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Cis-eQTL analysis and functional validation
of candidate susceptibility genes for high-grade
serous ovarian cancer
Kate Lawrenson, Qiyan Li et al.#

Genome-wide association studies have reported 11 regions conferring risk of high-grade

serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL)

analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL

associations at 47 regions associated with HGSOC risk (Pr10� 5). For three cis-eQTL

associations (Po1.4� 10� 3, FDRo0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31

(HOXD9), we evaluate the functional role of each candidate by perturbing expression of each

gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent

growth, shortens population-doubling time and reduces contact inhibition. Chromosome

conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter,

suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9

overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes

(P¼ 6� 10� 10 for risk variants (Po10�4) within 10 kb of a HOXD9 target gene in ovarian

cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.
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G
enome-wide association studies (GWAS) have identified
hundreds of common single nucleotide polymorphisms
(SNPs) associated with cancer predisposition. However,

the functional role of these genetic risk variants in disease
biology and the target cancer susceptibility genes have been
described for only a handful of risk regions1–5. Approximately
90% of risk-associated alleles lie within non-protein coding
regions of the genome, suggesting that some reside within
regulatory elements that influence the expression of target genes.
In support of this, common risk variants often coincide with
regulatory biofeatures, including transcription factor-binding
sites and regions of active chromatin, such as transcriptional
enhancers4,6–8.

Epithelial ovarian cancer (EOC) has a major heritable
component, a proportion of which is due to common low-
penetrance-susceptibility alleles. High-grade serous ovarian
cancer (HGSOC) accounts for about 60% of all invasive EOC
cases. Eleven common variant risk loci have so far been
identified HGSOC using GWAS and replication analyses5,9–14.
While it is estimated that hundreds of additional risk variants
are likely to exist, their identification in the future will be
challenging because of the limitations in sample size restricting
the power to detect genetic associations at genome-wide levels of
significance. One approach to identify additional HGSOC risk
alleles may be to use biological and functional information to
provide additional evidence for risk associations in regions that
are sub-genome-wide significant in genetic association studies.

Expression quantitative trait locus (eQTL) analysis is a
straightforward approach to the identification of candidate
susceptibility genes at risk loci. The goal is to identify allelic
variants associated with gene expression on the basis that a
proportion of transcripts are under genetic control. A transcript
that is correlated with a risk variant in a relevant tissue or cell
type represents a strong candidate susceptibility gene. EQTL
analyses have recently identified candidate susceptibility genes for
multiple cancer types including breast, prostate, lung and
colorectal cancers3,15–17. However, rarely have functional
studies been performed to validate the role of these candidate
genes.

In the current study, we evaluate whether eQTL analysis
performed in primary HGSOCs can identify candidate ovarian
cancer susceptibility genes at genomic regions showing evidence
of susceptibility to HGSOC (P value for association o1� 10� 5).
We aimed to establish if eQTL analyses could provide additional
biological evidence supporting putative susceptibility loci that
have so far failed to reach genome-wide significance. Having
identified significant cis-eQTL associations, we evaluate the role
of candidate genes in the early stage development of HGSOC
through targeted perturbation of candidate gene expression in
two HGSOC precursor cell types and use chromosome
conformation capture assays to identify physical interactions
between a target gene and risk-associated SNPs. Finally, we use
transcriptomic profiling to identify downstream targets of
validated susceptibility genes, to identify common biological
pathways associated with neoplastic development, and to provide
functional evidence supporting additional potential HGSOC
susceptibility loci.

Results
Risk-associated variants in high-grade serous ovarian cancer.
Genetic association analyses were performed using data from the
Ovarian Cancer Association Consortium (OCAC) case–control
studies5,9–14. Genotype data were available for 15,397 women
of European ancestry, diagnosed with invasive epithelial EOC,
9,608 of whom were diagnosed with serous EOC and 30,816

controls. These were from 43 studies from 11 countries that
were part of several GWAS and the Collaborative Oncological
Gene-environment Study (COGS) genotyping project9,18,19. A
meta-analysis of these data identified 47 susceptibility regions
associated with HGSOC risk at a statistical threshold of Po10� 5

(Supplementary Table 1). Eleven of these risk loci reached
genome-wide levels of significance (Pr5� 10� 8) (refs 5,9–14).

Identifying cis-eQTL associations at HGSOC risk loci. Using
profiles of gene expression, somatic copy number variation
and methylation available for 339 primary HGSOCs from The
Cancer Genome Atlas (TCGA) project, we evaluated
determinants of gene expression in ovarian cancer. Copy number
variation explains 14% and methylation 4.1% of variation in gene
expression. We then measured the contribution of cis-expression
quantitative trait loci, adjusting for somatic copy number
variation and CpG methylation as previously described15. For
these analyses we defined cis- as a 250-kb region spanning each
SNP. The cis-eQTL-based analysis explained a further 0.25% of
the variation in gene expression in HGSOCs. From 906,600
variants on the Affymetrix SNP6.0 arrays, this represents 592
eQTL associations with a false discovery rate (FDR) o0.1.

Next, we restricted our analyses to SNPs located at the 47
HGSOC risk loci (Po10� 5). We identified four statistically
significant eQTL associations: these associations were between
rs711830 and HOXD9 at 2q31 (P¼ 5.8� 10� 4, FDR¼ 0.03,
Wald test); rs2268177 and CDC42 at 1p36 (P¼ 8.4� 10� 13,
FDR¼ 9.1� 10� 11, Wald test); rs12023270 and CDCA8 at 1p34
(P¼ 1.4� 10� 3, FDR¼ 0.05, Wald test); and rs6026496 and
GNAS at 20q13 (P¼ 3.3� 10� 3, FDR¼ 0.09, Wald test). Of
these, only rs711830 at 2q31 locus is associated with HGSOC at
genome-wide significance (P¼ 9.0� 10� 14). For the remaining
three loci the associations were borderline genome-wide
significant: P¼ 6.8� 10� 7 at 1p36, P¼ 1.4� 10� 7 at 1p34 and
P¼ 5.1� 10� 7 at 20q21. These data are summarized in Fig. 1a
and Table 1.

