
Universidade de Aveiro Departamento de Biologia
2016

Propagação clonal, conectividade e estrutura

genetica em populações de Paramuricea clavata do

Atlntico e Mediterrãneo

Clonal propagation, connectivity and genetic

differentiation in Paramuricea clavata populations

from the Atlantic and Mediterranean Sea

JOANNA

PILCZYNSKA

U
n

iv
er

si
d

ad
e 

d
e 

A
ve

ir
o

20
16

J
O

A
N

N
A

 P
IL

C
Z

Y
N

S
K

A
P

ro
p

a
g

a
ç

ã
o

 c
lo

n
a

l,
 c

o
n

e
c

ti
v

id
a

d
e

 e
 e

s
tr

u
tu

ra
 g

e
n

e
ti

c
a

 e
m

 

p
o

p
u

la
ç

õ
e

s
 d

e
 P

a
ra

m
u

ri
c

e
a

 c
la

v
a

ta
 d

o
 A

tl
n

ti
c

o
 e

 M
e

d
it

e
rr

ã
n

e
o



Universidade de Aveiro 

2016 

Departamento de Biologia 

JOANNA 
PILCZYNSKA 
 

Propagação clonal, conectividade e estrutura 
genetica em populações de Paramuricea clavata do 
Atlntico e Mediterrãneo  
 
Clonal propagation, connectivity and genetic 
differentiation in Paramuricea clavata populations 
from the Atlantic and Mediterranean Sea 
 
 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Universidade de Aveiro 

2016 

Departamento de Bilogia 

JOANNA 
PILCZYNSKA 
 
 

Clonal propagation, connectivity and genetic 
differentiation in Paramuricea clavata populations 
from the Atlantic and Mediterranean Sea 
 
 

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos 
necessários à obtenção do grau de Doutor em Ciências do Mar, realizada sob a 
orientação científica do Doutor Henrique José de Barros Brito Queiroga, 
Professor Associado do Departamento de Biologia da Universidade de Aveiro, 
da Doutora Silvia Cocito, investigadora do ENEA, Italian National Agency for 
New Techoligies, Energy and Sustainable Economic Development, Marine 
Environment Research Centre, La Spezia, Italy e da Professora Anna 
Occhipinti, Full Professor of  Ecology, Department of Earth and Environmental  
Sciences, University of Pavia, Italy 

 

   



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dedykuję niniejszą pracę moim Rodzicom i Mężowi 

 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 



  
  
  
  
  
  
  
  
  
presidente Prof. Doutor Armando da Costa Duarte 

Professor Catedrático, Departamento de Química, Universidade de Aveiro 

  

 

 Prof. Doutor Filipe Oliveira Costa 
Professor Auxiliar, Departamento de Biologia, Universidade do Minho 

  

 

 Prof. Doutor José Pavão Mendes de Paula 
Professor Associado com Agregação, Faculdade de Ciências, Universidade de Lisboa 

  

 

 Prof. Doutor Agnese Marchini 
Post-doc fellow, Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy 

  
 

 Prof. Doutor Maria Marina Pais Ribeiro da Cunha 
Professora Auxiliar, Departamento de Biologia, Universidade de Aveiro 

  
 

 Prof. Doutor Henrique José de Barros Brito Queiroga 
Professor Associado com Agregação, Departamento de Biologia, Universidade de Aveiro 

  
 

  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
agradecimentos 

 

 
 
 
 
 
 
 
I would like to thank my supervisors, Prof. Henrique Queiroga and Dr. Silvia 
Cocito, for their patient guidance, encouragement and advices they have 
provided throughout my time as their student. I would also like to thank Prof. 
Ana Ochipinti for her help. 
 
This study was supported by the Ph. D. grant from the Erasmus Mundus 
Marine Ecosystem Health and Conservation (MARES) doctoral program; 
http://www.mares-eu.org/. and the DiverseShores research project (Testing 
associations between genetic and community diversity in European rocky shore 
environments), funded by Fundação para a Ciência e Tecnologia (PTDC/BIA-
BIC/114526/2009). Financial support was allocated by FCT under the 
COMPETE Programme, which includes components from the European 
Regional Development Fund and from the Ministério da Ciência, Tecnologia e 
Ensino Superior.  
 
Special thanks to C. Lombardi, A. Peirano, R. Albuquerque, F. Fernandes, J. 
Rodrigues and E. Mancuso for their help during the fieldwork. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 

  

palavras-chave 

 
gorgônias, mortalidade, dispersão, genética, conservação 

resumo 
 

 

A gorgónia vermelha, Paramuricea clavata, é uma espécie engenheira que 
habita costas e recifes rochosos do Mediterrâneo e do Atlântico ao longo da 
costa de Portugal, a profundidades que variam entre 15 e os 80 m. Esta 
espécie foi severamente afetada, no Mediterrâneo NO, por eventos de 
mortalidade induzidos por variações climáticas recentes. O objetivo geral deste 
estudo foi a investigação da diversidade genética de P. clavata no Mar da 
Ligúria (Mediterrâneio NO), uma região altamente impactada por eventos de 
mortalidade em massa causados por temperaturas elevadas, e no Atlântico, 
onde mortalidade em massa nunca foi observada em consequência de 
temperaturas genericamente mais baixas. Foram utilizados microsatélites para 
o estudo da contribuição da reprodução clonal, padrões de conectividade, 
estrutura genética e diversidade genética. Adicionalmente, um marcador 
mitocondrial (Cytochrome Oxidase I) foi usado para comparar as populações 
do Atlântico e do Mediterrâneo. Os resultados revelaram que a propagação 
clonal não desempenha um papel importante em P. clavata, uma vez que em 
quatro dos nove sítios não foram detetados clones e que a máxima prevalência 
de clones detetada atingiu apenas 13%. No entanto, a prevalência de clones 
detectada no presente estudo foi maior do que o previamente relatado. O 
estudo não conseguiu detetar qualquer perda de diversidade genética nas 
populações de P. clavata afetadas por eventos de mortalidade em massa. Foi 
possível descrever o padrão de migração entre os sítios afetados pela 
mortalidade em massa e os não afetados. Os resultados confirmaram que a 
baixa capacidade de dispersão larvar na gorgónia vermelha pode ainda ser 
ecologicamente significante para a recolonização e persistência populacional, 
permitindo a migração entre populações locais. A troca de larvas foi mais 
comum entre recifes separados por 200-300m, mas também foi detectada 
entre locais separados por 20 km. Os dados indicaram ainda migrações 
comuns entre recifes localizados a menores profundidades, impactados por 
mortalidade em massa, e recifes mais profundos, não impactados, do mesmo 
local. A presente investigação identificou uma importante descontinuidade 
genética na distribuição da gorgónia vermelha, com ambos os marcadores 
utilizados no estudo, mtDNA e microsatélites, revelando a mesma 
descontinuidade entre o Mediterrâneo e o Atlântico. Foram também 
encontradas diferenças significativas na diversidade genética entre o 
Mediterrâneo e as populações do Oceano Atlântico, com a heterozigosidade e 
a riqueza alélica ligeiramente, mas significativamente, mais elevadas no 
Mediterrâneo, possivelmente como resultado da história da colonização ou 
isolamento dos locais do Atlântico. Finalmente, foram ainda detectadas 
diferenças na diversidade genética entre as populações superficiais e mais 
profundas. A riqueza alélica foi menor nas populações menos profundas, 
menos estáveis devido a eventos de mortalidade induzidos pelo aquecimento e 
por outros fatores, e maior nas populações mais profundas e estáveis. Estes 
resultados devem revelar-se particularmente valiosos para a conservação de 
comunidades de gorgónias e assim a biodiversidade marinha global. 
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abstract 

 
The red gorgonian Paramuricea clavata is an engineering species, inhabiting 
rocky shore in the Mediterranean Sea and Portuguese coast of the Atlantic 
Ocean. The species was severely impacted by climatically induced mass 
mortality events in the NW Mediterranean. The general aim of the study was to 
investigate the genetic diversity of P. clavata in the Ligurian Sea (NW 
Mediterranean), a region highly impacted by past mass mortality events, and 
the Atlantic Ocean, where mass mortality was never observed due to generally 
lower water temperature. Microsatellites were used to study the contribution of 
clonal reproduction, connectivity pattern, genetic structure and diversity. 
Additionally one mitochondrial marker (Cytochrome Oxidase I) was used to 
compare the Atlantic and Mediterranean populations. The results revealed, that 
clonal propagation does not play an important role in P. clavata, since at four 
out of nine sites clones were not detected and the maximum prevalence of 
clones reached only 13%. The study failed to detect any genetic diversity loss 
in the P. clavata populations affected by mass mortality events. The migration 
pattern among sites affected by mass mortality and unaffected ones was 
described. The results confirmed that low larval dispersal capability in the red 
gorgonian may still be ecologically significant for population replenishment and 
persistence, enabling migration between local populations. This research has 
identified an important genetic break within the red gorgonian distribution. Both 
markers used in the present study, mtDNA and microsatellites, revealed the 
same discontinuity between the Mediterranean and Atlantic. Significant 
differences were found in the genetic diversity between the Mediterranean and 
Atlantic populations, with heterozygosity and allelic richness being slightly, but 
significantly, higher in the Mediterranean Sea, possibly as a result of 
colonization history or isolation of the Atlantic sites. The differences in genetic 
diversity were also detected between deep and shallow populations. Allelic 
richness increase with depth, being lower in the shallow, less stable 
populations due to past mortality events induced by warming and other 
interacting factors and higher in deeper, stable populations.The results should 
prove to be particularly valuable for the conservation of soft corals communities 
and thus the overall marine biodiversity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



  

parole chiave Gorgonie, mortalità, dispersione, genetica, conservazione 

abstract 

 
La gorgonia rossa Paramuricea clavata è una ‘engineering species’, vive sui 
fondali rocciosi del Mediterraneo e della costa portoghese dell’Oceano 
Atlantico. La specie è stata severamente impattata da eventi di mortalità di 
massa indotti dal CC nel Mediterraneo nord-occidentale. Lo scopo dello studio 
è stato di indagare la diversità genetica di P. clavata nel Mar Ligure 
(Mediterraneo nord-occidentale), una regione fortemente impattata da eventi di 
mortalità, e nell’Oceano Atlantico, dove eventi di mortalità non sono mai stati 
registrati grazie a valori di temperatura dell’acqua generalmente più bassi. Per 
studiare il contributo della riproduzione clonale, i pattern di connettività, la 
struttura e la diversità genetica sono stati usati i microsatelliti. In aggiunta, un 
marcatore mitocondriale (Cytochrome Oxidase I) è stato utilizzato per 
confrontare le popolazioni atlantiche con quelle mediterranee. I risultati hanno 
mostrato che la propagazione clonale non gioca un ruolo importante in P. 

clavata, in quanto in quattro siti su nove non sono stati individuati cloni e la 
predominanza massima di cloni ha totalizzato solo il 13%. Lo studio non ha 
riscontrato perdita di diversità genetica nelle popolazioni di P. clavata colpite da 
eventi di mortalità. Sono stati descritti i pattern di migrazione tra siti colpiti da 
mortalità e quelli non colpiti. I risultati hanno confermato che la bassa 
dispersione larvale nella gorgonia rossa può essere ancora ecologicamente 
significativa per il rifornimento e la persistenza di popolazioni, favorendo la 
migrazione tra popolazioni locali. Questa ricerca ha identificato un importante 
break genetico nella distribuzione della gorgonia rossa. Entrambi i marker usati 
in questo studio, mtDNA e microsatelliti, hanno rivelato la stessa discontinuità 
tra Mediterraneo ed Atlantico. Differenze significative sono state riscontrate 
nella diversità genetica tra popolazioni mediterranee e atlantiche, con 
eterozigosità e ricchezza allelica leggermente, ma significativamente più alte 
nel Mediterraneo, probabilmente come risultato della storia di colonizzazione o 
isolamento dei siti atlantici. Le differenze nella diversità genetica sono state 
riscontrate anche tra popolazioni profonde e superficiali. La ricchezza allelica 
aumenta con la profondità, risultando più bassa nelle popolazioni più 
superficiali, meno stabili a causa degli eventi di mortalità indotti dal 
riscaldamento e da altri fattori interagenti, e più alta nelle popolazioni più 
profonde e relativamente più stabili. I risultati sono di particolare interesse per 
la conservazione delle comunità di coralli molli e quindi nel complesso per la 
biodiversità marina. 
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General introduction 

 

Coralligenous assemblages as a highly biodiverse and endangered community 

 

Ecological value of coralligenous communities 

Coastal ecosystems are the most diverse of marine habitats and at the same time the most 

impacted by human activity (Halpern et al. 2008). One of the most species rich marine reservoirs is 

the Mediterranean Sea (Coll et al. 2010). Around 4-18% of the world’s marine species can be 

found here, which is a relatively large proportion, since the surface area and volume of the sea 

represents only 0.82% and 0.32% of the world ocean, respectively. High levels of endemism, 

averaging more than 25% among Mediterranean species, are another reason for considering this 

region a biodiversity hot spot (Bianchi and Morri 2000). Coralligenous assemblages are among the 

most species rich communities in the Mediterranean Sea - it is assumed that only the Posidonia 

oceanica meadows harbor greater species diversity (Boudouresque 2004). 

 

Coralligenous assemblages are calcareous formations of biogenic origin, growing in dim light 

conditions. These hard-bottom communities are characteristic of Mediterranean Sea (Ballesteros 

2006). Irradiance is the most important environmental factor influencing the development of the 

coralligenous framework and the required light level must be between 0.05 and 0.3% of the surface 

light (Ballesteros 1992). Communities usually develop in the circalittoral zone throughout the 

Mediterranean Sea, except the coast of Lebanon and Israel, but most of the available data comes 

from studies on the western part of the sea. Coralligenous communities are mainly composed of 

encrusting calcareous algae belonging to the family Corallinales (Piazzi and Balata 2011). Another 

type of coralligenous assemblages are gorgonian forests, consisting mainly of red gorgonian 

Paramuricea clavata (Ballesteros 2006). Animal dominated communities are usually located 

deeper than algal assemblages, because of a low light level, insufficient for algae (Garrabou et al. 

2002). Gorgonian forests similar to those from the Mediterranean are also present in the Atlantic 

Ocean, on the Portuguese coast (Cúrdia et al. 2013). 

 

The great biodiversity of coralligenous communities has been emphasized by many authors 

(Laubier 1966; Hong 1980). It has been estimated that about 1241 invertebrate species live in this 

habitat (Ballesteros 2006) and there are at least 315 species of macroalgae (Boudouresque 1973). 

Animal dominated structures are generally more diverse and complex (Garrabou et al. 2002). 

Invertebrates living in coralligenous assemblages play an important role as builders. Together with 

macroalgae, they create a very complex structure that offers microhabitats for many other species. 

In food-rich sites with high concentrations of zooplankton, POC and DOC, suspension feeders 

often dominate the community, including gorgonians, sponges and bryozoans (Ballesteros 2006). 

High biodiversity has been described for assemblages dominated by the red gorgonian 

Paramuricea clavata, occurring mainly on vertical rocky walls (Gili and Ballesteros 1991). 
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Gorgonians form dense populations, which in turn serve as a substrate for many species, such as 

other cnidarians, sponges and encrusting bryozoans (Cocito et al. 2002). Many rare species are 

associated with coralligenous communities, although none of them is exclusive to this environment. 

Ballesteros (2006) listed 16 species of endangered macroalgae inhabiting the community. Some of 

the commercially valuable species are also present, including red coral Corallium rubrum 

(Ballesteros 2006). 

 

The growth rate of the main framework builders is very low and well-developed assemblages may 

be a few thousand years old (Ballesteros 2006). Long succession time is another characteristic 

feature and the persistence of the animals and plants is high, especially in deep, often animal-

dominated structures. Community spatial pattern complexity increases with depth and is highly 

mosaic and patchy (Garrabou et al. 2002). Clear annual cycles of activity are evident for such 

suspension feeders as gorgonian Paramuricea clavata, sponge Dysidea avara and ascidian 

Halocynthia papillosa. The respiration rate is significantly lower in the summer conditions of higher 

water temperatures, suggesting energy limitation during this period for benthic suspension-feeding 

taxa (Coma et al. 2002). 

 

Threats to coralligenous communities 

As indicated above, coralligenous communities are complex, fragile habitats characterized by low 

dynamics and slow development rate. These characteristics make the assemblage highly 

vulnerable to human induced environmental changes (Ballesteros 2006). Climate fluctuations have 

a great impact on both terrestrial and marine ecosystems (Stenseth et al. 2002). Human induced 

global warming do not only increases ocean temperature, but may also have a significant impact 

on water chemistry and sea currents, changing communities composition, species range, 

populations dynamics and migrations patterns (Harley et al. 2006). 

 

Severe damages for coralligenous communities, called mass mortality events, have been linked 

with increased sea water temperature (Ballesteros 2006; Cerrano et al. 2000; Perez et al. 2000). 

Temperature anomalies in northwestern Mediterranean Sea became more frequent in recent years. 

While mean monthly winter temperature is rather constant over time, the summer temperatures at 

0-20 m depth are increasing at a rate of 0.05 °C per year (Coma and Ribes, 2003). Positive 

temperature anomalies were reported in the Ligurian Sea (NW Mediterranean) in 1999 and 2003, 

when the mean temperature during the summer was 1.7–2.3°C and 0.6-1.6°C higher than in the 

entire study period (1997-2005) (Cocito and Sgorbini 2013). In contrast, gorgonian forests in the 

Atlantic Ocean were not exposed to abnormally high temperatures, due to generally colder ocean 

water and upwellings, commonly occurring along the Portuguese coast in the summer season 

(Relvas et al. 2007). 
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During the abnormally warm summers higher temperatures increase water masses stability: the 

upper warm layers do not mix with the lower, cold water masses. The thermocline develops earlier 

and water stratification persists for longer (Sparnocchia et al. 2006). Organisms living above the 

thermocline are longer exposed to summer conditions, which are characterized by high water 

stability and low food availability as a consequence of the lack of water mixing (Coma and Ribes 

2003). Even if the high temperature is not lethal for organisms, exposure may cause physiological 

stress and energy shortage due to increased respiration rate (Coma et al. 2002). Direct effects on 

organisms’ physiology were recorded for Mediterranean cnidarians. During laboratory experiments, 

the two corals Corallium rubrum and Cladocora caespitosa showed decrease calcification rates 

after exposure to temperature 6°C higher than the average ambient temperature (Rodolfo-Metalpa 

et al. 2006; Torrents et al. 2008). Decreased calcification rate, as well as decreased photosynthetic 

efficiency, but for a greater temperature increase, was obtained for the symbiotic gorgonian 

Eunicella singularis, highlighting the differences in species thermal tolerance and their response to 

disturbance (Ferrier-Pagès et al. 2009). Measurements of phytoplankton concentration, as an 

indicator of water trophic status, showed a negative correlation with sea surface temperature 

(Vezzulli et al. 2010), indicating that the availability of food decreased in high temperatures. 

