
Universidade de Aveiro Departamento de Matemática
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Resumo Enquanto classe de células constituinte do Sistema Nervoso Central,
a microglia é responsável pela sua manutenção e defesa imunológica.
Uma célula desta classe pode ser encontrada em três estados distintos
(repouso, transição e ativo) sendo que o estado reflete o que está a
ocorrer no Sistema Nervoso Central; em particular, pode indiciar o
ińıcio do desenvolvimento de uma doença neurodegenerativa.

Nesta dissertação, apresentamos o primeiro estudo para o re-
conhecimento automático do estado de células microglia uti-
lizando stacked denoising auto-encoders. Para obter o mode-
lo de reconhecimento mais adequado, recorremos a dife-
rentes estratégias, nomeadamente, ao pré-processamento de ima-
gem, ao aumento artificial do conjunto de dados (usando rotações
das imagens) e à resolução de sub problemas do problema original.
Aplicamos também transferência de aprendizagem considerando cinco
problemas fonte.

Os resultados obtidos mostram que o estado de transição é o mais
dif́ıcil de reconhecer. Em termos de taxa de acertos, um desempenho
de aproximadamente 64% é obtido.





Abstract As a class of cells composing the Central Nervous System, microglia is
responsible for its maintenance and immunological defense. A cell of
such class may be found in three distinct states (resting, transition and
active) and the state reflects what is occurring on the Central Nervous
System; particularly, it may indicate the beginning of the development
of a neurodegenerative disease.

In this dissertation, we present the first study for the automatic recog-
nition of microglial cells’ state using stacked denoising auto-encoders.
In order to obtain the most appropriate recognition model, we resort
to different strategies, namely, to image pre-processing, to artificial
increase of the dataset (using image rotations) and to solving sub
problems of the original problem. We also apply transfer learning con-
sidering five source problems.

The obtained results show that the transition state is the most hard to
recognize. In terms of accuracy, a performance of approximately 64%
is achieved.
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Chapter 1

Introduction

1.1 Microglia

Introduced by Rio-Hortega [45], the concept of microglia refers to a class of cells of the
Central Nervous System (CNS) responsible for its maintenance and immunological defense.
A microgliocyte or a microglial cell, which is a specimen of microglia, can be found in three
different states: resting, transition and active. In a healthy CNS, the microgliocytes are in a
resting state. Unlike the term “resting” may suggest, a resting microgliocyte is responsible
for scanning its surrounding environment in order to detect threats to the CNS. After the
detection of a threat, such as an infection, the microglial cells undergo a phase of transition
leading to its activation. When active, the microgliocytes migrate to the site of the injury,
being in charge of removing its causing agents.

The transformation process from rest to active is associated not only to functional
changes but also to morphological modifications: while in a resting state, microgliocytes
exhibit a ramified shape and, as the cells transit to an active stage, the ramifications are
retracted and the cellular body becomes larger, acquiring a round appearance that favors
its migration to the local of the injury (see Figure 1.1).

Thus, the identification of the microglial cells’ state by an expert may be driven by the
observation of its morphology. The classification of a microglial cell’s state via morpholog-
ical inspection has been empirically assessed in a two-step procedure. In the first phase,
the classification problem is reduced to a two-class problem: if a ramified morphology is
predominant, the expert assumes that the cell is either in the resting state or in transition;
on the other hand, a round shape indicates that the cell is either active or in transition.
Finally, if the cell exhibits an intermediate morphology (featuring some ramifications and a
large cellular body), the microgliocyte is classified as in transition; otherwise, it is assumed
that the cell is resting/active. It should be noted that the existence of a clear boundary
between the resting and the transition states, as well as between the transition and the
active states, is yet unknown, whereby the classification by an expert using the study of
the morphology may be misleading.
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Figure 1.1: Microglial cells in distinct states. A, D: Resting microglial cell; B,E: Transition
microglial cell; C, F: Active microglial cell.

1.2 Pattern Recognition

Creating a machine capable of thinking like a human being is one of the main goals of
artificial intelligence. The behavior and structure of the human brain have been studied
over the years and guided some of the research on this field.

As a subarea of artificial intelligence, machine learning focus on building algorithms able
to learn and extract information from data. The purpose of these algorithms is to generalize
the underlying behaviors of the available data. In particular, machine learning covers
the branch of pattern recognition. Pattern recognition focus on classification tasks such
as handwritten recognition [33], computer-aided diagnosis (often applied to reduce false
negative results [39, 29]) and computer vision (commonly employed on the measurement
of products’ quality in the industry [17] and on biometrics [54]).

Depending on whether the label of the samples is used or not to build the model, the
classification algorithms can be grouped in two categories: if the algorithm uses the labels
of the data, it is said to be a case of supervised learning; otherwise, it is said to be a
case of unsupervised learning. An example of unsupervised learning is clustering whose
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goal is to group identical samples using some similarity measure. Through this work, only
supervised learning will be considered.

An example of a classification problem is the diagnosis of a disease. LetX = {xi}i∈{1,...,n}
be a set of collected data where each xi is a vector of features evaluated to determine
whether the patient i is a sufferer or a non-sufferer of a certain disease, diseaseW , and let
T = {ti}i∈{1,...,n} be a set of label codes for which each ti is 1 or 0 depending on whether
the patient i is a sufferer or a non-sufferer of diseaseW , respectively. The model, y, able
to predict with some error if a new patient is a sufferer or a non-sufferer of diseaseW ,
is accomplished by a phase of training: a subset of the samples in X, Xtrain, is used as
input for y and the difference between the obtained output, y(xi), xi ∈ Xtrain, and the
expected output, ti, is somehow measured by a cost function; the trainable parameters of
the model, which depend on the algorithm used, are so modified in order to minimize the
cost function. The performance of the created model is measured by applying y to the
remaining samples (not contained in Xtrain) and comparing the obtained output with the
respective label.

The set Xtrain ⊂ X, used for training, is called training set and the set of remaining
samples, used for testing, is called test set and is given by Xtest = X\Xtrain. Each sample
x ∈ X is described as a tuple x = (x1, x2, . . . , xd) of d attributes (which may be continuous
or not); the set S ⊃ X will denote the attribute space. The label ti for each sample xi
represents the class to which the sample belongs and it is referred as target ; it should be
noted that the diseaseW example above is a two-class problem (where 0 is the codification
associated to a non-sufferer patient and 1 to a sufferer patient). When the problem has cl
classes (cl > 2), each class is usually encoded in a cl-vector, called target vector, where the
cth component of the vector represents the cth class. For example, for a 10-class problem,
the target vector for class 3 is a 10-vector with a 1 in the 3rd component and zeros otherwise.
This type of target codification will be denoted as 1-of -cl codification and the set of all
possible encoded classes will be denoted by C.

Let θ represent a vector of all the trainable parameters of the model. The model y,
which works as a classifier (a class predictor), may be described as a function y : S → C
that maps a sample x ∈ S into a class. The construction of the model y goes through
two stages: the training phase, where the model learns the classification task using the
training samples, and the test phase, where the performance of the classifier y, previously
trained, is assessed. In the case that the model has more than one output component, as
it occurs when considering a classification problem of more than 2 classes and the 1-of -cl
target codification, the model is denoted by y (instead of y).

A possible approach for classification is artificial neural networks. As the name suggests,
they simulate, in a way, the behavior of the brain; they are formed by layers of artificial
neurons which interact with each other. Some of the first attempts in this area were the
perceptron, proposed by Rosenblatt in 1958 [47], and the ADALINE, proposed by Widrow
and Hoff in 1960 [53].

In the 1980’s, the backpropagation algorithm was developed to train networks with
multiple layers. However, when applied to neural networks with a large number of lay-
ers, referred as deep neural networks, this algorithm showed some limitations, leading
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researchers to use other approaches such as support vector machines (SVMs) [15].
In 2006, deep learning showed a significant advance: the idea explored was to locally

train the intermediate layers of neural networks using an unsupervised learning greedy
approach such as the Restricted Boltzmann Machines [24] and the auto-encoders [9]. Fol-
lowing the use of auto-encoders, stacked denoising auto-encoders [51], which refer to a
neural network which is trained layer-wise applying denoising auto-encoders, emerged.
The purpose of the greedy layer-wise training is to obtain a better initialization of the
trainable parameters. Such initialization is then considered when fully training the deep
neural network.

Another approach, similar to the greedy layer-wise training in the sense that the random
initialization is replaced by a more suitable initialization, consists in transfer knowledge
from an already trained deep neural network, associated with a (related) problem, to a new
deep neural network, associated to the original problem. The idea is to reuse the hidden
layers of the already trained deep neural network as initial hidden layers of the original
deep neural network in the process of training. This procedure is a type of transfer learning
[41].

1.3 Problem Statement and Methodology

1.3.1 Problem Motivation

By identifying the state of microglial cells, it is possible to understand what is occurring
in the CNS. Particularly, as sustained activation and overactivation may have a detrimental
effect by contributing to the loss of neuronal cells [49], the identification of the transition
states allows the diagnosis of such activation states: subtle shape changes may anticipate
microglia activation. Thus, the identification of such states allows an early diagnosis of
neurodegenerative diseases, enabling an early (and, consequently, more efficient) medical
intervention.

To the best of our knowledge, no automatic model was built for the identification of
a microglial cell’s state via its morphology. Thereby, this process always required the
intervention of one or more experts. This limitation makes the process slow and highly
dependent on the experts.

