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Abstract: Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of disease ranging from simple
steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) and fibrosis. “Obese/Metabolic NAFLD”
is closely associated with obesity and insulin resistance and therefore predisposes to type 2 diabetes
and cardiovascular disease. NAFLD can also be caused by common genetic variants, the patatin-like
phospholipase domain-containing 3 (PNPLA3) or the transmembrane 6 superfamily member 2
(TM6SF2). Since NAFL, irrespective of its cause, can progress to NASH and liver fibrosis, its definition
is of interest. We reviewed the literature to identify data on definition of normal liver fat using liver
histology and different imaging tools, and analyzed whether NAFLD caused by the gene variants is
associated with insulin resistance. Histologically, normal liver fat content in liver biopsies is most
commonly defined as macroscopic steatosis in less than 5% of hepatocytes. In the population-based
Dallas Heart Study, the upper 95th percentile of liver fat measured by proton magnetic spectroscopy
(1H-MRS) in healthy subjects was 5.6%, which corresponds to approximately 15% histological liver
fat. When measured by magnetic resonance imaging (MRI)-based techniques such as the proton
density fat fraction (PDFF), 5% macroscopic steatosis corresponds to a PDFF of 6% to 6.4%. In contrast
to “Obese/metabolic NAFLD”, NAFLD caused by genetic variants is not associated with insulin
resistance. This implies that NAFLD is heterogeneous and that “Obese/Metabolic NAFLD” but
not NAFLD due to the PNPLA3 or TM6SF2 genetic variants predisposes to type 2 diabetes and
cardiovascular disease.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as steatosis not caused by excess alcohol
intake (>30 g/day in men and >20 g/day in women), hepatitis B or C, autoimmune hepatitis, iron
overload, drugs or toxins [1]. It covers a spectrum from simple steatosis (NAFL) to non-alcoholic
steatohepatitis (NASH) and cirrhosis [1,2]. NASH is characterized, in addition to steatosis, by
ballooning necrosis, mild inflammation and possibly fibrosis, and can only be diagnosed using a liver
biopsy [3].

Several longitudinal studies have shown that NAFLD increases the risk of and mortality from
type 2 diabetes and cardiovascular disease [4]. Fibrosis stage is considered to be the most important
histological feature predicting advanced liver disease [5,6]. It has been recently shown, however,
that NAFL defined as macroscopic steatosis in more than 5% of hepatocytes progresses to NASH and
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fibrosis [7–9], as hypothesized by earlier indirect evidence [10]. Thus, NAFL predicts both metabolic and
liver complications of NAFLD. It is therefore of interest to define normal liver fat content in humans.

Although NAFLD commonly coexists with obesity, insulin resistance and type 2 diabetes [11],
common genetic causes also exist. A variant in patatin-like phospholipase domain-containing
3 (PNPLA3) (rs738409 [G], encoding I148M) confers susceptibility to NAFL, NASH and fibrosis
(“PNPLA3 NAFLD”) [12]. Genetic variation in transmembrane 6 superfamily member 2 (TM6SF2)
(rs58542926 [T], encoding E167K) is also increases liver fat and the risk of NASH (“TM6SF2
NAFLD”) [13]. These two conditions do not appear to be characterized by insulin resistance, although
both genetic and metabolic causes of NAFLD may exist in the same person [14]. If so, then these types
of NAFLD would not predispose to type 2 diabetes and cardiovascular disease.

The ensuing review will focus on defining normal liver fat content and discussing how liver fat
content is related to insulin sensitivity in “Obese/Metabolic NAFLD” and the common genetic forms
of NAFLD.

2. Definitions of Normal Liver Fat

2.1. Biochemical and Histologic Definitions

The biochemical standard for normal triglyceride content in the human liver is 5.5% of triglyceride
of wet liver tissue weight [15,16]. Histologically, the liver is considered steatotic when ě5% of
hepatocytes in a tissue section stained with hematoxylin and eosin contain macrovesicular steatosis [17–20].
Steatosis is graded by the pathologist from 0 to 3 based on its severity: grade 0 (normal) = <5%, grade
1 (mild) = 5%–33%, grade 2 (moderate) = 34%–66%, and grade 3 (severe) = ě67% of hepatocytes
characterized by macroscopic steatosis [17]. As discussed below, these percentages seem quite different
from those obtained by proton magnetic resonance spectroscopy (1H-MRS) (Table 1).