Reduced resources and high metabolic activity in warmer water increase the probability of mass 

mortality events in coastal communities (Coma et al. 2009). As a consequence, the most affected 

by mass mortality events were the species exhibiting energy shortages, such as suspension 

feeding soft corals and sponges (Coma and Ribes 2003). 

 

The two largest mass mortality events in the NW Mediterranean Sea were linked with seawater 

temperatures  3-4°C higher in the summer and fall than the average (Cerrano et al. 2000; 

Sparnocchia et al. 2006) and strongly affected shallow water communities (10-40 m; Ballesteros 

2006). During the heat wave of 1999 a total of 30 benthic species were affected and the maximum 

depth of the impact was 40 m in most sites (Perez et al. 2000). The signs of mass mortality were 

recorded along the Ligurian coast (Italy) and Provence (France) (Cerrano et al. 2000). In 2003, 

another mass mortality event affected 25 species to depths of 15-30 m. This event had greater 

spatial range: the signs of rocky bottom species die-off were visible also in the Catalan coast, 

Corsica, Sardinia, and the Gulf of Naples (Garrabou et al. 2009). Impacted species belonged to 

hard bottom communities and several of them were key species in coralligenous assemblages. 

Tissue necrosis or bleaching, followed by its detachment, were observed in some gorgonian 

species (Paramuricea clavata, Eunicella cavolinii, Eunicella singularis), corals (Corallium rubrum, 

Cladocora caespitosa), sponges (Petrosia ficiformis, Spongia officinalis, Cacospongia spp., Ircinia 

spp.), and bryozoans (Myriapora truncata and Sertella spp.). The degree of impact increased 

proportionally to temperature (Garrabou et al. 2009). 
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During both mass mortality events, the most affected species were long-living ones, with low 

growth rate, recruitment and mortality (Garrabou and Harmelin 2002; Coma et al. 1995a; 2004; 

Linares et al. 2008). Therefore, their recovery is slow, especially because of short time periods 

between the mortality events (Linares et al. 2007a). Moreover, some of the affected species, such 

as gorgonians, erect bryozoans and large sponges are key species in coralligenous framework, 

providing biogenic structure for other animals. The disappearance of these engineer species may 

have indirect effects on the whole community, changing habitat conditions (flow regime, food 

availability and shelter; Soulé et al. 2003). Filter-feeding organisms remove large amounts of 

suspended organic matter from the water column (Coma and Ribes 2003), so their reduction may 

increase the amount of food available for other species, changing food web and species 

composition (Cerrano and Bavestrello 2008). In the future, extreme events like heat waves are 

predicted to occur more frequently and persist longer (Diffenbaugh et al. 2007; Déqué 2007).  

Physiological stress caused by elevated temperature and food deficiency has a significant impact 

on organisms’ fitness. Poor physiological conditions decrease the efficacy of defense, making 

pathogen infections more probable (Cerrano et al. 2000). As reported by Bally and Garrabou 

(2007) the bacterial community associated with Paramuricea clavata differs between healthy 

organisms and colonies partially damaged during mass mortality events. Infected colonies harbor 

Vibrio coralliilyticus, a temperature-dependent coral pathogen responsible for cnidarians’ diseases 

in the Red Sea and Indian Ocean (Ben-Haim and Rosenberg 2002). Elevated temperatures trigger 

the pathogenic process after infection, suggesting that environmental stress fosters pathogen 

virulence and increases host sensitivity (Bally and Garrabou, 2007). 

Physical injury caused by fishery, anchoring and diving is a serious threat in densely populated 

areas. Fishing activities may seriously damage large areas of coralligenous concretions. Trawling 

has been considered as one of the most destructive methods (Palanques et al. 2001). Trawling 

nets cause direct physical damage by breaking the structure and detaching algae and animals from 

the bottom, but also increasing turbidity and sedimentation rate, which negatively affects filter-

feeding and photosynthesis of coralligenous algae. Fishing lines and other gear seriously damage 

gorgonians, entangling colonies and mechanically scraping the tissue under the sea currents 

action. After tissue detachment the skeleton is colonized by numerous epibionts, weakening the 

colony structure and increasing the probability of breakage due to higher weight. Damages caused 

by fishing are most visible in shallow water (20-30 m; Bavestrello et al. 1997).  

Coralligenous communities, due to their great diversity of species and beautiful seascapes, are the 

most popular diving spots in the Mediterranean Sea. High levels of diving activity have negative 

impacts on the community. Divers often cause mechanical damage, mainly by breaking the 

colonies of large gorgonians and bryozoans. According to Sala et al. (1996), the fragile calcareous 

bryozoan Pentapora fascialis was significantly less abundant and its colonies were smaller in sites 

often visited by divers in Medes Islands, Spain. Coma et al. (2004) found three times higher 
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mortality rates of adult Paramuricea clavata colonies in recreational diving sites in the NW 

Mediterranean compared to unfrequented ones, mainly due to toppling and unintentional colonies 

breaking. Negative impacts of diving activities on gorgonians forests were also reported for the 

Marine Park Professor Luiz Saldanha in the Atlantic Ocean (Rodrigues 2008). Anchoring of boats 

in diving sites has also a negative impact on coralligenous communities, causing detachment of the 

bottom organisms (Ballesteros 2006). 

Mechanical damage may also occur as a consequence of natural extreme events. Severe storms, 

like the one in 2008 in the NW Mediterranean Sea, change species richness and composition. 

Mainly large, fragile organisms such as calcareous algae, sponges, anthozoans, bryozoans and 

tunicates were impacted, showing cover losses up to 100% in the most exposed sites (Teixidó et 

al. 2013). 

Water pollution is another issue for coralligenous communities. Although there is no recent study in 

this topic, it is assumed that waste waters runoff from mainland, especially in highly urbanized 

areas, decrease both biodiversity of coralligenous assemblages and the density of individuals 

(Hong 1980). 

 

Paramuricea clavata as a study target 

 

The present research focus on the red gorgonian Paramuricea clavata (Cnidaria, Anthozoa, 

Octocoralia). Considering the numerous studies about the species biology (Coma et al. 1995ab; 

Linares et al. 2007ab) and its importance for biodiversity (Ballesteros 2006), the red gorgonian may 

be consider as a model organism. A growing body of literature describes mass mortality events 

affecting P. clavata (e.g. Bally and Garrabou 2007; Coma et al. 2009) and examines impact of 

mortality on gorgonian populations (e.g. Linares et al. 2005; Cerrano and Bavestrello 2008; Cupido 

et al. 2008). This section summarizes the existing knowledge about P. clavata biology and mortality 

episodes. 

 

Distribution and biology 

The red gorgonian is a key species of sublittoral rocky habitats, contributing to one of the most 

diverse communities in the Mediterranean Sea and in the Atlantic (Ballesteros 2006). Gorgonians 

form dense populations, which in turn serve as a substrate for numerous species, including other 

cnidarians, sponges and encrusting bryozoans (Cocito et al. 2002). The species creates a structure 

for the coralligenous assemblage and thus the survival of the community may be dependent on the 

survival of the species (Gili and Coma 1998). 

 

Corralligenous assemblages dominated by P. clavata are widespread in the western Mediterranean 

Sea (Carpine and Grasshof 1975) and in the Adriatic Sea (Kipson et al. 2014), and less common in 

the Aegean Sea (Öztürk et al. 2004). The species is present on the Portuguese coast (Cúrdia et al. 
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2013), but data from the Atlantic Ocean are limited. Personal observations confirmed the red 

gorgonian occurrence in the Algarve, Arrábida and Berlengas, the last location being probably the 

northern species range in the Atlantic. Assemblages dominated by P. clavata are common on 

vertical surfaces with low irradiance and intense water flow (Ballesteros 2006), with the highest 

population abundance between 15 and 35 m (Linares et al. 2008). 

 

The red gorgonian is a passive suspension feeder with a broad and heterogeneous diet, which 

contains nanoeukaryotes, phytoplankton and zooplankton, as well as detritus (Ribes et al. 1999). 

According to Ribes et al. (1999) detrital carbon accounts for 86% of the total ingested carbon. 

Phillips and Gregg (2003) reported that particulate and suspended organic matter (POM and SOM) 

from seawater and sediment contributes 75% of the diet of P. clavata. The red gorgonian does not 

exhibit seasonality in food preference and organic matter from seawater and sediment is supposed 

to be the main food source in the summer and winter (Cocito et al. 2013). 

P. clavata is characterized by low growth rate but long life span. Individual colonies may reach up 

to 1.5 m height (Linares et al. 2007a), which may correspond to an age up to 100 years (Coma et 

al. 2001). It is difficult to estimate the age of living gorgonian colonies because breakage of 

branches is relatively common and therefore colonies may be much older than they appear. 

Additionally, estimates of growth rates vary between different studies. Coma et al. (2001) estimated 

average growth rates of the Medes Islands population at 0.8 cm·yr-1 in colony height, suggesting 

ages of up to 50–100 years for the older colonies. The annual growth rate for La Spezia (Ligurian 

Sea) population was estimated at 3 cm·yr-1 for adult colonies and 4.5 for recruits (Cupido et al. 

2012). P. clavata reach sexual maturity when colonies attain a size of 20 cm at an age of 13 years 

(average from Medes Islands; Coma et al. 1995a), but these values also may vary among 

locations. The height of fertile female colonies in the La Spezia population was 8.5 cm and the age 

was estimated at 3 years (Cupido et al. 2012). The demographic characteristics, such as survival, 

growth, and fecundity are rather more influenced by size than by age, which is typical for species 

with indeterminate growth. 

The reproduction biology of P. clavata has been well studied. The species is almost exclusively 

dioecious (Coma et al. 1995b), since the abundance of hermaphroditic colonies does not exceed 

1% (Gori et al. 2007). The sex ratio was reported to be close to 1:1 in undisturbed populations 

(Coma et al. 1995a). However, a skewed sex ratio was found in a population from the Cape de 

Palos, Spain, where male colonies were more abundant. Significant segregation of sexes at a 

small spatial scale was also found in the La Spezia population (Cupido et al. 2012). Synchronous 

spawning occurs twice a year in June, around the new and full moons. Spawning episodes last 2-3 

days and are separated by several days (Linares et al. 2007a). P. clavata is a surface brooder. 

Females secrete a mucous, which adheres the eggs to the surface of the mother colony, while 

male gametes are released into the water (Coma et al. 1995b). This mode of reproduction seems 

to provide high fertilization rate by avoiding both sperm limitation and polyspermy (Lasker 2006). 
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Fertilization, embryogenesis and maturation of the planula larvae take place on the surface of the 

mother colony (Linares et al. 2007a). However, strong currents may detach the mucus material 

from the colony, in which case larval development takes place away from the mother colony. 

During field observations, the first mature planulae appeared 48 hours after the spawning event 

(Coma et al. 1995b). In laboratory experiments, embryos reached the blastula stage after 24 hours 

and embryogenesis ended after 48-72 hours, when the pear-shaped planulae appeared (Linares et 

al. 2007a). The larvae have vitelline reserves that comprised their sole food source during their 

motile stage (Coma et al. 1995b). Planulae can swim actively or crawl on the sea bottom (Linares 

et al. 2007a). In situ observations indicate that the dispersive stage of the larvae is short because 

of negative phototaxis and negative buoyancy – the larvae settle a few minutes after hatching, near 

the mother colony (Coma et al. 1995b). The short larval phase does not favor dispersal, but 

possibly decreases larval mortality and wastage, contributing to replenishment of local populations 

(Linares et al. 2007a). 

A percentage of mature colonies and a proportion of fertile polyps in the colony increase rapidly, 

proportionally to colony size (Cupido et al. 2012). Proportion of fertile polyps and a number of 

gonads per polyp is the highest in the first order (apical) branches. Since first order branches make 

up the largest share of colony biomass, they produce 85% of all gametes (Coma et al. 1995a). 

Therefore, colony size is the major determinant of reproductive output. The percentage of colonies 

with gonad-bearing polyps increase from 70% in colonies shorter than 10 cm to 100% in colonies 

higher than 30 cm (Coma et al. 1995a). Young individuals (height < 10 cm) invest 0.2-2% of the 

carbon weight of tissue for gamets production, whereas colonies higher than 40 cm invest 84-98% 

of the carbon weight of tissue. Although large colonies constitute only a few percent of the 

population, their contribution to the reproductive output is as large as 40% production of the female 

gametes and 33% of the male gametes (Coma et al. 1995a). 

Red gorgonians make significant investment in reproduction each year but recruitment rates are 

typically low (Coma et al. 1995a; 2001). In laboratory experiments, survival of the planula stage 

was 70%, but only 12% of individuals survived metamorphosis and turned into primary polyp. 

Linares et al. (2007a) reported that during 2 years of monitoring the Medes population any of the 

230 settled polyps observed in the study area survived longer than 7 months.  

Mass mortality events 

In 1999 and 2003, two episodes of mass mortality events affected several populations of benthic 

suspension feeders in the northwestern Mediterranean (Linares et al. 2005; Coma et al. 2006; 

Cupido et al. 2008; Huete-Stauffer et al. 2011). It is generally agreed that mass mortality of 

Mediterranean benthic communities was caused by temperature anomalies linked to global 

warming (Garrabou et al. 2009). Increased metabolic activity in high temperature, together with low 

food availability in the summer, were the most probable factors causing gorgonians’ mortality 

(Coma et al. 2009).  
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Physiological stress, caused by an increase in seawater temperature, decrease defense capacity 

and make organisms more susceptible to disease. The presence of virulent Vibrio species on 

damaged P. clavata coenchyme portions indicates that bacterial infection may be an additional 

factor causing gorgonian mortality (Martin et al. 2002). Bally and Garrabou (2007) identified Vibrio 

coralliilyticus, a thermodependent pathogen of tropical corals, to be virulent for P. clavata. The 

occurrence of Vibrio spp. in seawater is temperature dependent. V. coralliilyticus increase in 

abundance in the warm season and was recorded only in temperatures higher than 18°C (Vezzulli 

et al. 2010). Additionally, when temperature returned to lower levels after the mortality event, Vibrio 

concentration in healthy and recovering colonies did not differ, highlighting the role of temperature 

in the pathogen virulence. 

 

Paramuricea clavata was one of the most impacted species during the mass mortality events in 

1999 and 2003. As reported in Garrabou et al. (2009), the proportion of affected colonies reached 

80% at some sites. Small-scale mortality events were recorded also in 2006 by Cerrano and 

Bavestrello (2008) and Cupido et al. (2008). The first signals of mortality appeared in late summer, 

when parts of P. clavata colonies showed necrosis of tissue, changing its color from red to grey as 

a result of organic parts decomposition. Dead tissue detached from the colony’s axis, leaving a 

bare skeleton that was rapidly overgrown by epiphytic organisms (Cerrano et al. 2000; Garrabou et 

al. 2009). Large colonies were more affected and their density decreased dramatically, causing a 

clear shift towards smaller size classes (Linares et al. 2008; Cupido et al. 2008; Huete-Stauffer et 

al. 2011). Partial mortality affected also colony morphology, changing it from planar, fan-shaped to 

bushy, with several equivalent branches. This regeneration pattern may have significant impact on 

colony fitness, decreasing growth rate due to self-shading (Cerrano and Bavestrello 2008). 

 

The number of colonies affected by partial mortality decreased with depth, with colonies living 

below 30-40 m being much less affected than those from the shallower sites (Linares et al. 2005; 

Huete-Stauffer et al, 2011). The clear differences between the healthy, deep populations, and the 

shallow ones, affected by mass mortality, were visible in population structure several years after 

the last mortality event. Size classes’ distribution in the deep population were characteristic for the 

species, with large colonies predominance and low recruits density. In the shallow sites, small, 

unfertile colonies dominated and the density of large individuals was very low (Cerrano and 

Bavestrello 2008; Cupido et al. 2009). As hypothesized by Cerrano and Bavestrello (2008; 2009), 

deeper subpopulations may act as a reservoir, supplying larvae to shallower sites, especially 

because large colonies with high fecundity rates survived there. 

 

Mortality events had also a significant impact on gorgonians reproduction. The most affected 

colonies (more than 33% colony injured) exhibited a decrease in fecundity one year after the event 

(Linares et al. 2008). The decrease in gonadal biomass and the number of fertile polyps was 
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proportional to the extent of the injury. This effect was more visible in female colonies (73-75% 

reduction in oocyte production) than in males (49-64% reduction in sperm production). A study 

conducted two years after the mortality event revealed similar pattern of decreased fecundity 

(Linares et al. 2008). In undisturbed environments the low recruitment rate observed in P. clavata is 

sufficient to ensure the persistence of local populations. However, recruitment did not compensate 

mortality after the mass mortality events (Linares et al. 2005). Mass mortality had greater effect on 

large, fertile colonies and therefore population recovery after the disturbances may be restricted. 

 

The impact of mass mortality events on P. clavata population is still felt several years after the 

event and the regeneration of the population started after a substantial period, lasting 3-4 years 

(Linares and Doak, 2010). Partially damaged colonies can survive the loss of living tissue and 

regrow it, but regeneration depends on the extent of injuries and is often fairly low (Linares et al. 

2005). Regeneration of the tissue on the exposed skeleton of partially damaged colonies was 

estimated at 0.15 ± 0.2 cm day-1 (Bavestrello et al. 1997). Colonies density increase in the 

damaged sites was slow due to low recruitment rate. Bavestrello et al. (1997) observed only 2 

recruits on the experimental plot from which 23 colonies were removed four years earlier. However, 

in the years following the mortality event (2004-2008) increased population densities in the Gulf of 

La Spezia were detected. The number of recruits reached 24 % of colonies and their density 

increased from 2.6 recruits per m2 in 1998 (before mortality) to around 6 in 2007 and 2008. 

Recruitment rate in this site became two fold greater than before the mass mortality event (Cupido 

et al. 2009).  