1.3.2 Proposed Solution

To build a model for the identification of microglial cells’ state, we propose the applica-
tion of stacked denoising auto-encoders with the expectation that the automation of this
process may work as an ancillary tool for the experts.

The power of deep neural networks in well known problems such as handwritten recog-
nition has already been shown [9, 33], namely when using stacked denoising auto-encoders
[51]. Thus, with the application of a deep neural network to this classification problem, we
expect to obtain a model with a small (test) error.
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To achieve the best model, several models are defined by varying the training parameters
along with the training sets and the network parameters. Moreover, with the aim of
improving the performance of the models, we also consider the application of transfer
learning, using distinct datasets to build the deep neural networks which are used as
sources of knowledge.

The experimental simulations are performed using a Python library called Theano and
executed on a Graphics Processing Unity.

1.4 Further Organization of this Thesis

In Chapter 2, we describe deep feedforward neural networks and present its particu-
larities. We also briefly expose the process of transfer learning in the framework of deep
feedforward neural networks. In Chapter 3, the experimental procedures are described and
the respective results are presented and discussed. The experiments associated only to
stacked denoising auto-encoders are treated first and separately from the ones involving
transfer learning. Finally, in Chapter 4, we present the conclusions related to all the work,
exposing its major limitations.
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Chapter 2

Deep Feedforward Neural Networks

2.1 The Perceptron

To understand how deep neural networks work, let us start by understanding the math-
ematical formulation of an artificial neuron, in particular of a perceptron.

The Rosenblatt perceptron [47] is characterized by a real-valued vector of inputs,
x = (x1, . . . , xd), a real-valued weight vector w = (w1, . . . , wd), a bias, b, an adder,

∑
, an

activation function, ϕ, and an output, y (see Figure 2.1).
Given an input x, the adder

∑
implements the weighted sum of the inputs along with

the bias,
∑d

i=1wixi + b; the activation function ϕ takes as input the previous sum and the

output is y = ϕ(
∑d

i=1wixi + b).

Figure 2.1: Graph representation of a perceptron.

The output values depend on the activation function used; in a perceptron the activation
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function is the following step function:

ϕ(a) =

{
1, if a ≥ 0

−1, if a < 0
, (2.1)

so the output can be −1 in case
∑d

j=1 wjxj + b < 0, or 1 otherwise. The symmetric of the

bias, −b, works as a threshold: the weighted sum,
∑d

j=1wjxj, must surpass −b so that the
output is 1. Each weight wj determines the influence of xj on the output.

Given that the activation function divides the plane Rd in two regions: R1 = {x ∈ Rd :
ϕ(
∑d

j=1wjxj + b) = 1} and R−1 = {x ∈ Rd : ϕ(
∑d

j=1 wjxj + b) = −1} with the decision

border being the hyperplane
∑d

j=1wjxj + b = 0, the perceptron should only be applied on
linearly separable problems, that is, on problems for which it is possible to find w and b
such that

∑d
j=1 wjxj > b,∀x ∈ C1 and

∑d
j=1 wjxj < b,∀x ∈ C2, where C1, C2 represent the

classes of the problem; otherwise the convergence is not guaranteed (the convergence proof
considering linearly separable classes is commonly found in literature, namely, in [6]).

Furthermore, since the activation function Eq. (2.1) is not continuous, a small change
in the weights or bias can cause a large impact on the output; note that the output possible
values are −1 and 1 therefore such perturbations on w or b can change the output from 1
to −1 and vice versa. Instead of the step function, a differentiable function with similar
behavior may be considered as activation function; the most commonly used are presented
in the following table (Table 2.1).

Function Definition Range
Linear (Identity) ϕ(a) = a ]−∞,+∞[

Logistic Sigmoid 1 ϕ(a) = 1
1+e−αa

, α > 0 ]0, 1[

Hyperbolic Tangent ϕ(a) = β tanh(αa), α, β > 0 ]− β, β[

Table 2.1: Examples of differentiable activation functions.

The generalization of the perceptron in which a differentiable activation function is
used will be denoted by unit, artificial neuron or simply neuron. The weight vector ŵ will
denote (w0, w1, . . . , wd), where w0 is the bias b, and the extended input, x̂, will include
an extra entry, x0 = 1, which will be associated to the bias, x̂ = (x0, x1, . . . , xd), so that∑d

j=1 wjxj + b =
∑d

j=1wjxj + w0 =
∑d

j=0wjxj = ŵT x̂.

Using differentiable activation functions instead of the step function Eq. (2.1) makes
the neuron more stable, that is, a small change in the weights or bias has a smaller impact
on the output [40].

1In this work we will consider α = 1.
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2.1.1 Perceptron Training

Suppose we want to create a perceptron to solve a problem of distinguishing two linearly
separable classes using just a small set of labeled samples, X ⊂ Rd. How do we find
the weights that define a good decision hyperplane? What characterizes a good decision
hyperplane?

For the latter question, since the available data is just a small subset of all the pos-
sibilities, the quality of a decision hyperplane cannot be exactly measured (except if the
behavior of each class is known); however, the samples of X can give an idea if the decision
hyperplane defines a good separation of the classes.

The weights and bias adjusted to the problem we are trying to solve are thus obtained
with a phase of training. In 1958, Rosenblatt proposed the following algorithm (Algorithm
1):

it = 0;

Randomly initialize the weights (with values close to 0), ŵ(it);
while not all training samples are correctly classified do

for each x ∈ Xtrain do

Compute y = ϕ(ŵT x̂);

Update the weights: ŵ(it+1) = ŵ(it) + η(t− y)x̂;
it++;

end

end
Algorithm 1: The perceptron learning rule.

The update rule:

ŵ(it+1)︷ ︸︸ ︷
w

(it+1)
0

w
(it+1)
1
...

w
(it+1)
d

 =

ŵ(it)+η(t−y)x̂︷ ︸︸ ︷
w

(it)
0 + η(t− y)x0

w
(it)
1 + η(t− y)x1

...

w
(it)
d + η(t− y)xd

 =


b(it) + η(t− y)

w
(it)
1 + η(t− y)x1

...

w
(it)
d + η(t− y)xd

 (2.2)

is called perceptron learning rule (η, called learning rate, is used to control the magnitude
of each update and its value may be adjusted in each iteration). Note that the update is
only done when a sample is misclassified (otherwise t− y = 0). It should be remembered
that if the classes are not linearly separable, a different stopping criteria, such as a training
error tolerance, should be applied.

Another approach, used when the activation function is differentiable, is to apply the
gradient descent method to minimize a cost function E(θ) = E(ŵ) which is a function
that measures the training error (difference between the output and the target; not to be
confused, in this context, with classification error); the update rule is, thus, defined by the
delta rule: ŵ(it+1) = ŵ(it) + ∆ŵ(it) where ∆ŵ(it) = −η∇E(ŵ(it)).
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Furthermore, when training neurons, the most common modes to consider are the batch
mode and the online mode. In batch mode the update is done using all the samples of the
training set - the cost function is a sum over all the training samples. In online mode, the
update is done using just the information of a sample - the cost function is defined for a
pair (y, t) where y = ϕ(ŵT x̂) is the output obtained for x̂ and t is the target for x.

2.2 Feedforward Neural Networks

Informally, a neural network consists in a set of neurons connected to each other.
Visually, it can be seen as a directed graph with the nodes corresponding to the network’s
inputs and neurons and the edges representing the connections between them: the directed
edge from node α to node β indicates that the output of neuron α will be part of the input
of neuron β.

A neural network is classified depending on the type of connections and on the way
neurons are organized. A neural network which is represented by a directed acyclic graph
is known as a feedforward neural network (FFNN). In this type of neural networks, con-
sidering all the paths from an input to node α, there is no node β in such paths having
an edge emerging from α, that is, there is no previous neuron in the paths, receiving the
output of neuron α in its input. The same is valid for neuron α itself: its output cannot
be used later as part of its own input.

This type of neural network can be organized by layers in such a way that each neuron
within a layer can only receive as part of its input the output of neurons in lower layers,
receiving at least an input component from the previous layer. The output neurons define
the output layer, the other layers are called hidden layers.

Throughout this work, only FFNNs whose connections are restricted to neurons in
consecutive layers will be considered: all of the input components of a neuron in a certain
layer are associated to the neurons of the previous layer; in particular, the input components
of a neuron will include the output of all the neurons in the previous layer (a FFNN with
this structure is said to be fully-connected, see Figure 2.2 for an example).

Let us mathematically formulate a FFNN with the characteristics just described, as-
suming it has L layers: let hk denote the output vector of layer k, 0 ≤ k ≤ L, where
h0 = x (which corresponds to the network’s input). If γk denotes the number of neurons
composing layer k, we have hk = (hk,1, . . . , hk,γk) where hk,l denotes the output of the lth

neuron belonging to layer k. Let Wk be the matrix of weight vectors for which the lth

column, wk,l, is the weight vector associated to the input of neuron l of layer k; wk,l,m
will denote the mth component of the weight vector wk,l which corresponds to the weight
associated to the output of the mth neuron belonging to layer k − 1 used as part of the
input of neuron l of layer k. Let bk = (bk,1, . . . , bk,γk) be the vector of bias used as part of
the input considered for neurons of layer k, where bk,l denotes the bias considered for the
input of the lth neuron of layer k.