Table 1. Definitions of normal liver fat using different approaches.

Study Year N Subjects Normal Value

Biochemical

Laurell S [21] 1971 3 Healthy subjects 2.0 g/100 g of dry tissue weight

Donhoffer H [15] 1974 107 Unselected cadavers 5.5 g/100 g of wet tissue weight

Histology

Kleiner DE [17] 2005 576 + 162 Adults and children Macroscopic fat in <5% of hepatocytes

Brunt EM [3] 2011 976 Adults Macroscopic fat in <5% of hepatocytes

Bedossa P [19] 2012 679 Morbidly obese
adults Macroscopic fat in <5% of hepatocytes

CT

Piekarski J [22] 1980 100 Healthy subjects 50–57 HU or 8–10 HU higher than spleen
1H-MRS

Szczepaniak LS [23] 2005 345 Population-based,
healthy subjects <5.56%

Petersen KF [24] 2006 170 Healthy subjects <3.0%

MRI-PDFF

Fishbein MH [25] 1998 28 Healthy subjects <9.0%

US

Joseph AE [26] 1978 60 Adults referred to
gastroenterologist Absense of echogenicity or brightness of the liver

Saveymuttu SH [27] 1985 490 Adults referred to
gastroenterologist Absense of echogenicity or brightness of the liver

1H-MRS, proton magnetic resonance spectroscopy; CT, computed tomography; HU, Houndsfield Unit;
MRI-PDFF, magnetic resonance imaging-determined proton density fat fraction; US, ultrasound.
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2.2. Proton Magnetic Resonance Spectroscopy (1H-MRS)

Steatosis can most accurately be measured using 1H-MRS [28]. This technique enables sampling
of a large volume fraction of the liver compared to a biopsy [29,30] and provides an accurate and
reproducible measurement of liver fat content [30]. However, 1H-MRS is expensive, as it requires
use of magnetic resonance imaging (MRI) scanner and special expertise to perform proton magnetic
resonance spectroscopy (1H-MRS) at the time of MRI scanning. 1H-MRS has been used in one
population-based study, the Dallas Heart Study (DHS), to define normal liver fat content [23]. In this
study, 1H-MRS was performed on 2349 subjects, of which 345 were considered healthy based on the
following criteria: no history of liver disease or risk factors for hepatic steatosis (alcohol consumption
ď30 g/day in men, ď20 g/day in women, body mass index (BMI) <25 kg/m2, normal fasting serum
glucose, non-diabetic and normal serum alanine aminotransferase (ALT) (ď30 IU/L in men, ď19 IU/L
in women)). The upper limit of normal liver fat content was defined based on the upper 95th percentile
in the healthy subjects and was 5.56% [23].

The 1H-MRS studies determine the hepatic triglyceride content rather than the percentage of
hepatocytes with macroscopic lipid droplets. The relationship between 1H-MRS and histological
liver fat content has been analyzed in two small studies, which included 13 [31], 12 [32] and 50 [33]
subjects. In the first two studies, the 1H-MRS-determined normal liver fat in the DHS, i.e., the 5.56%
value corresponded to 15.7% [31] and 13.9% [32] of hepatocytes with macroscopic steatosis. On the
third study, histological grade 1 (5%–33% macroscopic liver fat) corresponded to 11% (7%–14%),
grade 2 (33%–66%) to 18% (14%–23%) and grade 3 (>66%) to 25% (10%–28%) 1H-MRS liver fat [33].
1H-MRS-measured liver fat corresponds well to triglyceride content measured in a liver biopsy (r = 0.90,
p < 0.001) [34]. These data show that the technique used to define normal liver fat influences the
normal value.

2.3. Magnetic Resonance Imaging (MRI)

Hepatic steatosis can be diagnosed with MRI using an out-of-phase and in-phase imaging
technique developed by Dixon WT et al. [35]. This method involves acquisition of MR images
at echo times in which fat proton and water proton signals are either out-of-phase (water and
fat signals cancel) or in-phase (water and fat signals add up) [35–37]. Once the out-of-phase and
in-phase images are acquired by using constant calibration and other scanner settings, a quantitative
fat signal fraction can be calculated from the hepatic signal [38]. Modified versions of the early
Dixon method have been introduced. These include the hepatic fat fraction by Fishbein MH et al.
which uses fast gradient echo techniques [25,39] and correlates well with histological liver fat content
(r = 0.77, p < 0.001). The newer MRI-determined proton density fat fraction (PDFF) technique provides
a quantitative, standardized and objective MRI measurement of hepatic fat based upon inherent
tissue properties [40,41]. The MRI-PDFF method is reproducible and correlates closely with 1H-MRS
(r = 0.99) [33,42] and liver histology (8.9%–9.4% at grade 1, 15.8%–16.3% at grade 2, and 22.1%–25.0%
at grade 3, p < 0.0001) [33,43,44]. With this technique, the 5% macroscopic liver fat determined by
histology corresponds to a PDFF value of 6% to 6.4% [45,46].