Using quantitative PCR with reverse transcription (RT–qPCR)
analysis we quantified expression of HOXD9, CDC42 and CDCA8
in ovarian cancer cell lines (N¼ 14) and ovarian (N¼ 6) and
fallopian (N¼ 3) epithelial cells (Fig. 1b). CDC42 was expressed
in all samples with highest expression levels observed in cancer
cell lines (Po0.028). HOXD9 expression was detected in B80%
of ovarian cancer cell lines and all normal ovarian epithelial
cell lines, but was absent in the normal fallopian tube epithelial
cell lines. CDCA8 was expressed by all three cell types, and was
significantly lower in ovarian epithelial cells compared with
ovarian cancer cells (P¼ 5.0� 10� 4) and fallopian epithelial cells
(P¼ 2.0� 10� 3). Figure 2 illustrates each genomic region, the
location of all candidate functional SNPs and the expression of all
of the genes in the region profiled in four ovarian cancer
precursor cell lines using RNA sequencing.

Functional validation of candidate susceptibility genes. We
evaluated the functional effects of perturbing the expression of
the top three cis-eQTL target genes (FDRo0.05)—CDC42,
CDCA8 and HOXD9—in cell line models of the early stages of
neoplastic transformation of HGSOC. Each gene was evaluated in
the two cell types that are proposed to be the precursors of
HGSOC; fallopian tube secretory epithelial cells and ovarian
surface epithelial cells. Both cell lines were engineered to be
deficient in p53 signalling, since this event occurs in almost all
HGSOCs20,21. Fallopian tube cells were immortalized by
expression of TERT followed by short hairpin RNA (shRNA)-
mediated knockdown of p53 and expression of the CDK4R24C

inhibition-resistant mutant CDK4 allele (FT246-shp53-R24C)22.
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Ovarian surface epithelial cells were immortalized with TERT
alone23 after which we generated a p53-deficient model by
stably expressing a dominant negative p53 allele (IOE11-DNp53).
In the latter model, loss of functional p53 signalling
was confirmed using in vitro assays: upregulation of p21
following exposure to ionizing radiation was attenuated, and
population-doubling times were reduced in cells expressing the
DNp53 construct (Supplementary Fig. 1).

For each cell type, we created isogenic models of candidate
gene overexpression or knockdown, mimicking the trends in
expression associated with the risk allele as defined by the eQTL
associations. Thus, we stably overexpressed CDC42 and HOXD9
as C-terminal green fluorescent protein (GFP) fusion proteins,
and downregulated CDCA8 using pooled targeting shRNAs.
Overexpression or knockdown of each gene was confirmed by
RT–qPCR (Fig. 3a(i),b(i)). We confirmed expression of the fusion
proteins for CDC42 and HOXD9 by fluorescence microscopy
(Fig. 3a(ii),b(ii)). CDC42 was detected throughout the cell,
whereas HOXD9 expression was restricted to the nucleus. We
then evaluated the engineered cell lines for phenotypes that
are indicative of neoplastic transformation and tumour
development, specifically anchorage-dependent and -independent

growth, migration, invasion, apoptosis and DNA content
(ploidy). The results of these analyses are shown in Fig. 3c–h.

Effects of CDCA8 downregulation. Using lentiviral delivery
of CDCA8-targeting shRNAs, CDCA8 gene expression was
knocked down by 78% in IOE11-DNp53 cells, and 85% in
FT246-shp53-R24C cell lines compared with parental cells
and cell lines expressing a non-targeting, scrambled (SCR)
shRNA (IOE11-DNp53-shSCR and FT246-shp53-R24C-shSCR).
Downregulation of CDCA8 had no significant effect on
anchorage-dependent or -independent growth, invasion or
migration in either IOE11-DNp53 or FT246-shp53-R24C cells.
However, using propidium iodide staining we observed a 2.2-fold
increase in the proportion of aneuploid cells in IOE11-DNp53-
shCDCA8 cultures compared with IOE11-DNp53-shSCR con-
trols (P¼ 0.026, two-tailed paired t-test) (Fig. 3c).

Effects of CDC42 overexpression. IOE11-DNp53 and FT246-
shp53-R24C engineered to overexpress CDC42 showed 18- and
24-fold increase in CDC42 expression, respectively, compared
with non-transduced and GFP-transduced control cell lines
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Figure 1 | EQTL analyses identify candidate genes at HGSOC risk loci. (a) CDC42 at 1p36, HOXD9 at 2q31, CDCA8 at 1p34 and GNAS at 20q13. Genotypes

associated with increased risk are indicated in red font. On the boxplots the horizontal line indicates the median, the box indicates the first to third quartile

of expression and whiskers indicate 1.5� the interquartile range. (b) Analysis of the expression of three genome-wide significant genes in 14 ovarian

cancer cell lines (predominantly of high-grade serous histology), six TERT-immortalized ovarian epithelial (IOE) cell lines and three TERT, shRNA-p53 and

mutant CDK4 immortalized fallopian tube (FT) epithelial cell lines.

Table 1 | Risk and eQTL associations in serous ovarian cancer.

Locus Risk associations eQTL associations r2

rsID OR P value (1 df) EAF rsID Gene Stat Unadjusted P value FDR

2q31 rs6755777 1.15 8.95� 10� 14 0.68 rs711830 HOXD9 3.48 5.82� 10�4 0.03 0.99
1p36 rs72665317 0.89 6.83� 10� 7 0.16 rs2268177 CDC42 � 7.46 8.40� 10� 13 9.07� 10� 11 0.88

rs7412010 CDC42 7.38 1.36� 10� 12 9.07� 10� 11 0.78
1p34 rs4335340 0.90 1.37� 10� 7 0.25 rs12023270 CDCA8 3.22 1.41� 10� 3 0.05 0.61
20q13 rs6026494 1.16 5.07� 10� 7 0.11 rs6026494 GNAS 2.96 3.28� 10� 3 0.09 1.00

EAF, effect allele frequency; OR, odds ratio; Stat, T-statistic.
r2 values between risk SNP and eQTL SNP are from 1000 Genomes Phase 1 EUR population. Risk associations from an OCAC-only analysis.
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(IOE11-DNp53-GFP and FT246-shp53-R24C-GFP). Over-
expression of CDC42 was associated with a 20% reduction in
migration (P¼ 0.040) compared with IOE11-DNp53-GFP and
IOE11-DNp53 control cells (Fig. 3d) but no other cellular
phenotypes were affected in this model. However, FT246-shp53-
R24C-CDC42 cells had significantly shorter population-doubling
times in anchorage-dependent growth assays (Fig. 3e).

