
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2015

RUI
REBELO
BRITO

INTELLIGENT DATA TRANSFER FOR DIGITAL
ASSEMBLY INSTRUCTIONS

TRANSFERÊNCIA INTELIGENTE DE INSTRUÇÕES
DIGITAIS DE MONTAGEM

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2015

RUI
REBELO
BRITO

INTELLIGENT DATA TRANSFER FOR DIGITAL
ASSEMBLY INSTRUCTIONS

TRANSFERÊNCIA INTELIGENTE DE INSTRUÇÕES
DIGITAIS DE MONTAGEM

Dissertação apresentada à Universidade Técnica de Hamburgo para cumpri-
mento dos requisitos necessários à obtenção do grau de Mestre em Sistemas
de Informação na Universidade de Aveiro, realizada sob a orientação científica
do Doutor Hermann Lödding, professor do Instituto de Gestão de Produção e
Tecnologia da Universidade Técnica de Hamburgo, e do Doutor Cláudio Tei-
xeira, professor auxiliar do Departamento de Electrónica, Telecomunicações
e Informática da Universidade de Aveiro.

the jury

First Examiner Prof. Dr. Hermann Lödding
Hamburg University of Technology

Second Examiner Prof. Dr. Cláudio Teixeira
Universidade de Aveiro

acknowledgments I would like to express my gratitude to Prof. Herman Lödding, without whom
I would have never been able to take advantage of this opportunity. I am ex-
tremely grateful to Prof. Cláudio Teixeira, who always made himself available
to support this work. All the conversations and advice were extremely helpful
for the good course of this thesis. I would also like to show my gratitude to my
coordinator Phillip, whose guidance was instrumental to overcome most of
the challenges I faced during this work.

A special thank you to Alex, for his help and availability in brainstorming ideas.

I would like to thank my special friends Cris, André, Andreas, Renato, and
Eduardo, whom despite the distance were always close, their support meant
the world to me.

To Semah, Lino, and Sandro, I can not begin to quantify how their presence
got me going when facing many adversities.

I would like to deeply thank my mother, father, and sister, who always did
everything they could and could not do to support me. I aspire to be the kind
of person they are.

Last but not least, words cannot express how deeply thankful I am to Rita for
her continuous support and help. It will be something I will never forget.

keywords shipbuilding, data transmission, auguemented reality.

abstract The German maritime industry has a strong economic influence, prevailing
over competitors by offering a higher quality product and a higher degree of
flexibility during design and building phases. In order to maintain its competi-
tive edge, means to increase the productivity of a ship’s construction process
are researched and developed. Under the PROSPER project, an Android ap-
plication running augmented reality technology was developed to assist ship-
builders in the performance of their tasks. In this work, we researched or-
ganizational models capable of holding assembly instruction information later
transfered to the application. Different wireless technologies and protocols
were analyzed and studied to determine the most suitable transferring mech-
anisms.
In the end, a Node.js server capable of handling complex assembly instruc-
tions requests was developed and tested using real-word scenarios. Through-
out the development process, time was devoted to security measures in the
protection of the server, end connections, and all information. Two different
transferring methods were developed and testes, together with improvements
to the overall transfer of assembly instructions.

palavras chave construção naval, transmissão de dados, realidade aumentada.

resumo A indústria marítima alemã tem uma forte influência econômica, prevalecendo
sobre os seus concorrentes, oferecendo um produto de maior qualidade e um
maior grau de flexibilidade durante as fases de conceção e construção. A fim
de manter a sua vantagem competitiva, fins para aumentar a produtividade do
processo de construção de um navio são investigados e desenvolvidos. No
âmbito do projecto PROSPER, uma aplicação Android foi desenvolvida para
ajudar, através de realidade aumentada, construtores navais no desempenho
das suas funções. Neste trabalho, investigamos modelos organizacionais ca-
pazes de armazenar informação pertinentes a instruções de montagem de
navios, mais tarde transferidas para a aplicação. Diferentes tecnologias e
protocolos sem fio foram analisados e estudados para determinar os meca-
nismos mais adequados para o procedimento de transferência. No final, um
servidor Node.js capaz de lidar com complexas solicitações de instruções de
montagem foi desenvolvido e testado utilizando cenários reais de montagem.
Durante todo o processo de desenvolvimento, medidas de segurança na pro-
teção do servidor, conexões entre servidor e clientes, e informações foram
implementadas. Dois métodos distintos de transferência foram desenvolvidos
e testados, juntamente com melhorias para a transferência global de instru-
ções de montagem.