2.4. Ultrasound (US)

Ultrasound (US) is an inexpensive and widely available tool to visualize the liver and its fat
content. Hepatic steatosis appears as a diffuse increase in parenchymal brightness and echogenicity
on US images, and is often compared to hypoechogenity of the kidney cortex. Most studies score
steatosis semiquantitatively as “mild”, “moderate” and “severe” based upon the visual assessment
of hepatic echogenicity [27,47–49]. Lack of standardization precludes accurate comparison of data
acquired by different machines and investigators. US lacks sensitivity in obese subjects [50] and in
subjects with low liver fat content [51]. The sensitivity of diagnosing fatty liver increases from 55%
to 80% when liver fat increases from 10%–20% to over 30% [51]. A recent study [52] suggested that
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the optimum sensitivity for US was achieved at a 1H-MRS-measured liver fat content greater than
12.5%. A meta-analysis of 44 studies comprising 4720 subjects concluded that US has a sensitivity
of 85% and a specificity of 94% for detecting 20%–30% macroscopic steatosis [53]. The sensitivity
and specificity were 65% and 81% for detecting 0%–5% steatosis and 93% and 88%, respectively, for
detecting >10% steatosis.

Xia MF et al. created an equation for accurate quantification of liver fat content using US in
Chinese subjects [54]. A tissue-mimicking phantom was used as a standard and the US hepatic/renal
ratio was measured to calculate liver fat content in 127 subjects, in whom liver fat was also measured
using 1H-MRS. The adjusted R2 for the model was 80%. The optimal cut-off for the US-measured liver
fat content to diagnose hepatic steatosis was 9.15%, which yielded a sensitivity and specificity of 95%
and 100%, respectively. The utility of this technique in other ethnic groups which are more obese than
the Chinese in the face of a similar amount of liver fat [55,56] remains to be tested.

2.5. Computed Tomography (CT)

Hepatic steatosis can also be assessed by using computed tomography (CT) by comparing
attenuation of the liver parenchyma to that of the spleen [57]. Tissue fat deposition lowers attenuation,
hence fatty areas are less dense and appear darker than the non-fatty tissues [22]. The attenuation value
in the healthy liver is 50 to 57 Houndsfield Units (HU) and 8 to 10 HU higher than that of spleen [22].
It decreases by 1.6 HU for every 1 mg of triglycerides per gram of liver tissue [58]. In subjects with
steatosis, the mean attenuation value of the liver is lower than that of the spleen, and the liver appears
darker than the spleen. Attenuation values less than 40 HU in the liver or 10 HU less in the liver than
in the spleen are indicative of marked hepatic steatosis (>30%). Smaller fractions of fatty infiltration
cannot be accurately and reliably assessed [59,60].

3. Non-Alcoholic Fatty Liver Disease (NAFLD) and Insulin Sensitivity

3.1. Insulin Resistance in “Obese/Metabolic NAFLD”

In subjects with NAFLD and the metabolic syndrome (MetS), i.e., in “Obese/Metabolic NAFLD”,
liver fat is closely correlated with direct measures of insulin resistance such as the inability of insulin
to suppress hepatic glucose production [61], and indirect measures such as fasting serum insulin
and the product of fasting insulin and glucose (Homeostasis model assessment for insulin resistance
[HOMA-IR]) [62]. Indeed, liver fat correlates better with fasting insulin than with liver enzymes
such as serum ALT and aspartate aminotransferase (AST) [63,64]. This close association between
fasting insulin and liver fat is physiologically feasible as the main action of insulin after an overnight
fast is to restrain hepatic glucose production. The inability of insulin to suppress hepatic glucose
production increases fasting glucose, which stimulates insulin secretion leading to hyperglycemia
and hyperinsulinemia.