Additionally, let us define the vector of inputs for all the neurons of layer k:

ak ≡WT
khk−1 + bk (2.3)

10



Figure 2.2: Example of a fully-connected FFNN: arrows are used to represent the flow
in which the neural network works, each neuron is represented by a circle, the inputs
(including the bias) are represented via a square.

so that

ak,l = wT
k,lhk−1 + bk,l (2.4)

will denote the input of the lth neuron in layer k.
Finally, let ϕk denote the activation function applied to neurons of the kth layer (it

should be noted that the activation function used in each neuron may differ, nevertheless,
we will only consider FFNNs for which the activation function varies, eventually, between
neurons of distinct layers). Besides the activation functions shown in Table 2.1, the softmax
function is also usually applied at the output layer. For the lth neuron in layer L, the
softmax function is given by:

eaL,l∑γL
s=1 e

aL,s
, (2.5)

where the function f(a) = ea denotes the (natural) exponential function and γL = cl (in
case that γL > 1, by assuming the 1-of -cl target codification).

With this activation function the sum of all the outputs is 1 and the output components
may have a probabilistic interpretation, in which the value of the lth output component
represents a probability estimate that an input belongs to class l [11].

The output of layer k, 1 ≤ k ≤ L, is obtained by:

hk = ϕk(W
T
khk−1 + bk)

=
(
ϕk(w

T
k,1hk−1 + bk,1), . . . , ϕk(w

T
k,γk

hk−1 + bk,γk)
) . (2.6)

The final output, y = (y1, . . . , yγL), is thus obtained by the composition of functions
of the type of Eq. (2.6) resultant of the propagation of the signal through the associated
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neurons within the network: y = hL. In the case that the FFNN is being addressed to a
classification problem, then its outputs should be mapped into classes. By assuming we
are using the 1-of -cl target codification and a non-linear output activation function, the
class is assigned according to the index l ∈ {1, . . . , γL} for which the component yl assumes
the largest value if γL > 1 or to the nearest value of the obtained output, otherwise.

2.2.1 Backpropagation Algorithm

An approach used to train neural networks, similar to the one presented for neurons, is
to consider an optimization problem. The idea is to maximize/minimize a function, E(θ),
that evaluates the performance of the network. Since a maximization problem may be
converted in a minimization problem, we will consider the minimization problem approach.

In 1986, Rumelhart et al. [48] suggested the application of the gradient descent method
using backpropagation of the error to efficiently compute the partial derivatives of the cost
function; the algorithm was, though, originally conceived by Werbos in 1974 [52].

Given the vector of parameters θ, which includes all the weights and biases, the update
rule used in the gradient descent method is defined by:

θ(it+1) = θ(it) − η∇E(θ(it)) . (2.7)

This means that the core of the training phase lies on the gradient computation. Here-
upon, how should the components of the gradient for each weight vector be computed?

As previously stated, depending on the training mode, the cost function may comprise
information from just one training sample or all the training samples. If the batch mode
is used and supposing that the cost function may be decomposed in a sum of the errors
for each sample, that is, E(θ) =

∑n
i=1 Ei(θ) and, consequently, ∇E(θ) =

∑n
i=1∇Ei(θ),

the problem of evaluating the gradient will lie on the evaluation of ∇Ei(θ) for each i ∈
{1, . . . , n}; for this reason let us simplify notation by denoting Ei(θ) as E(θ).

By applying the chain rule to a component of the gradient we have:
∂E

∂wk,l,m
=

∂E

∂ak,l

∂ak,l
∂wk,l,m

∂E

∂bk,l
=

∂E

∂ak,l

∂ak,l
∂bk,l

. (2.8)

Note that the cost function is a function of the output and therefore is a composition of
functions in such way that it can be described as a function of ak,l which is by itself a
function of wk,l,m and bk,l.

Moreover, by Eq. (2.4),
∂ak,l
∂wk,l,m

=
∂
(
wT
k,lhk−1 + bk,l

)
∂wk,l,m

= hk−1,m

∂ak,l
∂bk,l

=
∂
(
wT
k,lhk−1 + bk,l

)
∂bk,l

= 1

. (2.9)
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In addition, let us define:

δk,l ≡
∂E

∂ak,l
. (2.10)

Thus, from Eq. (2.9) and Eq. (2.10), in Eq. (2.8), we have:
∂E

∂wk,l,m
= δk,lhk−1,m

∂E

∂bk,l
= δk,l

, (2.11)

where

δL,l =
∂E

∂aL,l
(2.12)

is obtained directly. As an example, let us consider the sigmoid activation function on the
output layer and the cost function given by:

1

2
||y− t||22 =

1

2
||(y1, . . . , yγL)− (t1, . . . , tγL)||22 =

1

2

γL∑
s=1

(ys − ts)2 (2.13)

where t is the γL-vector corresponding to the expected output. For output neurons, we
have that

δL,l =
∂
(

1
2

∑γL
s=1(ys − ts)2

)
∂aL,l

=
∂
(

1
2

∑γL
s=1(ϕL(aL,s)− ts)2

)
∂aL,l

=
∂
(

1
2
(ϕL(aL,l)− tl)2

)
∂aL,l

= (ϕL(aL,l)− tl)ϕ′L(aL,l)

; (2.14)

note that the contribution of aL,l to the output is given through ϕL(aL,l) which is yl.
Back to the general case, by applying the chain rule, we have

δk,l =

γk+1∑
s=1

∂E

∂ak+1,s

∂ak+1,s

∂ak,l

Eq. (2.10)
=

γk+1∑
s=1

δk+1,s
∂ak+1,s

∂ak,l
, (2.15)

for k < L.
According to Eq. (2.4),

∂ak+1,s

∂ak,l
=
∂
(
wT
k+1,shk + bk+1,s

)
∂ak,l

=
∂ (
∑γk

u=1wk+1,s,uϕk(ak,u) + bk+1,s)

∂ak,l

=wk+1,s,lϕ
′
k(ak,l)

(2.16)

so that in Eq. (2.15), we obtain the backpropagation formula

δk,l =

γk+1∑
s=1

δk+1,swk+1,s,lϕ
′
k(ak,l) = ϕ′k(ak,l)

γk+1∑
s=1

δk+1,swk+1,s,l . (2.17)
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(In the case that the softmax function is used, the backpropagation formula assumes a

slightly different form: it is necessary to consider
∂ϕk,u
∂ak,l

in Eq. (2.16)).

Consequently, it is possible, using Eq. (2.11), to evaluate the gradients for each weight
vector starting from the highest positioned neurons, in this case, starting from the output
layer of the network, and propagating through the lower positioned neurons: after the
processing of the input by all the layers, the values δL,l can be computed and, by Eq.
(2.17), the other δ’s may be recursively obtained.

Having stated the backpropagation of the error, the backprogagation algorithm, in its
online form, is presented in Algorithm 2.

Initialize the extended weight vectors with small values;
while the stop criterion is not reached do

for each x ∈ Xtrain do
Forward propagation phase:
Input the sample x to the network;
for each layer k from 1 to L do

Compute ak using Eq. (2.3) ;
Compute hk using Eq. (2.6) ;

end
Backward propagation phase:
for each output neuron l do

Compute δL,l using Eq. (2.12);

Compute the gradients ∂E
∂wL,l,m

and ∂E
∂bL,l

using Eq. (2.11);

end
for each hidden layer k from L− 1 to 1 do

for each neuron l of layer k do
Compute δk,l using Eq. (2.17);

Compute the gradients ∂E
∂wk,l,m

and ∂E
∂bk,l

using Eq. (2.11);

end

end
Update all the weights, wk,l,m, and biases, bk,l, using the delta rule:

wk,l,m = wk,l,m − η
∂E

∂wk,l,m

bk,l = bk,l − η
∂E

∂bk,l

end

end
Algorithm 2: Online Backpropagation Algorithm.
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2.2.2 Cost Functions

Different cost functions may be chosen to guide the training phase in a FFNN. The
suitability of each cost function depends on the nature of the problem. Since in this work
we are considering a classification problem, let us assume the 1-of -cl target codification if
γL > 1 and the binary target codification (0 or 1), otherwise (see Section 1.2).

By considering the online mode, the traditionally used function is the squared error
function (SE) which is given by

SE = ESE(θ) = ||y− t||22 =

γL∑
s=1

(ys − ts)2 . (2.18)

As alternative to the SE, the cross-entropy function (CE), given by:

CE = ECE(θ) =


− (t ln(y) + (1− t) ln(1− y)) , if γL = 1

−
γL∑
s=1

ts ln(ys), if γL > 1
, (2.19)

may be applied by assuming that the output components, ys, may be interpreted as prob-
abilities estimates, that is, the ys components are in (0, 1) (and sum to 1 in the case that
γL > 1). These cost functions are easily adapted to a batch mode by considering the sum
or the mean over the samples.

According to Bishop [11], there is a natural paring between the cost function and the
output activation function. He suggests the application of a linear activation function on
the output layer combined with the SE cost function, the association of the sigmoid to the
CEγL=1 cost function (which represents the CE function when γL = 1) and the combination
of the the softmax function with the CEγL>1 cost function (which corresponds to the CE
function when γL > 1).

In order to understand the motivation inherent to the use of those combinations, let
us compute the partial derivatives of the cost functions with respect to the input of the
neurons in the output layer, δL,l.