C O N T E N T S

1 introduction 1

1.1 Context . 1

1.2 Thesis Objectives . 2

1.3 Thesis Structure . 4

2 problem statement and concept 5

2.1 State of the Art of Ship Building . 5

2.2 Problem Description . 12

2.3 Proposed Solution . 12

2.4 Decision Support System . 15

3 architecture 17

3.1 Solution Constraints . 17

3.2 Data Transmission . 20

3.2.1 Transport Protocol . 21

3.2.2 Transferring Protocol . 24

3.3 Security . 27

3.3.1 Access Control . 27

3.3.1.1 Authentication . 27

3.3.1.2 Authorization . 28

3.3.2 Secure Communication . 29

3.3.3 Data Protection . 30

3.3.4 Access and Request Authentication . 32

3.4 Relational Database . 33

3.4.1 Model Representation . 34

3.4.2 Password Protection . 34

3.4.3 Assembly Instructions Storage . 36

3.5 System Abstraction . 37

3.6 Assembly Instruction Transfer . 39

3.6.1 Work Package List . 40

3.6.2 Data Selection . 41

3.6.3 Transfer Methods . 48

3.6.3.1 Condense Method . 48

3.6.3.2 Multiple-Requests Method . 49

3.6.3.3 Method Comparison . 50

3.6.4 Transfer Time Improvement . 51

3.6.4.1 Location Identifier . 51

xiii

xiv contents

3.6.4.2 File Caching . 52

3.6.5 Instructions Update . 53

3.7 Service Mapping . 54

4 framework 57

4.1 Database and Datastore . 57

4.1.1 MySQL . 57

4.1.2 Redis . 57

4.2 Server Framework . 58

4.2.1 Node.js . 58

4.2.2 Node Package Manager . 59

4.3 Client Framework . 60

4.3.1 Android Operating System . 60

4.3.2 Android HTTP Client . 61

5 implementation 63

5.1 Database Implementation . 63

5.1.1 Database Structure . 63

5.1.2 Work Package Dependencies . 65

5.1.3 Data Validation . 67

5.2 System Configuration . 69

5.2.1 System Modular Design . 69

5.2.2 Server Configuration . 70

5.2.2.1 Package Declaration . 70

5.2.2.2 Redis and MySQL Connection 71

5.2.2.3 Sequelize Models . 73

5.2.2.4 Application Configuration . 74

5.2.2.5 Request Routes and Authentication 75

5.2.2.6 Messages Format . 76

5.2.2.7 Redis Database Structures . 77

5.2.3 Client Configuration . 79

5.2.3.1 Package Declaration . 79

5.2.3.2 Android HTTP Client Interface 80

5.3 Assembly Instructions Updates Method . 81

5.4 Transfer Methods Implementation . 83

5.4.1 File Encryption . 83

5.4.2 Condense Method Implementation . 83

5.4.3 Multiple-Requests Method Implementation 85

5.5 Test Results . 89

5.5.1 Transfer Methods Comparison . 89

5.5.2 Load Testing . 90

contents xv

6 conclusion 93

bibliography 95

communication channels 105

L I S T O F F I G U R E S

Figure 1.1 Prototype display . 2

Figure 1.2 Manual transmission of information . 3

Figure 1.3 Automatic Wireless transmission of information 3

Figure 2.1 Ship production/construction stages 5

Figure 2.2 Initial ship sketchs . 6

Figure 2.3 Ship assembly process . 7

Figure 2.4 Shipyard layout . 7

Figure 2.5 Sub assembly construction process of a ship’s unit 10

Figure 2.6 Model complete Unit . 11

Figure 2.7 Model unit definition . 11

Figure 2.8 Model block assembly analysis . 11

Figure 2.9 3D solid CAD model . 11

Figure 2.10 Work Package . 13

Figure 2.11 Work package dependencies structure 14

Figure 2.12 Model proposal . 15

Figure 3.1 TCP sequence diagram . 23

Figure 3.2 SSL connection establishment . 31

Figure 3.3 Model’s entity-relationship diagram . 35

Figure 3.4 Authentication Process . 37

Figure 3.5 System abstract overview . 38

Figure 3.6 Block and Section Assembly Order . 42

Figure 3.7 Ship Example . 43

Figure 3.8 Work Package ship structure . 43

Figure 3.9 Condense Method Process . 48

Figure 3.10 Distinct TCP connections per request 49

Figure 3.11 Mutil Request Connection . 50

Figure 3.12 Cache Writing Policy . 52

Figure 3.13 Periodic Instructions Update . 53

Figure 4.1 Android Activities Life Cycle . 61

Figure 5.1 MySQL Database . 64

Figure 5.2 Trigger Association Validation . 68

Figure 5.3 System abstract overview . 69

Figure 5.4 Redis data structures . 78

Figure 5.5 HTTP packets capture. 88

Figure 5.6 Methods comparison . 90

Figure 5.7 Load test total time . 91

xvii

xviii contents

Figure .1 Simplex channel . 105

Figure .2 Half-Duplex channel . 105

Figure .3 Full-Duplex channel . 105

L I S T O F TA B L E S

Table 3.1 802.11 Specifications Comparison . 19

Table 3.2 TCP and UDP comparison . 22

Table 3.3 TCP acknowledge and sequence packets 23

Table 3.4 Password Hashes . 36

Table 3.5 Password Hashes and Salt . 36

Table 3.6 Service Mapping . 55

Table 5.1 Hierarchical data designs comparison 66

Table 5.2 Closure Pattern of S" . 66

Table 5.3 Method results values . 89

Table 5.4 Load test summary results . 91

xix

L I S T I N G S

Listing 1 List Work Package Example . 41

Listing 2 List of Parts for U5 dependecy selection 46

Listing 3 Records Association Trigger . 68

Listing 4 Package.json . 71

Listing 5 Redis Client . 72

Listing 6 Sequelize Client . 72

Listing 7 Sequelize Blueprint Model . 73

Listing 8 Sequelize FindbyId BluePrint . 74

Listing 9 Express App configuration . 74

Listing 10 Node.js Server . 74

Listing 11 Route GET request . 75

Listing 12 Mysql.json . 77

Listing 13 Login method . 78

Listing 14 build.gradle . 79

Listing 15 Client HTTP Interface . 80

Listing 16 Update Service . 81

Listing 17 AlarmManager . 82

Listing 18 Alarm scheduler . 82

Listing 19 Encrypt Function . 83

Listing 20 Condense Method Service . 84

Listing 21 Android condense method . 84

Listing 22 Android Multi-Request method . 85

Listing 23 Multi-Request Method Service . 86

xxi

xxiii

xxiv Acronyms

A C R O N Y M S

2D Two-Dimensional.

3D Three-Dimensional.

ACL Access Control List.

API Application Program Interface.

AR Augmented Reality.

BLE Bluetooth Low Energy.

BLOB Binary Large OBject.

CA Certificate Authority.

CAD Computer-Aided Design.

CTO Chief Technology Officer.

DRM Digital Rights Management.

ER Entity-Relationship.

HMAC Hash Message Authentication Code.

HTTP Hypertext Transfer Protocol.

I/O Input/Output.

IEEE Institute of Electrical and Electronics Engineers.

IP Internet Protocol.

IR Infrared.

JSON JavaScript Object Notation.

MAC Message Authentication Code.

MVC Model-View-Controller.

NIST National Institute of Standards and Technology.

Acronyms xxv

npm Node Package Manager.

OHMD Optical Head-Mounted Display.

ORM Object-Relational Mapper.

OS Operating System.

PIN Personal Identification Number.

RDMS Relational Database Management System.

SDK Software Development Kit.

SHA Secure Hash Algorithm.

SQL Structured Query Language.

SSE Server-Sent Events.

SSL Secure Sockets Layer.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TUHH Hamburg University of Technology.

UDP User Datagram Protocol.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

UTC Coordinated Universal Time.

WLAN Wireless Local Area Network.

WPA Wi-Fi Protected Access.

WPA 2 Wi-Fi Protected Access II.

WPAN Wireless Personal Area Network.

WWAN Wireless Wide Area Networks.

WWW World Wide Web.

XML Extensible Markup Language.

1
I N T R O D U C T I O N

The German maritime industry has a strong economic influence, prevailing over compet-
itors by offering a higher quality product and a higher degree of flexibility during design
and building phases. They specialize in the production of passenger ships, yachts, ferries,
and naval vessels, each with its own unique size, shape, and configuration. To maintain
this lead, the industry needs to increase the productivity.

From planing, to production, to sea trials, building a ship is a laborious process that in-
volves a substantial amount of time, precision, and several calculations on the ship’s shape
optimization, noise and vibrations, propellers, ducts, and paddles. Additionally, rules,
certificates and other legalities increase the complexity of this task. There are numerous ap-
proaches to shipbuilding, such as synchronized assembly lines for ship sections, building
sites for larger blocks of the ship, and on-board equipment. Detailed assembly schedules
and drawings for every ship are essential for the construction. Examining these drawings,
discussing and distributing the work that will be performed requires a great amount of
time. [1] To help resolve uncertainties in the design, workers and foremen consult interact-
ive stationary Three-Dimensional (3D) Computer-Aided Design (CAD) terminals together
with the traditional Two-Dimensional (2D) drawings. These methods of operating are not
enough to maintain a competitive edge, since there is still a lot of time spent in gathering
the information needed for assembly. This is aggravated by the fact that often, during the
construction phase, clients have changes of heart regarding their needs. Alterations to the
initial design, resulting from the need to improve it or correct possible flaws, have to be
implemented and properly tested, forcing workers to restarting the process of gathering
and understanding the new information all over again.

1.1 context

In order to increase the productivity during the building phase of ships, one sub goal of the
research project PROSPER is to provide digital assembly instructions via an application on
mobile devices operated by shipbuilders, while they perform their tasks. This application
would provide all the necessary information, reducing the gathering process and the time
spent understanding the task. Devices like tablets or Optical Head-Mounted Displays
(OHMDs) are a cheap and viable solution to achieve this goal. Having a single point
where all the assembly instructions, including both traditional 2D and interactive 3D, can
be gathered and explained, results in a faster understanding of the necessary assembly
steps.

1

2 1 introduction

To achieve the goals set by project PROSPER, the Augmented Reality Laboratory at the
Hamburg University of Technology (TUHH) has developed an Android prototype, dubbed
Digital Assembly Assistant, that makes use of smart technologies like Augmented Reality
(AR), where computer elements are augmented (or added to) by input sensors, enhancing
the current perception of reality. The idea is to connect shipbuilders and take advantage of
a “fusion between already assembled components and to-be installed parts” [1] making it
easier to understand how components must be assembled. Figure 1.1 depicts a screenshot
of the current application’s display, where it is possible to see the available options, as well
as the components that have to be assembled. With this application a shipbuilder can have
access to the information, and have them displayed in the real environment, as well as the
CAD model itself.

For a more detailed examination of the current prototype, we recommend reading the
literature published under the PROSPER project, particularly [1].

1.2 thesis objectives

At the current stage, the pertinent information for a specific assembly, still has to be manu-
ally gathered and transfered to the device (Figure 1.2). This can be inefficient and time
consuming, particularly when design changes occur frequently. An essential requirement,
in any construction, is to have the most up-to-date information so that the component can

Figure 1.1: Screenshot of the current prototype. The display demonstrate a real-live scenario
showing a mounting pipe scenario, with components highlighted in blue (AR).