Lipolysis is the main source of fatty acids used for synthesis of intrahepatocellular triglycerides [65,66].
Liver fat is closely correlated with the ability of insulin to suppress lipolysis [67,68]. The ability of
insulin to suppress very low density lipoprotein (VLDL) production is also impaired in NAFLD, which
contributes to hypertriglyceridemia and a low high density lipoprotein (HDL) cholesterol concentration.
Damaged hepatocytes release increased amounts of C-reactive protein (CRP) and coagulation factors,
which could contribute to increased risk of cardiovascular disease and atherothrombotic vascular
disease (Figure 1).

Any obese person with NAFLD and features of the MetS can be considered to have
“Obese/Metabolic NAFLD” irrespective of genetic risk factors. The most recent proposal defines
the MetS in 10 different ways [69]. The presence of any three out of five features (hypertriglyceridemia,
low HDL cholesterol, hyperglycemia, hypertension, increased waist circumference) is required for
diagnosis of the MetS [69]. For clinical practice, this definition still remains the best tool to diagnose
insulin resistance, although the extent to which the 10 different definitions increase the risk of endpoints
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such as type 2 diabetes and cardiovascular disease is unclear. Measurement of fasting insulin and
glucose concentrations and their calculation of their product HOMA-IR might seem more attractive
direct tools to measure insulin sensitivity in subjects with NAFLD. The problem with this approach is
that insulin assays are not internationally standardized and give highly variable results [70].Int. J. Mol. Sci. 2016, 17, 633 5 of 15 
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In vitro, the PNPLA3 I148M gene variant abolishes intrahepatocellular lipolysis [76,77] and  
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Figure 1. Schematic representation of causes and consequences of “Obese/Metabolic NAFLD” (top)
and “TM6SF2 NAFLD” and “PNPLA3 NAFLD” (bottom). Abbreviations: BMI, body mass index;
CHD, coronary heart disease; DM, diabetes mellitus; FFA, free fatty acids; fS, fasting serum; HCC,
hepatocellular carcinoma; HDL, high density lipoprotein; MCP-1, monocyte chemoattractant protein-1;
NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatits; LDL, low density
lipoprotein; P, plasma; PNPLA3, patatin-like phospholipase domain-containing 3; S, serum; TM6SF2,
transmembrane 6 superfamily member 2; TNF-α, tumor necrosis factor-α.

3.2. “Patatin-Like Phospholipase Domain-Containing 3 (PNPLA3) NAFLD” and Insulin Sensitivity

Approximately 30% of Europids and several other ethnic groups carry the PNPLA3 I148M
variant [12]. The association between the PNPLA3 gene variant and NAFLD [12] has been replicated
in over 50 studies, including eight genome wide association studies [71–73]. In a meta-analysis
carriers of the I148M variant had 73% more liver fat, a 3.2-fold higher risk of necro-inflammation
and a 3.2-fold greater risk of developing fibrosis than the non-carriers [71]. In a meta-analysis
comprising 12 Asian studies, the risk of NAFLD was 1.9-fold increased in carriers compared to
non-carriers [72]. Recent meta-analyses have also shown that this gene variant increases the risk of
cirrhosis by 1.9-fold [74] and hepatocellular carcinoma (HCC) by 1.8-fold [75].

In vitro, the PNPLA3 I148M gene variant abolishes intrahepatocellular lipolysis [76,77] and
by acting as a lysophosphatidic acid acyl transferase stimulates triglyceride synthesis from long
unsaturated fatty acids containing coenzyme A (CoA) more than from saturated fatty acid CoAs [78].
The contribution of each these mechanisms to function of the PNPLA3 gene variant in the human
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liver is uncertain. It is clear, however, that the human liver lipidome markedly differs between
“Obese/Metabolic NAFLD” and “PNPLA3 NAFLD” [14]. The increase in liver fat in the carriers of the
PNPLA3 I148M gene variant is due to polyunsaturated triglycerides, whereas in “Obese/Metabolic
NAFLD” the concentration of saturated triglycerides and insulin resistance-inducing ceramides is
increased [14].

Table 2 summarizes the 14 studies that include data on insulin sensitivity in carriers and
non-carriers of the I148M variant [12,79–91]. Carriers of the PNPLA3 I148M variant had more liver fat
in their liver than non-carriers. Insulin sensitivity as evaluated by HOMA-IR [62], the hyperinsulinemic
clamp technique, fasting or post-glucose insulin and glucose concentrations did not, however, differ
between carriers and non-carriers of the gene variant. These studies included obese and non-obese,
diabetic and non-diabetic as well as pediatric cohorts. Serum triglycerides were either similar or lower
in variant allele carriers as compared to non-carriers, consistent with lack of insulin resistance (Table 2).