Research gaps 

The Mediterranean coralligenous assemblages have been widely studied. However, the response 

of coralligenous assemblages to past mass mortality events is not fully understood. Mass mortality 

events may have a wide impact on populations. The most apparent consequences are density and 

abundance decreases. Less evident are changes in population structure, size classes’ distribution 

and reproductive output. One of the least studied consequences of mass mortality is the impact of 

decreased population abundance on genetic diversity. To date, the effect of climatically induced 

mass mortality events on genetic diversity of affected populations has not been studied in the 

Mediterranean Sea. 

The mechanisms of population recovery after mass mortality events are still poorly understood. 

Increased reproduction or recruitment rate may be among the factors, which allow to increase the 

population density. The reproduction of sessile invertebrates, in particular the red gorgonian, has 

been studied extensively, but much uncertainty still exists about the larval phase duration and 

propagation distance. Additionally, little is known about the role of asexual reproduction in 

temperate gorgonians, despite the fact that clonal propagation may led to rapid increase in 

population densities and therefore enable population recovery after mass mortality. 
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Population recovery may be supported by migrants from neighboring, non-impacted sites. Little is 

known about short distance larval migration, which may support population recovery. The 

estimates of connectivity pattern among Marine Protected Areas and larval migration from 

protected populations to damaged ones, are essential for effective protection plans, especially 

important for fragile, engineering species. This study use the red gorgonian P. clavata as a model 

organism to obtain data which will help to address these research gaps. 

Objectives and structure of the thesis 

My research is being performed after two events of mass mortalities of benthic organisms in the 

Mediterranean Sea, in 1999 and 2003. The general aim of the study is to investigate the genetic 

diversity of Paramuricea clavata in the Ligurian Sea (NW Mediterranean), a region highly impacted 

by past mass mortality events, and the Atlantic Ocean, where mass mortality was never observed 

due to generally lower water temperature. 

First chapter focuses on reproduction mode of the red gorgonian populations from the Ligurian Sea 

(NW Mediterranean), severely affected by climatically- induced mortality events in 1999, 2003 and 

2006 and from the Atlantic Ocean, where mass mortality was never observed. The aim of the study 

was to evaluate the contribution of asexual reproduction and to investigate if clonal propagation 

plays an important role in P. clavata reproduction at sites that have been affected by mass mortality 

in the recent past. 

Second chapter describes the genetic structure of P. clavata populations in a region impacted by 

mass mortality events, the Ligurian Sea (NW Mediterranean). The aim of the study was to 

investigate a possible bottleneck effect of past mortality events on genetic diversity in a region 

where some populations were highly affected by mass mortality events and others were not. The 

second objective was to assess a connectivity pattern and migration at the local scale (10s of km). 

The aim of the third chapter was to compare the genetic diversity between P. clavata populations 

from the Ligurian Sea and Atlantic Ocean. Highly variable microsatellite markers were used 

together with mitochondrial DNA COI gene. The differences in genetic composition and diversity 

between populations from two basins were discussed in terms of species phylogeography.  

In the fourth chapter, the differences in genetic diversity in the red gorgonian coral from populations 

inhabiting different depths in the Atlantic and Mediterranean were examined. We hypothesize that 

genetic diversity may change with depth, being lower in the shallow populations due to past 

mortality events, and higher in deep, more stable environments 
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Chapter 1. Low clonal propagation in Atlantic and Mediterranean 

populations of the red gorgonian (Paramuricea clavata)  

1.1. Abstract 

Clonal propagation is a common feature of benthic marine organisms. In the present study, we 

investigated the contribution of clonal reproduction in the red gorgonian Paramuricea clavata. 

Mediterranean populations of P. clavata were severely affected by mortality events in 1999 and 

2003, caused by increased water temperature. The populations are characterized by slow growth 

and episodic recruitment, however, after the observed mortalities, an unexpected high recovery 

rate was observed in the severely affected populations from the Ligurian Sea, NW Mediterranean. 

Ten years after the last mortality event, we investigated the contribution of clonal propagation in 

populations from the Ligurian Sea, where some populations were highly affected by mass mortality 

events, and from the Atlantic, where mortality was never observed. All individuals were genotyped 

for 10 microsatellite loci. The contribution of clonal reproduction varied from 0 to 13% and did not 

differ significantly between affected and unaffected populations. We confirm by using genetic 

markers that clonal propagation in P. clavata is not common and the contribution of clones is too 

low to play an important role in red gorgonian reproduction and cannot contribute to population 

recovery in sites that have been affected by mass mortality events. 

1.2. Introduction 

Clonal propagation is widespread among marine invertebrates and a number of studies have 

attempted to explain its evolutionary importance and adaptive significance (Coffroth and Lasker 

1998; McFadden 1991). Asexual reproduction does not only allow domination of the community by 

the most adapted genotype (Miller and Ayre 2004), but has also a significant role in the 

colonization of new areas, since it may allow for a faster increase in abundance compared to 

sexual reproduction (Dybdahl and Kane 2005; Mergeay et al. 2006). 

Asexual reproduction may play an important role in corals, supporting high population growth rates 

(Lasker 1988). In species with frequent vegetative propagation and low recruitment of larvae 

produced through sexual reproduction, a few successful clones may dominate the population 

(McFadden 1991, 1997). Additionally, observations of skewed sex ratio, frequently reported in 

octocorals (Kahng et al. 2011), may be generated by asexual reproduction, such as in the 

Caribbean gorgonian Plexuara sp. populations (Brazeau and Lasker 1989). This species reveals 

extremely low males contribution, but at the same time reproductive output is high, suggesting that 

eggs develop parthenogenetically. If this is the case, Plexuara sp. clones, spread locally by 

fragmentation (Lasker 1984) and between reefs by the dispersal of parthenogenetic eggs, may 

reach wide geographic distributions. Chen et al. (2002) found noticeably high contribution of clonal 

reproduction in a local population of the gorgonian coral Junceella fragilis from Taiwan. The 
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population was dominated by only two distinct genotypes, probably as a result of multiple clonal 

reproduction events following colonization by two founder individuals. Numerous cnidarian species 

may change their reproductive mode and increase or decrease the contribution of clonal 

reproduction to recruitment in response to environmental changes. As reported in Coffroth and 

Lasker (1998), the lowest genotypic diversity, meaning the highest contribution of clones, may be 

related to wave action, such as in the gorgonian Plexuara kuna populations from the Caribbean 

(Lasker et al. 1998). Wave action promotes the detachment of the colony branches, but fragments 

need calm periods to reattach to the substratum and become established, therefore the highest 

contribution of clones are found at sites with intermediate wave impact. Changes in reproductive 

mode may occur seasonally. The soft coral Alcyonium spp. from North-western Pacific exclusively 

uses sexual reproduction during the summer and thus clonal reproduction becomes more important 

in winter, when animals do not spend energy on sexual propagation (McFadden 1991). Clonal 

reproduction may be also promoted by human activities, i.e. anchoring and fishing gear, causing 

colonies detachment (Harmelin and Marinopoulos 1994). Detached coral fragments may reattach 

to substratum and create a new colony. 

The red gorgonian (Paramuricea clavata, Risso 1826) is widely distributed in the western 

Mediterranean Sea (Carpine and Grasshof 1975) and along the Portuguese coast of the Atlantic 

(Boavida et al. 2015). Assemblages dominated by P. clavata are common on vertical surfaces with 

low irradiance and intense water flow (Ballesteros 2006), with the highest population abundance 

between 15 and 35 m (Linares et al. 2008). The species is known to reproduce almost exclusively 

by sexual propagation (Coma et al. 1995ab). In the Mediterranean Sea synchronous spawning 

occurs twice a year in June, around the new and the full moon. Fertilization, embryogenesis and 

maturation of the planula larvae take place on the surface of the mother colony (Linares et al. 

2007). The reproductive effort of P. clavata increases with colony size (Coma et al. 1995a; Cupido 

et al. 2012). Coma et al. (1995a) reported that large colonies (height >40 cm) are generally scarce 

in the population from the Medes Islands (NW Mediterranean), constituting less than 3% of 

colonies, but their contribution to the production of gametes was on the order of 40% of female 

gametes and 33% of male gametes. In contrast, the recruitment rates are considered to be low. 

Linares et al. (2007) reported that during 2 years of monitoring the population from Medes Islands 

none of the settled polyps in the study area survived longer than 7 months. 

P. clavata may also reproduce asexually by fragmentation of the colony or stolonization. Colonies 

originated from fragments differ in appearance from the typical fan-shaped colonies. They are 

attached to the substratum at several points and have several parallel branches growing up from a 

branch lying on the substrate (Coma et al. 1995b). This morphology can not only be a result of 

asexual reproduction, but also an adaptation to hydrodynamics, i.e. to turbulent current regime or a 

result of partial colony mortality in the past (Cerrano and Bavestrello 2008). Colonies originating 

from stolons are connected to the mother colony until they reach around 15 cm in height, but the 

connection breaks up with time (Coma et al. 1995b). Based on colony morphology, Coma et al. 
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(1995b) evaluated the frequency of colonies originated from asexual reproduction to be 0.3% by 

fragmentation and 2% by stolonization. However, these estimates on the prevalence of clonal 

reproduction have never been validated with genetic markers. Only in the study of Mokhtar-Jamaï 

et al. (2013) 4 out of 104 colonies sharing the same genotype were found, but the authors excluded 

repeated genotypes since their paper did not investigate clonal propagation. 

The impact of climate-induced mortality events on P. clavata reproduction mode has not been 

studied so far, despite the fact that the species has experienced severe damages in the 

Mediterranean Sea in the past. Two mass mortality events in the summers of 1999 and 2003 

reduced P. clavata colony density by 78% in the Ligurian Sea (NW Mediterranean), affecting 

mainly the large, most fertile individuals (Cupido et al. 2008). These events affected a wide variety 

of species and taxa of hard-bottom communities and were observed in the entire NW 

Mediterranean region, affecting several thousand kilometers of coastline (Garrabou et al. 2009; 

Perez et al. 2000). The mortality was caused by unusually high sea water temperatures with an 

enhanced stratification, causing thermal stress and food limitation due to lack of water mixing 

(Coma et al. 2009). In 2003, the temperature down to the thermocline was between 1 and 3 °C 

above the mean monthly temperature in the NW Mediterranean (Garrabou et al. 2009). Damage 

intensity decreased with depth and community dwelling below the thermocline (25-30m) was 

significantly less affected than the shallow one (Linares et al. 2005). Red gorgonian populations 

from the Atlantic Ocean were never monitored, although we may suspect that lower water 

temperatures in the Atlantic has prevented mass mortality events. The Portuguese coast is 

influenced by strong and persistent upwelling events during spring and summer (Relvas et al. 

2007), which decrease surface temperature and mix the water column, preventing the formation of 

a strong thermocline. In the Mediterranean, temperature related mortality events impacted the 

reproductive output from sexual propagation by decreasing not only colony density, but also 

fecundity (Linares et al. 2008). The recovery of impacted assemblages may be delayed because of 

low growth rate (0.8 cm yr-1 in colony height; Coma et al. 2001) and the late age of first 

reproduction (7-13 year; Coma et al. 1995a). However, an unexpected high recovery rate was 

observed in the La Spezia population (Ligurian Sea, NW Mediterranean) in the years following the 

2003 event, caused by an unusually high recruitment rate. The density of recruits increased from 

2.6 recruits per m2 in 1998 (before mortality) to around 6 in 2007 and 2008 (Cupido et al. 2009). 

The present study used microsatellite markers to investigate for the first time the contribution of 

asexual reproduction in the red gorgonian populations from the Atlantic and the Mediterranean 

Sea. We also investigated if clonal propagation plays an important role in P. clavata reproduction at 

sites that have been affected by mass mortality in the recent past.   
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1.3. Methods 

1.3.1. Sampling 

In order to compare the contribution of clonal reproduction according to mortality history, we 

analyzed populations from two regions. Samples were taken by scuba divers from three sites in the 

Mediterranean Sea (Pilczynska et al. 2016), which were affected by past mass mortality events, 

and from two sites in the Atlantic Ocean, where P. clavata mass mortality was never reported. The 

distance between the two sites in the Atlantic was approximately 280 km, whereas, in the 

Mediterranean, sites were separated by distances of 20 to 60 km (Fig. 1.1.). At each site, two 

different reefs, separated by 200-500 m, were chosen (Fig. 1.1., Table 1.1.). Three plots separated 

by at least 5 m were randomly chosen at every reef. At each plot we randomly sampled up to 10 

different ramets (discrete, spatially isolated colonies) within a circle of 1.0 m radius.  Around 3-4 cm 

of colony branch tip was taken and stored in individual plastic tube under the water. Samples were 

placed on ice during transport and preserved in ethanol after arrival to the laboratory, no later than 

3 hours after collection. In the following text, each reef will be referred to by its code (see Table 

1.1.). Fieldwork was carried out in 2013 and 2014. An exception to this sampling scheme was Site 

2 (Sagres, Atlantic Ocean), where just 2 plots (17 colonies) were sampled at Reef 3 and only 2 

colonies at Reef 4, because of low gorgonian abundance.  

 

Fig. 1.1. Sampling sites in the Atlantic and the Mediterranean, showing P. clavata reefs impacted by 

mass mortality events (black circles) and healthy populations (white circles). 
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Table 1.1. Sampling site characteristics: depth range of sampled reefs, year of past mass mortality 

events and number of the P. clavata colonies sampled at each reef. 

Site Reef 

code 

Depth [m] Past mass 

mortality events 

Nr of colonies 

sampled 

Berlengas 
1Be 19 - 24 No 30 

2Be 8 - 12 No 30 

Sagres 
3Sa 11 - 12 No 17 

4Sa 21 - 22 No 2 

La Spezia 
5LS 18 - 22 1999 and 2003 29 

6LS 19 - 20 1999 and 2003 30 

Punta Mesco 
7PM 21 - 23 1999 and 2003 30 

8PM 28 - 29 No 30 

Livorno 
9Li 23 - 25 2006 25 

10Li 30 - 31 No 30 

 

Sampling for P. clavata poses several logistic challenges, because of the sparse distribution of 

populations over very large geographical areas, and depth that limits sampling by conventional 

SCUBA diving. Additionally, the impacted populations in the Mediterranean are located at 

shallower depths (< 25 to 30 m) than the non-impacted populations (> 30m; Huete-Stauffer et al. 

2011; Linares et al. 2005). This has prevented the development of a balanced sampling design that 

could account for the effects of geographical region, mortality history and depth. Accordingly, in the 

present study only two non-impacted and four impacted reefs could be sampled in the 

Mediterranean, whereas four healthy reefs could be sampled in the Atlantic. 

1.3.2. Molecular methods 

Coral DNA was extracted using E.Z.N.A. Mollusc DNA Kit according to the manufacturer supplied 

handbook. We analyzed 10 microsatellites, developed by Agell et al. (2009) and Molecular Ecology 

Resources Primer Development Consortium (2010), following the protocols published by the 

authors. Loci Par_a, Par_b, Par_d, Par_f and Par_m were amplified in 10 µl solution of dNTPs 

(0.25 mM each), selected primers (0.25 µM each), 4 mM of MgCl2, 1x manufacturer-supplied buffer 

(pH 8.8, 0.1% Tween 20, 25 mM MgCl2) and 0.25 u DFS-Taq DNA Polymerase (Bioron). The PCR 

program was: 2 min 94°C, (10 sec 94°C, 20 sec annealing temperature, 1 min 72°C)x30, 5 min 

72°C. Annealing temperature for particular loci was: Par_a: 59°C, Par_b: 47°C, Par_d: 51°C, Par_f, 

Par_m: 52°C. To amplify loci Parcla_9, Parcla_10, Parcla_12, Parcla_14 and Parcla_17, a total 
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genomic DNA was dissolved in 10 µl solution of dNTPs (125 µM each), selected primers (0.5 µM 

each), 0.25 u GoTaq® DNA Polymerase (Promega) and 1x manufacturer-supplied PCR buffer (pH 

8.5, 7.5 mM MgCl2). The PCR program was: 3 min 94°C, (1 min 94°C, 1 min 60°C, 1 min 72°C)x30, 

5 min 72°C. The length of amplified fragments was analyzed on an ABI 3730XL Genetic Analyzer 

using an internal size standard (GeneScan 500 LIZ). 

1.3.3. Detection of clonal reproduction 

The analysis of DNA fragment lengths was performed with STRand (Toonen and Hughes 2001). 

Scored microsatellite fragment sizes were then visualized in R environment using the 

MsatAllele_1.02 package to track and reanalyze scoring errors. MICRO-CHECKER v.2.2.3 (Van 

Oosterhout et al. 2004) was used to estimate null allele frequency and to check for scoring errors 

owing to stutters and large allele dropout. Linkage disequilibrium among all pairs of loci was tested 

in GENEPOP 4.2. (Raymond and Rousset 1995; Rousset 2008) with significance levels 

determined by the Markov chain method (dememorization = 5000, batches = 500, iterations = 10 

000). GIMLET 1.3.3 (Valiére 2002) was used to identify matching multi-locus genotypes indicating 

clonal origin of the colonies. The probability of identity (PI) was calculated in GIMLET using the 

allele frequencies to quantify the ability of the microsatellite markers to discriminate between two 

individuals. Two PI approaches were used: biased, for randomly mating individuals (PItheoric) and 

unbiased, correcting for small sample sizes (PIunbiased). In order to determine if parent/offspring pairs 

or siblings may have the same observed genotype, specific probability values (Ppar-off and Psib) were 

calculated for each genotype. Matching genotypes were classified as clones when the PI and P 

values mentioned above were less than 0.05. Genotypic richness was calculated as Ng/N in order 

to estimate the maximum contribution of sexual reproduction to local recruitment (Coffroth and 

Lasker 1998). Ng is the number of unique multi- locus genotypes at each reef and N is the number 

of colonies sampled at each reef. This index varies between 1 when all individuals have unique 

genotype, and 0 when one genotype is shared between all ramets. Observed genotypic diversity 

(Go) (Stoddart and Taylor 1988) was calculated as: Go=1/Ʃgi
2, where gi is the frequency of ith 

genotype. Genotypic evenness (Go/Ng) (Coffroth and Lasker 1998) represents the number of 

colonies per genet and varies from 1 when individuals are distributed evenly among the clones to 0 

when one clone dominates the population. Genotypic diversity, calculated as Go/Ge, measures the 

relative contribution of clonal and sexual propagation in a population (Baums et al. 2006). Ge is the 

expected genotypic diversity and equals the total number of individuals sampled per reef. 