Effects of HOXD9 overexpression. HOXD9 expression was
undetectable in IOE11-DNp53 and FT246-shp53-R24C cells
and GFP-transduced cells; but after lentiviral infection of a
HOXD9 construct, IOE11-DNp53 cells and FT246-shp53-R24C
cells showed robust HOXD9 expression. IOE11-DNp53-HOXD9
cells demonstrated a 4.2-fold increase in anchorage-independent
growth relative to parental cells and control cells expressing
GFP only (P¼ 0.026, two-tailed paired t-test, Fig. 3f). FT246-
shp53-R24C-HOXD9 cells exhibited significantly shorter
population-doubling times than control cells (Fig. 3e), and by
light microscopy, we observed that HOXD9-expressing cells
tended to become more tightly packed into the monolayer. We

therefore performed contact inhibition assays, which revealed
that these cells were more proliferative under conditions of
high cell density, compared with control FT246-shp53-
R24C-GFP cells (Fig. 3g). Finally, cell cycle analyses in diploid
IOE11-DNp53-HOXD9 cells showed a B78% reduction in the
proportion of apoptotic cells relative to GFP-expressing controls
(P¼ 0.034, two-tailed paired t-test, Fig. 3h).

Interactions between 2q31 risk SNPs and HOXD9. Because of
the strong neoplastic phenotypes associated with overexpression
of HOXD9, we evaluated the 2q31 locus in more detail. While the
SNP with the strongest association is the most obvious candidate
for being the causal variant in this region, other correlated SNPs
with slightly weaker associations may be the true causal variant.
On the basis of a comparison of the log likelihoods from the
association testing for each SNP with the most significant SNP
there are 19 SNPs that are candidates for being the causal variant
at odds of 100:1 or better (Fig. 4). We created a chromosome
conformation capture (3C) interaction map of the region, sys-
tematically testing for interactions between the HOXD9 promoter
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(anchor) and 11 restriction fragments covering the 19 risk SNPs
(targets). We observed an interaction between the region con-
taining rs2857532 and the HOXD9 promoter in two different
epithelial ovarian cancer cell lines (Fig. 4). There was no evidence
of interaction between the HOXD9 promoter and any of the other
18 risk-associated variants at this locus. Using the Match algo-
rithm and TRANSFAC matrices we identified transcription fac-
tors that differentially bind to the reference (A) and alternative

(G) alleles of the rs2857532 variant. The alternative allele creates a
binding site for HOMEZ, BEN and RelA-p65 transcription fac-
tors (Table 2). Analysis of TCGA data confirmed that these three
transcription factors are expressed in HGSOC. These transcrip-
tion factors do not bind the reference allele and thus represent
candidate transcription factors that may function upstream of
rs2857532 to modulate HOXD9 expression during ovarian cancer
development.
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cell population (44N) following perturbation of each gene, in IOE11-DNp53 models. (d) Overexpression of CDC42 is associated with reduced migration in IOE-

DNp53. (e) Growth curve analysis of anchorage-dependent growth, cells expressing CDC42 and HOXD9 have significantly shorter population-doubling times.

(f) Overexpression of HOXD9 is associated with increased colony formation in anchorage-independent growth assays in IOE11-DNp53. (g) Contact inhibition
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Downstream targets of HOXD9. RNA sequencing was used
to profile transcriptomic changes resulting from HOXD9
overexpression in IOE11-DNp53 and FT246-shp53-R24C cells;
expression of 10 target genes was validated by RT–qPCR
(Supplementary Fig. 2). Transcriptional networks downstream
of risk-associated genes have themselves been shown to
regulate germline susceptibility in other diseases24,25. Therefore,
we systematically evaluated HOXD9 targets for association with
HGSOC risk using summary results from the meta-analysis
(Methods). We identified 128 and 34 genes in IOE11-DNp53 and
FT246-shp53-R24C, respectively, as cell-specific HOXD9 targets
by applying a strict cutoff for differential expression (FDRo0.1,
fold change 4±2; HOXD9 excluded). First, we compared the

distribution of P values for association with HGSOC risk for
SNPs in HOXD9 target genes and their flanking regions with the
distribution in all other genes and their corresponding flanking
regions using two-sample Kolmogorov–Smirnov (K–S) tests26.
Flanking regions of 10, 25, 50 and 100 kb up- and downstream of
each gene were tested under the assumption that HOXD9 binds
to regulatory elements near its target genes. For all flanking
intervals considered, SNP P values in and near HOXD9 targets
were significantly smaller or more associated with HGSOC risk
(K–S test P value: 4� 10� 3 to 3.9� 10� 6 for ovarian targets and
1� 10� 3 to 2.4� 10� 7 for fallopian targets; Table 3).

Next, we evaluated whether HOXD9 targets were enriched for
HGSOC risk signals at three specific sub-genome-wide SNP

CGGCCGCTTTTGTCTGGGCTCCCAGCCGGGCTTCCGAGGCTTTGTACTTTCTAAGACTTTAGTTTTTATGAGTTTAAGGGAATGAGATTCGTGTGATATGGGCTATATAATCACCTAGGCTTGG

HOXD9 rs285753248  kb 

 182 bp

M   +Lg  +Lg  +Lg    M 

HEY OVCA429

Ligated
Csp6I  

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0 20 40 60 80 100

3C
 in

te
ra

ct
io

n 
fr

eq
ue

nc
y 

Genomic distance from HOXD9 (kb) 

HEY

OVCa429 OVCA429 

a

b

c

d

BAC

–Lg –Lg –Lg

Scale
chr2:

HOXD10
HOXD9 HOXD8

HOXD8

HOXD4
HOXD3

HOXD-AS1
HOXD-AS1

UCSC genes (RefSeq, GenBank, CCDS, Rfam, tRNAs and comparative genomics)

HOXD8

176,990,000⎮ 177,000,000⎮ 177,010,000⎮ 177,020,000⎮ 177,030,000⎮ 177,040,000⎮

AX747372

AX747372 BC047605

HOXD-AS2 MIR10B

CSP6i RE
site

YourSeq YourSeq

2q31 Fine mapped SNPs
rs4972504

rs2551802

rs2857538
rs2252894
rs2252895

rs2857540 rs2857532
rs2113559

rs717852
rs2249131

rs1549334
rs711830
rs1318778

rs6433571
rs1051929

rs1562315

rs2072590
rs6755766
rs6755777

Restriction enzymes from REBASE

Your sequence from Blat search

20 kb hg19

G G G G G G G G G G GA A AA A A AC C C T T T T T T T T T T T T T T T T T T T... ... ... ... ...C
45 50 55 60 65 70 75 80 85