3.3. “Transmembrane 6 Superfamily Member 2 (TM6SF2) NAFLD” and Insulin Sensitivity

Approximately 7% of all subjects carry the TM6SF2 E167K variant. This gene variant increases
the risk of NAFLD, independent of genetic variation in PNPLA3 at rs738409, obesity and alcohol
intake [92]. A recent meta-analysis reported that carriers of the TM6SF2 E167K gene variant have
a 2.1-fold higher risk of NAFLD than non-carriers [93]. They also had lower circulating total and low
density lipoprotein (LDL) cholesterol, and triglyceride concentrations than non-carriers [93].

Four in vitro studies have examined the mechanism by which the TM6SF2 E167K gene variant
could increase liver fat. Recombinant adeno-associated viral vectors expressing short hairpin RNAs
were used to reduce Tm6sf2 transcripts in the mouse liver, which increased hepatic triglyceride content
three-fold [92]. TM6SF2 knock-out mice developed hepatic steatosis and had a three-fold reduced
plasma VLDL triglyceride levels due to decreased lipidation [94]. In another study, TM6SF2 small
interfering RNA inhibition also decreased export of triglyceride-rich lipoproteins and lipid droplet
content in human hepatoma cell lines (Huh7 and HepG2) [95]. Overexpression of TM6SF2 in Huh7
cells reduced cellular triglyceride content [96]. Transient overexpression of human TM6SF2 in mice
using a liver-targeting adenovirus containing the human TM6SF2 coding region increased, while
knockdown of endogenous TM6SF2 decreased circulating total cholesterol [96]. In the latter study, no
change in hepatic fat content was observed. This was hypothetized to be due to the transient exposure,
compared to the lifetime exposure of humans carrying the gene variant [96].

Table 3 summarizes seven studies that have reported data on liver fat content and insulin
sensitivity in carriers and non-carriers of TM6SF2 E167K gene variant [13,81,92,97–100]. In all but one
of these studies, carriers had a significantly higher liver fat content as determined by 1H-MRS, MRI,
histology or US [13,92,97–100] than non-carriers. Insulin sensitivity, as determined by HOMA-IR or
from oral glucose tolerance test measures did not differ between carriers and non-carriers. Triglyceride
concentrations were either lower [81,98,100] or similar [13,97,99] but also in one study higher [92] in
TM6SF2 E167K variant allele carriers compared to non-carriers.
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Table 2. Insulin sensitivity in studies comparing liver fat between PNPLA3 I148M carriers and non-carriers.

Cohort N
BMI (kg/m2) Liver Fat Insulin Sensitivity (HOMA-IR) S-Triglycerides (mmol/L)

I148II I148IM I148MM I148II I148IM I148MM I148II I148IM I148MM I148II I148IM I148MM

Multiethnic 1 [12] 2111
30.4 31.1 30.0 3.7% a 4.6% a 7.7% ***,a 3.3 3.5 3.3 1.32 1.35 1.41
31.6 32.0 32.2 3.1% 4.8% 4.8% *** 3.3 3.3 4.4 0.97 0.97 1.02
29.2 28.8 28.8 3.5% 3.7% 3.5% *** 2.3 2.4 2.0 1.25 1.21 0.90

Germany [79] 330 29.9 29.1 28.7 5.4% a 6.0% a 7.2% ***,a 12.6 v,z 12.9 v,z 12.9 v,z NA NA NA

Finnish [80] 291 30.5 30.0 32.2 9.0% a 10.4% *,a 14.1% **,a 72 y,z 70 y,z 74 y,z 1.82 1.60 1.52

British [81] 98 34.6 33.2 31.7 26.7% a 28.8% a 33.5% a 2.4 3.1 2.6 1.60 1.70 1.40

Multiethnic 2 [82] 1214 NA ˆ NA ˆ NA ˆ
57 b 55 b 46 ***,b

NA ˆ NAˆ NAˆ NA ˆ NA ˆ NA ˆ

55 51 47 ***

Dutch [83] 470 37.7 37.6 37.6 66% c 78% c 100% ***,c 2.7 2.8 2.9 1.42 1.47 1.46

Italian [84] 61 25.7 25.9 16% d 32% *,d 3.4 4.7 1.13 1.15

Italian [85] 253 30.7 30.7 29.8 44% c 48% c 63% **,c 3.9 4 5.2 1.64 1.85 1.79

Italian [86] 211 32.1 30.4 31.7 4 e 4 e 4 e 3.5 3.5 2.8 1.77 1.59 1.26 **

Taiwanese [87] 879 23.3 23.6 23.6 13% f 19% f 23% *,f 1.4 1.5 1.5 1.11 1.16 1.38 *