In order to evaluate the association between the occurrence of past mass mortality events and 

frequency of clonal propagation we used log-linear analysis of frequency tables (implemented in 

Statistica 10). This analysis was restricted to Mediterranean populations because there are no 

records of past mass mortality events in the Atlantic. 
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1.4. Results  

Among 253 colonies sampled, 250 were successfully genotyped to identify colonies with identical 

multi-locus genotypes, i.e. clones (2 colonies were lost during the dive and 1 did not amplify at any 

loci). All loci amplified and were polymorphic, except Par-b, which was monomorphic in both 

populations from La Spezia, according to the 0.95 frequency criterium. No large allele dropout nor 

scoring errors was detected by MICRO-CHECKER at any locus. The mean null allele frequency 

across all reefs varied from 0 for Parcla_10, Parcla_17 and Par_f to 0.18 for Par_m. No significant 

linkage disequilibrium was observed between any pair of loci (all p>0.05 after FDR correction), thus 

all loci were considered as genetically independent. Mean number of alleles per locus equalled 14. 

The probability of identity for pooled samples for all loci was 1.93 · 10-12 (PItheoric) and 1.28 · 10-12 

(PIunbiased), both values indicating a low probability of misidentifying clones. An exception was Site 2 

(Sagres), where a high percentage of PCR failure, reaching 45%, was observed, affecting mostly 

Par_a, Par_b, Parcla_9 and Parcla_10. Therefore we may have to low power to detect identical 

multi locus genotypes. Ppar-off and Psib values for all individuals from Reef 3 with the same genotype 

were higher than 0.05, indicating a high probability that these colonies did not originate from clonal 

propagation, but were siblings or parents/offspring. Therefore, all colonies from Sagres were 

assumed to be individual genets. 

The contribution of clones was low, although colonies generated from clonal reproduction were 

detected at all sites. Out of the 250 colonies genotyped, we obtained 236 unique multi-locus 

genotypes (UMG) and 7 genotypes that appeared more than once (identical multi-locus genotypes 

– IMG). In the Atlantic, 2 IMG were found at Reef 1Be (in total 4 colonies), whereas in the 

Mediterranean Sea, 1 IMG was found at 6LS, 2 at 7PM, 1 at 8PM and 1 at 9Li (in total 10 colonies). 

Clones were not detected at 2Be, 5LS and 10Li. None of the multi-locus genotypes were shared 

between different plots.  

The contribution of sexual reproduction to local recruitment (genotypic richness) varied between 

0.93 and 1. Genotypic richness (Ng/N) was the lowest at Reef 1Br and Reef 7PM and the highest at 

reefs 2Be, 3Sa, 5LS and 10Li, where no clonal propagation was observed. Genotypic evenness 

(Go/Ng) and genotypic diversity (Go/Ge) revealed the same pattern (Table 1.2.). Unique genets were 

never shared by more than two colonies. 
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Table 1.2. Genotypic diversity in P. clavata based on 10 microsatellite loci; reef 4 (Sagres) was 

excluded from analysis due to small number of samples.  

Site Berlengas 
Sagre

s 
La Spezia Punta Mesco Livorno 

Mean (SD) 

 Reef 1Be 2Be 3Sa 5LS 6LS 7PM 8PM 9Li 10Li 

N 30 28 16 29 30 30 30 25 30 27.6 (±4.6) 

Ng 28 28 16 29 29 28 29 24 30 26.3 (±5.6) 

Ng/N 0.93 1 1 1 0.97 0.93 0.97 0.96 1 0.95 (±0.08) 

Go 26.47 28.00 16.00 29.00 28.13 26.47 28.13 23.15 30.00 25.3 (±6.6) 

Go/Ng 0.95 1 1 1 0.97 0.95 0.97 0.96 1 0.95 (±0.09) 

Ge 30 28 16 29 30 30 30 25 30 27.6 (±4.6) 

Go/Ge 0.88 1 1 1 0.94 0.88 0.94 0.93 1 0.90 (±0.15) 

N - number of colonies in population; Ng - number of genets; Ng/N - genotypic richness; Go - observed 

genotypic diversity; Go/Ng – genotypic evenness (number of ramets per genet); Ge - expected genotypic 

diversity; Go/Ge - genotypic diversity. 

 

Log-linear analysis of frequencies indicated no overall differences in contribution of clonal 

reproduction between reefs impacted by mass mortality and healthy populations in the 

Mediterranean (χ2=0.74, df=1, p=0.39). 

1.5. Discussion 

1.5.1. Clonal propagation 

This study examined for the first time the contribution of asexual reproduction in the red gorgonian 

Paramuricea clavata using molecular markers. Our findings corroborates previous indications that 

clonal propagation is not common for this key species. Additionally, our results indicate that past 

mortality history of Mediterranean populations does not affect the level of asexual reproduction. 

Coma et al. (1995b) reported that colonies originating from clonal reproduction constitute around 

2% of the red gorgonian population, but that study was based on morphological characters, such 

as colony shape and presence of stolons connecting mother and daughter colonies. The 

employment of genetic markers allowed for a much more reliable results. In our study, 14 colonies 

(5.6% of all examined colonies) had genotypes that appeared more than once (identical multi-locus 

genotypes – IMG). At two reefs 13.3% of the colonies (4 out of 30) shared multi-locus genotype. At 

four reefs, however, all sampled colonies had unique multi-locus genotypes, suggesting that in 
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these populations clonal reproduction does not take place or is infrequent. Previous genetic studies 

on P. clavata did not report occurrence of clonal propagation. In Mokhtar-Jamaï et al. (2011) the 

distance between sampled colonies was not mentioned, and thus we cannot exclude the possibility 

that the distance was too large to detect clones. Mokhtar-Jamaï et al. (2013) however, found 4 

pairs of colonies sharing the same multi-locus genotype. In this case colonies were separated by 

less than 5 cm and the probability that they share identical genotype by chance, through sexual 

reproduction, was very low. This four colonies constitute 3.8% of investigated population, which 

value is in the same order of magnitude of that reported here. The study of Mokhtar-Jamaï et al. 

(2013) was not focused on clonal propagation and therefore the authors excluded repeated 

genotypes from further analysis and did not discuss this phenomenon. The genotypic richness and 

diversity values in our study were high at all reefs (Ng/N>0.93; Go/Ge>0.88) indicating that all 

populations rely on sexual reproduction as the dominant mode of propagation. Previous studies 

have reported that clonal propagation in octocorals is most common among tropical soft coral 

species in the families form the Alcyoniina suborder, including Alcyoniidae, Nephtheidae, and 

Xeniidae and in Clavulariidae from the Stolonifera suborder (Simpson 2009). However, other 

tropical gorgonians are also known to propagate asexually. The gorgonian Plexuara kuna is able to 

dominate the local community with small number of clones, reaching high colony densities probably 

faster than via sexual reproduction (Coffroth and Lasker 1998). The gorgonian coral Junceella 

juncea from Taiwan relies on clonal propagation to maintain established populations, which was 

confirmed by the low values of genotypic diversity (Go/Ge between 0.217 and 0.650) (Liu et al. 

2005). 

The low number of clones found in our study may be also a result of sampling error. Colonies grow 

in dense aggregations and it may be difficult to distinguish separate ramets. However, during our 

fieldwork we paid attention to the base of sampled colonies to be sure they are separated. 

Additionally, sampling was conducted always by a team of two divers, therefore one person could 

constantly monitor which colonies are being sampled. Also in the study of Mokhtar-Jamaï et al. 

(2013) clones were detected, therefore we may expect that clonal reproduction in P. clavata may 

occur. 

Asexual propagation in the P. clavata population from La Spezia (reefs 5LS and 6LS) cannot be 

responsible for the high number of recruits present in this site after the mortality event, as recorded 

by Cupido et al. (2012). The results of the present study indicate that other factors, such as 

increased reproductive output and/or recruitment rate after the mortality event, or decreased 

competition because of a larger area of available substratum, rather than clonal propagation, 

enables disturbed populations to recover after being affected by climatic events. Similarly, the red 

coral Corallium rubrum, impacted by mass mortality events in the Mediterranean Sea, has a limited 

capability for clonal propagation, thus the only way to recover from disturbance is via sexual 

propagation (Garrabou et al. 2001). This reproductive feature of habitat forming species has an 
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important meaning for the conservation of coralligenous assemblages - one of the most species 

rich communities in the Mediterranean Sea (Ballesteros 2006).  

Man-induced sources of the red gorgonian detachment (anchors, fishing apparatus, involuntary 

handling by divers; Harmelin and Marinopoulos 1994) may produce colony fragments increasing 

clonal reproduction frequency in sites subjected to human activities. However it seems to not be a 

case here, since the highest number of clones was found in Punta Mesco, located in the Cinque 

Terre Marine Protected Area where fishing, anchoring and diving is prohibited. 

In the Sagres population, high percentage of PCR failure was observed, possibly indicating 

incompatibility of primers. Colonies from Sagres differed from all other investigated populations, 

being bright yellow, not purple. Yellow colonies are reported to be rare in the Mediterranean, 

whereas purple colonies with yellow apical branches are more common (Carpine and Grasshoff 

1975). Further studies are necessary to determine if the yellow type is a separate species, or a 

phenotype of the same species. 

The balance between sexual reproduction and clonal propagation affects the transmission of 

genetic variation and therefore may greatly influence genetic diversity (Les 1991; Piquot et al. 

1996) and ultimately the evolutionary potential of populations (Williams 1975). Although genetic 

diversity, measured as heterozygosity and allelic richness, does not decrease in populations with 

prevalence of asexual reproduction (Balloux et al. 2003), the diversity of genotypes is being 

reduced, possibly decreasing adaptive potential of population. Indeed, clonal propagation is more 

frequent in rare and endangered species, as shown by Silvertown (2008) for terrestrial plants. Rare 

asexual reproduction in P. clavata and high diversity of genotypes may be an advantage for the 

species in a changing environment, possibly allowing to adapt more easily to temperature 

anomalies. 

1.5.2. Conclusions 

Clonal propagation does not play an important role in P. clavata. Although asexual reproduction is 

not a sporadic phenomenon, as indicated by previous assessments, it was not the dominant factor 

accounting for population recovery in sites that have been affected by past mass mortality events 

because i) maximum prevalence of clones was ca. 13% and ii) there were no differences in clone 

prevalence between impacted and non-impacted sites. Infrequent clonal propagation, in addition to 

sporadic recruitment and low larval dispersal, makes recovery a difficult and time-consuming 

process. There is, therefore, a definite need to develop conservation plans to protect local 

populations and already existing colonies by controlling anthropogenic stressors, such as 

harboring, trawling and diving.  
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Chapter 2. Genetic diversity and local connectivity in the Mediterranean red 

gorgonian coral after mass mortality events 

2.1. Abstract 

Estimating the patterns of connectivity in marine taxa with planktonic dispersive stages is a 

challenging but crucial task because of its conservation implications. The red gorgonian 

Paramuricea clavata is a habitat forming species, characterized by short larval dispersal and high 

reproductive output, but low recruitment. In the recent past, the species was impacted by mass 

mortality events caused by increased water temperatures in summer. In the present study, we used 

9 microsatellites to investigate the genetic structure and connectivity in the highly threatened 

populations from the Ligurian Sea (NW Mediterranean). No evidence for a recent bottleneck neither 

decreased genetic diversity in sites impacted by mass mortality events were found. Significant IBD 

pattern and high global FST confirmed low larval dispersal capability in the red gorgonian. The 

maximum dispersal distance was estimated at 20-60 km. Larval exchange between sites separated 

by hundreds of meters and between different depths was detected at each site, supporting the 

hypothesis that deeper subpopulations unaffected by surface warming peaks may provide larvae 

for shallower ones, enabling recovery after climatically induced mortality events.  

2.2. Introduction 

Extreme weather events, including floods, heat waves and droughts, are currently emerging as one 

of the most important facets of climate change, and a growing body of literature is focused on 

extreme events (Jentsch et al. 2007). Anomalous and extreme events due to global warming have 

increased considerably during recent decades in temperate regions such as the Mediterranean 

Sea and an increase in the frequency of heat wave extremes of 200-500 % is predicted at the end 

of the twenty-first century (Giorgi and Lionello 2008). Extreme events, together with other sources 

of mortality caused by human impact, such as overfishing and environmental pollution, may cause 

significant impacts on genetic diversity as a result of population size decrease (Pujolar et al. 

2011a), as has been observed after mass mortality events (e.g. Arnaud-Haond et al. 2009; Pujolar 

et al. 2011b). 

If natural populations consist of reduced numbers of individuals, loss of genetic variability may 

dramatically influence the populations themselves, since genetically depauperate populations might 

fail to adapt to future environmental changes, eventually causing their disappearance. Due to the 

predicted intensification of weather extremes, many species may not have sufficient genetic 

potential for the evolution of strategies able to mitigate their impact. Nevertheless, genetic diversity 

reduction after mass mortality events is not a rule in the marine realm (e.g. Pujolar et al. 2011a; 

Colson and Huges 2004). There is an urgent need to carry out dedicated research to acquire more 

extensive, sound data across a range of life-history and demographic features, with the ultimate 
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aim of formulating better predictions about the role of catastrophic disturbances in determining 

genetic structure and genetic diversity. 

Connectivity patterns and gene exchange among populations are major research topics in marine 

ecology and are essential for the planning of marine reserves (Palumbi 2003), to function as 

interconnected networks that can supply recruits to sites that undergo population bottlenecks or 

local extinctions. Genetic recovery from events of mass mortality, either natural or human-induced, 

may be dependent on the possibility of dispersal from external sources or from small local 

populations at refugial pockets (Underwood et al. 2007; Hughes 2007; Maggs et al. 2008). This can 

result in much slower recovery of genetic diversity than population density, because demographic 

recovery is possible from a few founder or bottleneck survivors but genetic recovery requires 

extensive levels of connectivity or a long period of time (Arnaud-Haond et al. 2009). However, 

inferring levels of connectivity is particularly challenging in the marine environment, where many 

species disperse exclusively by means of planktonic propagules, such as larval or spore stages, in 

a 3-dimensional fluid medium. Direct estimation of dispersal by tracking marine propagules is often 

not feasible in most instances, because of their small size and the unbounded nature of the marine 

environment (Bullock et al. 2006; Levin 2006), so indirect methods, such as the use of neutral 

genetic markers (Gilg and Hilbish 2003; Planes et al. 2009), are commonly applied. 

The red gorgonian Paramuricea clavata (Risso, 1826) is a key species of sublittoral rocky habitats 

(Ballesteros 2006), widespread in the western Mediterranean Sea and in the Adriatic Sea (Carpine 

and Grasshof 1975) and less common in the Aegean Sea (Öztürk et al. 2004). The species is a 

surface brooder with a short larval dispersal phase (Linares et al. 2007a; Coma et al. 1995a). In 

situ observations indicate that the dispersive stage of the larvae may last only a few minutes and 

thus the larvae are expected to settle near the mother colony (Linares et al. 2007a). This 

mechanism does not favor dispersal, but possibly decreases larval mortality and wastage, 

contributing to the replenishment of local populations (Linares et al. 2007b). However, 

metamorphosis may be delayed in the laboratory for up to 25 days after egg collection, suggesting 

high dispersal capacity, at least under certain conditions (Linares et al. 2007a). In 1999 and 2003, 

two episodes of mass mortality, connected with increased water temperature reaching 24°C 

(Romano et al. 2000), affected several populations of benthic suspension feeders in the 

northwestern Mediterranean, causing a drastic decrease of P. clavata colony density (Linares et al. 

2005; Cerrano et al. 2005; Cupido et al. 2008). The number of colonies affected by partial mortality 

decreased with depth (Cerrano et al. 2005; Huete-Stauffer et al. 2011), because mortality affected 

the community from the surface to approximately 20 m, the approximate depth of the thermocline. 

Hereafter we designate as deep the sites with colonies living below the thermocline, which were 

not exposed to abnormally long lasting summer conditions (Coma et al. 2009). Therefore, the clear 

differences in the number of damaged colonies and the extent of injury were visible between 

shallow populations (dwelling above the thermocline) and the deep ones, even when the depth 

difference was only of a few meters (Linares et al. 2005; Huete-Stauffer et al. 2011). As 
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hypothesized by Cerrano and Bavestrello (2008; 2009), the deep dwelling subpopulations may act 

as a reservoir, supplying larvae to shallower sites, especially because large colonies with high 

fecundity rates survived there. However, little is known about short distance dispersal of the 

species. Surveys based on microsatellite loci in the Mediterranean Sea, showed that P. clavata 

exhibits a high level of genetic differentiation at the small and large spatial scales, which is 

consistent with the short larval dispersal displayed by the species (Mokhtar-Jamaï et al. 2011; 

2013; Arizmendi-Mejía et al. 2015). Connectivity among populations of P. clavata separated by less 

than 14 km was weak in the study of (Arizmendi-Mejía et al. 2015), since the mean immigration 

rate was below 9% and most of the immigrants came from neighboring populations located only 

hundreds of meters away. 

In the present study we used microsatellite markers to study the genetic structure of P. clavata 

populations in an area impacted by mass mortality events, in the Ligurian Sea, Mediterranean. Our 

objectives were twofold. The first objective was to investigate a possible bottleneck effect of past 

mortality events on genetic diversity in a region where some populations were highly affected by 

mass mortality events and others were not. In this case we are expecting to detect the decrease of 

genetic diversity at sites impacted by mortality. Our second objective was to understand the 

connectivity patterns and migration at the scale of a few tens of km since up to date very few 

studies have examined short distance migration in the species. We expect to detect migrations 

between non-impacted reefs and impacted ones, supporting recovery of damaged populations. Our 

research contributes to better understand the mechanisms that enable recovery of threatened 

populations by providing data about larval migrations between impacted and healthy populations of 

the red gorgonian. The results should prove to be particularly valuable for the conservation of soft 

corals communities and thus the overall marine biodiversity. 