Figure 4 | 3C Analysis at the 2q31 locus. We systematically tested for interactions between the HOXD9 promoter and risk SNPs. We identified an

interaction between a region containing rs2857532 and the HOXD9 promoter. (a) Map of the genomic region, showing the HOXD gene cluster and the fine

mapped risk SNPs. (b) The interaction was verified by sequencing. (c) Agarose gel electrophoresis of ligation products. There was no ligation product in the

absence of ligase (Lg). M, 100-bp molecular weight marker. (d) Quantification of 3C interaction frequencies between a constant fragment containing the

HOXD9 promoter and each target fragment. In both cell lines, a peak of interaction is observed with the fragment containing the rs2857532 variant located

48 kb away from the constant fragment. The y axis refers to semi-quantitative PCR products from 3C libraries in both cell lines normalized by each

interrogated ligation PCR product using BAC control template. The error bars represent the s.e.m.

Table 2 | TRANSFAC analysis of predicted allele-specific transcription factor binding at rs2857532.

Matrix Factor name Strand Core score Matrix score Sequence

V$HOMEZ_01 Homez (� ) 0.888 0.674 aacaggAGCGAaattcc
V$BEN_01 BEN (þ ) 0.877 0.878 GAGCGaaa
V$RELA_Q6 RelA-p65 (� ) 1 0.928 agcgaaATTCCa

Analyses were performed using the Match tool. Only transcription factors (TFs) predicted to uniquely bind to the risk (G) allele are shown. The position of the polymorphism within the TF-binding
sequence is shown in bold font.
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P value thresholds of Po10� 3, o10� 4 and o10� 5 compared
with the proportion of such associations in all other genes.
For all flanking regions as before, we observed significant
enrichment for associations at the Po10� 3 and o10� 4

thresholds (Fisher’s exact P value range: ovarian targets:
6� 10� 10 to 1.2� 10� 31 and fallopian targets: 3.4� 10� 9 to
1.1� 10� 21; Table 3). At the Po10� 5 threshold we only
observed a significant enrichment for fallopian targets when
flanking regions up to 100 kb were considered (P¼ 5� 10� 3).
Finally, we adopted a complementary approach and used gene set
enrichment analysis (GSEA) to test the association of the ovarian
and fallopian HOXD9 target gene sets (128 and 34 genes,
respectively) with HGSOC risk. All genes in the genome with
SNP coverage (22,577 genes) were first ranked based on the
P value of the most significant HGSOC risk SNP in each gene and
its flanking interval (±50 kb; Methods). On running GSEA with
10,000 permutations, the ovarian HOXD9 target gene set was
significantly associated with HGSOC risk (GSEA P¼ 0.017) but
fallopian targets failed to reach significance (GSEA P¼ 0.094).
Thus, genes ranked higher in the GWAS meta-analysis
were significantly over-represented among the 128 HOXD9
ovarian targets, in particular. All three approaches consistently
demonstrated that HOXD9 target genes in ovarian cells were
enriched for HGSOC risk variants.

Guided by the principle that disease genes are likely to cluster
in functionally meaningful networks27, we also conducted
network-based pathway analyses of all genes that showed at
least twofold change in transcript abundance after HOXD9
overexpression without considering the FDR threshold applied in
the previous analyses (IOE11-DNp53: 2,357 genes; FT246-shp53-
R24C: 1,972 genes, analysed separately). We assigned priority to
genes in each downstream target list that are known to interact
with each other biologically using jActiveModules28, a method
that also takes into account the corresponding P values for
differential expression after HOXD9 perturbation. This identified
a highly interconnected ovarian module or network of 94 genes
and 272 interactions and a fallopian network of 269 genes and
962 interactions. Both the ovarian and fallopian networks
identified were significantly enriched (FDRo0.05 and 45%
pathway involvement) for the focal adhesion and transforming
growth factor-beta signalling pathways from Kyoto Encyclopedia
of Genes and Genomes (KEGG)29 and Ingenuity pathway
databases (Table 4).

Discussion
The main goals in the functional characterization of GWAS risk
loci are to identify target susceptibility genes and the causal

Table 3 | Enrichment of HGSOC risk variants in regulatory regions of HOXD9 target genes.

Cell type Ovarian HOXD9 target genes* (n¼ 128) Fallopian HOXD9 target genes* (n¼ 34)

Gene ±extended boundaries 10 kb 25 kb 50 kb 100 kb 10 kb 25 kb 50 kb 100 kb

K–S test 4.2� 10�4 0.004 0.006 3.9� 10� 6 0.001 3.7� 10� 6 2.4� 10� 7 5� 10� 6

Fisher’s exact test threshold Po10� 3 4.9� 10� 10 7.9� 10� 14 1.9� 10� 18 5.2� 10� 14 1.1� 10� 15 3� 10� 11 4.4� 10� 13 3.4� 10�9

Po10�4 6� 10� 10 8.5� 10� 14 1.2� 10� 20 1.2� 10� 31 5� 10� 20 8.5� 10� 17 1.1� 10� 21 3.8� 10� 16

Po10� 5 No SNPs No SNPs No SNPs No SNPs 0.876 0.779 0.178 0.005

*FDRo0.1 for differential expression and fold change 4±2 after HOXD9 overexpression.

Table 4 | Pathway analysis of HOXD9 target gene networks.