1.2 thesis objectives 3

Figure 1.2: Prototype current state:
Manual selection and transfer of inform-
ation.

Figure 1.3: Automatic Wireless transmis-
sion of information.

be assembled. Thus, a content provider system (Figure 1.3) that can seamlessly and auto-
matically transfer the necessary information to the application must be established/put in
place. Also, in order to take full advantage of the devices’ portability, a precondition is
having the system and the devices communicate wirelessly.

There are some challenges in the distribution of digital assembly instructions to these
devices. Without a comprehensive understanding of the assembly process, one can not
foresee the relevant information for a worker, at a particular assembly step. Determining
how, when, and which data needs to be transfered, and how the correlation between a
specific mobile device and the to-be transferred data is made, represents a serious chal-
lenge that can undermine what this research project is trying to accomplish. Moreover, we
must only take in consideration technologies generally available in most of today’s mobile
devices, and consider the usability, performance, and battery life at every planning and
implementation stage.

This thesis has two primary objectives: First, to find a model in which assembly instruc-
tions can be organized by several forms/aspects/ and correlated by specific task, worker,
and type of construction. Second, to design a system that transmits assembly instructions
data to mobile devices used by (groups of) workers for information gathering. For this
purpose, it has to be determined how, when, and which data has to be transfered, and how
the correlation between a specific mobile device and the to-be transferred data is made.

To achieve these objectives a precise analysis of the situation and analytic specification
of the problem must be conducted. This step is necessary to fully understand the current
state of the problem in study, and subsequently propose a suitable solution for it.

In order to develop the system for holding and transmitting the information to the
devices, an evaluation/discussion of the current data transmission protocols and tech-
niques, as well as a study of the current assembly scenarios in shipbuilding, must be con-
ducted. In addition, considerations must be made for technologies and features present in
most mobile devices. In order to develop the system’s concept, we need to define, based on
the correlation between worker, device, component, work package, and data, the necessary
data to be transfered. We also need to detect design changes on the data currently in use
and implement a back channel to confirm that data. Finally, we must validate the concept

4 1 introduction

by implementing a software prototype. For the test purposes, Mayer Shipyard supplied a
assembly instructions and task plans of a ship’s section.

1.3 thesis structure

This thesis is organized as follow: Chapter 2 describes the state of current maritime build-
ing and manufacture, intending for the reader to get familiarized with the industry re-
volving the topic. The development of the industry and the role of modern tools, like CAD
models, are briefly explaining in this chapter. Moreover, the problem present in how in-
formation is gathered and distributed to workers. A organization model capable of holding
pertinent information to the assembly instructions is also introduced in this chapter.

Chapter 3 describes the architectural solutions and design plans that, based on the ob-
jectives specified in Section 1.2 and the model defined in Chapter 2, were drafted in order
to achieve the presented solution. A large amount of time and research was devoted in
determining the best wireless technologies and protocols, transmission mechanisms, and
security measures to be used in the implementation of our solution. In Chapter 4, we
introduced the different framework and libraries used to implement our backend server.

In Chapter 5 we demonstrate how using these frameworks, the presented solution was
implemented, following the plans detailed in Chapter 3. Still in this chapter, we present
the test results of the transferring mechanisms and the overall system.

Finally, the conclusions of this work are outlined in Chapter 6, as well as possible future
work.

2
P R O B L E M S TAT E M E N T A N D C O N C E P T

In this chapter we uncover the problem of developing a model that can uphold the inform-
ation structure necessary to run the current application. In order to fully understand the
concept, the ship assembly process is analyzed together with the proposed model and the
constraints that restrict it.

2.1 state of the art of ship building

One of the main objectives of this thesis is to design and create a model that can be used to
organize assembly instructions, later distributed to workers in an easy and efficient way.

Since this model would ideally be adopted by all shipyards, and other industries perhaps,
it has to be easily accessible and general enough, to be adapted in different contexts, but
still cover all the fundamental requirements.

In order to reach this model, we must first analyze the present situation in (today’s)
shipyards, in particular how ships are designed and planned, and how the assembly in-
structions are assigned to workers. The first step is to understand the stages in the produc-
tion/construction of a ship. A comprehensive view of these stages is depicted in Figure
2.1.

The product teams: Engineering, Planning, Purchasing operate in stages prior to the actual
construction of the ship. It is during those stages that negotiations between the shipyard
and the shipping company take place; initial sketches, like the one showed in Figure 2.2, are
drawn throughout the negotiation process. These preliminary sketches are drawn based on
the shipping company requirements, and illustrate the idea for the final product. Moreover,

Figure 2.1: Ship production/construction stages.

5

6 2 problem statement and concept

Figure 2.2: Initial ship sketchs (Taken from: [3]).

they can also show the dimensions of the ship, total capacity of the hold, delivery time
previsions, as well as the required materials and the estimated budget.

“More and more ships are built in larger series on a standard design, with limited vari-
ations between the different ships” [2]. Shipyards have a diverse range of standardized
ships, with shipping companies ordering whole series with only few modifications at an
extra cost. [4]. The use of a standard design allows shipyards to make ships in a series-
production, decreasing costs and increasing production. Standard designs also give the
shipping company a better idea of the final result and cost; the design should have already
proven reliable and any flaws in the design should have been rectified.

In the end, the overall construction time decreases, as both the planning and the building
phase are considerably shorter - plans from previous projects can be used as a starting
point and workers are already familiarized with the basis of the design. By saving time,
shipyards save money and can offer the same product at a lower cost for/to the clients.

After the negotiations are over, the Planning and Engineering teams start preparing the
final design for the ship, following the specifications set in the contract. This task requires
extensive calculations over a long period of time, especially if the design is entirely new. A
considerable number of man-hours goes into this stage, where the design is planned in or-
der to obey mandatory regulations of security and several other engineering requirements.
The final design has to include elaborated and detailed schematics of the construction plans
for the ship’s systems, such as the mechanical, hydraulic, pneumatic, and electrical systems.
[5] The Production and Purchasing teams receive the construction drawings from the Engin-
eering team, and can start preparing the materials ordering list and the job-descriptions for

2.1 state of the art of ship building 7

the ship’s construction. The planning and managing of the ship construction requires a
careful coordination of a wide range of different resources and responsibilities.

Before welding came into wide-scale use in the 1930s, every ship was constructed on the
building berth 1, the keel 2 laid and the ship was built upwards, in the same place. [8]

The modern method is to assemble large parts of the ship, each one of them built from
smaller sub-assembled parts or components. The large parts of the ship are then brought
together to form the complete bow or stern. Finally, these parts are welded together to
form the complete ship. A typical assembly process can be seen in Figure 2.3. Sections
of the ship are generally manufactured in large buildings, before being transported to the
building berth. Once there and following the schematics, they are fitted into place and
welded to the adjacent component, section, or block. Figure 2.4 depicts a fictional shipyard
layout where the ship assembly flow is illustrated by black arrows. Components, parts,
sections, and blocks are built separately and then transported to the building berth, using
cranes or other vehicles. However, a piece or component do not necessarily need to go
through all the assembly stages, and can be mounted directly onto the ship, as shown in
Figure 2.3.

Figure 2.3: Ship assembly process.

Unit
Assembly

Stockyard

Sub
Assembly

Outfit
Shop

Block
Construction

Building
Dock

Figure 2.4: An example of a fictional
shipyard layout.

This method of construction is usually referred as module block construction. The
advantages of this procedure are that “work can proceed under cover, unhampered by bad

1 Berth — a location where a ship can be anchored or moored. [6]
2 Kell — a structural beam in the bottom of a hull, extending from the bow to the stern, serving as the foundation

of the ship. [7]

8 2 problem statement and concept

weather, and the units or component parts can be built up in sequences to suit the welding
operations — not always possible at the building berth itself” [8]; Greater flexibility and
reuse as modules can be disassembled and relocated or refurbished; There is less site
disturbance as traffic is greatly minimized; Elimination of Weather Delays as great part
of the construction takes place inside a building; The indoor construction environment
reduces the risks of accidents and related liabilities for workers; And since construction can
occur simultaneously in different sites — in parallel — there is an increase in construction’s
speed.