South Korean [88] 1363 24.7 24.4 23.9 ** 38% f 45% f 54% *,f 2.3 2.1 1.6 ** 1.54 1.38 1.31 **

Taiwanese, pediatric [89] 520 26.3 26.2 25.9 21% f 13% f 30% **,f 2.4 2.5 1.7 1.11 1.03 0.94

Italian, pediatric [90] 475 NA NA NA 13% f 19% f 41% *,f 3.3 3.0 3.0 0.56 0.56 0.53

Italian, pediatric [91] 149 95.2 ˝ 95.0 ˝ 94.1 ˝

70% g 7% g 4% ***,g

2.5 2.7 2.4 1.28 1.19 1.3930% 78% 4%
0% 15% 92%

BMI, body mass index; CT, computed tomography; HOMA-IR, Homeostasis model assessment of insulin resistance [62]; HU, Houndsfield Unit; MRI, magnetic resonance imaging;
NA, not available; OGTT, oral glucose tolerance test; US, ultrasound. * Significant difference between groups in ANOVA or t test. * p < 0.05; ** p < 0.01, *** p < 0.0001. Data are
presented as mean or median. 1 Caucasian, African and Hispanic Americans; 2 Hispanic and African Americas. ˝ BMI centiles; a 1H-MRS (liver fat content,%); b CT (liver density, HU);
c Histology (prevalence of steatosis, %); d Histology (% hepatocytes steatotic); e US (severity of steatosis by Hamaguchi score, 3–4 = moderate); f US (prevalence of steatosis, %);
g Histology (severity of steatosis, grade 1/2/3); v OGTT (arbitrary unit); y fasting serum insulin (pmol/L); z hyperinsulinemic clamp was also performed, data not shown in the table;
ˆ Data not shown, but it was reported that genetic variation at rs738409 did not correlate with HOMA-IR, insulin sensitivity index, BMI or S-triglycerides.
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Table 3. Insulin sensitivity in studies comparing liver fat between TM6SF2 E167K carriers and non-carriers.

Cohort N
BMI (kg/m2) Liver Fat Insulin Sensitivity (HOMA-IR) S-Triglycerides (mmol/L)

EE EK + KK EE EK + KK EE EK + KK EE EK + KK

Multiethnic 1 [92] 4587 29.6 28.5/31.8 3.5% a 4.4%/15.7% ***,a 3.0 2.9/4.6 1.39 1.33/1.47 *

Finns [97] 300 33.7 32.5 6.8% a 11.2% *,a 3.0 2.9 1.40 1.50

British [81] 98 32.6 35.4 28.5% a 29.0% a 2.7 4.0 1.60 1.50 *

Argentineans [13] 361 29.8 30.2 NA NA 3.1 3.0 1.87 1.31

Multiethnic 2 [98] 502 32.2 31.2/30.8

S0: 3% b S0: 0%/0% b

3.5 2.8/2.8 1.70 1.36/1.08 **
S1: 50% S1: 35%/45%
S2: 27% S2: 40%/20%
S3: 20% S3: 25%/35% *

Multiethnic 1, pediatric [99] 957 ˆ 33.0 32.6 6.7% c ˆ 11.1% **,c,ˆ 1.9 x 2.0 x 1.20 1.21

Italian, pediatric [100] 1010 2.9 ˝ 2.9 ˝ 47% d 89% **,d 5.6 4.6 1.12 1.02 *

BMI, body mass index; BMI-SDS, body mass index standard deviation score; HOMA-IR, Homeostasis model assessment of insulin resistance [62]; MRI-PDFF, magnetic resonance
imaging-measured proton density fat fraction; NA, not available; OGTT, oral glucose tolerance test; US, ultrasound; WBISI, whole body insulin sensitivity index. Significant difference
between groups in ANOVA or t test, * p < 0.05; ** p < 0.01; *** p < 0.0001. Data are presented as mean or median. 1 Caucasian, African and Hispanic Americans; 2 Caucasian, Asian,
Hispanic; International Liver Disease Genetics Consortium; ˆ Liver fat content available on 454 subjects, BMI, insulin sensitivity and S-triglycerides on 957 subjects; ˝ BMI-SDS;
a 1H-MRS (liver fat content, %); b Histology, prevalence of each steatosis grade; c MRI-PDFF, liver fat, %, (n = 454); d US (prevalence of steatosis, %); x OGTT (WBISI).
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4. Materials and Methods