By considering the SE cost function, we obtain:

δL,l =
∂ SE

∂aL,l

Eq. (2.18)
=

∂ (
∑γL

s=1(ys − ts)2)

∂aL,l
=
∂ ((yl − tl)2)

∂aL,l

(∗)
= 2(yl − tl)

∂yl
∂aL,l

(∗∗)
= 2(ϕL(aL,l)− tl)

∂ϕL(aL,l)

∂aL,l
= 2(ϕL(aL,l)− tl)ϕ′L(aL,l)

, (2.20)

where (∗) denotes the application of the chain rule and (∗∗) consists in the application of
the definition of yl (this notation will be considered for the rest of this section).

Thus, if ϕL(aL,l) = aL,l, that is, if the output activation function is linear then ϕ′L(aL,l)
= 1 and the previous expression, Eq.(2.20), simplifies to

δL,l = 2(ϕL(aL,l)− tl) . (2.21)
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In the case of the CEγL=1 cost function, we have that:

δL,l =
∂ CEγL=1

∂aL,l

Eq. (2.19)
= −∂ (t ln(y) + (1− t) ln(1− y))

∂aL,l

l∈{1}
= −∂ (tl ln(yl) + (1− tl) ln(1− yl))

∂aL,l
(∗)
= − tl

yl

∂yl
∂aL,l

− tl − 1

1− yl
∂yl
∂aL,l

(∗,∗∗)
= ϕ′L(aL,l)

(
−tl

ϕL(aL,l)
− tl − 1

1− ϕL(aL,l)

)
= −ϕ′L(aL,l)

(
tl − ϕL(aL,l)

ϕL(aL,l)(1− ϕL(aL,l))

)
. (2.22)

Given that, when considering the sigmoid function, we have:

ϕ′L(aL,l) =
e−aL,l

(1 + e−aL,l)2 =
e−aL,l

1 + e−aL,l
ϕL(aL,l) =

(
1− 1

1 + e−aL,l

)
ϕL(aL,l)

= (1− ϕL(aL,l))ϕL(aL,l)

, (2.23)

by combining the sigmoid function with the CEγL=1 cost function, the expression Eq.
(2.22) simplifies to:

δL,l = ϕL(aL,l)− tl . (2.24)

Finally let us consider the CEγL>1 cost function. By denoting the output activation
function associated to the lth neuron by ϕL,l, we verify that:

∂ CEγL>1

∂aL,l

Eq. (2.19)
= −∂ (

∑γL
s=1 ts ln(ys))

∂aL,l
= −

γL∑
s=1

∂ (ts ln(ys))

∂aL,l

(∗)
= −

γL∑
s=1

ts
1

ys

∂ys
∂aL,l

(∗∗)
=

γL∑
s=1

−ts
ϕL,s

∂ϕL,s
∂aL,l

, (2.25)

In this case, by considering the softmax as the output activation function, we have that:

∂ϕL,s
∂aL,l

=
∂
(

e
aL,s∑γL

p=1 e
aL,p

)
∂aL,l

, (2.26)

whereby if s = l:

∂ϕL,l
∂aL,l

=
eaL,l

∑γL
p=1 e

aL,p − (eaL,l)2(∑γL
p=1 e

aL,p

)2 = ϕL,l

(∑γL
p=1 e

aL,p − eaL,l∑γL
p=1 e

aL,p

)

= ϕL,l (1− ϕL,l)

, (2.27)
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otherwise (if s 6= l),

∂ϕL,s
∂aL,l

=
−eaL,seaL,l(∑γL
p=1 e

aL,p

)2 = −ϕL,sϕL,l (2.28)

and, by substituting
∂ϕL,s
∂aL,l

in Eq. (2.25), we obtain:

δL,l =
−tl
ϕL,l

ϕL,l (1− ϕL,l) +
∑

s∈{1,...,γL}\{l}

−ts
ϕL,s

(−ϕL,sϕL,l)

= −tl (1− ϕL,l) +
∑

s∈{1,...,γL}\{l}

tsϕL,l

= −tl + ϕL,l

(
γL∑
s=1

ts

)
(∗∗∗)
= ϕL,l − tl

(2.29)

where the step (***) is executed since we are using the 1-of-cl target codification.
It is thus possible to verify a common behavior of the partial derivatives when consider-

ing the respective activation function: the term ϕ′L(aL,l) (or
∂ϕL,p
∂aL,l

in the case of the CEγL>1

cost function with softmax function) is canceled; simplifying the expressions of δL,l. In
particular, the greater the difference ϕL(aL,l)− tl, the greater the term δL,l.

2.2.3 Training Aspects

Training Mode

As mentioned above, if the batch mode is used, the final derivatives will be the sum of
the derivatives obtained for each sample. As a consequence, the online mode may be faster,
namely if the set of samples is redundant (that is, if there are several identical samples).
This is due to the similar impact of the redundant samples on the gradients’ computation
using batch mode. Furthermore, the variation associated to the online mode due to the
use of one sample in each update may cause the algorithm to escape from local minima
[11]. Based also, but not only, on this aspects, Wilson and Martinez [55] suggest that the
online mode is usually a more appropriate/efficient choice. Alternatively to these modes,
a mini-batch mode is sometimes used whereupon the samples’ set is divided into smaller
subsets, mini-batches, so that a mini-batch is considered for each update.

Stopping Criteria and Validation

Some of the stopping criteria usually applied are a tolerance for the training error and
the maximum number of epochs. By using the training error tolerance, ε, the network
training is stopped when E(θ) < ε. In the context of neural networks, an epoch occurs
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after a total presentation of the samples in the training set; thus, by setting a maximum
number of epochs, we limit the training process by establishing the maximum number of
times the training samples are presented to the model.

An important aspect of training, common to other models in machine learning, is the
generalization ability, by which we mean the capacity to correctly predict the target of an
unseen sample (a sample which is not in the training set). If the model does not capture
enough significant information about the general behavior of the training samples and,
because of that, incorrectly predicts the output of new samples, we say that an under-
fitting phenomena has occurred. This may be due to the use of a poor training set. On the
other hand, it may occur that the trained model is too adjusted to the training samples,
capturing eventual existing noise. In this case, it is said that over-fitting occurs. The
over-fitting problem may be avoided by using an appropriate stopping criteria involving,
for example, a validation set; the idea is to divide the training set in two disjoint subsets,
a new smaller training set and a validation set. The training set is used to train the model
and, in each epoch, the validation set is used to evaluate the error in unseen samples.
Theoretically, the network training should be stopped when the error on the validation set
starts increasing. In the K-fold cross-validation, which is a variation of the validation set
approach just described, the training set is divided in K disjoint and equally sized subsets
(folds); the network is trained K times using, each time, a different fold as a validation set
and the other K − 1 folds as a training set; the final errors (training and validation) are
obtained by averaging the K errors previously obtained.

Improved Backpropagation Versions

In what concerns to the performance of the algorithm, although Hinton [22] refers to
the slow convergence of the algorithm as the main issue, experimental results [9, 18] suggest
that randomly initialized backpropagation gets stuck in poor local minima; particularly, it
is suggested that the probability of getting stuck in poor minima increases as the depth
(number of layers) increases. Moreover, it should also be noted that the performance of
the algorithm may be influenced by the use of a fixed learning rate which can lead the
algorithm to get stuck in a local minima: on one hand, a small η increases the time needed
to train; a large η, on the other hand, may cause the algorithm to skip the optimal solution
[35, 43].

For these reasons improvements were suggested to the backpropagation algorithm [35,
37, 46, 48], namely, the use of a learning rate for each weight/bias, the introduction of
momentum and the norm-regularization. In the backpropagation with momentum, the zth

update rule for each weight (or bias) θ is modified to:

θ(z) = θ(z − 1) +

∆θ(z)︷ ︸︸ ︷(
−η∂E

∂θ
(z) + ξ∆θ(z − 1)

)
(2.30)

where ξ, known as momentum rate, varies between 0 and 1. The introduction of the
momentum term ξ∆θ(z − 1) allows that, in each update z, the previous changes in θ
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influence the current update z; ξ determines the influence of the past updates. Considering
this term in the update rule, the algorithm tends to converge more rapidly as it reduces
the oscillations.

Another strategy used to improve this training algorithm is the Lp regularization
method. This type of regularization introduces a term in the cost function in order to
penalize large weights, which are associated to the over-fitting phenomena [11]. The new
cost function is then given by

ER(θ) = E(θ) + λR(θ) , (2.31)

where λ works as a regularization coefficent that determines the influence of the penalization
term with respect to the original cost function E(θ). When considering the Lp norm

regularization, the term R(θ) is defined as ||θ||pp =
∑|θ|

q=1 |θq|p. In the case that p = 2, the
regularization is known as weight decay.

2.3 Deep Feedforward Neural Networks

According to Cybenko [16], Hornik et al. [25] and Castro et al. [13], a FFNN with
a single hidden layer is, under some assumptions, able to approximate any continuous
function provided that a sufficient number of hidden neurons is used. Thereby, why should
we use FFNNs with several hidden layers given the power of a FFNN with a single hidden
layer?

First, the appropriate number of hidden neurons needed to approximate such functions
using a FFNN with a hidden layer was not discussed. Particularly, in the context of boolean
functions, Hastad [21] proved the existence of functions whose representation (via a logic
circuit) exhibited polynomial-size when considering a logic circuit of depth k, but exhibited
exponential size when restricted to a logic circuit of depth k− 1. Considering the mapping
of a k-depth logic-gate circuit as a FFNN of k layers, with the neurons corresponding to
logic gates, then every boolean function may be represented by a FFNN. Thus, the result
presented by Hastad may indicate that the number of neurons in a FFNN with k layers,
needed to reproduce a FFNN originally with k+ 1 layers, is very large, compared with the
number of neurons used in the (k + 1)-layer network.