2.1 state of the art of ship building 9

The advantages of the module block construction technique are tremendous, unpredict-
able circumstances like the weather no longer have such a significant impact in the con-
struction progress. Under the module block construction technique, assembly operations
can be roughly divided into the following three points:

• Assembly on Outfit Unit: is the most productive (in terms of time) stage of the
construction, where smaller units are generally built that can be later outfitted into
the hull.

• Assembly on Hull Block: less productive than the previous, but more so than the
assembly on board ship. At this point, previously assembled units are outfitted into
the hull.

• Assembly on Board Ship: it is the least productive stage of the construction, as it re-
quires previously built units or blocks, which can suffer from delays due to necessary
incomplete units.

To recap, with any complex structure, such as the one of a ship, the assembly is better
achieved by splitting work into smaller interim tasks. [9] In Figure 2.5 we can see all the
components and minor assemblies that form part of a ship’s unit. By dividing the construc-
tion of the components into smaller tasks, construction can take place in parallel and in
different locations. In the end, the complete unit is transported to the next stage/location,
where it can be fitted to a block, asserting the advantage of a modular construction. In
Figure 2.6 we can see the unit and four others that when fitted together form the ship’s
unit. This unit and others form a ship’s block, Figures 2.7, 2.8, and 2.9. This block is them
transported to the building berth where it is welded to the keel, hull, or other blocks of the
ship.

1
0

2
p

r
o

b
l

e
m

s
t

a
t

e
m

e
n

t
a

n
d

c
o

n
c

e
p

t

Figure 2.5: Sub assembly construction process of a ship’s unit, separated by minor assemblies and their parts/components.
(Taken from [9])

2.
1

s
t

a
t

e
o

f
t

h
e

a
r

t
o

f
s

h
i
p

b
u

i
l

d
i
n

g
1

1

1 Unit = 5 sub assemblies

Figure 2.6: Model of a complete unit and its five as-
sembly parts. (Taken from [9])

CAD model Block Breakdown
Unit definition

Figure 2.7: Model unit definition. (Taken from [9])

CAD model exploded at second level
Block assembly analysis

1 Blocks = 4 units + 4 sub assemblies

Figure 2.8: A block assembly analysis, featuring four
units and four assemblies. (Taken from [9])

3D solid model

2 Blocks

Figure 2.9: 3D solid CAD model of the hull of a ship.
(Taken from [9])

12 2 problem statement and concept

2.2 problem description

Up to this point, we have been discussing a ship’s assembly process. Figures 2.5 to 2.9
should provide a clear visual understanding of how ships are built under the module
block technique typically used today.

Assembly operations are the most cost driven and are largely influenced by whom and
when the assembly is performed, planning must be done carefully. In the previous sec-
tion, we explained how careful assembly planning can have a big impact in the ship’s
construction productivity. Different procedures and techniques exist that strive to improve
this process, by reducing the overall complexity and accelerating the construction. How-
ever, these improvements can be impaired by poor management skills when distributing
assignments among workers.

In modern shipyards, the planning team has access to a variety of tools and optimiza-
tion algorithms that have been developed and contextualized, through extensive research
and studies, to determine the best space allocation and scheduling for the construction.
[10] [11] [12] [13] The problem lies in the medium in which these task plans are distrib-
uted, which are currently in the form of massive spreadsheets. These spreadsheets cover
the pertinent information related to a certain task, such as the assembly order, the mater-
ials/parts needed. However, this information is for the most part in-house references or
identification codes, which can proven to be complicated and confusing for to understand
due to the abundance of information, most of which not being necessary when distributing
tasks. Next, is the responsibility of the project managers or foremen, who supervise the
construction, to manage the workers and assign individual tasks. Afterwards, all necessary
diagrams/drawings must be gathered and understood before the actual construction can
start/take place.

2.3 proposed solution

As mentioned in Chapter 1, the primary objective of the PROSPER project is to reduce/-
optimize the time spent on such preparatory activities. In this thesis, we are addressing
this problem by having the necessary assembly instructions directly at the workers’ fin-
gertips by introducing mobile devices fitted with an AR application. But first, we should
determine how instructions data have to be organize so it can be served to a worker.

As we have seen before, a ship is formed by several parts (eg. units, sections, blocks),
which in turn are formed by several components. As such, these parts can also be seen
as components, formed by other components but still a component. In essence, a task is a
task, no matter the component(s) in it. Following this logic, we arrive at what we refer to
as a Work Package, a bundle of all components necessary for a specific task that a worker
must complete, despite the stage in the construction.

2.3 proposed solution 13

Figure 2.10: Work Package, a bundle of parts, where each part is represented by one or multiple
corresponding CAD file(s). Work Packages have a dependency relationships with other Work
Packages.

To put in context, the unit depicted in Figure 2.6 can be defined as a Work Package,
the five sub assemblies other Work Packages, which in turn are comprised of several other
components, as we saw in Figure 2.5, and so on for the minor assemblies seen in that figure.

Figure 2.10 illustrates that logic, where a work package is a bundle of parts, and each part
is represented by one or multiple corresponding CAD file(s). Since we establish that some
components/tasks are connected or are dependent on others, that is, a ship is dependent
on its blocks, every block is dependent on the sections that comprise it, and so on, and
since any of these are a Work Package, there is a dependency association between some
Work Packages.

To understand the Work Packages dependency structure on a larger scale, Figure 2.11

illustrates that organization, where it is possible to see the individual dependency relation-
ships of the Work Packages.

Next, we must consider how work packages are categorized within this structure, in
other words, how can we differentiate between a work package belonging to a ship, a
particular stage in the construction, and how these correlate with the workers. All so we
can identify which work package we must deliver to be a worker.

14 2 problem statement and concept

Figure 2.11: Work package dependencies structure.

After great analysis/reasoning, we arrived at the possible categorizations:

ship A specific ship or instance of a ship. Eg. ship’s name or in-house reference.

department The stage of the construction. The name department is due to different
stages of the construction taking place in different locations, as we have seen in Figure
2.4. Examples of departments can be "Block" or "Section".

type of construction The specific type of work to be performed. For example, "Weld-
ing" or "Electrical" installation. This is particularly important in case a specific task
requires a worker to have an explicit expertize.

status The current status or condition of a Work Package, such as "Complete" or
"Delayed". This way, we can seep through the ones that must be completed. Also,
we can have a clear view of the percentage of the ship that is completed and if the
construction is progressing as scheduled.

worker In the cases management wishes to assign specific tasks/Work Packages to par-
ticular individuals.

Expanding the work package representation that is depicted in Figure 2.10 by introdu-
cing the previous categories, we arrive at the model proposal seen in Figure 2.12. Relation-

2.4 decision support system 15

ships between categories (in grey) and the Work Packages can be seen clearly, including
relationships between the categories themselves. Recall that the purpose of this model is to
have a clear interrelationship between a worker and a work package, justifying the relation
between Worker and Type and Department. For a fine-grained view on the ship’s progress,
both Work Package and Part have a Status.

Other possible categories such as Work Period or Shift, and a particular Work Station inside
a building where the work should take place where also considered. However, in the
interest of having a generic/universal model that could be easily adopted by any shipyard,
we decided not to enforce those categories into our model. Nevertheless, a certain flexibility
is kept in mind, in order to allow these or more categories to be easily introduce in the
future.

We believe that this organizational concept model, however simple, can be sufficient to
hold all the data pertinent to the assembly instructions that will be later transfered to the
prototype, as we will demonstrate in future chapters.