We performed a systematic search using PubMed and Medline on two topics. For definitions of
normal liver fat, we used the following search terms and their combinations: “normal liver fat”, “liver
histology”, “liver biopsy” and “liver triglycerides”, “liver H-MRS”, “liver MRI”, “liver MRI-PDFF”,
“liver CT”, “liver ultrasound” and received 526 matches. Thirty-three studies included data on normal
liver fat content or compared liver fat measured using different techniques. To review the association
between insulin resistance and genetic NAFLD, we searched for studies using the following search
terms: “PNPLA3” or “TM6SF2” and “insulin resistance”, “euglycemic (hyperinsulinemic) clamp”,
“fasting glucose”, “fasting insulin”, “HOMA-IR”, “oral glucose tolerance test” and included studies
which compared results between carriers and non-carriers of PNPLA3 I148M or TM6SF2 E167K gene
variants. A total of 124 matched were found. Of these, 22 studies were informative with respect to
liver fat content and insulin resistance between genotypes, and were thus included.

5. Conclusions

Normal liver fat content based on liver histology can be defined as macroscopic steatosis in
less than 5% of hepatocytes. With 1H-MRS, normal liver fat in the population-based DHS was
defined as less or equal than 5.56% [23], which corresponds to histologic liver fat of approximately
15% [31,32]. Definitions of normal liver fat content thus depend on the method used. There is also no
prospective evidence that these normal values are of clinical relevance with respect to the development
of liver fibrosis.

Although NAFLD has often been regarded simply as the hepatic manifestation of the MetS, it
is now clear that NAFLD is heterogeneous. While “Obese/Metabolic NAFLD” is associated with
NAFLD and features of the MetS and an increased risk of type 2 diabetes and cardiovascular disease,
NAFLD caused by I148M variant in PNPLA3 and the E167K variant in TM6SF2 is not accompanied by
insulin resistance. Thus, lack of insulin resistance does not exclude NAFLD and not all patients with
NAFLD are at increased risk of type 2 diabetes and cardiovascular disease. Given that both the MetS
and the genetic variants in PNPLA3 and TM6SF2 are common, there are also many individuals with
“double trouble NAFLD” [14].

Future Research and Uncertainties

Although NAFL defined as macroscopic steatosis affecting >5% of hepatocytes predicts fibrosis [7–9],
it is unknown how various degrees of steatosis predict liver outcomes. Such information would help
the clinician to decide which patients to refer to the hepatologist. The same applies to the non-invasive
markers of NAFL proposed to be used by the recent European NAFLD guideline if imaging tools are
not available [101]. This guideline also recommended testing for the I148M gene variant in “selected
cases and in clinical trials”. The latter might be helpful in identifying patients with NAFLD who are
at risk for advanced liver disease but who lack features of the MetS and are therefore not at risk for
cardiovascular disease or type 2 diabetes. A cost–benefit analysis of this suggestion is warranted.
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Abbreviations
1H-MRS proton magnetic resonance spectroscopy
ALT alanine aminotransferase
AST aspartate aminotransferase
BMI body mass index
BMI-SDS body mass index standard deviation score
CHD coronary heart disease
CoA coenzyme A
CT computed tomography
DM diabetes mellitus
DHS Dallas Heart Study
FFA free fatty acids
fS fasting serum
HDL high density lipoprotein
MCP-1 monocyte chemoattractant protein-1
HCC hepatocellular carcinoma
HDL high density lipoprotein
HOMA-IR homeostasis model assessment for insulin resistance
LDL low density lipoprotein
MetS metabolic syndrome
MRI magnetic resonance imaging
NAFL non-alcoholic fatty liver
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
OGTT oral glucose tolerance test
P plasma
PDFF proton density fat fraction
PNPLA3 patatin-like phospholipase domain-containing 3
TM6SF2 transmembrane 6 superfamily member 2
TNF-α tumor necrosis factor-α
US ultrasound
VLDL very low density lipoprotein
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