2.3. Material and methods 

2.3.1. Sampling  

P. clavata colonies were sampled by scuba divers following a hierarchical sampling design. 

Samples were taken from three sites, Punta Mesco, La Spezia and Livorno, in the Ligurian Sea 

(NW Mediterranean). At each site two different reefs were chosen (Fig. 2.1., Table 2.1.). In the 

remaining of the text, each reef will be referred to by its code from Table 2.1. At Punta Mesco and 

Livorno reefs were sampled at different depths. At these two sites shallow reefs (<25 m depth) 

were impacted by mass mortality events, whereas colonies dwelling below 25 m (referred as deep 

reefs in the remaining of the text) remained non-impacted (Peirano et al. 2009; Di Fiore M., pers 

com). At La Spezia both reefs were sampled at the same depth, since the rocky cliff ends on a 

muddy bottom at 24-25 m, and therefore both reefs were damaged during the mass mortality 

(Table 2.1). Populations impacted by mass mortality recovered significantly. Colonies density in La 

Spezia population declined from over 35 to nearly 8 colonies m-2 shortly after the mass mortality 
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and increased to 20 colonies m-2 four years later (Santangelo et al. 2015). In Portofino (Ligurian 

sea), located near Punta Mesco, colonies density decreased after the mortality event from nearly 

20 to 5 colonies m-2, but 3 years after the event the density recovered to pre-mortality levels 

(Cerrano et al. 2005). We do not have data from Punta Mesco and Livorno but we may expect that 

the recovery pattern was similar and, therefore, all impacted populations consist of survivors and 

new colonies that settled after the mortality. Sites were separated by distances ranging from 20 to 

60 km (Fig. 2.1.) whereas reefs within each site were separated by 200 to 300 m. Site 1, Punta 

Mesco, is located in the Cinque Terre Marine Protected Area. A small portion of colony branch 

(around 3-4 cm of branch tip) was taken from up to 30 different colonies randomly chosen from 

each reef. The branch tip from each colony was stored individually in a plastic tube underwater. 

Samples were placed on ice during transport and preserved in ethanol after arrival to the 

laboratory, no later than 3 hours after collection. 

The Cinque Terre Marine Protected Area authorized ENEA to conduct fieldwork and sampling at 

Punta Mesco (reef 1 and 2). La Spezia Islands (reef 3 and 4) are included in a recently established 

marine conservation area where ENEA is authorized by the Regional Natural Park of Porto Venere 

to conduct fieldwork and sampling. No specific permission was required for sampling at Livorno. P. 

clavata is not endangered nor protected.  

 

Fig. 2.1. Sampling sites in the Mediterranean. Reefs impacted by mass mortality events (in black) and 

healthy reefs (in white).  
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Table 2.1. Sampling sites characteristics. 

Site Reef 

code 

Depth 

[m] 

Past mass mortality events N Reef coordinates 

1 Punta Mesco 

PMes1 21 - 23 1999 and 2003 (Peirano et 
al. 2009) 

30 44°7’59’’N 9°38’7’’E 

PMes2 28 - 29 No (Peirano et al. 2009) 30 44°7’59’’N 9°38’9’’E 

2 La Spezia 

LaSp3 18 - 22 1999 and 2003 (Cerrano et 
al. 2000; Cupido et al. 2008) 

29 44°1’25’’N 9°51’2’’E 

LaSp4 19 - 20 1999 and 2003 (Cerrano et 
al. 2000; Cupido et al. 2008) 

30 44°1’22’’N 9°51’4’’E 

3 Livorno 
Liv5 23 - 25 2006 (Di Fiore M, pers com) 25 43°27’50’’N 10°19’48’’E 

Liv6 30 - 31 No (Di Fiore M, pers com) 30 43°28’5’’N 10°19’49’’E 

The depth range of sampled reefs, the year of past mass mortality events, N - the number of colonies sampled 

at each reef and the geographic coordinates. 

2.3.2. Microsatellite analysis 

Coral DNA was extracted using E.Z.N.A. Mollusc DNA Kit according to the manufacturer handbook. 

We analyzed 10 microsatellite, developed by Agell et al. (2009) and Molecular Ecology Resources 

Primer Development Consortium (2010) following the protocols published by the authors. Loci 

Par_a, Par_b, Par_d, Par_f and Par_m were amplified from total genomic DNA in 10 µl solution of 

dNTPs (0.25 mM each), selected primers (0.25 µM each), 4 mM of MgCl2, 1x manufacturer-

supplied buffer (pH 8.8, 0.1% Tween 20, 25 mM MgCl2) and 0.25 u DFS-Taq DNA Polymerase 

(Bioron). The PCR program was: 2 min 94°C, (10 sec 94°C, 20 sec AT, 1 min 72°C)x30, 5 min 

72°C. Annealing temperatures (AT): Par_a: 59°C, Par_b: 47°C, Par_d: 51°C, Par_f, Par_m: 52°C. 

To amplify loci Parcla_9, Parcla_10, Parcla_12, Parcla_14 and Parcla_17, total genomic DNA was 

dissolved in 10 µl solution of dNTPs (125 µM each), selected primers (0.5 µM each), 0.25 u 

GoTaq® DNA Polymerase (Promega) and 1x manufacturer-supplied PCR buffer (pH 8.5, 7.5 mM 

MgCl2). The PCR program was: 3 min 94°C, (1 min 94°C, 1 min 60°C, 1 min 72°C)x30, 5 min 72°C. 

The length of amplified fragments was analyzed on an ABI 3730XL Genetic Analyzer using an 

internal size standard (GeneScan 500 LIZ). The analysis of DNA fragment length was performed 

with STRand (Toonen and Hughes 2001). Scored microsatellite fragment sizes were then 

visualized in R environment using the MsatAllele_1.02 package to track and reanalyze scoring 

errors. 

2.3.3. Genetic diversity 

MICRO-CHECKER v.2.2.3 (Van Oosterhout et al. 2004) was used to estimate null allele frequency 

and to check for scoring errors owing to stutters and large allele dropout. Linkage disequilibrium 



40 

 

among all pairs of loci was tested in GENEPOP 4.2. (Raymond and Rousset 1995; Rousset 2008) 

with significance levels determined by the Markov chain method (dememorization = 5000, batches 

= 500, iterations = 10 000). 

Observed (Ho) and Nei’s (1973) unbiased expected heterozygosity (He) were computed in 

GENETIX v.4.05 (Belkhiret al. 2004). The rarefaction procedure implemented in HP-RARE 

software (Kalinowski 2005) was used to estimate allelic richness (Ar) and private allelic richness 

(Ap). The minimum number of genes was set to 25 (the minimum sample size). Differences in 

heterozygosity and allelic richness between impacted and healthy reefs were tested using Kruskal-

Wallis. The power of the test and minimum sample size to achieve 90% power were calculated in 

PASS 14 (2015). Single and multi-locus Weir and Cockerham’s (1984) f estimator of FIS were 

calculated using GENEPOP 4.2. Departures from Hardy–Weinberg (HW) equilibrium within sample 

for each locus and over all loci were tested in GENEPOP 4.2. The level of significance was 

determined by the Markov chain method using the default parameters (dememorization = 1000, 

batches = 100, iterations = 1000).  

Populations that experienced a recent mass mortality are predicted to lose allelic diversity faster 

than heterozygosity (Luikart and Cornuet 1998) and thus exhibit a heterozygosity excess relative to 

the heterozygosity expected from the observed number of alleles. To establish whether there is a 

heterozygosity excess or deficit, the BOTTLENECK software (Piry et al. 1999) computes a 

distribution of the expected heterozygosity under the assumption of mutation-drift equilibrium, 

calculated from the observed number of alleles, and compares it to the heterozygosity expected 

under Hardy-Weinberg equilibrium. The presence of a possible bottleneck effect was tested using 

9999 simulations under the Two-Phase Model (TPM), since it generally fits microsatellite evolution 

better than either pure stepwise or infinite allele models (Luikart and Cornuet 1998; Piry et al. 

1999). TPM assumes that the majority of mutations are single steps, when alleles increase or 

decrease by one repeat unit. The mutation sizes for remaining mutations are drawn from a 

geometric distribution and larger mutations are rare, but do occur. The frequency of step mutations 

was set to 0.9 (ps), the variance of mutations to 12 and the Wilcoxon test was used to test the null 

hypothesis of no significant heterozygosity excess. 

2.3.4. Population differentiation and connectivity 

Global and pairwise Weir and Cockerham’s (1984) estimator of FST was estimated in GENEPOP. 

The genotypic differentiation between all pairs of reefs was tested in GENEPOP with default 

parameters.  

The isolation by distance pattern was tested in GENEPOP. The shortest possible distance over sea 

between each reef pair was measured using Goggle Earth 7.1.2.2041. The relationship between 

genetic distance [FST/(1-FST)] and the spatial distance [km] was tested using a Mantel test (n = 

2000).  
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In order to quantify genetic variation within reefs, among reefs within a site and among sites a 

hierarchical analysis of molecular variance (AMOVA) was performed in ARLEQUIN 3.5 (Excoffieret 

al. 2005). The significance of these variance components was tested using 50000 permutations. 

The Bayesian approach implemented in STRUCTURE v.2.2 was used to investigate population 

structure. The recessive allele option was used to deal with null alleles (Falush et al.2007). The 

number of clusters (K) in the data set was evaluated under the admixture model with correlated 

allele frequencies. First run of 10 iterations, burnin of 10000 and MCMC = 50000 was computed for 

K from 1 to 10. The value of K that captures the major structure in the data was selected based on 

the plot of logarithm of the likelihood of observing the data [LnP(D)] as a function of K (Pritchard et 

al. 2007). STRUCTURE was then run 30 times for K values from 2 to 6. The results were merged 

in CLUMPP (Jakobsson and Rosenberg 2007) and graphically displayed in DISTRUCT 

(Rosenberg 2004). The analysis was then repeated in the groups defined in the first run of 

STRUCTURE, when K=3, to search for substructure within the groups. 

A Bayesian assignment method (Rannala and Mountain 1997) implemented in GENECLASS2 (Piry 

et al. 2004) was used to detect putative first generation migrants (F0). A Monte Carlo resampling 

method, as described in Paetkau et al. (2004), was performed to evaluate each individual’s 

probability of belonging to a population from each reef.  

Whenever multiple tests were conducted (linkage disequilibrium, HW equilibrium, genetic 

differentiation), the level of significance was adjusted using a false discovery rate (FDR; Benjamini 

et al. 1995). 

2.4. Results 

2.4.1. Genetic diversity 

No large allele dropout was detected by MICRO-CHECKER at any locus, but evidence of scoring 

errors due to stuttering was found in Parcla_12 and this locus was excluded from further analysis. 

The mean null allele frequency across all reefs varied from 0 for Parcla_10, Parcla_17 and Par_f to 

0.18 for Par_m. No significant linkage disequilibrium was observed between any pair of loci (all 

p>0.05 after FDR correction), thus all loci were considered as genetically independent.  

Eight of the loci were polymorphic at all sites, whereas one locus, Par_b, was monomorphic at 

LaSp3 and LaSp4 according to the 0.95 frequency criterium. The total number of alleles ranged 

from 4 for Par_b, Par_d and Par_f to 27 for Par_m. Unbiased expected heterozygosity (He) varied 

between 0.57 at PMes1 to 0.66 at Liv6, with a mean value of 0.62 (0.03). Ho ranged from 0.42 for 

LaSp4 to 0.59 at Liv5, with a mean value of 0.51 (0.07) (Table 2.2.). The lowest allelic richness (Ar) 

was found at PMes1 (4.77) whereas the highest value was found at PMes2 (5.84). Private allelic 

richness (Ap) varied from 0.34 at PMes1 to 1.17 at PMes2 (Table 2.2.). There was no evidence that 

reefs affected by mass mortality events had lower genetic diversity than healthy ones (Kruskal-
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Wallis, all p>0.05). The power of the test was low for He (20%) and Ar (20%), and moderate for Ho 

(70%) and Ap (66%). In our case, to achieve test power reaching 90% for the 0.05 confidence 

level, sample size would need to be at least 166 colonies per reef. Multilocus FIS ranged from 0.08 

at Liv5 to 0.31 at LaSp4 (Table 2.2.). When all loci were examined separately, the lowest value was 

-0.26, for Par_b, and the highest one, 0.70, for Par_a. 

Table 2.2. Measures of genetic diversity. 

 He (± SD) Ho (± SD) Ar Ap FIS 

PMes1 0.57 (± 0.28) 0.46 (± 0.27) 4.77 0.34 0.20 

PMes2 0.61 (± 0.27) 0.48 (± 0.23) 5.84 1.17 0.20 

LaSp3 0.60 (± 0.25) 0.52 (± 0.27) 4.92 0.55 0.13 

LaSp4 0.61 (± 0.25) 0.42 (± 0.27) 4.93 0.39 0.31 

Liv5 0.64 (± 0.18) 0.59 (± 0.23) 5.40 0.57 0.08 

Liv6 0.66 (± 0.14) 0.57 (± 0.15) 5.18 0.47 0.13 

mean 0.62 (± 0.03) 0.51 (± 0.07) 5.17 (± 0.40) 0.58 (± 0.30) 0.17 (± 0.08) 

Measures of genetic diversity (mean ± SD) in 6 reefs of Paramuricea clavata at 9 microsatellite loci. He – Nei’s 

(1973) unbiased expected heterozygosity; Ho - observed heterozygosity; Ar and Ap - allelic and private allelic 

richness, respectively (with rarefaction size of 25 genes); FIS - Weir and Cockerham’s (1984) f estimator of FIS 

with significant values in bold (0.05 threshold after FDR correction). 

Significant heterozygote deficiency was detected at all reefs (Table 2.2.). However, the departures 

from HW equilibrium were not evident for all loci at all sites. Populations from all reefs revealed a 

departure from HW equilibrium at locus Par_m, but the highest frequency of null alleles was found 

in this locus and evidence for null alleles was also detected at all reefs for this locus. When Par_m 

was excluded from the analyses, heterozygote deficiency was still significant at all reefs except 

Liv5 after FDR correction. 

No evidence for a recent genetic bottleneck was detected for any of the investigated reefs. A 

heterozygote excess (an indicator of recent bottleneck) was not found at any reef (Wilcoxon, all 

p>0.58) neither was a heterozygote deficit (i.e., a sign of expansion) (all p>0.08). 

2.4.2. Population differentiation and connectivity 

Global FST value was 0.118, whereas pairwise comparisons between all pair of reefs varied from 

-0.003 between Liv5 and Liv6 to 0.189 between PMes1 and Liv6 (Table 2.3.). All comparisons were 

significant (p<0.05), except Liv5 and Liv6, which revealed also no statistical differences in 

genotypic composition (Chi2=18.5, df=18, p=0.42). 
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Table 2.3. Pairwise FST values 

PMes2 LaSp3 LaSp4 Liv5 Liv6 

PMes1 0.00411 0.08499 0.07483 0.18168 0.18917 

PMes2 0.08048 0.06603 0.17626 0.18165 

LaSp3 0.00483 0.17214 0.17452 

LaSp4 0.16189 0.16454 

Liv5 -0.00332 

Global and pairwise Weir and Cockerham’s (1984) estimator of FST between all pairs of P. clavata reefs. All 

but one (Liv 5 and Liv6) comparisons were significant. 

 

The correlation between FST/(1-FST) and distance was significant (p=0.01), supporting an isolation 

by distance model of gene flow in P. clavata at the local scale (Fig. 2.2). 

 

 

Fig. 2.2. The isolation by distance pattern for P. clavata. Linear regression of the genetic distance 

measured as FST ⁄ (1 - FST) over the geographic distance (m). 
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The AMOVA (Table 2.4.) revealed that a highly significant percentage (11.19%) of the total genetic 

variation occurred among sites, whereas a smaller, but still significant, percentage of variation was 

explained by differences among reefs within sites (1.17%). Indeed, most of the variance was 

explained by differences within reefs (87.64%) and this was highly significant.  

 

Table 2.4. AMOVA 

Source of variation df Sum of 

squares 

Variance 

components 

% of 

variance 

p-value 

Among sites 2 101.88 0.39 Va 11.19 <0.0001 

Among reefs within sites 3 16.36 0.04 Vb 1.17 <0.05 

Within reefs 342 1050.82 3.07 Vc 87.64 <0.0001 

Total 347 1169.05 3.51   

Analysis of molecular variance (AMOVA) among P. clavata reefs. 

 

In the STRUCTURE analysis the plot of LnP(D) as a function of K revealed a plateau for K≥3. 

Samples were divided into 3 clearly separated clusters, each of them grouping the two reefs from 

the same site (Fig. 2.3.). Samples from Livorno (Liv5 and Liv6) displayed a high coefficient of 

population membership while reefs from Punta Mesco (PMes1 and PMes2) and La Spezia (LaSp3 

and LaSp4) showed a low level of admixture. A second run of STRUCTURE did not reveal any 

genetic structure within the groups (data not shown). When K was set to 2, reefs from Livorno were 

separated from the others, whereas a K value over 3 did not reveal any additional structure. 

According to GENECLASS2, 37.9% of the colonies were first generation migrants (F0). Most of 

them (31.6%) were exchanged between reefs separated by 200-300 m within the same site. The 

contribution of F0 migrants from the same site varied from 23.3 to 31.0% for PMes1 and LaSp3, 

respectively (Table 2.5.). Between-sites migration was detected only between La Spezia and Punta 

Mesco, separated by 20km. The data suggest that migration occurred in both senses, with 10.0% 

of the colonies from PMes (percentage from both reefs pooled together) assumed as migrants from 

LaSp and 8.5% of the colonies form LaSp contributed from PMes. Migrants exchanged between 

Liv5 and Liv6 were not evaluated because these sites do not differ significantly (FST=-0.00332). 
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Fig. 2.3. Clustering analysis. Population structure revealed by the first run of clustering analyses in 

STRUCTURE. Each individual is represented by a vertical line, divided into segments representing the 

proportion of the genome of the individual that is assigned to each cluster. The number of clusters 

was set to 2-6. Reefs are separated by a black vertical line.  

 

Table 2.5. First generation migrants.  

Source of migrants 

 PMes1 PMes2 LaSp3 LaSp4 Liv5 Liv6 

PMes1  -  23.3 3.3 6.7 0.0 0.0 

PMes2 30.0  -  3.3 6.7 0.0 0.0 

LaSp3 3.4 0.0  -  31.0 0.0 0.0 

LaSp4 3.3 10.0 26.7  -  0.0 0.0 

Liv5 0.0 0.0 0.0 0.0  -  - 

Liv6 0.0 0.0 0.0 0.0 -  -  

The percentage of P. clavata colonies assumed as first generation migrants (F0) from each of the investigated 

reefs. 
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2.5. Discussion 

2.5.1. Genetic diversity 

Our results did not support the hypothesis of genetic effects of past mass mortality events in P. 

clavata from the Ligurian Sea. No differences in genetic diversity between reefs affected by mass 

mortality events and healthy ones were detected. Additionally, the levels of genetic diversity found 

in P. clavata from the Ligurian Sea were not much lower than the range of values reported 

previously for the species (Mokhtar-Jamaï et al. 2011) and other Mediterranean (Costantini et al. 