2.4 decision support system

Further to previous comments, presently there are a variety of tools backed by intensive
research and algorithms developed for determining the best space allocation for the con-
struction’s material, as well as a task plan, i.e. a work schedule for the whole construction
phase of a ship. These techniques vary from the fields of project management, chain oper-
ations, and intelligent and optimization operation systems. [10] [11] [12] [13]

In the context of our solution, some heuristics have to be set to determine the arrange-
ment of Work Packages. In essence, the definition of a Work Package should not be too far

Figure 2.12: Model proposal. A Work Package is a comprised of Parts, which in turn are
comprised of Files. Relationships of the categories with the Work Package

16 2 problem statement and concept

from what, even if unknowingly, shipyards are currently using. As we mentioned before,
the problem lies in the way this task scheduling and the information associated with the
tasks, are distributed to workers.

In the previous section, we described how information about assembly instructions
should be formally organized — in correlation with what we identified as a Work Pack-
age and a worker. To support this organization, a concept worth studying, would be a
decision support system that, after having the complete information about the assembly
scheduling and the defined Work Packages for each instance of construction, would form
(groups of) workers or/and assign specific Work Packages based on their competences
and track record in previously (identical) constructions. Thus, the new construction would
be faster and more predictable, accounting even for sporadic absences of personnel and
rearranging Work Packages and workers in order to keep the deadlines and budgets.

An unique system, encapsulating the entire construction throughout all the phases and
locations, would be too complex and difficult to manage; one small change would have
a ripple effect, changing the flow of the construction and the schedule. Adding to this
complexity, is the ever present variable of design changes to the initial instructions, forcing
the whole schedule and planning process to be repeated. [14] Perhaps for this reason, all the
found studies and research, tend to focus on one small assembly stage of the construction,
like the outfitting. [15] [16]

Although this thesis’ scope does not cover the extensive study of these systems, we will
propose some design implementation components with the intention of applying the best
solutions, developed in conformity with the topic and which can be added later to an
existing or future decision support system. Furthermore, at the end of the thesis, we will
describe possible future implementations and enhancements for this work, many of which
would fill the criteria of an operation and decision support system.

3
A R C H I T E C T U R E

“When it comes to writing code, the number one most important skill is how
to keep a tangle of features from collapsing under the weight of its own

complexity.”

James Hague

Chapter 3 pretends to explain the architectural solutions and design plans that, based on
the objectives specified in Section 1.2 and the model defined in Chapter 2, were drafted in
order to achieve the presented solution. In this chapter we will discuss the planning phase
by: (i) Analyzing the constraints surrounding the topic; (ii) Exploring the different security
components such as: encryption, access control, and data protection; (iii) By what means
the communication and transferring of assembly instructions is carried out; (iv) Determ-
ining the underlying logic behind the selection of a work package; (v) And studying the
performance and usability of the overall solution.

Some of the content described here will be of different types: part of it will be applied
directly to the final solution; some will be defined and explained as possibles approaches
to the project; and some of which will not be applied but is still meaningful and necessary
to explain the thought process that lead to the final solution. All of which will be properly
identified for better understanding.

3.1 solution constraints

Unlike their wired counterparts, mobile devices are subjected to severe limitations on
power consumption, performance, size, and weight, limiting the range of technologies
that we can use. Therefore, we must have a tangible understanding of how every available
technology works and how we can benefit from it.

Mainly constraints are imposed by the technologies and features most commonly found
in today’s mobile devices. In other words, even though there are accessories or attachments
that can expand the devices’ capabilities, we should limit our solution to what these devices
can do on their own. This way, no unexpected costs, that can influence the implementation
of the solution we propose, are added to the final plan.

A prerequisite for the solution is that communication between the content provider sys-
tem and the devices should be performed wirelessly, in order to take full advantage of
the devices’ portability. The same way, there are also constraints that limit the choice for
the wireless technology, as buildings have a great area that must be covered by it. Usually

17

18 3 architecture

buildings have around 400 meters in length and are 150 meters wide, the height varies from
building to building with some of them being 80 meters tall. The choice of any Wi-Fi tech-
nology will come down to a balance between its implementation cost, and the range they
can cover, as well as their throughout capacity, not to mention that devices must support
this technology.

At the physical layer, where the means of transmitting the actual data exist, there are
several protocols. The most popular and commonly found in mobile devices are:

infrared Infrared (IR) is an electromagnetic energy not visible to the human eye, i.e.,
out of the visible spectrum. There are several potential applications, such as night
vision and thermography (discover the temperature of an object), but IR can also be
employed in short-range communications. These signals have a very short range of
around 5 meters, working only in direct line-of-sight, and cannot penetrate walls or
other obstacles. This directionality can be seen as an advantage in terms of security,
ensuring that data is not leaked or spilled to other devices. The fact that no special
or proprietary hardware is required and it can operate at a low power consumption,
makes this technology still useful in many of today’s electronic equipments. [17]

On the other hand, the data rate transmission is lower than typical wired transmis-
sions, with speeds ranging between 115 Kbps and 4 Mbps, depending on the standard
enforced. [18] Research has been conducted to increase these speeds up to 3 Gbps
[19].

bluetooth Created in 1994 as a wireless alternative to data cables, it uses radio signals
on the 2.4 Ghz frequency band to transmit information. It is relatively easy to use,
and has a minimal installation cost, this is why it is widely present in most devices.
It is mainly used for transferring sound data (bluetooth headset) or files between two
devices that are near one another, in low-bandwidth situations. [20] Bluetooth Low
Energy (BLE) hit the market in 2011 as Bluetooth 4.0 which remains in sleep mode
unless a connection is initiated, prolonging battery life expectancy.

Bluetooth has a relatively low data rate of 1.5 Mbps and a very short range of approx-
imately 10 meters. Depending on the class, the values can increase to a maximum of
24 Mbits and up to 100 meters respectively [21], however power increase is correlated
with increase of range and data rate and not all devices can support those classes.
[22]

wi-fi An Institute of Electrical and Electronics Engineers (IEEE) radio standard that
provides network access within a limited range, using the 2.4 GHz and 5 Ghz radio
band. The Wi-Fi Alliance defines Wi-Fi as any Wireless Local Area Network (WLAN)
product based on the IEEE 802.11 standards. [23] Over time, the terms "Wi-Fi" and
"WLAN" have become synonymous of one another, since most modern WLANs are
based on these standards. It is widely used in today’s world, with different applica-
tions like providing Internet access and point-to-point communication.

3.1 solution constraints 19

The 802.11 family has several specifications, of which the following are the most
commonly supported: 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac, with the latter
only present in most recent devices. There are several differences between these
specifications which: range from the frequency in which they operate, data transfer
rates, and installation cost.

Table 3.1: 802.11 Specifications Comparison.

Standard Frequency Band Max. Bandwidth Max. Data Rate

802.11b 2.4 Ghz 20 Mhz 11 Mbps

802.11a 5 Ghz 20 Mhz 54 Mbps

802.11g 2.4 Ghz 20 Mhz 54 Mbps

802.11n 2.4, 5 Ghz 20, 40 Mhz 600 Mbps

802.11ac 5 Ghz 160 Mhz 6.93 Gbps

Since it is possible to use multiple antennas, the data rates described in Table 3.1 can
be even higher. For example, the theoretical maximum speed of 802.11ac is up to
eight 160 MHz 256-QAM modulation channels, each one capable of 600 Mbps; this
means we can have a total of 4800 Mbps or 4.8 Gbps. While in real-world scenarios
these speeds may never be achieved, we can easily expect speeds of 2 Gbps. [24]
For a more detailed analysis of the specifications, the articles [25] and [26] provide a
nice overview on the subject. Summary tables of the main characteristics can also be
found in [27] and [28].

celular data Cellular networks or Wireless Wide Area Networks (WWAN) are de-
signed for wide area coverage transmissions. They are often divided into 2nd Gen-
eration (2G), 3rd Generation (3G) and 4th Generation (4G) networks. Typical 2G
networks include GSM, EDGE, and GPRS, and were originally voice centric. [29]
CDMA2000 and UMTS are standards branded as 3G, with a theoretical minimum
throughput of 21 Mbits and a theoretical maximum of 672 Mbits, although typical
throughput is around 6.1 Mbits. [30] 4G is the fourth generation of mobile com-
munications standards, the current systems that are deployed widely are HSPA+,
WIMAX and LTE. [31] [29] 4G is a successor of 3G and provides even higher bit rates
of 100 Mbits and 300 Mbits (theoretically). Technological advances have been made
to increase the bit rate to 1 Gbits [31], although the typical throughput, meaning what
users experienced most of the time when well within the usable range, is only around
15.1 Mbits [30]

The wide coverage area of these networks is definitely attractive. However, these
cellphone systems are primarily owned by telecommunication providers and most of

20 3 architecture

the today’s devices do not come with cellular antennas as standardized equipment,
an addition that would require an even greater investment.