Source Pathway* Ovarian HOXD9 network Fallopian HOXD9 network

% of pathway involved FDR % of pathway involved FDR

KEGG
Focal adhesion 14 1.9� 10�4 9 1.9� 10� 7

TGF-beta signalling pathway 9 2.3� 10� 3 11 5.1� 10� 3

Ingenuity
FAK signalling 5 6.9� 10� 3 12 6.5� 10� 6

ERK5 signalling 5 1.8� 10� 2 13 3� 10� 5

RAR activation 5 1.9� 10�4 7 6� 10� 5

TGF-beta signalling 7 2.4� 10�4 9 2.1� 10�4

Hepatic fibrosis/hepatic stellate cell activation 8 4� 10� 12 6 5.5� 10�4

Cell cycle: G1/S checkpoint regulation 8 4.6� 10�4 9 1.1� 10� 3

Chronic myeloid leukaemia signalling 6 2.7� 10�4 8 1.3� 10� 3

Pancreatic adenocarcinoma signalling 5 2.4� 10� 3 7 2.5� 10� 3

Virus entry via endocytic pathways 6 1.2� 10� 3 7 4.3� 10� 3

Growth hormone signalling 6 3.5� 10� 3 7 6.6� 10� 3

Caveolar-mediated endocytosis signalling 7 6� 10�4 7 7.7� 10� 3

Cyclins and cell cycle regulation 6 7.2� 10�4 6 1.1� 10� 2

Antiproliferative role of TOB in T-cell signalling 12 3� 10� 3 12 1.2� 10� 2

Semaphorin signalling in neurons 6 1.2� 10� 2 8 1.3� 10� 2

Remodelling of epithelial adherens junctions 6 3.4� 10� 3 6 2.6� 10� 2

VDR/RXR activation 5 5.1� 10� 3 5 3.9� 10� 2

TGF, transforming growth factor.
*Only pathways with FDRo0.05 and 45% genes involved in both ovarian and fallopian analysis reported.
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SNP(s) at risk loci. EQTL analysis represents one of the most
straightforward approaches to the identification of the putative
target genes at risk loci, and provides evidence of allele-specific
functional effects for risk SNPs. We used data from HGSOCs
from TCGA for eQTL analysis, and employed experimental
models of early-stage disease to functionally validate the
candidate genes we identified. Of 11 confirmed GWAS suscept-
ibility loci identified for ovarian cancer, one contained a
statistically significant eQTL association (HOXD9) at a FDRr0.1.
Two additional loci that were sub-genome-wide significant also
contained significant eQTLs that coincided with risk SNPs
(CDC42 and CDCA8). For all three genes, at least one of
the functional assays scored significantly, indicating they are the
likely ovarian cancer susceptibility genes at these loci.

There may be several explanations why we did not identify
eQTL associations at other loci. For example, we evaluated
cis-eQTL associations for genes in a 500-kb region spanning the
most significant risk SNP at each locus, since this threshold is
expected to include the majority of eQTL associations30.
However, it is known that enhancers can interact with multiple
genes, and it is also plausible that risk-associated SNPs regulate
genes many megabases away, or even on a different chromosome
(that is, trans-eQTL associations). Also, this study was based on
eQTL analysis in tumour tissues. Somatic genetic heterogeneity
could mask the presence of eQTL associations; but it may also be
that genes influence tumour development at early stages of
neoplastic development requiring eQTL analysis to be performed
in relevant normal tissues or putative precursor lesions.
Moreover, eQTL analysis, unlike GWAS, is currently limited to
sample sizes in the hundreds and the 339 HGSOCs used in this
study, while comprising the largest available data set of its kind,
may not be powered to detect all eQTL signals. Our approach
was based on the hypothesis that risk variants function though
cell-autonomous signalling pathways in differentiated cells, but it
is possible that microenvironmental or precursor cell populations
could also be effectors of risk variants, or that eQTLs can only be
detected in the presence of certain stimuli, such as steroid
hormones. Finally, our approach does not detect non-eQTL
mechanisms underlying risk associations, such as splice variants
and base changes in non-coding RNAs.

At two of the eQTL loci (1p34 and 2q31) the genes in closest
proximity to the most risk-associated SNP were not the
target gene from eQTL analysis. This has also been observed
for other complex traits8. Furthermore the three candidate genes
we identified have not previously been implicated in ovarian
cancer susceptibility. At 2q31 susceptibility SNPs lie within the
HOXD gene cluster, a series of conserved DNA-binding proteins
involved in development. Homeobox genes have been
broadly implicated in the development of many solid tumours,
promoting neoplastic development by regulating processes
common to normal tissue development and carcinogenesis,
such as proliferation, invasion, differentiation and apoptotic
resistance31. HOXD9 lies B51 kb from the 19 risk-associated
variants identified by fine mapping, which cluster around the
HOXD3 and HAGLR genes. This suggests that regulatory
elements around HOXD3/HAGLR region regulate HOXD9.
Using chromosome conformation capture (3C) assays we
identified a putative interaction between one variant, rs2857532,
and the HOXD9 promoter, suggesting this SNP is a candidate
causal variant regulating HOXD9 expression at this locus. A
recent study by Kelemen et al.32 reports that the 2q31.1 region is
also a risk locus for the mucinous subtype of ovarian cancer with
HOXD9 the likely target susceptibility gene. Using 3C, Kelemen
and colleagues also show that three regions, one of which
harbours the rs2857532 risk SNP, interact with HOXD9 in
mucinous ovarian cancer cells indicating that there may be both

tissue specific differences and similarities in the regulation of
HOXD9 in the two different disease subtypes. Rs2857532 lies
within intronic sequence of HOXD3, but does not coincide with
enhancer marks in normal ovarian or fallopian cells, or in serous
ovarian cancer cells33. However, the risk allele of this SNP is
predicted to create a binding site for two transcription factors
implicated in early development: BEN, which is part of the TFII-I
transcription factor family34, and HOMEZ, a putative, sequence-
specific DNA-binding protein that may regulate the expression of
HOX genes during vertebrate development35.

HOXD9 is a little-studied homeobox gene known to be
involved in the development of gynecological organs36 and
mammary gland maturation during pregnancy and lactation37.
Previous reports indicate HOXD9 may behave as an oncogene
in glioma38 and breast cancer39. Consistent with this, in
functional assays we showed that higher HOXD9 expression
reduced apoptosis, increased proliferation under conditions of
high cell density and enhances ectopic proliferation of cells in the
absence of attachment to a substrate. Analysis of downstream
targets of HOXD9 identified by overexpressing this gene in
ovarian and fallopian in vitro models and performing genome-
wide RNAseq profiling indicated several candidate genes that may
be necessary for HOXD9 to impart its neoplastic function. We
tested these candidate genes for enrichment of HGSOC risk
associations using a battery of complementary methods
encouraged by the observation that the breast cancer
susceptibility gene FGFR2 has been shown to act through
downstream transcriptional networks involving other breast
cancer risk loci24. Notably, among the HOXD9 ovarian targets
enriched for modest (Po10� 4) HGSOC risk variants were
WNT5A, SYNE1 and IGF2. WNT5A and SYNE1 were also the top
two genes driving the GSEA signal for the HOXD9 ovarian gene
set. WNT5A, a member of the non-canonical Wnt signalling
pathway, has been shown to exhibit context-dependent tumour
suppressor activity by triggering cellular senescence and is
prognostic in primary HGSOC40,41. Smaller studies from
OCAC have previously suggested associations between variants
in SYNE1 and IGF2 with HGSOC risk but these have been
significant only at sub-genome-wide levels42,43. The emergence of
these two genes in the present analysis further underscores the
utility of integrating functional data to highlight genetic risk
associations and the likely existence of shared biological
mechanisms underlying polygenic susceptibility. Pathway
analysis revealed impact on focal adhesion signalling with
involvement of the collagen genes COL3A1 and COL12A1 after
HOXD9 overexpression in both ovarian and fallopian cells. Focal
adhesions play a critical role in ovarian cancer cellular migration
and invasiveness44. Collectively, these findings further support
the functional evidence indicating that HOXD9 is the HGSOC
susceptibility gene at the 2q31 locus.