2007a) and tropical corals (Gutiérrez-Rodríguez et al. 2004; Maier et al. 2005; Magalon et al. 

2005). Numerous gorgonian populations in the Mediterranean were affected by mass mortality in 

the recent past (Linares et al. 2005; Cerrano et al. 2005; Cupido et al. 2008) and there is the 

concern that these may have gone through genetic bottlenecks as a result of decreased population 

densities. However, confounding effects may obscure bottleneck results. For example, in Corallium 

rubrum (Linnaeus, 1758), 16 of 40 Mediterranean shallow populations showed a sign of recent 

expansion after a bottleneck (Ledoux et al. 2010), although a Wahlund effect could not be 

discarded. In a study of P. clavata from Ibiza (Balearic Islands, Spain), partial mortality, measured 

as the proportion of colony tissue damaged, was negatively correlated with effective population 

size, mean number of alleles per population and proportion of recent migration rates (Arizmendi-

Mejía et al. 2015). These results indicated that populations with colonies that are partially affected 

by mortality are less diverse, undergo a larger effect of drift and receive less immigrants than 

healthy gorgonian populations. Additionally, in our study, allelic richness was slightly higher in 

populations non-impacted by mass mortality, which is in agreement with published results 

(Arizmendi-Mejía et al. 2015). Yet, in spite of the extensive density reductions that mass mortality 

events had on the Ligurian red gorgonian (ca. four-fold; see methods section), our results show no 

difference in genetic diversity between healthy and impacted sites. This may suggest that the 

adaptive potential of surviving populations was not reduced. Nonetheless, this interpretation should 

be cautious given that our sampling design was limited to six reefs, among which only two were not 

impacted by mass mortality. Consequently the test presents low to moderate power (20-70%) to 

detect differences between genetic diversity of healthy and impacted sites (high probability of 

making a type II error, i.e., failing to detect existing differences). The need to increase power in 

such tests with higher number of samples and loci has been highlighted in previous studies (e.g., 

Peery et al. 2012). To achieve a power of 90%, we would need to sample 166 colonies per reef 

(ca. 1000 colonies in total), which is unrealistic, because of the logistic effort and the limited 

number of colonies at some reefs. It is also noteworthy that heterozygosity excess tests have been 

shown to have a limited power to detect mild-bottlenecks of 10-1000-fold population declines 

(Girod et al. 2011). Even if past mass mortality events have affected genetic diversity, it may not be 

detected by our study, because of the lack of power of the statistical tests and other confounding 

factors such as recent expansion or Wahlund effect. 



47 

 

The departures from Hardy-Weinberg equilibrium found in the present research, indicated by high 

and significant FIS values, are typical for species exhibiting low larval dispersal, and were already 

reported in P. clavata populations [29]. Heterozygote deficit as a result of inbreeding was 

previously reported in coral species characterized by having a short larval dispersal (Gutiérrez-

Rodríguez et al. 2004; Magalon et al. 2005; Costantini et al. 2007b). Our findings confirm previous 

studies and are in accordance with the reproductive biology and larval ecology of P. clavata. 

Planulae exhibit negative phototaxis and negative buoyancy and settle near the mother colony 

(Linares et al. 2007a), increasing the probability of subsequent mating with closely related 

individuals, associated with reduced dispersal of the male gametes also. High FIS values may also 

result from a high number of F0 migrants, analogously to Wahlund effect, since migrants come 

from genetically distinct population. The presence of null alleles may also partially explain the 

result, but heterozygote deficit was still prevalent in the absence of the main locus suspected to 

have null alleles. 

2.5.2. Genetic structure and connectivity 

The high value of global FST indicates strong genetic differentiation among reefs and additionally 

supports the low dispersal capability of the larvae. The value obtained in the present study was 

nearly equal to the one previously found in the species (0.118 in the present study versus 0.116; 

Mokhtar-Jamaï et al. 2011). Our results indicated that the majority of variance in the population can 

be explained by the within reefs variation, indicating large variability among individuals. Although 

the variation among reefs within sites is smaller, reefs differ significantly in relation to the variability 

present at their respective site. Finally, variation among sites is high and significant as well. 

Therefore, the high diversity within each population should not be interpreted to conclude that 

populations differ only slightly. Higher differences between sites than between reefs within sites are 

consistent with a significant IBD pattern. Distance clearly acts as a barrier to gene flow in P. 

clavata, which is typical for species with short larval dispersal (Santangelo et al. 2005). Moreover, 

isolation by distance is a phenomenon that occurs at local scales (Selkoe ad Toonen 2011) and 

therefore it is evident among the closely located populations studied here. At larger spatial scales 

(hundreds to thousands of km), P. clavata also displayed a significant IBD pattern, similarly to 

another Mediterranean coral, C. rubrum (Ledoux et al. 2014). However, at a fine spatial scale (cm 

to m), red gorgonian colonies did not show significant IBD, in contrast to C. rubrum (Ledoux et al. 

2014). 

Short distance migration (hundreds of meters) is likely to be the dominant scale of dispersal in P. 

clavata, but our results also suggest that migration from close undisturbed sites may be a 

significant source of recruits for disturbed areas to recover, since the maximum larval dispersal was 

between 20 to 60 km, with migrants detected in reefs separated by 20 km, but not by 60 km. This 

strengthens evidence from studies showing that coral population recovery after catastrophic 

mortality may be mainly supported by local migration from undamaged sites. A study of genetic 
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connectivity in coral populations recovering after catastrophic bleaching revealed that the majority 

of detected migrants originated from the only site that was not decimated by a recent mortality 

event. Most of these immigrants were received by the site which reached pre-bleaching diversity, 

highlighting their role in population recovery (Underwood et al. 2007). Our results demonstrate that 

larvae may disperse from the Cinque Terre Marine Protected Area (Punta Mesco) to the adjacent 

populations, supporting their recovery after the disturbance. Additionally, the larval transport from 

deep, healthy reefs to the shallow ones, impacted by past mass mortality events, may have great 

importance for recovery after climatically induced population collapses. 

Our findings indicate higher larval dispersal potential than reported in (Coma et al. 1995a), which 

observed that larvae settle immediately on the substrate surrounding their mother colony. We 

found that transport of the larvae was not only common over distances of hundreds of meters, but 

also for tens of kilometers. The maximum migration distance detected in the present study reached 

20 km, i.e. the distance that separates the two sites of La Spezia and Punta Mesco. Ten percent of 

the colonies from Punta Mesco were estimated as migrants from La Spezia. In this case, the larval 

dispersal was consistent with predominant currents, with the large scale Ligurian circulation being 

characterized by a cyclonic, east-to-west flow, active all year round and modulated by seasonality 

and wind forcing (Astraldi and Gasparini 1992). High contribution of migrants from Punta Mesco 

(8.5%) found in La Spezia may be caused by the predominantly southwesterly summer wind 

(Libeccio), which occasionally reverses coastal current direction (Haza et al. 2010). In contrast to 

the previous two sites, Livorno was genetically homogeneous. This site is separated from La 

Spezia by 60 km of sandy bottom, unsuitable for the red gorgonian. The nearest known population 

to the south is located around 25 km from Livorno, at the deep rocky shoal below 40-50 m. It 

seems that both distance and depth differences may isolate Livorno reefs from other populations. 

Theoretically, the high number of migrants exchanged between Punta Mesco and La Spezia should 

lead to panmixia in a few generations (Slatkin 1985), but the genetic structure between these sites 

remains relatively high. These observations may be explained by an increased recruitment rate 

after the mortality. In stable populations the number of recruits is low, but after mass mortality the 

amount of available substrate increased and was occupied by new settlers, including migrants. 

When colonies recruited after the mass mortality events reached maturity and started reproducing, 

most of the available substrate was already occupied and only a minor proportion of their offspring 

could settle and survive, effectively reducing the opportunity for successful out-crossing. 

Additionally, P. clavata reaches maturity when colonies are from 3 years old (data from La Spezia 

population, Cupido et al. 2012) to 7 years old (data from Medes Islands, Spain, Coma et al. 1995b) 

and therefore only a few generations may have appeared after the mortality.  

Our dispersal estimate (IBD regression slope of 0.037, R2=0.78) was similar to the one reported 

previously for populations from the whole Mediterranean, when IBD slope was 0.033 (R2=0.51; 

Mokhtar-Jamaï et al. 2011). However, when comparing our results with a study that investigated a 
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small spatial scale (IBD slope of 0.012, R2=0.85; Arizmendi-Mejía et al. 2015), the isolation by 

distance appears stronger in our study, implying a lower dispersal. Variability in dispersal estimates 

may arise form larval responses to environmental conditions, modifying planktonic larval duration 

(PLD), or from differential establishment success after dispersal. Indeed, PLD of up to 25 days, 

estimated from laboratory experiments (Linares et al. 2007a), indicate that larvae can delay their 

metamorphosis when lacking the necessary settlement stimuli (Selkoe and Toonen 2011) and, 

therefore, may be capable of long distance dispersal. The demographic state of the local receiver 

populations may strongly condition the success of establishment of long distance migrants. In 

mature populations, the rare arrival of few migrants may pass unnoticed, lost among the high 

recruitment mortality bottleneck that is typical of most populations with overlapping generations. 

Therefore large-scale dispersal is rarely detected as effective gene flow. However, where mass 

mortality has occurred, the opportunity of expansion in freely available habitat magnifies the 

probabilities of success of long distance dispersers. Moreover, the study of Arizmendi-Mejía et al. 

(2015) examined not only populations that experienced mortality, but also one population that was 

recently founded. These processes, which have been named density-barrier effects or prior 

colonization effects, are most strikingly demonstrated for species which have been able to rapidly 

expand for thousands of km along novel available habitat (e.g., in invasive expansions or 

postglacial recolonizations) whereas in the ancient native ranges they remain highly structured 

even across a few tens of km (e.g. De Meester et al. 2002; Neiva et al. 2012). Therefore, inferring 

probability of connectivity from genetic data alone may be misleading, where the demographic 

conditions of the populations may prevail over dispersal capabilities in determining the possibilities 

of population recovery by migration in a metapopulation. 

The larval exchange between deep and shallow reefs, such as that inferred in Punta Mesco and 

Livorno, has significant importance for the species' conservation. Colonies dwelling below 25-30 m 

were not affected by mass mortality events, in contrast to shallow subpopulations (Linares et al. 

2005; Huete-Stauffer et al. 2011). Our research supports the hypothesis of Cerrano and 

Bavestrello (2008; 2009) that deeper subpopulations may supply larvae to shallower sites. 

However, depth differences in the present study were relatively small, aimed at representing 

nearby areas above and below the thermocline warming effects. Further studies on larval dispersal, 

including deeper subpopulations, are needed to develop a more complete picture of larval 

exchange between different depths. Deeper reefs may have an even greater larval contribution for 

the shallower and other deep reefs than what we estimated here, especially after disturbances. In 

the STRUCTURE analysis, some of the migrants exchanged between Punta Mesco and La Spezia 

were grouped into a separate cluster when k=4. They might have originated from a different 

population, possibly from a greater depth at Punta Mesco, where P. clavata occurs down to 60 m. 

The evidence for longer larval dispersal, between Punta Mesco and La Spezia, suggests that 

damaged reefs may benefit from external larval sources. Unexpectedly high numbers of recruits in 

the La Spezia population were observed shortly after the mass mortality event (Cupido et al. 2008). 



50 

 

In the subsequent years recruits density was five times higher than in the pre mortality period 

(Santangelo et al. 2015). Our findings indicate that not only increased reproductive output might be 

responsible for the recovery of the damaged population, but also larval migration. 

2.5.3. Conclusions 

Our study failed to detect any genetic diversity loss in the P. clavata populations affected by mass 

mortality events. This may be due to the lack of test power and other confounding factors, including 

recent expansion or Wahlund effects. Our research confirmed low larval dispersal capability in the 

red gorgonian, since the maximum dispersal distance inferred from our data was between 20 and 

60 km. However, this reduced ability for dispersal during the larval phase may still be ecologically 

significant for population replenishment and persistence, enabling migration between local 

populations. Population recovery after mortality events may be dependent on the possibility of 

propagule immigration from external sources, such as Protected Areas. Additionally, migration 

between reefs located at different depths implies that deeper refugia may provide larvae for shallow 

subpopulation recovery after climatically-induced mortality events affecting mostly shallow sites.  
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Chapter 3. High genetic differentiation of the red gorgonian populations from 

the Atlantic Ocean and the Mediterranean Sea 

3.1. Abstract 

Patterns of genetic variation within a species range may be used to study the evolutionary history 

of marine species. In the present study we used microsatellites and mitochondrial Cytochrome 

Oxydase I gene (COI) to compare genetic diversity of the red gorgonian Paramuricea clavata in the 

Atlantic Ocean and the Mediterranean Sea. Populations from two basins revealed distinct genetic 

composition and diversity. Higher heterozygosity, allelic richness and private allelic richness were 

found in the Mediterranean Sea with the use of microsatellites, possibly caused by the isolation of 

Atlantic populations or by a founder effect. Colonization of the Atlantic region from the 

Mediterranean may explain lower genetic diversity reported here for Atlantic reefs, as it is expected 

in peripheral populations. Additionally, a clear difference was obtained from the mtDNA COI gene, 

since sequences from Atlantic and Mediterranean samples diverged by 1%, which is a high value 

for soft corals.  

3.2. Introduction 

Genetic variability along species distribution range may be highly complex as a result of thousands 

of years of cumulative historical events. Historical processes, including population division, 

expansion and colonization, may be responsible for producing specific patterns in the allele 

distribution (Templeton et al. 1995). Therefore we can infer about historical events based on 

patterns of genetic variation. Spatial genetic structure may also result from past or present barriers 

to gene flow (e.g. Nei and Takahata 1993; Wakeley and Hey 1997). The Gibraltar Strait, separating 

the Mediterranean Sea from the Atlantic, is one of the well-known examples of a barrier to gene 

flow for a number of species (Patarnello et al. 2007). However, even closely related species may 

exhibit contrasting patterns of genetic structure in the Gibraltar Strait. The survey on the family 

Sparidae, for example, revealed three fish species with a sharp Atlantic–Mediterranean separation 

and other two without any population structure (Bargelloni et al. 2003). The study of edible Atlanto-

Mediterranean sea urchin Paracentrotus lividus revealed large degree of gene flow between 

populations within the Mediterranean and Atlantic, but significant genetic differentiation between 

these two basins, due to restricted gene flow across the Strait of Gibraltar (Duran et al. 2004a). 

Although species population structure are expected to correlate with its dispersal potential, the 

meta-analysis of Patarnello et al. (2007) did not detect any relationship between divergence of the 

Mediterranean and Atlantic populations and life history, reproduction, ecological niche or other 

biological traits.  

 



60 

 

The present research examines the genetic structure of the red gorgonian Paramuricea clavata 

(Risso, 1826) from two regions located on both sides of the Gibraltar Strait. The species is 

widespread in the western Mediterranean Sea and in the Adriatic Sea (Carpine and Grasshof 

1975) and less common in the Aegean and Marmara Seas (Öztürk et al. 2004; Topçu and Öztürk 

2015). Data from Atlantic Ocean are limited, but P. clavata is present in the Portuguese coast 

(Boavida et al. 2015). Personal observations confirmed its occurrence in the Algarve, Arrábida and 

Berlengas, the last being probably the northern species range in the Atlantic. The species has been 

also reported by fishermen in the past along the Atlantic coast of Morocco (Harmelin and 

Marinopoulos 1994). The red gorgonian is a surface brooder with a short larval dispersal (Coma et 

al. 1995; Linares et al. 2007a). This mechanism does not favor dispersal, but possibly decreases 

larval mortality and wastage, contributing to replenishment of local populations (Linares et al. 

2007b). Surveys based on microsatellite loci (Mokhtar-Jamaï et al. 2011; 2013; Arizmendi-Mejía et 

al. 2015; Pilczynska et al. 2016) on P. clavata sampled in the Mediterranean Sea, evidenced a high 

level of genetic differentiation even at short distances, confirming short larval dispersal potential. In 

contrast to highly variable microsatellites, mitochondrial DNA (mtDNA) markers, commonly used for 

phylogeography investigations, did not reveal variability in P. clavata. Mitochondrial Cytochrome 

Oxydase I gene (COI) sequences did not differ between geographically isolated colonies from 

Mediterranean Sea (Calderon et al. 2006), although only 3 colonies were investigated in this study, 

one from Marseilles (France) and two from Medes islands (Spain).  

Temperature-driven mass mortality events in the Mediterranean populations (Cerrano et al. 2005; 

Huete-Stauffer et al. 2011) raise concerns about conservation of the species in a rapidly warming 

ocean, which call for a better understanding of the species dispersal and colonization history. The 

aim of the present study was to compare the genetic structure and diversity of P. clavata 

populations from the Mediterranean Sea and the Atlantic Ocean, using microsatellite markers and 

Cytochrome Oxydase I gene (COI). Genetic structure of the populations from the Atlantic Ocean 

and Mediterranean Sea were not compared to date. The COI gene sequence was examined for the 

first time in the Atlantic, allowing us to test the mtDNA diversity in both regions.  

3.3. Material and methods 

3.3.1. Sampling 

P. clavata colonies were sampled by scuba divers from three sites in the Ligurian Sea 

(Mediterranean) and from two sites in the Atlantic Ocean. At each site, two different reefs were 

chosen (Figure 3.1.). In the remaining of the text, each reef will be referred to by its code from 

Figure 3.1. The two sites in the Atlantic were separated by approximately 280 km, whereas 

Mediterranean sites were separated by distances ranging from 20 to 60 km. Reefs within each site 

were separated by 200 to 300 m. A branch tip of around 3-4 cm was taken from up to 30 different 

individuals from each reef. An exception was Site 2 (Sagres, Atlantic Ocean), where 17 colonies 
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were sampled at Sag3 and only 2 individuals at Sag4, because of low gorgonian abundance. 