Wireless Personal Area Network (WPAN) networks like Infrared and Bluetooth have
a cheap implementation cost and an excellent low power consumption, which is a key
factor when working with mobile devices. However, their comparatively slow data rate
and very short range makes them an unsuitable approach to our problem. On the other
hand, WWAN networks, like 3G and 4G, can have a vast area coverage and fast data
rates. Nevertheless these networks need supporting equipment like base stations, which
involves heavy capital to setup the network and a substantial operating cost to maintain
it. Combined with the extra cost of having cellular antennas in the devices can make
this approach exceedingly expensive. By critically analyzing the pros and cons of WLAN
networks, we came to the conclusion this might be the most suitable choice for the problem
we are solving. Wi-Fi is a standard technology used to communicate in a free unlicensed
spectrum. [32] It has a fairly high coverage radius and signal boosters or repeaters can
be easily introduced and set up at low costs. Wi-Fi antennas are standard equipment in
any mobile devices like tablets, and the Wi-Fi data rates are steadily increasing, thanks to
standards like 802.11n and 802.11ac. The latter promises data rates close to 2 Gbps, which
is comparable to rates in 4G networks. Research and trials have also proved Wi-Fi to have
better battery life performance than cellular networks like 4G LTE for as much as 25%. [33]
[34]

No matter the type, there will always be challenges when dealing with wireless trans-
missions. Radio signals attenuate over space, i.e., signal weakens as it gets further away
from the transmitter due to the inverse square law [35]. Reflections, obstacles and other
conditions can also contribute to this attenuation. Furthermore, other radio frequencies, or
electromagnetic devices or cable can cause interference with the signal. These are serious
concerns considering that shipyards have an abundance of metals and other machineries
that have a high interference ratio. [36]

In the following sections, we will describe, along with the architectural plans, the neces-
sary precautions to consider when dealing with problems resulting from network inaccess-
ibility and data losses due to interference.

3.2 data transmission

As stated before in Section 1.1, all files pertinent to a task have to be manually gathered
and transfered to the mobile devices. This is, of course, an ineffective solution for the
present goals. It stands to reason that some form of content provider — a backend server
— should be introduced in order to facilitate the automatic selection and transfer of files
(work packages) to the mobile devices. This is what is normally called a client-server rela-
tionship/architecture, where the mobile devices will be clients communicating (wirelessly)
with a server that provides them with the necessary information and any other service.

3.2 data transmission 21

In Section 3.1, we have established that Wi-Fi constitutes the best overall option as the
technology for data transmission. In this section, we will discuss what technologies/proto-
cols are the most suitable for the establishment of the connection between the server and
the clients (mobile devices), the type of connection, and how the assembly instructions and
other types of data are exchanged.

3.2.1 Transport Protocol

As highlighted previously, there are some physical challenges within a shipyard environ-
ment: the size of the buildings, the abundant presence of metal and machinery that can
cause signal-loss and interference during transmission, which can cause packet loss and
data corruption [37].

On top of the physical layer, there are protocols used for transferring data from a source
to a destination via a network. The more well known protocols in this layer, and also the
more supported ones, are the Transmission Control Protocol (TCP) and the User Datagram
Protocol (UDP). The main difference between them is that TCP is a connection-oriented
protocol and UDP is a connectionless protocol. The former establishes a logical connection
between parties before data is sent. With the latter, data is sent without first creating a
connection. [38] This difference means that data sent by TCP is guaranteed to remain intact,
and in the same order in which it was sent. With UDP, there is no guarantee that the data
sent will reach the destination. There are of course drawbacks to having this reliability and
ordered delivery. TCP is a much slower protocol and has a bigger header size (20 bytes to
8 bytes) than UDP, which can perform faster due to not having error-checking. These and
more characteristics of these protocols can be seen in Table 3.2.

22 3 architecture

Table 3.2: TCP and UDP comparison.

TCP UDP

Acronym Transmission Control Protocol User Datagram Protocol

Connection Connection-oriented Connectionless

Packet Entity Datagram Segment

Header Size 20 bytes 8 bytes

Speed Slower than UDP Faster due to no error-checking

Congestion

Control
Yes No

Flow Control Yes No

Ordering of

data packets

TCP rearranges data packets in the

order specified.

No inherent order, all packets are

independent of each other. Packet

order can be managed only by the

application layer.

Reliability

Yes. Guarantee that the data

transferred remains intact and

arrives in the same order in which it

was sent.

There is no guarantee that the

messages or packets sent reach

the destination.

Streaming

of data

Data is read as a byte stream, no

distinguishing indications are

transmitted to signal message

(segment) boundaries.

Packets are sent individually.

Packets have definite boundaries

which are respected upon receipt.

Weight
Heavy-weight, requires three

packets to set up a connection,

before any user data can be sent.

Lightweight, due to no message

order and no connection tracking.

Handshake SYN, SYN-ACK, ACK
No handshake

(connectionless protocol)

Acknowledge Acknowledgement segments No Acknowledgment

Common

Header Fields

Source port, Destination port,

Check Sum

Source port, Destination port,

Check Sum

Use by HTTP, HTTPs, FTP, SMTP, Telnet DNS, DHCP, TFTP, SNMP, RIP, VOIP.

Main Usage
Applications that require high

reliability, and transmission time is

relatively less critical.

Applications that need fast, efficient

transmission. Stateless nature is also

useful to answer small queries from

huge numbers of clients.

3.2 data transmission 23

Figure 3.1: TCP sequence diagram, show-
ing the establishment of the connection, the
transferring of data, and the closing of the
connection.

Party A Party B

1 SYN, seq=0

2 SYN+ACK, seq=0, ack=1

3
ACK, seq=1, ack=1

(ACK of SYN)

4 "data1", seq=1, ack=1

5 ACK, seq=1, ack=4

6 "data2", seq=4, ack=1

7 seq=1, ack=8, "hello"

8 seq=8, ack = 6 "goodbye"

9 seq=21, ack=6, FIN
seq=6, ack=21

ACK of “goodbye”

10
seq=6, ack=22

ACK of FIN

11 seq=6, ack=22, FIN

12
seq=22, ack=7

ACK of FIN

Table 3.3: TCP acknowledge and sequence
packages, on bold are the numbers used to
maintain order and an error free transmis-
sion.

Based on the characteristics of these protocols and the physical challenges listed before,
we feel TCP is the most adequate protocol for the transport of data between server and
clients.

TCP will be responsible for breaking data down into small packages before they are sent
over the network, and for assembling the packages again when they arrive. It is built nor-
mally upon the Internet Protocol (IP), and provides “reliable, ordered, and error-checked
delivery of a stream of octets”3 [38] between applications running on hosts communicating
over an IP network .

Figure 3.1 shows the steps involved in establishing a connection and transmitting data:

1. A connection is established via a three-way handshake. Party A establishes the con-
nection by sending a SYN request to party B. In response, party B replies with SYN-ACK.
Finally, party A sends an ACK, acknowledging the reply. At this point, both parties
have acknowledged and established the connection.

3 An octet is unit of measure in computing that consists of eight bits.

24 3 architecture

2. Now that the connection is established, sequences of data can be send from one
party to the other. Sequence and acknowledgment numbers are used to make sure
all packages are delivered in order and error-free. In Table 3.3 we can see how TCP
ensures that all packets arrive at the destination, by using SEQ and ACK numbers.