Finally, a FFNN with a large number of layers, known as deep FFNN (DNN), when
compared to their shallow counterparts (which have one or two hidden layers), exhibit the
ability to describe an hierarchy of features (data representations): higher level features
are built through lower level features allowing an increasing level of abstraction from the
lowest level features to the highest within the hierarchy; each level of representation is so
associated to a layer [8].

Inspired by the model of the nervous visual system proposed by Hubel and Wiesel [27,
28], Fukushima [19] introduced convolutional neural networks (CNN) in 1980. Afterwards,
Le Cun et al.[32, 34] presented an improved model which became the first DNN successfully
trained applying the backpropagation algorithm. Originally modeled for visual pattern
recognition systems, CNNs were developed according to the following key concepts: local
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receptive fields, weight sharing and sub-sampling. The processing in this type of neural
network switches between feature detection and sub-sampling stages in order to decrease
the sensitivity of the network to distortions and shifts.

Except for convolutional neural networks, the backpropagation algorithm was not ap-
propriate for training general DNNs (see Section 2.2.3) and, due to this limitation, the
usage of DNNs was not appellative despite its potential.

In 2006 a new approach to train DNNs was proposed, involving a two-phase training
process: a pre-training phase, in which each hidden layer is trained separately (layer-wise);
and a fine-tuning phase, in which the full DNN is trained using backprogation. Originally,
the layer wise training was performed via Restricted Boltzmann Machines (RBM)[23, 24].
In 2007, Bengio et al. [9] suggested the use of auto-encoders and, shortly after, Vincent et
al.[51] proposed denoising auto-encoders.

Since its inception, DNNs have been applied to several problems, namely, to handwrit-
ten recognition [24, 33], face recognition [31], text retrieval (categorization) [44], robotic
autonomous offroad navigation [20] and computer aided medical diagnosis [36, 38].

2.3.1 Stacked Denoising Auto-Encoders

Also known as auto-associator [12], an auto-encoder (AE) is a FFNN usually with
one hidden layer that reconstructs its own input; for this reason, in this type of FFNN,
the output layer must have the same dimension as the input and the target is the input
itself. Let us consider an AE with a single hidden layer (see Figure 2.3 for an example).
The process of reconstruction is divided in two phases: an encoding phase followed by a
decoding phase so that the result of processing the AE hidden layer, c(x), is the encoding
of the input x and the final output, which is the representation x̃ of x, is obtained by
decoding c(x), x̃ = d(c(x)). Considering the notation for FFNNs, an AE may be described
as:

x̃ = ϕ2(WT
2

c(x)︷ ︸︸ ︷
ϕ1

(
WT

1 x + b1

)
+b2)︸ ︷︷ ︸

d(c(x))

(2.32)

where {W1,b1} are the trainable parameters associated to the hidden layer, {W2,b2}
are the trainable parameters associated to the output layer and x̃ and x have the same
dimension. In order to simplify the notation in the context of AEs, W and b will denote
W1 and b1, respectively; likewise, W′ and b′ will denote (respectively) W2 and b2. In the
case that W′ = WT it is said that tied weights are being used.

Depending on the type of input, the activation function applied to the neurons of the
output layer may be linear or nonlinear. For real valued inputs, the linear activation
function should be chosen in order to not restrict the output values, however, if the input
components domain is in [0,1], the sigmoid function would be more appropriate. Note that
the idea of an AE is to reproduce the input, therefore the output layer range of values
should cover the input domain. Similarly, the cost function should be chosen according
to the attribute space, S. In the case that S = Rd, the SE cost function may be more
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Figure 2.3: Model of an auto-encoder with a hidden layer.

appropriate. If, on the other hand, S = [0, 1]d the common applied cost function is the
element wise CE [9, 51], which is given by:

−
γL∑
s=1

(ts log(ys) + (1− ts) log(1− ys)) = −
d∑
s=1

(xs log(ys) + (1− xs) log(1− ys)) .

(2.33)
Furthermore, since the usual training method used is the backpropagation algorithm

(Section 2.2.1), it is important to prevent the AE from learning the identity function which
presents minimal error. A possibility to overcome this issue is to constrain the hidden layer
size (number of neurons) to be smaller than the size (number of components) of the input
so that the encoding phase corresponds to a dimensionality reduction.

Introduced by Bengio et al. [9], the concept of stacked auto-encoders (SAE) is associ-
ated to the pre-training of each hidden layer of a deep neural network separately regarding
them as AEs; the aim is to obtain an initialization of the weights more appropriate than
the random one, which is usually considered in algorithms like backpropagation. In the
pre-training phase, each hidden layer of the DNN, starting from the lowest-level layer to
the highest-level layer, is considered as the hidden layer of an AE. The input of each AE is
obtained by processing the original (network) input through the previous already trained
layers of the DNN. Thus, after the first AE is trained, its output layer is discarded and
the resultant trained layer is used to obtain the inputs for the next AE, which has, as
hidden layer, the second hidden layer of the DNN. The process is successively repeated for
the other hidden layers until all the hidden layers of the DNN are trained. Finally, in the
fine-tuning phase, the whole DNN is trained using a gradient descent method like back-
propagation where the initial weights of the output layer are randomly initialized while the
weights of the hidden layers are the ones obtained in the pre-training phase.

Although, as mentioned above, the hidden layer in a AE should have smaller size than
the input, according to Bengio et al.[9] when applying this model of training, the obtained
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SAE performs well even if the size of its hidden layers is not strictly decreasing from the
lowest to the highest-level layers.

As an illustrative example of the pre-training process, let us consider the DNN presented
in Figure 2.4. In order to simplify the notation, let us denote the matrix of weight vectors
associated to the output layer of the kth AE by W′

k remembering that Wk is the weight
matrix associated to the kth AE hidden layer and, consequently, to the kth layer of the
DNN.

Figure 2.4: Untrained DNN (with the bias omitted).

In the first built AE, the input and the hidden layer are the input and the first hidden
layer of the DNN (see Figure 2.4). The AE (as shown in Figure 2.5) is then trained with
backpropagation to obtain W1 and W′

1. Then, the output layer (and consequently W′
1) is

discarded and the first hidden layer of the network is used to obtain the input to a new AE,
for which the hidden layer is the second hidden layer of the network (see Figure 2.6: the
inputs of the AE are represented using dashed squares to distinguish them from the inputs
of the network, x1, . . . , x5). Analogously, the new AE is trained using the backpropagation
algorithm to obtain W2.

Once the second AE is trained, its output layer is discarded. The last AE has, as hidden
layer, the third hidden layer of the DNN and its inputs are the processing result of the
original inputs through the first two hidden layers of the DNN (Figure 2.7). In the same
way, this AE is trained to obtain W3.

In the fine-tuning phase the trained weights W1,W2,W3 are used as initial weights for
each hidden layer of the DNN, while the W4 weights are randomly initialized. Backprop-
agation is now used in a supervised way to drive the DNN output as closest as possible to
the target response.

Alternatively, the use of AEs may be replaced by the use of denoising auto-encoders
(dAEs) as proposed by Vincent et al. [51]. The training of the dAEs is guided in an
effort to reconstruct the original (uncorrupted) input from a noisy version of it; the noise
is introduced with the purpose of improving the robustness of the algorithm. According
to [51], having defined the portion of input’s components to be corrupted, ζ, the process
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Figure 2.5: AE built to obtain the initialization of the weights of the first hidden layer.

Figure 2.6: AE built to obtain the initialization of the weights of the second hidden layer.

Figure 2.7: AE built to obtain the initialization of the weights of the third hidden layer.
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of disturbance may be achieved by randomly choosing, for each training sample x, ζ% of
the components of x to be set to 0. ζ is referred as the corruption rate.

The application of the greedy layer-wise training to DNNs considering dAEs (instead of
AEs) is similar to the one described above. Such approach is known as stacked denoising
auto-encoders (SdAs). It should be noted that the input used to train the kth dAE,
associated to the kth layer of the DNN, is obtained by processing the original input x
through the first k−1 trained layers of the DNN; the result is then subject to the corruption
mechanism (see the illustrative example in Figure 2.8 - before being processed by the
current dAE, in this case, the second dAE, the input x = (x1, x2, x3, x4, x5) is processed
by the (already) trained precedent layers of the DNN; the result, y = (y1, y2, y3, y4) is then
subject to the corruption mechanism which consists, in this case, in setting 25% of the
dAE inputs components to 0; finally, the corrupted input, y = (y1, y2, 0, y4), is processed
by the dAE).

Figure 2.8: Illustrative example of the application of the corruption mechanism in the
second dAE of the SdA considering the DNN in Figure 2.4.

2.4 Transfer Learning for Deep Feedforward Neural

Networks

The learning process that each person goes through is influenced by his/her previous
experience. When facing a new challenge, we, human beings, are capable of applying our
knowledge to overcome it. It is expected that, if our previous acquired knowledge is directly
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or indirectly related to the challenge, we are able to solve it more efficiently (in terms of
time and solution quality).