At 1p36, we identified CDCA8 as the target gene. CDCA8
(alternatively known as Borealin) is part of the chromosomal
passenger complex that functions to properly align and segregate
chromosomes during mitosis. Consistent with this role, knock-
down of CDCA8 expression in IOE-DNp53 resulted in an
accumulation of aneuploid cells in the culture. This is also
consistent with the genomic instability and aneuploidy that is
often observed in HGSOC, possibly arising from failure of
chromosomal segregation during cell division. Finally, at 1p34, we
identified CDC42 as the putative target susceptibility gene.
CDC42 is a small Rho GTPase and well-known oncogene
involved in migration, cellular polarity and proliferation, and is
overexpressed in many cancers45. Elevated expression of CDC42
was associated with increased risk of HGSOC, and overexpression
of the gene was associated with shorter population-doubling
times and reduced migration.
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Identifying additional common variant susceptibility alleles for
ovarian cancer will continue to be restricted by sample size for
this uncommon cancer type. By using eQTL analysis to
interrogate candidate susceptibility loci that are sub-genome-
wide significant, we have found evidence for two additional
HGSOC risk loci, 1p34 (CDCA8) and 1p36 (CDC42) gene. While
these functional studies were ongoing, a meta-analysis of the
OCAC genetic association results with the results of an equivalent
analysis of modifiers of ovarian cancer risk in 15,252 BRCA1
mutation carriers and 8,211 BRCA2 mutation carriers was
conducted by the Consortium of Investigators of Modifiers of
BRCA1/2 (ref. 19). This study identified six novel genome-wide
significant risk loci for ovarian cancer, including the 1p34 and
1p36 loci described in the current study, thus validating our
approach. In the meta-analysis, at 1p34 the most strongly
associated SNP (rs58722170, 1.6� 10� 8 for all histological
subtypes, 2.7� 10� 12 for serous) was correlated with the cis-
eQTL SNP rs12023270 with r2¼ 0.73; at 1p36 the most strongly
associated SNP (rs56318008, 7.6� 10� 9 for all histological
subtypes, 5.7� 10� 8 for serous) was correlated with the top
cis-eQTL SNP rs2268177 with r2¼ 0.76 (ref. 19).

In this study we evaluated the functional effects of candidate
genes in ovarian and fallopian epithelial cells, because both cell
types are predicted precursors of HGSOCs46,47. It is of interest
that we observed some differences in how each cell type
responded to altering the expression of the three candidate
genes. For example, ovarian epithelial cells were more readily
transformed in soft agar assays compared with fallopian cells even
though the FT246-shp53-R24C cells express one additional
oncogenic element compared with IOE11-DNp53 (mutant
CDK4). HOXD9 target genes in ovarian cells were consistently
more associated with HGSOC risk compared with fallopian
HOXD9 targets. One possible explanation for these differences is
that, even though in both cell lines p53 signalling was
deregulated, the mechanism by which p53 was deregulated
differs between the two models. An alternative explanation is that
HGSOC originates in only one of these epithelial cell types and
this is reflected by the different phenotypic effects observed when
perturbing susceptibility genes. There remains debate about the
cellular origins of HSGOC. The data in this study suggest that
ovarian epithelial cells are more prone to neoplastic
transformation by susceptibility genes associated with HGSOC
compared with fallopian tube epithelial cells, and that ovarian cell
transcriptional networks play a greater role in polygenic risk
component of HGSOC. These variations in molecular and
phenotypic changes between cell types highlights the need to
consider carefully the likely cell of origin for the disease under
study when performing functional studies of risk loci identified by
GWAS. Moreover, the heterogeneity in the phenotypic effects
observed for the different genes reveal the importance of
evaluating multiple phenotypes associated with neoplasia, as
risk alleles could influence cellular transformation through a
variety of mechanisms.

In summary, this study has demonstrated the power of eQTL
analysis to identify candidate susceptibility genes associated with
initiation and early stage development of HGSOC. In particular we
show how biological information from the functional character-
ization of risk loci can be used to interrogate sub-genome-wide
significant loci from GWAS for the identification of additional,
novel risk loci for common multifactorial disease traits.

Methods
Genetic association analyses. Summary of data sets. Data were available for the
stage 1 of three population-based EOC GWAS comprising a total of 4,366 cases
and 9,124 controls9,18,19. An additional 11,030 cases and 21,693 controls from 41
OCAC studies were genotyped using the iCOGS array. All duplicates were removed

from the analysis and overall, 43 studies from 11 countries provided data on 15,397
women of European ancestry, diagnosed with invasive epithelial EOC, 9,608 of
whom were diagnosed with serous EOC and 30,816 controls from the general
population. The quality control methods are described in full in the Supplementary
File 1.

Imputation. We performed imputation separately for OCAC–iCOGS samples
and each of the GWAS. We imputed variants from the 1000 Genomes Project data
using the v3 April 2012 release as the reference panel. To improve computation
efficiency we initially used a two-step procedure, which involved pre-phasing in the
first step and imputation of the phased data in the second. We carried out pre-
phasing using the SHAPEIT software48. We then used the IMPUTE version 2
software49 for the subsequent imputation for all studies. To perform the imputation
we divided the data into segments of B5 Mb each. We excluded SNPs from the
association analysis if their imputation accuracy was r2o0.25 or their minor allele
frequency was o0.005. The number of successfully imputed SNPs by minor allele
frequency is shown in Supplementary File 1.

