) ranging from 5% to 35% solvent B, followed by a 10 min

gradient from 35% to 80% solvent B. After every two technical replicate

samples, 100 fmol of control peptide ([Glu1]-Fibrinopeptide B human (Sigma)

was analyzed twice by LC-MS/MS, allowing the standardized monitoring of

the LC-MS/MS system performance, and detection and possible exclusion of

carryover protein (namely, bait protein from the previous sample). Acquired

MS2 scanswere searched against theUniProtKB/Swiss-Prot protein database

(release 12.0) using the XTandem search algorithm (Craig and Beavis, 2004)

with the k-score plug-in (MacLean et al., 2006) for identification of the CMGC

interactome,orwithMascot (MatrixScience) for phosphopeptide identification.

Identification of HCIs

To obtain high-confidence protein-interaction data from AP-MS raw data,

we used Significance Analysis of Interactome (SAINT), which determines the

statistical significance of observed interactions using protein abundance

based on label-free quantification (Choi et al., 2011). The empirical frequency

threshold was set to 0.09 and the iProb threshold value was set to >0.9 for

HCIs. The detailed SAINT input and obtained output files are listed in Table

S1. The filtered CMGC high-confidence data set was further analyzed and

visualized using Cytoscape 2.8.3. Interaction information from the iRefWeb

and PINA database was used to annotate known protein interactions (Cowley

et al., 2012; Razick et al., 2011; Turner et al., 2010).



Protein Kinase-Substrate Arrays

To identify substrates for kinases, we performed IVK assays on Protoarray

human protein microarrays (version 5.0; Invitrogen). For the IVK assays on

the protein microarray, the array was first blocked and then incubated with

the corresponding kinase (50 nM) in the presence of radiolabeled [g-33P]

ATP. The array was then washed to remove the unbound g-33P, dried, and

exposed to X-ray film. The acquired image of the array was analyzed using

the ProtoArray Prospector software bundle (Invitrogen). The raw data were

subjected to background substraction, signal scatter compensation, and

outlier detection, and the Z factor cutoff value was set at R0.4. Phosphory-

lated proteins with a Z score > 0.25 were considered as potential substrates.

For further details regarding the methods and materials used in this work,

see the Extended Experimental Procedures.
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