Branch tips from each colony were stored in individual tubes. Samples were placed on ice during 

transport and preserved in 96% ethanol after arrival to the laboratory. 

 

 

Fig 3.1. Sampling sites in the Atlantic and Mediterranean Sea. Reefs are indicated by white circle. 

3.3.2. Microsatellite analysis 

Coral DNA was extracted using E.Z.N.A. Mollusc DNA Kit according to the manufacturer's 

handbook. We analyzed 9 microsatellites, developed by Agell et al. (2009) and Molecular Ecology 

Resources Primer Development Consortium (2010) following the protocols published by the 

authors. Loci Par_a, Par_b, Par_d, Par_f and Par_m were amplified from total genomic DNA in 10 

µl solution of dNTPs (0.25 mM each), selected primers (0.25 µM each), 4 mM of MgCl2, 1x 

manufacturer-supplied buffer (pH 8.8, 0.1% Tween 20, 25 mM MgCl2) and 0.25 u DFS-Taq DNA 

Polymerase (Bioron). The PCR program was: 2 min 94°C, (10 sec 94°C, 20 sec Annealing 

temperature (AT), 1 min 72°C) x 30 cycles, and 5 min 72°C. AT: Par_a: 59°C, Par_b: 47°C, Par_d: 

51°C, Par_f, Par_m: 52°C. To amplify loci Parcla_9, Parcla_10, Parcla_12, Parcla_14 and 
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Parcla_17, total genomic DNA was dissolved in 10 µl solution of dNTPs (125 µM each), selected 

primers (0.5 µM each), 0.25 u GoTaq® DNA Polymerase (Promega) and 1x manufacturer-supplied 

PCR buffer (pH 8.5, 7.5 mM MgCl2). The PCR program was: 3 min 94°C, (1 min 94°C, 1 min 60°C, 

1 min 72°C) x 30 cycles, and 5 min 72°C. The length of amplified fragments was analyzed on an 

ABI 3730XL Genetic Analyzer using an internal size standard (GeneScan 500 LIZ). The analysis of 

DNA fragment length was performed with STRand (Toonen and Hughes 2001). Scored 

microsatellite fragment sizes were then visualized in R environment version 3.1.1 (R Foundation for 

Statistical Computing, 2014) using the MsatAllele_1.02 package (Alberto 2009) to track and 

reanalyze scoring errors. 

MICRO-CHECKER v.2.2.3 (Van Oosterhout et al. 2004) was used to estimate the null allele 

frequency and to check for scoring errors owing to stutters and large allele dropout. The linkage 

disequilibrium among all pairs of loci was tested in GENEPOP 4.2. (Raymond and Rousset 1995; 

Rousset 2008) with significance levels determined by the Markov chain method (dememorization = 

5000, batches = 500, iterations = 10 000). 

Observed (Ho) and Nei’s (1973) unbiased expected heterozygosity (He) were computed in 

GENETIX v.4.05 (Belkhir et al. 2004). The rarefaction procedure implemented in HP-RARE 

software (Kalinowski 2005) was used to estimate allelic richness (Ar) and private allelic richness 

(Ap). The minimum number of genes was set to 25 (minimum sample size). Sag3 was excluded 

from this analysis, because of numerous gaps in the data due to amplification failure, which led to 

overestimate the number of alleles and private alleles. The significance of differences in 

heterozygosity and allelic richness between Mediterranean and Atlantic population were evaluated 

using a Kruskal-Wallis test. Global and pairwise Weir and Cockerham’s (1984) estimator of FST was 

evaluated in GENETIX. The genotypic differentiation between all pairs of populations was tested in 

GENEPOP software with default parameters.  

Sag4 was excluded from most analysis because of the small number of colonies sampled. When 

multiple tests were conducted, the level of significance was adjusted using a false discovery rate 

(FDR) (Benjamini and Hochberg 1995).  

3.3.3. Cytochrome Oxydase I 

We analyzed Cytochrome Oxydase I gene (mtCOI) in the samples from two sites in the Atlantic 

Ocean (Berlengas and Sagres) and two sites in the Mediterranean Sea (Livorno and La Spezia). 

Five individuals were randomly chosen from each site. The previously extracted DNA was used for 

COI gene amplification with primers designed by Calderon et al. (2006): 

COI Cni F 5′-GGY ACT YTA TAT TTA CTA TTT GG-3′ 

COI Cni R 5′-CCS GCA GGA TCA AAG AAW GTT G-3′ 
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For the PCR reaction, the total genomic DNA was dissolved in 10 µl solution of dNTPs (125 µM 

each), primers (0.5 µM each), 0.25 u GoTaq® DNA Polymerase (Promega) and manufacturer-

supplied PCR buffer. The PCR program was as follow: 3 min 94°C, (1 min 94°C, 1 min 60°C, 1 min 

72°C) x 30 cycles, and 5 min 72°C. The PCR product was directly sequenced in both directions 

with the same primers. 

Sequences were aligned by eye using MEGA version 6 (Tamura et al. 2013) and saved on FASTA 

format. To identify the origin of analyzed sequences they were checked in Bold Systems gene 

bank. The composition of nucleotides and genetic distance matrix were also computed in MEGA. 

Distances were calculated with Kimura 2-parameter model (for phylogenetic analyses; Kimura, 

1980), which accounts for differences in transitions and transversion rates. 

Sequences from Atlantic samples were (will be) deposited in GeneBank under accession number 

XXX. 

3.4. Results 

3.4.1. Microsatellites 

No allele dropout and evidence of scoring errors were detected by MICRO-CHECKER at any locus. 

The mean null allele frequency across all populations varied from 0 for Parcla_10, Parcla_17 and 

Par_f to 0.23 for Par_m. Null allele frequency was not estimated for Sag3 because of insufficient 

amount of data due to amplification failure. No significant linkage disequilibrium was observed 

between any pair of loci (all p>0.05 after FDR correction), thus all loci were considered as 

genetically independent.  

Eight of the loci were polymorphic at all sites, whereas one locus, Par_b, was monomorphic at 

Ber2, Sag3, LaSp5 and LaSp6 according to the 0.95 frequency criteria. Unbiased expected 

heterozygosity (He) varied between 0.39 at Sag3 to 0.66 at Liv10, with a mean value of 0.58. Ho 

ranged from 0.30 for Sag3 to 0.59 at Liv9, with a mean value of 0.48 (Table 3.1.). The highest 

allelic richness (Ar) was found at PMes8 (5.84) whereas the lowest value was found at Ber2 (3.88). 

Private allelic richness (Ap) varied from 0.96 at Pmes8 to 0.20 at Liv10 (Table 3.1.). Samples from 

the Atlantic revealed slightly lower genetic diversity when compared with those from the 

Mediterranean Sea. Expected heterozygosity and allelic richness were significantly higher in the 

Mediterranean (Kruskal-Wallis, p=0.038 and p=0.045, respectively), but the differences were not 

significant for H0 and Ap.  
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Table 3.1. Measures of genetic diversity in populations of Paramuricea clavata at 9 microsatellite loci. 

He (SD) Ho (SD) Ar(25) Ap(25) 

Ber1 0.58 (0.24) 0.46 (0.26) 4.61 0.63 

Ber2 0.55 (0.27) 0.48 (0.25) 3.88 0.27 

Sag3 0.39 (0.24) 0.30 (0.34) - - 

LaSp5 0.60 (0.25) 0.52 (0.27) 4.92 0.26 

LaSp6 0.61 (0.25) 0.42 (0.27) 4.93 0.29 

PMes7 0.57 (0.28) 0.46 (0.27) 4.77 0.27 

PaMes8 0.61 (0.27) 0.48 (0.23) 5.84 0.96 

Liv9 0.64 (0.18) 0.59 (0.23) 5.40 0.37 

Liv10 0.66 (0.14) 0.57 (0.15) 5.18 0.20 

mean 0.58 (0.08) 0.48 (0.09) 4.94 0.41 

He – Nei’s (1973) unbiased expected heterozygosity; Ho - observed heterozygosity; Ar and Ap - allelic and 

private allelic richness, respectively (with rarefaction size of 25 genes). SD = standard deviation 

Overall FST value was 0.193, whereas pairwise comparison between all pairs of populations varied 

form -0.003 between Liv9 and Liv10 to 0.388 between Sag3 and PMes7 (Table 3.2.). Among 36 

comparisons between populations, 35 were significant after FDR correction. One pair of 

populations belonging to the same site, Liv9 and Liv10, revealed no statistical differences in 

genotypic composition (Chi2=18.5, df=18, p=0.42). Pairwise comparison between all Atlantic 

populations and all Mediterranean populations pooled together, was 0.147. 

Table 3.2. Pairwise Weir and Cockerham’s (1984) estimator of FST between all pairs of P. clavata reefs. 

All comparisons but one (Liv9 and Liv10) were significant. 

Reef Ber1 Ber2 Sag3 LaSp5 LaSp6 PMes7 PMes8 Liv9 

Ber2 0.1152 

Sag3 0.3772 0.3752 

LaSp5 0.2391 0.2717 0.3987 

LaSp6 0.2270 0.2631 0.3772 0.0047 

PMes7 0.2073 0.2322 0.4030 0.0712 0.0643 

PMes8 0.1981 0.2350 0.4000 0.0741 0.0610 0.0043 

Liv9 0.2237 0.2449 0.3204 0.1737 0.1626 0.1794 0.1768 

Liv10 0.2332 0.2438 0.3148 0.1759 0.1652 0.1852 0.1826 -0.0035 
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3.4.2. Cytochrome Oxydase I 

The amplified COI region was 581 bp long. All sequences obtained from the Atlantic samples were 

identical. Individuals from the Mediterranean Sea also shared one single genotype. Genetic 

differences between individuals from the Atlantic and the Mediterranean was 1%. 

3.5. Discussion 

Understanding the effects of barriers in the environment on genetic structure of natural populations 

allows analyzing essential biological processes, including speciation and species' distribution 

changes. Several studies have documented the role of the Gibraltar Strait in shaping diversity of 

algae, sessile and pelagic invertebrates and fishes, within an Atlantic–Mediterranean distribution, 

highlighting the reduction of gene flow between the two basins (e.g. Zane et al. 2000; Duran et al. 

2004a; Lo Brutto et al. 2004; Roman and Palumbi 2004, Patarnello et al. 2007). Our results 

revealed the same pattern of genetic differentiation in the red gorgonian. The Gibraltar Strait may 

represent a major barrier to gene flow in Paramuricea clavata, causing the reduction of the genetic 

diversity in the Atlantic and the differentiation of the COI region between the two basins. 

The present study found significant differences in the red gorgonian genetic diversity between the 

Mediterranean and Atlantic populations, with heterozygosity and allelic richness being slightly, but 

significantly, higher in the Mediterranean Sea. The investigated Atlantic populations are likely 

highly isolated from other P. clavata reefs in the Atlantic. Berlengas archipelago is located around 

85 km north of the nearest known P. clavata reef, in the Arrábida coast, and there is no information 

in the literature about any other population to the north of the archipelago. It is not clear if the low 

temperatures in the northern species range are responsible for this distribution, or the lack of 

suitable habitat (hard bottom) to the south from Berlengas. Distance is a barrier to gene flow in the 

red gorgonian (Mokhtar-Jamaï et al. 2011; Pilczynska et al. 2016), likely due to the short larval 

phase duration. In the summer, when P. clavata reproduce, upwelling-favorable northerly winds 

prevail in the western coast of Portugal (Wooster et al. 1976), triggering offshore and southward 

transport of the water masses along the whole Iberian coast (Sánchez and Relvas 2003). This 

oceanographic condition may additionally hinder larval migration to the north, from Arrábida to 

Berlengas. The population in Sagres inhabits a narrow rocky passage with dim-light conditions, 

which may be a barrier to larvae migration and gene flow. The geographical distance between 

populations, and the number of connections between them, strongly influence the probability of 

successful migration and gene flow (García-Ramos and Kirkpatrick 1997; Kirkpatrick and Barton 

1997). Isolated populations are more prone to genetic drift and bottlenecks because of low 

immigration rates, decreasing genetic variation (Karron 1987). 
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The lowest heterozygosity among all populations was found in Sagres. Additionally, the pairwise 

Weir and Cockerham’s (1984) estimator of FST between Sagres and other reefs was the highest 

among all comparisons, reaching 0.4, while FST between Berlengas and Mediterranean reefs 

reached 0.27. This result may be simply explained by the isolation of the population in the cave. 

However, colonies from Sagres differed from all other investigated populations, being bright yellow 

instead of purple. Yellow colonies are reported to be rare in the Mediterranean, whereas purple 

colonies with yellow apical branches are more common (Carpine and Grasshoff 1975). Additionally, 

in the Sagres population, the highest percentage of PCR failure was observed, possibly indicating 

incompatibility of primers. Although the yellow Sagres colonies share the same COI genotype with 

the purple Berlengas P. clavata colonies, further studies are necessary to determine if the yellow, 

southern, type is undergoing speciation, or is a phenotype of the same species. It cannot be 

excluded that the low number of successfully amplified loci from the Sagres population may have 

biased our results. However, when taken in conjunction with the particular habitat of this 

population, the small population size, and the distinct phenotype, it supports the conclusion of a 

strong genetic differentiation and underlines its conservation interest. 

Our results confirmed the low level of COI differentiation in P. clavata that has been reported 

previously. The sequences from the Mediterranean Sea obtained in the present study were 

identical to the ones obtained from Marseilles (France) and Medes islands (Spain) colonies, 

published by Calderon et al. (2006). The unity of COI sequences in colonies from distinct regions of 

the Mediterranean Sea, together with the divergence of 1% between the Atlantic and 

Mediterranean populations, is consistent with previous studies indicating low diversity of cnidarian 

mtDNA (Calderon et al. 2006; France and Hoover 2002). Doughty et al. (2014) studied the 

Extended Mitochondrial Barcode (COI+igr1+MutS) in Paramuricea biscaya populations from the 

Gulf of Mexico and their results indicated that sequences were 0.1–2.2% divergent from each 

other. However, the authors discuss the possibility that different haplotypes may belong to separate 

species. The results of France and Hoover (2002) revealed the low level of differentiation in COI 

sequences of soft corals from a number of seamounts from Atlantic and Pacific. The uncorrected 

pairwise distance between different species was lower than 10%, and no differences were detected 

between individuals belonging to the same species and among species belonging to the same 

genus.  

The data obtained in the present study do not allow for strong conclusions about the colonization 

history of the species. The 1% difference in the COI region between Atlantic and Mediterranean is 

a high value for cnidarians, since even closely related species may not exhibit any differences in 

the investigated mtDNA region (France and Hoover 2002). Therefore we may expect, that 

Mediterranean and Atlantic populations differentiated in the distant past. Colonization of the Atlantic 

region from the Mediterranean may explain lower genetic diversity reported here for Atlantic reefs, 

as it is expected in peripheral populations as a result of colonization or extinctions followed by 

recolonization processes (Patarnello et al. 2007). It was previously reported that the Atlantic sites 
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revealed reduced allelic richness when compared with populations from the Mediterranean, for 

example in two species of barnacles, Chthamalus montagui and C. stellatus (Pannacciulli et al. 

1997), the sponge Crambe crambe (Duran et al. 2004b) and the seagrass Cymodocea nodosa 

(Alberto et al. 2008). This difference between two basins may result from founder events during the 

past colonization of the Atlantic from the Mediterranean. Further research including populations 

sampled along the southern Spanish and French coasts would allow a better understanding of the 

Atlantic-Mediterranean colonization process for the red gorgonian.  

This has identified an important genetic break within the red gorgonian distribution. Both markers 

used in the present study, mtDNA and microsatellites, revealed the same discontinuity between the 

Mediterranean and Atlantic. Further assessments of the red gorgonian genetic structure, preferably 

with the use of highly variable markers, such as microsatellites, and in the whole species 

distribution range, would add interesting information to the present knowledge about P. clavata 

phylogeography.  
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Chapter 4. Genetic diversity increases with depth in red gorgonian 

populations form the Mediterranean and Atlantic 

4.1. Abstract 

Environmental stress gradients are known to affect species genetic diversity and adaptation. Along 

the first tens of meters of the ocean there are strong changes in the magnitude and variability of 

abiotic parameters that may expose shallow populations to greater environmental perturbations 

compared to deep ones. The present study examined the differences in genetic diversity in the red 

gorgonian coral (Paramuricea clavata) from populations inhabiting different depths in the Atlantic 

and Mediterranean. Expected and observed heterozygosity did not correlate with depth, but the 

number of alleles and allelic richness were slightly higher in deep populations. Private allelic 

richness showed strong correlation with depth, increasing in deep populations. Our results partially 

confirmed the hypothesis that genetic diversity increase with depth, being lower in the shallow, less 

stable populations due to past mortality events induced by warming and other interacting factors 

and higher in deeper, stable populations. 

4.2. Introduction 

Decreased biodiversity in stressful environments is a well-known fact and may not only affect 

species diversity (Frontier 1985), but also genetic diversity. Changes in genetic diversity between 

stressful and reference sites or along a stress gradient may have multiple grounds and species 

specific reactions may differ significantly. 