As a result of the attempt to reproduce such process in machine learning, transfer
learning was introduced. This term refers to the reuse of knowledge, associated to one or
more source problems, on a target problem [41] (the attribute space, the data distribution
and the number of classes may differ between the source and the target problems). In
other words, given the sources of knowledge associated to the respective (source) problems,
transfer learning consists in applying such knowledge to the original (target) problem in
order to improve its knowledge. The knowledge improvement may translate in a higher
initial training performance, a faster learning and/or a higher final training performance
[50]. Transfer learning is thus particularly useful when the available training set is reduced
[4] or rapidly becomes outdated as it occurs in the problem of locating a device based on
its WiFi signal [42].

In spite of its improvement purpose, transfer learning may have the opposite effect. In
that case, it is said that negative transfer has occurred; otherwise, the transfer is dubbed
as positive. In order to avoid negative transfer learning, when transferring the knowledge,
there are three main issues that need to be addressed: what to transfer, how to transfer and
when to transfer. In what concerns to the “what to transfer” issue, transfer learning meth-
ods are categorized into instance-based transfer, feature-based transfer, parameter-based
transfer and relational-transfer learning. In the case that the source and target attribute
spaces are similar (but not the same) or the same but the respective data distributions
differ, some of the source samples may be reused in the target problem by applying a
re-weighting procedure; this type of transfer learning is referred as instance-based trans-
fer. When the similarity between the attribute spaces is low, a possible approach, known
as feature-based transfer, is to find a mapping such that, after its application on both
source and target samples, the difference between the obtained source and target domains
(by which we mean the attribute space and samples distribution), is reduced. The goal
is to reuse the source samples on the target problem considering the new representation
of the data. In parameter-based transfer, by assuming that the source and the target
problems are related, then some of the structure/parameters may be transferred from the
source problem to the target problem. Finally, the relational-transfer learning deals with
data that can be described by relations between samples. Given related source and target
problems, the idea is to map the relationships in the source domain to the target domain.

When restricted to the context of DNNs, transfer learning may be associated to the
reuse of (already trained) DNN weights and biases on a new (untrained) DNN related
to a different task [4, 14, 26]. The source of knowledge is the trained DNN, DNNsource,
and the transfer consists in consider as initial weights and biases of the hidden layers
in the target DNN, DNNtarget, the respective weights and biases of the hidden layers of
DNNsource. Starting from such trainable parameters, the DNNtarget is then fine-tuned.
Several variations may be considered. For example, we may consider to train only the
output layer or to retrain also the last k layers. This type of transfer learning may be
classified as parameter-based since the structure, namely, the hidden layers, are being
shared.
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Chapter 3

Computational Simulations

3.1 Equipment and Software

The software used to construct the model was Theano [7, 10], a Python library directed
to the optimization and evaluation of mathematical expressions. The main data structures,
such as the SdA class and the classes on which the SdA class is built, were based on the
ones provided in [2].

When combined with the use of a Graphics Processing Unit (GPU), Theano allows
to increase the processing speed. Since the number of parameters as well as the volume
of data used in the training of a DNN is usually high, the network training is clearly a
computationally heavy process. For this reason, the simulations executed to achieve the
best model were performed on a GTX 770 GPU.

3.2 Stacked Denoising Auto-encoders Experiments

3.2.1 Datasets

The two considered datasets consisted of a set of images from microglial cells which were
acquired in a DMI6000B inverted microscope using the ORCA-Flash4.0 V2 (Hamamatsu
Photonics) CMOS camera. Images were exported as raw 16-bit TIFF using the LAS AF
software with the original metadata preserved. TIFFs had their background subtracted in
FIJI using the roller-ball ramp in between 35− 50% pixel radius. Images were segmented
in FIJI using a modification of the triangle threshold algorithm for epifluorescence images.
Each thresholded microglial cell was delineated using the particle analyze tool in calibrated
images and exported to FIJI ROI manager (each cell was isolated in an image and the
images vary in size and shape).

The datasets were disjoint but followed a similar class distribution. The main difference
between them was that, in the second dataset (Dataset II) the labeling of the cells’ state
was discussed by a panel of four experts while in the first dataset (Dataset I) only two
experts were considered. In Dataset II, the images of cells whose state did not reached to
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a consensus on the experts panel were discarded.
The first dataset was composed by 227 images. The most common state in the dataset

was the transition state while the less represented state was the resting state. The class
distribution is shown in Table 3.1.

State Number of Images Percentage (%)
Resting 34 14.98

Transition 118 51.98

Active 75 33.04

Table 3.1: Distribution of the classes/states in Dataset I.

Dataset II was composed by 45 images (six samples of the dataset are presented in Fig-
ure 1.1). The class distribution was similar to Dataset I (the detailed dataset composition
is described in Table 3.2).

State Number of Images Percentage (%)
Resting 7 15.56

Transition 22 48.89

Active 16 35.55

Table 3.2: Distribution of the classes/states in Dataset II.

In order to simplify the notation, the resting, transition and active states are coded as
C1, C2 and C3, respectively.

3.2.2 Simulations

The experimental component was driven through simulations following a common struc-
ture. In each simulation, all images were resized to an image with dimension 30× 30 and
flatten to a vector of 900 entries which was used as input of the network. The dataset
was then divided into a training set, a validation set and a test set with, respectively,
40%, 20% and 40% of the samples. The samples were normalized according to the maxi-
mum and minimum values of the samples in the training set (after the normalization each
component/entry of the input assumed a value in [0, 1]).

A SdA of a fixed architecture of 5 hidden layers with 500 neurons each was then trained
using the training set until the validation error started to increase significantly (executing
a maximum of 1000 fine-tuning epochs). The training parameters used for the network
were the following: 200 epochs for pre-training, 0.01 for the pre-training learning rate, 0.2
for the fine-tuning learning rate, 10 for the batch size and 0.1 for the corruption rate. The
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latter implies that 10% of the input components were randomly chosen to be set to 0 (the
input components set to 0 varied within samples).

Finally, the model was applied to the samples of the test set and its performance was
evaluated using the Balanced Error Rate (BER). The BER is given by the average of the
class errors; in this case, it is given by:

BER =
EC1 + EC2 + EC3

3
, (3.1)

where EC1, EC2 and EC3 are the rates of wrong predictions within the classes C1, C2 and
C3, respectively. The term accuracy will denote the value (1− BER)× 100%.

The above procedure was repeated 20 times (by randomly shuffling the data) in order
to capture the general performance of the model regardless of the samples used to train.
The final result of the simulation is the average (and standard deviation) of the accuracy
obtained in the 20 models.

Some of the algorithm’s parameters were already defined in the acquired code and were
not modified, namely, the training algorithm, the training stopping criterion and the cost
and activation functions.

As training algorithm, the standard backpropagation (see Section 2.2.1) was applied.
In the pre-training phase of each SdA, the dAEs were trained until the maximum number
of epochs was reached. In the fine-tuning phase, as previously mentioned, a validation set
was used to prevent overfitting.

With respect to the activation functions, the sigmoid function was applied in the dAEs
neurons and in the hidden layers’ neurons of the DNN. The activation function applied in
the output layer of the DNN was the softmax function. The cost function used in the pre-
training phase corresponded to the mean of the element wise CE across the mini-batches.
In the fine-tuning phase, the considered cost function was the mean of the CE cost function
across the mini-batches.

3.2.3 Results

Experiments I

In the first set of experiments we considered Dataset I. Initially, we used a stratified
training set, that is, a training set which respected the class distribution of the dataset.
Since the classes were not equally represented, the use of a stratified training set compro-
mised the learning of the less represented classes (in this case, C1 and C3). The average
accuracy was 32.51% with a standard deviation of 3.84 and we observed an error rate in
class C1 of almost 100% in some of the repetitions.

In order to improve the results, we decided to square the images so that their ratio was
kept on the resizing to 30 × 30 (a black background was added to the images so that the
they become square before downsizing). This approach had no impact on the performance:
only an average accuracy of 29.15% (with 1.77 of standard deviation) was achieved.

Alternatively, we considered a balanced training set, that is, a training set with the
same number of samples for each class, and we repeated the simulations (first using the
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original images and then using square images). Globally, the results remained the same
although the class errors have been balanced. By using the original images, we obtained
an average accuracy of 30.62% (with a standard deviation of 8.26) and by applying the
squaring process, we reached an average accuracy of 29.54% (with a standard deviation of
5.66).

Given these results, we decided to use the original images and balanced training sets
in the next simulations. The purpose of using the original images, instead of squared
versions of them, was to avoid unnecessary pre-processing (the squaring did not improve
the results). Moreover, the choice of using a balanced training set, instead of a stratified
one, was driven by the need of a more homogeneous class learning.

Inspired by the approach presented in [5], we repeated the simulations by including
(equally spaced) rotations of the images on the training sets. It was expected that the
artificial increase of the training set using rotations would lead to better results. However,
the results remained unchanged: 32.37± 3.20% of average accuracy.

Additionally, in an effort to reinforce the image contrast and, therefore, enhance the
contours of each cell, we tried to define a mechanism which intensified the lighter tones of
the images. This procedure, however, produced an undesirable effect: the resultant images
were noisier than their originals (as we can observe in Figure 3.1 - in spite of the enhance-
ment of the cell body after the normalization, it is observed a greater diffusion around the
cell) whereby this approach was not useful to our problem (the accuracy remained similar:
31.56± 7.51%).