3. To terminate a connection, a similar situation to the establishment of the session
occurs, however this time involving FIN packets and a four-way handshake with each
party terminating independently. Each party sends a FIN packet to the other, and
both acknowledge the termination by replying with an ACK. Thus, a typical tear-down
requires a pair of FIN and ACK segments from each TCP endpoint [38].

3.2.2 Transferring Protocol

Up to this point, we have defined the wireless transmission technology — Wi-Fi — that will
be used for communications between server and clients. Moreover, TCP, which is built on
top of the IP protocol, will be responsible for establishing the connection and providing the
reliability needed for the transmission. As of now, we have the necessary means to send
information. Nevertheless, there are still protocols that sit (in the stack) on top of TCP. This
is because, although TCP is a “reliable ordered byte stream protocol” [39], information is
sent in binary format and with no boundaries between stream segments (Table 3.2).

Hypertext Transfer Protocol (HTTP) is an application layer protocol, which uses an un-
derlying TCP connection (Section 3.2.1) to distribute hypermedia information 4, declaration
and negotiation of data representation. [41] While TCP is responsible for the communica-
tion establishment, HTTP handles the request itself, stating the message format and trans-
mission type by using error codes and headers, and the action that should be performed.
For these reasons, HTTP has since become the underlying protocol used by the whole
World Wide Web (WWW) 5. A more comprehensive explanation of the HTTP protocol, its
methods, and headers will be given throughout this thesis.

There are many applications that can make use of the abstraction provided by TCP,
and since there are no additional data overheads, these applications tend to have a better
performance when compared to HTTP applications. However, dealing with binary streams
means that clients must be aware of the format and size, of the data they will receive, which
can make TCP applications fairly complex to build. The nature of HTTP allows for systems
to be built independently of the data being transfered [41], giving them flexibility, which is
why we will be relying on it.

HTTP is what is known as a request-response protocol, meaning clients send a request to
the server, and when the request is received (and processed), the server sends the response.

4 “Hypermedia is the generalization of hypertext to include other kinds of media: images, audio clips and video
clips are typically supported in addition to text”. [40]

5 A bit of history: Developed at CERN, the WWW primary goal was to allow hypertext documents to be
electronically linked, so selecting a reference in one document to a second one would cause it to be retrieved.
HTTP was the mechanism created to so that a client computer could tell a server to send it a document. [38]

3.2 data transmission 25

This is also known as a half-duplex operation (Appendix 2). The client-server model was
originally developed around the idea that the client is always the one initiating transactions,
the party requesting information. Up to this point, this kind of model should be adequate
and fulfill our requirements. However, and as stated in previous chapters, the assembly in-
structions might be altered or modified after being initially sent. This situation could result
in workers relying on outdated information, resulting in mistakes during the construction.
HTTP does not allow the server to independently send data to the client without a request
first. Considering alterations to the ship’s design, and consequently modifications in the
assembly instructions, can occur at any time, we need to find a way to either push the
updated instruction to the respective clients via a notification, or the data itself, or having
the clients periodically send a request for updates.

While researching this subject, we have come across with several methods of communic-
ation that can solve this problem:

polling One way to solve this problem/issue/situation is by having the client period-
ically ask the server if there are any new or updated assembly instructions of the
design currently being assembled. This approach can be expensive, in terms of re-
sources, due to the constant traffic, and the server’s constant processing of requests,
especially if there is a great number of clients constantly making requests to the server.
In a more detailed view, the client creates a connection (recursively, at given intervals)
with the server, sends the request asking if there is any new information, and gets
a response from the server. If the response is empty or indicates that there are no
new information, the connection is closed; if there is updated information, the client
will make another request, this time for that specific information. This solution is
supported by all major clients and programming libraries.

long polling Similar to the previous solution, a connection to the server is established,
however it is kept open (or alive) for some time, but not indefinitely. During this time,
the client can receive data from the server, and reconnect periodically, even after the
connection is closed, thanks to the timeout set at the beginning of the connection.
This solution is also widely supported, and differs from the previous one only in the
fact that, if there is no new information, the client will not be receiving an empty
response. In this case, the server holds the request and waits for a certain period of
time. Only then, if there is no new information, the server sends an empty response
to the client. Long polling reduces the amount of data that needs to be sent since the
server only sends data if there really is any data to be sent.

server-sent events (sse) Enables efficient server-to-client communication. Under the
hood, a client establishes a persistent and long-term connection to the server. Note
that, with this method of communication, only the server can send data to the client.
This is known as a Simplex channel (Appendix 2). In case the client wants to make
a request to the server, it has to use another method or protocol, like Polling. Since

26 3 architecture

SSE uses HTTP, there is no need for a special protocol or server implementation
to be put in place. Compared to Long Polling, the advantage of this method of
communication is that data is only sent when there is new data, unburdening the
client from reestablishing a new connection and processing "empty" responses.

web sockets Web sockets are a new standard that allow for a long-held single TCP con-
nection to be established between the client and server. This connection allows for
bi-directional, full-duplex (see Appendix 2) messages to be exchanged in a two-way
communication between two parties without relying on multiple HTTP connections.
Indeed, a TCP connection is created by the client to the server, and is kept for as
long as it is needed (Persistence Connection). Closing of the connection can be accom-
plish from both sides. Initially, the client has to go through the normal handshake
process (recall Section 3.2.1, Figure 3.1, and Table 3.3), and if successful, at any time,
both the server and the client can exchange data in both directions. Since data can
be sent from both directions, this protocol is widely used in many real-time applica-
tions. Moreover, most of the overhead and time are spent only once in establishing
the connection, resulting in a very low latency connection. Web Sockets are widely
supported by most servers and clients [42]. The main differences of this method when
compared to the others are that Web Sockets usually have a very different logic ap-
proach for the networking and the exchange of information. Thus, applications have
to be designed, from the beginning, with this logic in mind.

The use of either one of the methods in the context of mobile devices has the potential
to affect their battery life/performance. In many of these methods, a persistent connection
must be constantly maintained between the server and the client, which can have drastic
impacts on the battery life/performance [43] [44]. On the other hand, constant requests can
put pressure on the server and the network, especially when there are no new instructions.
To determine the optimal transport, there must be first clear requirements and targets for
an application. The secret is to determine the best interval in which updates should occur,
a compromise between cost and efficiency. An analysis of the most frequently used update
times showed that these updates take place no more/no sooner than once per day, in a real-
world scenario. Thus, relying on methods like Web Sockets and Server-Sent Events (SSE) ,
that use a persistence connection, will only complicate our solution. Since the time between
requests can be long, we decided to use the simpler and easier option, Polling. To clarify
the decision, we are not advocating Polling is the best overall method of communication.
The concept of "real-time" has different perceptions depending on the kind of application.
While some applications require constant updates (like a chat application) others can work
with timed delays in the order of minutes.

3.3 security 27

3.3 security

One important aspect we have to ensure is the overall security of our solution. Particularly,
in three scenarios: (i) Access control to the server, meaning what type of authentication and
authorization ensures only legitimate requests and people/workers can access the system;
(ii) Protection of assembly instructions (files) while in transit; (iii) And guarantee that the
files, on the devices (client), are not mishandled. Moreover, how to ensure the protection
of sensitive data still present in devices in case of theft, corruption, or recycling.