Data analysis. All analyses were restricted to subject of European
intercontinental ancestry. To be able to control for population substructure we
used a set of unlinked markers to perform principal components analysis. The
three GWAS and the COGS data sets were analysed separately using different sets
of markers. To enable this analysis on very large samples we used an in-house
programme written in Cþ þ using the Intel MKL libraries for eigenvectors
(available at http://ccge.medschl.cam.ac.uk/software/). Unconditional logistic
regression treating the number of alternate alleles carried as an ordinal variable
(log-additive, co-dominant model) was used to evaluate the association between
each SNP and ovarian cancer risk. A likelihood ratio test was used to test for
association, and per-allele log odds ratios and 95% confidence limits were
estimated. The likelihood ratio test has been shown to have greater power than
alternatives such as the Wald test and score test for rare variants50. The logistic
regression model was adjusted for study and population substructure by including
study-specific indicators and a variable number of eigenvalues from the principal
components analyses. The number of principal components was chosen based on
the position of the inflexion of the principal components scree plot. Two principal
components were included in the analysis of the UK and US GWAS data sets, one
was used for the Mayo GWAS and five were used for the COGS–OCAC data set.
Results from the three GWAS and COGS were combined using fixed-effect inverse
variance weighted meta-analysis.

eQTL analysis. We chose 47 candidate HGSOC risk loci from previous GWAS
studies with P value o1� 10� 5 (Supplementary Table 1). For each risk SNP,
correlated variants with R240.7 in the 1000 Genomes CEU population were
identified. The germline genotypes of 443 ovarian serous cystadenocarcinoma
samples were downloaded from TCGA data portal. We selected 339 samples with
Caucasian ancestry using EIGENSTRAT51. Matched tumour gene expression
profiles, somatic copy number and CpG methylation data of these samples were
obtained from the same source and used to adjust the expression profiles for
somatic copy number changes and CpG methylation variation described as
follows15,16. Briefly we adjusted the expression levels for each gene using matched
information of somatic copy number and CpG methylation using linear models. To
perform the eQTL analysis, we took germline genotypes of SNPs/proxies as
independent variables and adjusted expression levels as traits. The association
between genotype and gene expression of genes within 250 kb either side of the
corresponding variant was evaluated based on the significance of linear regression
coefficients. To control for multiple testing, we calculated the FDR from the test P
values using Benjamini–Hochberg method and called significant associations with
a maximal FDR of 0.1.

Cell lines and cell culture. We have previously reported the generation of the
IOE11 TERT-immortalized ovarian surface epithelial cell line23. IOE11 cultured in
NOSE-CM52. To generate a p53-deficient line, IOE11 cells were transfected with
T7-p53DD-pcDNA3 (Addgene plasmid number 25989) and positive clones
(IOE11-DNp53) selected with 125mg ml� 1 G418. Loss of p53 function was
confirmed by irradiating IOE11-DNp53 and control cells with 6 Gy ionizing
radiation and immunoblotting cell lysates for p21 expression (sc-397, 1:1,000
dilution, Santa Cruz Biotechnology) 24 h later. Immortalized fallopian tube
secretory epithelial cell lines (FT33-shp53-R24C and FT246-shp53-R24C) have
been previously described22 and were cultured in DMEM/F12 (Sigma)
supplemented with 2% Ultroser G (Crescent Chemicals) or 10% fetal bovine serum
(FBS; Hyclone, Thermo Fisher). For 3C, HEY cells were grown in RPMI containing
10% FBS and OVCA429 cells were cultured in EMEM supplemented with 10%
FBS, 1� non-essential amino acids and 1� sodium pyruvate. All cell lines used in
this study were routinely tested for Mycoplasma infection using a Mycoplasma-
specific PCR, and, for cell line authentication, short tandem repeats profiled using
the PowerPlex16HS Assay (Promega, University of Arizona Genetics Core).

Viral transductions. A set of six CDCA8-targeting shRNAs and one scrambled
shRNA (SCR) cloned into pGIPz (RHS4531-EG55143, Dharmacon) were co-
transfected with p8.91 and pMD.G into HEK293Ts to produce lentiviral
supernatants, which were collected 48 h after removal of the transfection media.
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Lentiviral GFP fusion constructs were purchased from Genecopoeia: Lv122-
CDC42-GFP and Lv122-HOXD9-GFP (and a GFP control; Lv-GFP) and also used
to make lentiviral supernatants. IOE11-DNp53 and FT246-shp53-R24C cells were
transduced with lentiviral supernatants overnight, and for IOE11-DNp53, positive
cells were selected using 400 ng ml� 1 puromycin.

Functional assays. For anchorage-dependent growth assays, 0.1� 106 cells were
plated in triplicate and passaged when 80% confluent. Cells were enumerated at
each passage and population doublings calculated with the following formula:
population doubling¼ log (total cell number at each passage/initial cell number)/
log2. Anchorage-independent growth assays were performed by suspending
0.02� 106 cells in media containing 0.33% Noble agar and 1 mg ml� 1 bacto-
peptone (both Sigma); this mixture was overlayed onto a base layer of medium
containing 0.6% Noble agar per 1 mg ml� 1 bacto-petone. Cells were cultures for 4
weeks, stained with 1% p-iodonitrotetrazolium violet (Sigma) and counted using
phase microscopy. Migration and invasion kits (Trevigen) were performed fol-
lowing the manufacturer’s instructions. Contact inhibition assays were performed
by plating 0.02� 106 cells per well in 12-well plates and enumerating cells at
indicated timepoints. For propidium iodide staining: 0.3� 106 cells were plated in
triplicate and incubated for 48 h. Cells were washed twice with PBS and fixed in
70% ice-cold ethanol. On fixation cells were washed twice with PBS and stained
with 50mg ml� 1 propidium iodide staining solution (Calbiochem) combined with
10mg ml� 1 RNase A (Invitrogen). Cells were stained for 3 h at 4 �C in the dark.
Cell cycle status was examined using the LSR II flow cytometer (Becton Dickinson)
and data were analysed using FlowJo software (Tree Star, Inc.).