One of the well-described examples are the trends in genetic structure of mountain plants along an 

altitude gradient. In the review of Ohsawa and Ide (2008) the authors described several types of 

genetic diversity changes with altitude, varying from decreasing diversity with altitude, as a result of 

genetic drift and bottlenecks occurring during range expansion, to increased diversity, caused by 

adaptation to more severe conditions at higher altitudes. A genetic diversity decrease with 

increasing elevation was also reported in the long-toed salamander (Ambystoma macrodactulym; 

Giordano et al. 2007). Salinity gradients may be another example of an environmental factor 

affecting genetic diversity. Laamanen et al. (2002) analyzed the variability in the 16S-23S rRNA 

internal transcribed spacer (ITS) sequences of the cyanobacterium Aphanizomenon flos-aquae 

populations along a salinity gradient in the Baltic Sea. They found that genetic diversity decreased 

with increasing salinity, since natural selection removes most of the lake genotypes from the Baltic 

Sea populations and therefore only one, better adapted genotype, can be found in the sea. Human 

activities may also influence genetic diversity of natural populations, for example by environmental 

pollution. Populations the brown bullhead (Ameirus nebulosus), a benthic fish, showed a consistent 

depression of haplotype diversity at polluted sites when compared with control sites, probably due 

to population bottlenecks (Murdoch and Hebert 1994). 
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In shallow marine coastal environments, even small depth changes may reflect significant 

environmental differences due to wind-induced turbulence, the presence of thermoclines and 

haloclines or light attenuation, which underpin the well-known gradients in species occurrence and 

community structure. However, to the best of our knowledge, the effects of the depth gradient in 

genetic diversity seem to have never been addressed. In the present study we tested the changes 

in genetic diversity with depth in the red gorgonian, Paramuricea clavata (Risso), within a small 

depth gradient. The species typically lives on shadowed rocky substrates in the Mediterranean 

roughly from 10 m to at least 110 m depth (Carpine and Grashoff 1975) and in the Atlantic 

(Boavida et al. 2015) down to 60 m (Boavida, personal observation). Environmental conditions at 

the shallow depths may be more stressful for P. clavata populations, because of more variable 

temperatures and warming events connected with water stratification. For instance, in the NW 

Mediterranean, past mortality events caused by increased water temperature, reaching 24°C 

(Romano et al. 2000), are well documented (e.g. Perez et al. 2000, Garrabou et al. 2009). In 2003, 

the temperature down to the thermocline was between 1 and 3 °C above the mean monthly 

temperature in the NW Mediterranean (Garrabou et al. 2009). Damage intensity decreased with 

depth and communities dwelling below the thermocline (25-30m) were significantly less affected 

than the shallow one (Linares et al. 2005; Cerrano et al. 2005). In the Atlantic, temperature-driven 

mortality events are presumed to be less frequent, because water is usually mixed due to summer 

upwellings (Relvas et al. 2007), but there are sporadic events of upwelling relaxation when 

temperature may persist for several days above 22°C (Relvas and Barton 2005) and one of such 

events may be sufficient to cause mortality in the shallow water populations. Indeed, the 

temperature changes in the Atlantic already led to the changes in community composition in 

subtidal kelp forest in NW Spain (Voerman et al. 2013) or a marine gastropod (Patella rustica) 

expansion to the north (Lima et al. 2006).  

 

Genetic diversity influences not only the fitness of individuals, but also the viability of populations 

and the adaptive potential of species to environmental change (Reusch et al. 2005; Hughes et al. 

2008). Consequently, the interplay between disturbance and genetic diversity may have significant 

ecological and evolutionary implications. In the present study we test the hypothesis that genetic 

diversity of P. calvata may change with depth, being lower in the shallow populations due to past 

mortality events, and higher in deep, more stable environments, and therefore shallow populations 

may be less resistant to future environmental changes. 

 

4.3. Material and methods 

Investigated populations were sampled by SCUBA diving in the Atlantic Ocean and Mediterranean 

Sea (Fig. 4.1.), from depths ranging from 12 to 60m. Genetic diversity indicators, including 

observed and expected heterozygosity, number of alleles, allelic richness and private allelic 

richness, were collected from the study of Boavida (2015) and Pilczynska et al. (2016). In order to 
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eliminate the differences in background genetic diversity between regions, anomalies of each 

indicator were calculated as the difference between the genetic diversity indicator at each site and 

the mean value for the region. Then, linear regressions of the anomalies in heterozygosity, allelic 

richness and private allelic richness on depth were separately tested. 

 

Fig. 4.1. Sites where P. clavata samples were taken.  

In order to characterize the thermal environment and substantiate stability differences between 

regions and depth levels, information on ocean temperatures was compiled on a daily basis for a 

20-year period (1993-2013). Surface data derived from the Operational Sea Surface Temperature 

and Sea Ice Analysis, a dataset that combines microwave and infrared satellite data from the 

Group for High-Resolution Sea Surface Temperature with in situ measurements, on a spatial 

resolution of ~5km (Stark et al. 2011). Temperatures at 20, 30 and 60 m depth were derived from 

the Hybrid Coordinate Ocean Model, a product forced by heat flux, wind speed, wind stress and 

precipitation on a spatial resolution of ~7km. This model is able to resolve complex oceanic 

processes like eddies, meandering currents, filaments and fronts (Chassignet et al. 2007) and 

accurately predict the temporal variation of temperatures, with low averaged bias ranging from 

0.2°C to 0.3 °C depending on the regions (Kara et al. 2008, 2010). For each sampling site and 

depth level, the estimates of daily temperature were made by bilinear interpolation (e.g., Assis et 

al., 2015). 

4.4. Results and discussion 

Temperature variation decreases with depth and deep sites were more stable than the shallow 

ones (Fig. 4.2., Table 4.1.). During the 1993-2013 period temperature was typically higher in the 

Mediterranean Sea than in the Atlantic, frequently reaching over 25°C. However, in the Atlantic, 
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temperature during a summer may reach over 20°C in the upper layer for a number of days (Fig. 

4.3.).  

 

Fig. 4.2. The temperature time series at the investigated sites in the Atlantic and Mediterranean at 

different depths. 
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60m; 30 m 

min 

11.89 

12.51 

12.35 

12.91 

12.27 

10.90 

11.18 

max 

19.18 

19.79 

19.94 

20.59 

22.51 

23.44 

25.46 

mean 

14.82 

15.33 

15.47 

15.64 

16.50 

16.72 

17.32 

SD 

1.17 

1.15 

1.17 

1.17 

2.45 

2.84 

3.32 

20m 

min 

12.56 

13.46 

12.89 

13.05 

12.28 

10.93 

11.12 

max 

19.98 

20.51 

20.29 

21.76 

24.85 

26.50 

26.79 

mean 

15.74 

16.08 

15.92 

16.47 

17.23 

17.70 

17.55 

SD 

1.38 

1.29 

1.26 

1.50 

3.13 

3.83 

3.52 

surface 

min 

12.78 

13.17 

13.26 

13.55 

11.83 

11.51 

11.82 

max 

21.66 

21.74 

21.87 

22.89 

28.03 

27.89 

27.84 

mean 

16.39 

16.72 

16.86 

17.46 

18.41 

18.40 

18.45 

SD 

1.91 

1.72 

1.76 

1.91 

4.38 

4.42 

4.36 

Site 

Berlengas 

Arrabida 

Sines 

Sagres 

Punta Mesco 

La Spezia 

Livorno 

  

Table 4.1. Temperature range and variance for each site and depth level. 60m and 30m represents the maximum sampling depth 

in the Atlantic and Mediterranean, respectively.  



78 

 

 

 

Fig. 4.3. The number of days when water temperature was higher than 25 and 20°C in the 

Mediterranean and Atlantic, respectively. 

Genetic diversity measures at each site are represented in Table 4.2. Expected and observed 

heterozygosity, allelic richness and number of alleles across loci were not significantly related with 

depth. Private allelic richness increased significantly with depth (Fig. 4.4.). 
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Table 4.2. Depth, the number of sampled individuals and genetic diversity measures at each sampling 

site. 

 n - number of individuals sampled, Ho – observed heterozygosity, He – Nei’s (1973) unbiased expected 

heterozygosity, Na - number of alleles summed across all loci, AvNa - average Na across loci, Ar - allelic 

richness, rarefied for minimum sample size, Ap – private allelic richness, rarefied for minimum sample size 

 

Deeper sites differed from the shallow ones in terms of private allelic richness, but not 

heterozygosity. At shallow sites environmental conditions, including temperature, are less stable 

and the mortality rate may be higher, removing rare and new alleles from the population. Allelic 

richness, rather than heterozygosity, may reflect more effectively a population’s long-term 

evolutionary potential (Petit et al. 1998). Reduction in population size may theoretically reduce 

allelic richness at neutral loci, but not gene diversity, since rare/unique alleles are more exposed to 

genetic drift than frequent ones (Nei et al. 1975). Allelic richness was reported to be more sensitive 

indicator of differences in genetic diversity between the pre-bottleneck and post-bottleneck 

populations than multiple-locus heterozygosity (Leberg 1992; Spencer et al. 2000). Therefore the 

difference in private allelic richness found in the present study may reflect species history, despite 

the lack of differences in other genetic diversity indicators. 

 

 

 

 Site Depth (m) n Ho He Na AvNa Ar(20) Ap(20) 

A
tla

n
tic

 

COR 55 32 0.58 0.79 57 11.4 7.04 2.44 

CAT 38.5 72 0.61 0.68 63 12.6 6.05 0.90 

SIN 55 24 0.63 0.78 51 10.2 6.91 2.55 

Sag3 12 18 0.48 0.51 17 3.4   

SAG 60 10 0.48 0.56 30 6.0 4.60 1.53 

LAG 60 34 0.61 0.61 40 8.0 4.71 1.25 

BER1 21.5 30 0.60 0.70 31 6.2 4.91 0.31 

BER2 12 28 0.55 0.64 23 4.6 4.16 0.21 

M
e
d

ite
rr

a
n

e
a
n

 

LaSp5 20 30 0.61 0.67 31 6.2 4.79 0.09 

LaSp6 20 30 0.60 0.72 32 6.4 5.23 0.15 

PMes7 22 30 0.63 0.69 27 5.4 4.55 0.00 

PMes8 28 30 0.64 0.72 36 7.2 5.60 0.37 

Liv9 25 30 0.68 0.72 35 7.0 5.66 0.42 

Liv10 30 30 0.61 0.71 37 7.4 5.36 0.20 
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Fig. 4.4. Regression of genetic diversity indices with depth in the red gorgonian. In order to eliminate 

the differences in genetic diversity between regions, diversity indices were calculated as the 

difference between the index at each site and the respective regional mean (Mediterranean or 

Atlantic). Ho – observed heterozygosity, He – Nei’s (1973) unbiased expected heterozygosity, Na - 

number of alleles summed across all loci, Ar - allelic richness, rarefied for minimum sample size, Ap – 

private allelic richness, rarefied for minimum sample size 

 

Our results suggest that genetic diversity may be correlated with depth, being lower in the shallow 

populations and higher in deeper, more stable environments. One of the most important factors 

influencing the observed pattern may be the occurrence of bottlenecks caused by past mortalities 

in the shallow sites. The time series data clearly shows that thermal variability decreases with 

depth. Additionally, we can observe that in the upper water masses there were a number of days 

when temperature reached potentially lethal values, which we suggest to be 25 and 20°C in the 
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Mediterranean and Atlantic, respectively. In contrast deep populations are nearly never exposed to 

such high temperatures. This explanation is in line with findings from a wide diversity of species 

and environments (e.g. Bickham et al. 2000; Van Straalen and Timmermans 2002), which 

suggested bottlenecks as the cause of decreased genetic diversity in stressful environments. 

However, genetic diversity changes along environmental gradients may result from a number of 

causes. We may not exclude genetic drift and bottlenecks occurring during range expansion of 

deep population to shallower sites, for example after sea level changes during the glacial maxima. 

Lower gene flow in the deeper sites may also decrease genetic diversity, especially allelic richness. 

Low dispersal ability of P. clavata (Linares et al. 2007) does not favor extensive connectivity and 

admixture between populations, nor expansion of rare alleles from deep sites. Additionally, shallow 

sites may be more connected to each other, exchanging larvae, and therefore the alleles are more 

homogenously distributed among them, with the consequence that unique alleles are less 

abundant.  

Independently of the mechanism that generates higher diversity at deeper sites, our findings may 

have significant meaning in terms of P. clavata conservation. Populations with higher genetic 

diversity are less likely to suffer losses of adaptive genetic diversity associated with population 

bottlenecks. For example, experiments on Zostera marina showed, that plots with higher genotypic 

diversity had greater survival rate and recovery after the disturbance (Reusch et al. 2005; Hughes 

and Stachowicz 2004). Therefore, our results suggest that deep population have higher adaptive 

potential, while shallow ones may be less resistant to environmental changes. 
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General conclusions 

 

The impact of past mass mortality events on the coralligenous community 

 

Historical mass mortality events have severely impacted engineering, sessile invertebrates from 

the Mediterranean Sea, in particular effecting density (Garrabou et al. 2009), size classes’ 

frequency distribution (Cerrano and Bavestrello 2008; Cupido et al. 2009) and reproductive output 

(Linares et al. 2008a). When reproductive output is decreased, asexual reproduction may become 

more important for damaged populations recovery. However, we found no evidence for increased 

contribution of clonal propagation in the popuations affected by mass mortality evets (Chapter 1). 

Severe decline in population abundance may also decrease genetic diversity and its recovery after 

the disturbance requires extensive levels of connectivity or a long period of time (Arnaud-Haond et 

al. 2009). Therefore lower genetic diversity may be expected in populations of benthic invertebrates 

affected by mass mortality in the past. Contrary to expectations, this study did not find any 

evidence for recent bottlenecks nor significant difference in genetic diversity between impacted and 

healthy P. clavata populations (Chapter 2). Long generation time characteristic of the red 

gorgonian (Linares et al. 2007b) may act as a buffering mechanism, contributing to a reduction in 

the rate of genetic diversity erosion. However, genetic diversity, particulary allelic richness, 

increase with depth, being lower in the shallow, less stable populations and higher in deeper, 

stable populations (Chapter 4). Past mortality events induced by warming and other interacting 

factors may be responsible for this result. 

 

Recovery of populations after mass mortality events 

 

Despite the severe reduction in population density and prolonged mass mortality impact, the red 

gorgonian populations are recovering (Cupido et al. 2009). There are a number of mechanisms that 

may be responsible for observed populations’ recovery, including increased reproductive output 

and recruitment, caused by decreased competition because of a larger area of available 

substratum for juveniles. Clonal propagation, although more frequent than indicated by previous 

assessments, may not be the dominant factor accounting for population recovery in sites that have 

been affected by past climatic events (Chapter 1).  

 

Migrations are probably an important factor enabling population recovery after mass mortality 

events. Although larval phase duration is short in P. clavata (Coma et al. 1995), this reduced ability 

for larval dispersal may still be ecologically significant for population replenishment and 

persistence, enabling migration between local populations (Chapter 2). Propagules may immigrate 

to damaged sites from external sources, such as Protected Areas or deep reefs, which remained 

undisturbed during the climatically induced mortalities (Linares et al. 2005; Huete-Stauffer et al. 

2011). Additionally, the lack of evidence for decreased genetic diversity in the affected populations 
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despite severe demographic perturbations (Chapter 2), may have a positive impact on population 

recovery, since it is generally agreed that decreased genetic diversity may reduce fitness, 

especially in small populations (Ellstrand and Elam 1993). However, the inability to detect 

bottleneck effect in the present study may be caused by the lack of test power and other 

confounding factors, including recent expansion or Wahlund effects. Genetic diversity decreasing 

with depth (Chapter 4) may indicate that deep population have higher adaptive potential, while 

shallow ones may be less resistant to environmental changes. 

Phylogeography of P. clavata 

 

The use of genetic markers to study the populations within a species range can provide a data 

about genetic diversity and connectivity, but may also be used to study evolutionary history of a 

species. The current study indicated, that genetic diversity of the red gorgonian differ significantly 

between populations from the Atlantic Ocean and Mediterranean Sea, being higher in the 

Mediterranean (Chapter 3). The differences may result from isolation of Atlantic populations and/or 

historical processes of colonization of new areas. In the latter case the lower genetic diversity of 

Atlantic populations may indicate that P. clavata evolved in the Mediterranean and spread into the 

Atlantic after opening the Gibraltar Strait. However, further research is needed to investigate the 

phylogeography of the species. In this study we confirmed the low diversity of mtDNA in cnidarians 

and its low utility for phylogeography research (Chapter 3). 

 

Conservation of coralligenous assemblages 

 

Diverse and fragile coralligenous communities are subjected to many threats linked to human 

activities. Some of the rare species inhabiting coralligenous assemblages are legally protected, e.g. 

Savalia savaglia and Spongia officinalis, but the community as a whole still remain without formal 

protection (Gatti et al. 2012).  

 

The establishment of marine protected areas (MPAs) is considered as a critical step towards 

conservation and management of marine ecosystems (Allison et al. 1998). At present, 94 MPAs 

have been established in the Mediterranean Sea, most of them in the north- western part, covering 

3.8% of the total surface (Abdulla et al. 2008). In the Atlantic, gorgonians forests are present in 

several protected areas, e.g. Reserva Natural da Berlenga (Almeida 1996) and Marine Park 

Professor Luiz Saldanha (Rodrigues 2008). Mediterranean MPAs create rather a network of small 

protected areas than a group of several large ones (Francour et al. 2001). Although it is a result of 

independent local decisions instead of international planning, this design is assumed to be 

favorable for maintain biodiversity (Allison et al. 1998), providing a series of sheltered places for 

commercially fished species and larval sources for other MPAs and unprotected areas (Francour et 

al. 2001). Protected areas in Mediterranean are widely scattered and 66% of them is separated by 
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more than 30 km (Francour et al. 2001). This spacing may be too wide to ensure the effectiveness 

of the network for species with short larval dispersal, particularly for P. clavata, considering low 

larval dispersal capability in the red gorgonian, since the maximum dispersal distance inferred from 

our data was 20-60 km (Chapter 2). Dispersal from protected area however, may contribute to a 

stronger resilience of adjacent non-protected populations (Palumbi, 2003). A clear understanding of 

mechanisms shaping distribution of the larvae and connectivity between populations is essential for 

an effective management plan and community conservation. 

 

Transplantation of living colonies form healthy populations to damaged ones, may be an additional 

tool for conservation strategy, since the red gorgonian may reproduce clonally in the wild (Chapter 

1). A successful transplantation of P. clavata was performed in Mediterranean Sea by Linares et al. 

(2008b) in the Medes Islands, Spain. The mortality rate among artificially attached colonies was 

similar to the one naturally occurring in the environment. Such a restored sites become a source of 

recruits for the adjacent areas. The red gorgonian populations are highly divergent genetically and 

the differences increase with distance (Chapter 2 and 3) and therefore they may be locally 

adapted. It might be important to use a population located near the site that will be restored as a 

source population to provide the most adapted genotypes for the experiment. 

 

Protection of marine habitats by establishing protected areas or refilling damaged populations by 

transplants does not prevent mass mortalities related to climate changes. However, communities 

protected in MPAs have greater possibilities for recovery after the disturbances because of 

reduced and controlled anthropogenic impact. Similarly, transplantation cannot counteract the 

massive mortality caused by climate changes (Cerrano et al. 2000), but it may be used in small 

MPAs highly impacted e.g. by diving activity for rehabilitation of local exploited populations, 

especially when natural recovery is to slow (Epstein et al. 2001; 2005). The detailed assessment of 

connectivity patterns among coralligenous assemblages, connected with extended knowledge of 

species biology, is essential for effective protection plans. 
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