Figure 3.1: Dataset image before (A) and after (B) the normalization process to enhance
the cell contour.

Given the morphological differences between cells of different states (see Sect. 1.1), both
in thickness and in extension, we tried a different approach. Considering the mapping of
each image into a matrix of pixels, the idea was to capture the intensities of each image
by line and column. Thus, each image was compressed into a vector obtained by the
concatenation of two vectors: a vector with the same size as the number of lines of the
image, whose τ th component was the sum of intensities of the pixels in line τ , and a vector
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with the same size as the number of columns of the image, whose ιth component was the
sum of intensities of the pixels in column ι. The resultant vector was then resized to a
vector of 60 entries and its entries were normalized to a value in [0, 1] by dividing each
entry by the maximum value of the vector (this vector was used as the network input). The
obtained accuracy was, on average, 32.86 ± 7.35%. This accuracy translate, once more,
into no improvement.

Next, we tried to create a mask of the cells. The goal was to reinforce the cells contours
by capturing the cells morphology. Each mask was obtained by defining a boolean image of
the form img < threshold, where img was the original image and threshold was a threshold
whose value was in [0, 255]. The masks were then resized to 30× 30 and flatten to vectors
which were used as network inputs. Several constant values were tested for the threshold
and, since the thresholds chosen were not appropriate for all the images (see Figure 3.2),
we tried to define a function which varied according to the image ratio (width/length) and
to the image minimum and maximum intensities but we did not reach more appropriate
masks. Considering a fixed threshold, we achieved an accuracy of 36.19 ± 9.29%. Figure
3.2 reflects the difficulty of creating a masking function which was appropriate for all the
cells. We can observe that the built mask for the first cell captures its shape, however, if
we observe the masks of the cells in images C and E, we notice two opposite effects. In
the first case, the threshold is too small and the mask covers non-cell areas. On the other
hand, the threshold is too high for the cell in image E and the mask does not incorporate
the cell body completely.

Globally, the attempts of improving the model accuracy were not successful. Particu-
larly, we found hard to define an appropriate pre-processing procedure for the images.

Given that the results were invariant despite all the considered approaches, we decided
to observe the training and validation errors with the purpose of understanding whether
the models were learning or not. We verified that, in the majority of the repetitions within
the simulations, the error curves shared the same behavior. The training error was initially
high and started decreasing as the number of epochs increased while the validation error
remained nearly constant. The training error curve was having the expected behavior.
The validation error, on the contrary, exhibited an irregular evolution: it was expected
an decreasing of the error followed by an increasing. This may indicate that something is
compromising the performance of the models.

Experiments II

Due to the low accuracy obtained using the first dataset, we felt the need of either
request the relabeling of the samples on Dataset I by a panel with more experts or acquire
a new dataset in which the labels were assigned by more than two experts. As discussed
in Section 1.1, the cells’ morphology is highly variant even within the same class which
makes their classification difficult. Thus, the effort of several experts instead of just two
may result in a more accurate labeling. In this sense, we obtained a new dataset, Dataset
II, described in Table 3.2 which we considered for the new set of experiments.

Given the results obtained in the previous set of experiments, we only considered bal-
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Figure 3.2: Cell images (left) and respective masks (right) generated with a threshold of
25.

anced training sets for the new set of experiments since it allowed an “uniform” learning
of the 3 classes.

In the presence of such a small dataset as ours, we started by considering a training
set with 3 samples per class. Given that a training set of 9 elements is poor, we artificially
increased the training set by adding rotated versions (equally spaced) of the original images
as in Experiments I (see Section 3.2.3). Thus, the training sets were obtained by randomly
selecting images following a stratified division; the rotations (of the selected images) were
then added. The number of rotations considered for each image within a class was nearly
the same and was computed so that each class had the same number of elements for
training. As an attempt to achieve higher accuracy, we varied the number of elements
per class in the training set, in particular, we considered the values of 30, 50, 70 and 100
elements per class.

Analogously to the first set of experiments, we repeated the simulations considering
squared images. This approach, in which all the images have a squared shape, will be
called squared while the initial approach will be denoted as non-squared. Results are
shown in Table 3.3.

We start by observing that artificially increasing the training set size is beneficial for the
SdA learning. Still, it is clear that it is sufficient to use 50 (non-squared) or 30 (squared)
images per class (the accuracy obtained with 70 and 100 images is not significantly higher).
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Non-squared Squared

3 Images/class 54.81(7.51) 56.99(7.57)

30 Images/class 55.83(8.82) 63.75(7.46)

50 Images/class 60.05(6.46) 62.74(7.36)

70 Images/class 60.73(7.67) 65.16(7.03)

100 Images/class 60.91(6.42) 65.26(7.25)

Table 3.3: Average accuracy (in % over 20 repetitions, standard deviations in parenthesis)
for the original 3-class problem varying the number of elements per class. Results for
squared and non-squared images are shown.

It is also clear that the use of squared images is important. In fact, by using this strategy
the downsizing step maintains the microglial cell aspect ratio which is fundamental as the
recognition is based on the morphology of such cells. Overall, the results show that this
is a hard problem with the highest accuracy around 64%, with squared images. Standard
deviations are also high due to the small size of the original dataset.

To further investigate where does the difficulty lies, we repeated the study by consid-
ering some 2-class sub problems, namely C1 vs C2, C1 vs C3 and C2 vs C3. The results
are shown in Table 3.4.

C1 vs C2 C1 vs C3 C2 vs C3

Non-squared Squared Non-squared Squared Non-squared Squared

3 Images/class 52.64(10.88) 56.39(12.24) 82.92(10.53) 82.29(9.58) 63.61(12.45) 66.39(11.76)

30 Images/class 58.03(12.67) 64.57(8.68) 83.63(8.27) 85.5(5.84) 67.42(9.37) 69.96(11.76)

50 Images/class 61.49(9.41) 65.43(8.97) 84.88(7.81) 85.75(7.03) 68.73(10.30) 70.92(11.55)

70 Images/class 60.87(10.68) 64.29(10.69) 84.86(8.53) 86.00(7.43) 67.31(8.97) 70.92(11.55)

Table 3.4: Average accuracy (in % over 20 repetitions, standard deviations in parenthesis)
for the 2-class sub problems varying the number of elements per class. Results for squared
and non-squared images are shown.

The lowest accuracy was obtained in the C1 vs C2 problem, while the highest accuracy
was obtained in the sub problem C1 vs C3. This was expected due to the high morpho-
logical difference between cells in the states C1 and C3 (see Section 1.1). It is particularly
evident the difficulty in distinguishing the transition state (class C2) from the others,
specifically from class C1. In fact, the resting and transition states share some morpho-
logical similarities (such as elongated body and sharper boundaries) that hinder the SdA
learning. We also observe that the performance of the models obtained in each repetition
is highly variant. This is essentially due to the small size of the dataset and consequent
heterogeneity within classes, making the models too dependent on the particular training
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set.
Analogously to what was observed in the original problem, a slight improvement is

obtained when squared images are used. Also, the use of rotations is still beneficial although
with a smaller impact for the C1 vs C3 problem.

Considering the results obtained for the original problem and respective sub problems,
we decided to approach the original problem with a hierarchical classification methodology
[30]. Given the classes A and B, where B = {B1, B2}, the idea consists in building a
classifier for the problem A vs B1 vs B2 from two binary classifiers: the first is trained
to solve the problem A vs B while the second is trained to solve the problem B1 vs B2.
Thus, in the final classifier, a sample is first presented to the classifier A vs B and if its
predicted class is B, the sample is then presented to the second classifier in order to be
classified either in B1 or B2. With this approach, we try to simplify the original problem
by dividing it in two sub problems.

By observing the results depicted in Table 3.4, we verify a greater similarity between
samples of classes C1 and C2 whereby the assignment A → C3, B → {C1, C2} may be
the most appropriate among the available choices. In the experimental procedure executed
following such assignment, we obtained an average accuracy of 52.46±7.09% which is lower
than the one obtained considering a single classifier to solve the original problem. Given
that the samples of classes C2 and C3 also share some similarities, we decided to repeat
the simulation using, this time, the A → C1, B → {C2, C3} assignment. Despite not
significantly, the accuracy decreased: 50.38 ± 7.26%. The last possible assignment, A →
C2, B → {C1, C3}, was expected to be, in the context of the problem, the less suitable
since the samples of C1 and C3 classes have a different morphology while samples of C2
share similarities to both C1 and C3 classes’ samples. This was verified experimentally:
the average accuracy, when considering the later assignment, was 45.37± 9.88%, the worst
of the 3 possibilities.

Back to the original approach for the C1 vs C2 vs C3 problem, in an effort to understand
if the architecture of the network was compromising its performance, we decided to vary
the number of hidden layers of the network and repeated the simulations considering 3, 7,
10 and 15 hidden layers. Due to the results presented in Table 3.3, we considered, for these
simulations, 30 squared images per class. The results are shown in Table 3.5. It should
be noted that the appropriate number of elements per class may vary between different
architectures, however, such study will not be performed.

The increasing of the network complexity did not introduce performance improvements.
On the contrary, we verify a decline in the average accuracy of the models whereby the
initial architecture is appropriate to the problem. It should be noted that the training set
may not be sufficiently large to successfully train more complex networks (with more than
5 hidden layers), which may justify such performance decline.