Chromosome conformation capture (3C). 3C was performed as follows7. Briefly,
HEY and OVCA429 EOC cells were collected by trypsinisation, and 10 million
cells were fixed with 1% formaldehyde for 10 min. Cells were lysed (10 mM
Tris-HCl (pH 8), 10 mM NaCl and 0.2% Nonidet P-40) to release the nuclei, and
pelleted nuclei were resuspended in restriction enzyme buffer containing 0.1% SDS
and 1.6% Triton-X. A total of 1,500 units of Csp6i (Fisher BioReagents) were added
and incubated at 37 �C for overnight. Digestions were halted by incubation with
1.5% SDS at 65 �C for 30 min. Digested samples were added to the ligation buffer
containing 4000U T4 DNA ligase (NEB) and 1% Triton X-100 to neutralize SDS,
and incubated for 24 h at 16 �C. Samples were decrosslinked by overnight
incubation at 65 �C with proteinase K. Libraries were extracted using standard
phenol/chloroform protocols, precipitated using ethanol, and desalted using
Microcon Ultra Cell YM-100 columns. Primers were designed at the HOXD9
promoter and for each restriction fragment containing risk-associated SNPs
(Supplementary Table 2). PCR was performed using Taq polymerase (QIAGEN),
using the following conditions: 5 min at 94 �C, 35 cycles of (20 s at 94 �C, 20 s at
61 �C and 30 s at 72 �C), and 10 min at 72 �C. The PCR products were run on a
1.7% agarose gel, gel purified using the QIAgen Gel Extraction kit, and sequenced.

For analysing long-range interaction quantitatively a BAC library (RP11-
892F14, CHORI) was prepared as follows: briefly, BAC DNA was purified from a
500 ml Escherichia coli culture and 20mg of BAC DNA was then digested with
Csp6i overnight at 37 �C followed by ligation with T4 DNA ligase overnight at
16 �C (refs 53,54). 3C libraries as well as the BAC library were titrated by serial
dilution to identify the concentration of template for quantitative PCR analysis for
each genomic region of interest. The PCR products were run on an agarose gel and
stained with ethidium bromide. Intensity measurements for each of the bands were
quantified using ImageQuant LAS4000 (Roche) with Image QuantTL8.1 software
(Roche). The interaction frequency was determined by dividing the amount of PCR
product obtained using the 3C template by the amount of PCR product obtained
using the control template. Data were normalized using the lowest interaction value
amongst the 11 amplicons (that is, the lowest interaction was set to 1). Each
template was run in triplicate and the standard error of measurement (s.e.m.)
calculated. The s.e.m. for each amplicon was o15%.

Transcription factor-binding site analysis. Transcription factor-binding site
analyses were performed in Biobase, using the TRANSFAC Match tool. Two 21-bp
sequences, representing the two alleles of rs2857532±10 bp, were uploaded. The
TRANSFAC MATRIX TABLE library was used (Release 2014.2), with the
vertebrate_non_redundant.prf profile and cutoffs selected to minimize the sum of
both error rates (false positive and false negatives).

RNAseq analysis in HOXD9 models. One million cells were plated into a P100
dish and cultured for 48 h. Cells were washed twice with ice-cold PBS and lysed
in situ. RNA extractions were performed using the QIAgen miRNAeasy kit with
on-column DNase I digests, following the manufacturer’s instructions. RNA
sequencing was performed by BGI Americas. Briefly, 3 mg of RNA was depleted of
ribosomal RNA and libraries created using the Illumina TruSeq kit. Sequencing
was performed by multiplexing six samples per lane for sequencing on an Illumina
HiSeq2000. Linear fold change in transcript abundance before and after HOXD9
overexpression and P values from analysis of variance for differential gene
expression were calculated using the workflow implemented in the Partek Geno-
mics Suite.

Enrichment analysis. Enrichment analysis was restricted to genes that
demonstrated at least twofold change in transcript abundance and showed
significant differential expression (FDRo0.1) after HOXD9 overexpression
(IOE11-DNp53: 128 genes; FT246-shp53-R24C: 34 genes). Ovarian and fallopian
gene lists were analysed separately. First, all SNPs (n¼ 9,772,651) with minor allele
frequency40.01 from the HGSOC risk meta-analysis described above were
mapped to genes from the UCSC hg19 knownGene track. SNPs were assigned to
genes if they were in the gene or 50 kb on either side of it. We then compared the
distribution of P values for association with HGSOC risk for SNPs in HOXD9
target genes and their flanking regions with the distribution in all other genes and
their corresponding flanking regions using two-sample K–S tests26. The analysis
was repeated using extended boundaries of 10, 25 and 100 kb on either side of each
gene. Second, proportions of SNPs associated with HGSOC risk at P value
thresholds of Po10� 3, o10� 4 and o10� 5 in HOXD9 target genes was
compared with the corresponding proportions in all remaining genes using
two-tailed Fisher’s exact tests for each of the flanking boundaries considered in the
first analysis. Third, we ranked all genes in descending order of the � log10 of the
P value of the most significant SNP in each gene (±50 kb). A total of 22,577 genes
were covered by SNPs with the 50-kb flanking regions considered. Gene set
enrichment analysis with 10,000 permutations was used to test enrichment of genes
ranked highly in this list among the ovarian and fallopian tube HOXD9 targets55.

Pathway analysis. Pathway analysis involved genes that demonstrated at least
twofold change in transcript abundance after HOXD9 overexpression (IOE11-
DNp53: 2,357 genes; FT246-shp53-R24C: 1,972 genes). These genes and
corresponding P values for differential expression were used as input for the
jActiveModules28 (v 2.2.3) plugin in Cytoscape56 (v 3.1.0). Ovarian and fallopian
gene lists were analysed separately. The jActiveModules approach combines input
P values with prior knowledge of biological interactions between input genes to
identify modules or networks of input genes with high functional connectivity and
significant differential expression. We set up the plugin to identify the single best
network using default parameters (except regional scoring). Known biological
interactions in the data were prioritized using 290,438 non-redundant binary
interactions between 17,977 genes/proteins compiled from up-to-date, high-
quality, curated resources that combine comprehensive genetic, molecular,
protein–protein and protein–DNA interaction annotation. These were Multinet57,
InWeb58, HINT59 and 252 KEGG60 pathways converted to binary format using the
Bioconductor package graphite61. Pathways from the Ingenuity Knowledge Base
and KEGG significantly enriched in the single best network discovered by
jActiveModules for the ovarian and fallopian gene lists were identified using a
right-tailed Fisher’s exact test with FDR control for multiple pathway comparisons
by the Benjamini–Hochberg method. The KEGG-based analysis was conducted
using the Database for Annotation, Visualization and Integrated Discovery (v 6.7)
(ref. 62). We reported pathways common to both the ovarian and fallopian
HOXD9 networks that were significant at FDRo0.05 with 45% of the pathway
involved.
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