Since, according to the discussion in Section 2.2.3, the online mode may lead to better
results, we decided to change the batch size to 1 thus simulating the online mode. We
repeated the simulation (considering the initial architecture and 30 squared images per
class) and obtained an average accuracy of 63.21 ± 8.89%. Such result indicates that the
online mode is not beneficial for our problem, at least when using a small dataset as Dataset
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Number of Hidden Layers Accuracy

3 62.27(7.58)

5 63.75(7.46)

7 60.45(7.67)

10 59.57(7.86)

15 56.32(10.97)

Table 3.5: Average accuracy (in % over 20 repetitions, standard deviations in parenthesis)
for the 3-class problem varying the number of hidden layers. The colored line relates to
the initial architecture.

II.

3.3 Transfer Learning Experiments

3.3.1 Datasets

For the source network, five image datasets (respectively called babyAIshapes 1, mod-
ified babyAIshapes 1, babyAIshapes 2, shapes and small MNIST), presented in Table 3.6,
were considered. The (original and modified) babyAIshapes 1 datasets consisted in datasets
of colored images of 3 basic shapes: circle, square and triangle (the images of both datasets
were modified to a gray tone). In the latter dataset, the images whose shape color had
a lower value than the background were modified in order to fill the shape with a higher
value than the background. The idea was to render the dataset images more identical
to the images of microglial cells (in which the background is black - have a lower value
- and the cell has a lighter tone which is associated to a higher tone value). Similarly,
the babyAIshapes 2 dataset was composed by colored images of 3 basic shapes: ellipse,
rectangle and triangle (and the images were also modified to a gray tone). The shapes
dataset was composed by images (in gray tones) of circles, ellipses, squares and rectangles.
The shapes in the four datasets just described varied in size, orientation and position.
The small MNIST dataset was a subset of the MNIST dataset which is composed by gray
images of handwritten digits.

The dataset considered for the target network was Dataset II (described in 3.2.1).

3.3.2 Simulations

The implementation of transfer learning was divided in two phases. In the first phase,
a DNN for the source problem was created. The training of the source DNN, along with its
performance assessment, followed the procedure described in Section 3.2.2. The training
parameters and the architecture - except eventually for the the number of inputs and
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Dataset Classification Number of Image Number of Training
Name Problem Classes Dimensions Samples

babyAIshapes 1 [1] Basic shapes 3 32× 32 10000

modified babyAIshapes 1 Basic shapes 3 32× 32 10000

babyAIshapes 2 [1] Basic shapes 3 32× 32 10000

shapes Shapes 4 20× 20 100

small MNIST [3] Handwritten digits 10 28× 28 10000

Table 3.6: Brief description of the source datasets.

output neurons - were the same as previously considered, however the process was not
repeated 20 times, it was executed just once.

The second phase consisted in initializing the hidden layers weights and biases of the
target DNN, with the respective weights and biases of the source DNN. The target DNN
was then (fully) trained using backpropagation. This procedure is similar to the greedy-
layer wise approach, the difference is that the pre-training is replaced by the initialization
using the source DNN. For this reason, the code created for the simulations described in
Section 3.2.2 was reused to create the target DNNs by slightly changing it to perform such
initialization instead of the unsupervised pre-training.

As target DNN training set, a subset of 30 squared images per class was considered
(this choice was based on results presented in Section 3.2.3). The input dimensions of
the target DNNs were adjusted to assume the same value as the input dimensions of the
respective source DNN.

3.3.3 Results

Following the procedure described in the previous section, we obtained source DNNs
whose accuracy is shown in Table 3.7. The source DNN which exhibited the highest
accuracy was the one associated to the small MNIST dataset, while the DNN with the
lowest accuracy was associated to the shapes dataset, which had the smallest training set,
about 100 times smaller than the others.

Given that the attribute space dimensions of the target DNNs differed from the one
considered in Section 3.2, we repeated the SdA simulations for the original problem (mi-
croglia) by considering images of 20×20, 28×28 and 32×32 dimensions and a training set
of 30 squared images per class. The goal was to compare the performances of the DNNs
applying SdAs and transfer learning. The accuracy of the target DNNs and respective
SdAs (baseline) is shown in Table 3.8.

Regardless of the source dataset, we observe that transfer learning did not have a
significant impact on the accuracy of the target DNN, when comparing to the accuracy
achieved using only SdAs.

The lack of improvement may be justified by several factors. First, the source problems
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Dataset Source DNN Accuracy

babyAIshapes 1 91.89

modified babyAIshapes 1 70.43

babyAIshapes 2 74.17

shapes 65.50

small MNIST 96.60

Table 3.7: Accuracy (in %) for the source DNNs varying the source dataset.

Source Dataset Target DNN Accuracy SdA Accuracy

babyAIshapes 1 63.89(6.95) 62.59(7.38)

modified babyAIshapes 1 65.85(6.99) 62.59(7.38)

babyAIshapes 2 60.21(7.84) 62.59(7.38)

shapes 63.35(7.82) 61.16(8.37)

small MNIST 58.46(8.45) 60.70(7.93)

Table 3.8: Average accuracy (in % over 20 repetitions, standard deviations in parenthesis)
for the target problem (varying the source dataset) and respective SdA, built considering
the same input dimensions as the target DNN.
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may not be sufficiently related to the target problem. If we consider the four datasets
associated to the classification of shapes, it is possible to find similarities between the
source and the target problems, for example, an active microglial cell usually has a circular
shape (the resting and transitive cells, on the other hand, have an irregular and variant
shape and do not assume any specific geometric shape). In what concerns to the problem
associated to the small MNIST dataset, there is no clear relation between it and the target
problem. The poor suitability of the source problems becomes more evident when we
compare the performances of the source DNNs (Table 3.7) to the performances of the
respective target DNNs (Table 3.8). We observe that the source DNN exhibiting the
highest accuracy, associated to the small MNIST dataset, gave rise to the target DNN
with the lowest accuracy. On the other hand, the source DNN associated to the modified
babyAIshapes 1, which exhibits one of the lowest accuracy, resulted in the target DNN
with the highest accuracy. These results reinforce that the source problem associated to
the modified babyAIshapes 1 dataset is more related to the target problem than the source
problem associated to the small MNIST dataset.

Once more, and due to the reasons discussed in Section 3.2.3, the size of the dataset
may had also compromised the performance of the resultant target DNN.

38



Chapter 4

Conclusions

In this work, we applied stacked denoising auto-encoders to the classification problem
of identifying a microglial cell’s state. We started by considering a dataset with 227 images.
It should be noted that such dataset is small when compared to the datasets usually used to
train DNNs (for example, the MNIST dataset [3], which is a dataset of handwritten digits,
has 60000 training samples). We initially used a stratified training set with no image pre-
processing and obtained a global result of approximately 33%. In an effort to improve
the performance, we tried multiple attempts, namely, by using balanced training sets,
artificially increasing the dataset or implementing some image pre-processing procedures
such as the image squaring, the low intensities reinforcement and the use of masks.

Since the accuracy using the first dataset was invariably low, less than 37% in all the
attempts, we acquired a new dataset in which the labels were discussed by more than
two experts. In spite of the small size of the second dataset, it was possible to observe a
significant performance improvement when comparing to the performances obtained using
the initial dataset. This improvement indicates the existence of incorrect labels on the first
dataset, justifying the low accuracy obtained using it. Particularly, these results reinforce
the difficulty of distinguishing the states and, therefore, reveal the need of several experts
(when classifying in a non automatic way). The non automatic process becomes inefficient
in the sense that requires the participation of several experts and is slow (mainly when
leading with large amounts of cells). Such issues exalt the importance of an automatic
model construction.

Despite the poor results using Dataset I, it was possible to observe that the use of a
balanced training set is beneficial. It should be noted that, although class C2 is the most
important to detect and the most represented in the dataset, a small error rate in class
C2 is not necessarily advantageous, namely when the less represented classes (C1 and C3)
exhibit a high class error as it was occurring when the training set followed a stratified
division (the majority of the samples were being classified in class C2; the classes C1 and C3
were not properly learned). Furthermore, the attempts performed using the first dataset,
namely, the several pre-processing approaches, revealed the difficulty in defining a suitable
procedure, that is, a procedure which was adequate for all the images and allowed the
distinction of the states.
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In the second set of SdA experiments, in which we used the second dataset, by consider-
ing the original 3-class problem as well as some binary sub problems of it, we conclude that
the transition state is the most difficult to recognize, mainly from the resting state. This is
due to the morphological similarities between those classes that cause some disagreement
even between the experts panel. We also found important to square the images in order
to maintain their aspect ratio preventing, in that way, morphological distortions with the
downsizing step. Rotated versions of the original images were also used to diminish the
effect of having a (very) small size dataset.

Our last approach, which consisted in the application of transfer learning, was not
successful in terms of performance improvement. The results were similar to the ones ob-
tained considering SdAs, that is, similar to the ones obtained without resorting to transfer
learning and may indicate the need of considering a more related source problem.

Globally, the generalization ability of the created models may also have been com-
promised because the dataset is not enough representative of the microglia population’s
morphology, even within the same class (recall that Dataset II has only 45 samples). In
general, the experiments show that it is essential to collect more data in order to improve
the performances of the models.

Besides the small number of samples in the dataset, the reduced available time was
also a major limitation. It would be interesting to approach the problem using another
methodology, namely, CNNs. Furthermore, a deeper search in what concerns the network
architecture and the training parameters may be also beneficial.
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