3.3.1 Access Control

“Access control is a security technique that can be used to regulate who or what can view or
use resources in a computing environment” [45]. Access control systems perform author-
ization and authentication identification. While they can appear to be synonymous of one
another, they are really two distinct terms. Authentication is how one proves to be who
they claim; Authorization presupposes authentication, it is the step that determines what
a person can do once inside the system. Basically, authentication is about who somebody
is, and authorization is about what they are allowed to do. [46]

3.3.1.1 Authentication

As we stated before, the way to authenticate people accessing the server, is to have them
present something that proves who they say they are, in our case, a real employee/worker.
There are three types of authentication information: [47]

1 . something a worker knows Credentials, such as a password or Personal Identific-
ation Number (PIN). This is the most ubiquitous and simple form of authentication,
a correct password or PIN grants access to the system. Since each set of credentials
are unique, they also serve to identify the person accessing the system. The major
drawback is that it is too easy to lose control of them, by either failing to remember
them, imparting them to others, or simply writing them down and others reading
them. [48]

2 . something a worker has A physical device, such as a smart card or a security
token. Security tokens (like key fobs) are small hardware devices that provide an extra
level of assurance through a method known as two-factor authentication — workers
have a PIN which gives them access to the smart device, which in turn displays a
unique identification number for accessing the server. The PIN prevents unauthor-
ized access in case the device falls into the wrong hands. The generated identifica-
tion numbers are constantly changing, usually every few minutes. Detriment to this
method is that an object must be always lugged at all times, and such object might be
stolen and used by someone in mischievous actions. [49] [50]

28 3 architecture

3 . something a worker is Biometrics, a physical characteristic such as fingerprints,
voice pattern, or retina blood vessels. It usually requires special reading equipment
that unfortunately are expensive, not very accurate (at the moment), and cannot be
available in most mobile devices.

Authentication methods vary from simple to complex and under some circumstances all
three of the previously mentioned methods might be combined in order to ensure a more
restrict/secure access to a system. Modern mobile devices might not be equipped with
the necessary hardware to implement all three methods, thus we decided that a simple
username and password credential access control is the most appropriate form of authentic-
ation in our case. In the context of HTTP this authentication method is usually referred to
as HTTP Authentication. [51] In every request an authorization header is added, and the
credentials: "username:password" are encoded in base64

6.

GET / HTTP/1.1

Host: xpto.com

Authentication: Basic Zm9vOmJhcg==

Note that even though the credentials are encoded, they are not encrypted. Since the
credentials are not encrypted, they constitute a security risk, which justifies the use of a
cryptographic protocol like SSL to encrypt the whole communication, usually called HTTP
Digest Authentication. We will later explain, in more detail, the security of the communica-
tion in Section 3.3.2. Moreover, in Section 3.3.4 we will debate the design choices of how a
worker can login to the system and how his requests are authenticated.

3.3.1.2 Authorization

Generally, authentication is the first step of determining whether a worker can have access
to the server. After authentication, the following step is to verify if the worker is authorized
to perform the request. There are three basic approaches to authorization:

role-based Roles are designed around a person’s job function, the permissions to per-
form certain actions are assigned to specific roles. [52] Just like the structure of a
business, a single individual can have multiple roles.

identity based An extension of the role-based authorization, identity models enable
manage claims and policies in order to authorize clients. With this approach, it is
possible to verify claims contained within the authenticated users’ credentials. [53]

resource based Access to individual resources is secured through the use of Access
Control Lists (ACLs), a list of permissions attached to each resource stating what
type of operation(s) each individual can perform on that resource.

6 Encoding algorithm that transforms arbitrary binary data in ASCII text which provides safe variants of the
same data.

3.3 security 29

3.3.2 Secure Communication

When the issue of secure information transmission is at stake, there are two fundamental
concepts that must be taken into consideration: confidentiality and integrity [54]. Normally,
data exchanged between two parties is sent in plaintext 7, which carries security risks.

One way of mitigating a potential attack would be to use a secure communication pro-
tocol to encrypt data in transit. [56] Wi-Fi Protected Access (WPA) and Wi-Fi Protected
Access II (WPA 2) are wireless security protocols that aim to provide security via data en-
cryption [57] and message integrity check. They have been designed to prevent the altering
and resending of data packets. [58] There are two versions for WPA 2: Personal and Enter-
prise. The former uses a shared key to access the network and, contrary to the latter, does
not require an authentication server which provides additional security.

The problem with this method is that communication is only secured between the user
and the access point to the network. If at some point an attacker is able to intercept
the communication, any sensitive information is compromised and can be later used in a
harmful manner [59], using the man-in-the-middle attack, for example. For this reason, it
is necessary to choose an appropriate method to protect data all the way to the end, as it
is a very dangerous assumption to believe that no-one is listening to the communication
between two parties.

Cryptography protocols like the Transport Layer Security (TLS) and its predecessor Se-
cure Sockets Layer (SSL) (both are commonly called SSL) are part of a set of networking
protocols, that aim to provide privacy and data integrity in a communication between two
parties [60]. “SSL is the secure communication protocol of choice for a large part of the In-
ternet community” [61]. According to the protocol release draft, the SSL protocol provides
connection security that has three basic properties: [62]

privacy The connection is private because data is encrypted using a symmetric key. After
an initial handshake, 8 an unique symmetric key is generated and negotiated between
the server and the client.

identity authentication Optional, but required for at least one of the parties, usu-
ally the server. Here, both server and client rely on asymmetric keys to authenticate
one another.

reliability Each message’s integrity is assured by a Message Authentication Code
(MAC) that prevents undetected losses or alterations of the data during transmission,
guaranteeing a reliable connection.

7 In the past, the definition of plaintext only meant message text. [55] It since has expanded to include any data
that is transmitted or stored unencrypted.

8 Negotiation that dynamically sets parameters for channel established between two parties before normal com-
munication over the channel begins. [38]

30 3 architecture

Before the client and the server can begin exchanging application data over TLS, the
encrypted tunnel must be negotiated: the client and the server must agree on the version of
the TLS protocol, choose the cipher, and if necessary verify the certificates. Unfortunately,
this adds latency to all SSL connections, since each of the previous steps must have a
packet round trip. A typical SSL handshake can be seen in Figure 3.2. Also, to add to the
latency, SSL runs over a reliable TCP connection, meaning that a complete TCP three-way
handshake (Figure 3.1) that also takes one full roundtrip, must be made. Fortunately, it
is possible to optimize the handshake process with Session Resumption [63] and False Start
[64].

Assuming both sides are able to negotiate a common SSL version and cipher, and the
client accepts the certificate sent by the client (client verifies the certificate with a Certificate
Authority (CA) 9 or by previous verified certificates stored locally), a symmetric key is
generated that is then used for all further communications between the client and the
server, within that same session.

Although the encryption process may be computationally expensive, its effect on the
overall cost is minor. Reducing response time by a few milliseconds does not outweigh
the level of security offered by SSL. Developers today have been developing techniques to
reduce the overhead and abbreviate handshakes, by reducing the number of round trips
for a full handshake, [66] or simply by upgrading their infrastructures. In the future, the
amount of milliseconds SSL adds to connections will only continue to decline. [67] [68]

3.3.3 Data Protection

Assembly instructions that are transfered to the devices should not have a long lifespan.
Once a worker no longer needs certain instructions, they should be erased completely to
prevent foul play. Nonetheless, during that lifespan there is still the possibility that those
instructions can be somehow misused. Digital Rights Management (DRM) systems were
created, in essence, to ensure that a user can only perform authorized actions to a resource.
They are mostly used for digital media content such as audio files. For example, a user can
only play a specific audio file that is protected from copying or sharing by DRM. [69] The
fundamental problem with DRM is that the content is also distributed with the key that
opens it, or a key is granted by accessing an external service/server. Keys are hidden such
that only those that know its location can find it, however it only takes one person (or a
group of persons) to find where it is stored for the content to be accessed freely, making the
protection of other similar contents irrelevant. DRM has been proven to fail multiple times
[70] [71] in preventing unauthorized access, most of the times due to poor implementation
[72], resulting from gratuitous complexity in order to obscure the key used.

9 A CA is an entity that manages digital certificates — issues and revokes. Digital certificates certifies ownership
of a public key. [65]

3.3 security 31

Figure 3.2: SSL connection establishment. TCP + TLS handshakes, and afterwards application
data can be exchange on the secure channel.

Even so, we still need to add a layer of security to prevent files mishandle. A solution
would be to encrypt 10 the files sent to the devices, which can be later deciphered by a
key — content encryption key This means that even if the files are intercepted, moved, or
copied, they would be useless without the key to decipher them. However, we must ensure
that a key is only used for files transfered to one client and even only on one occasion as
an extra security measure, so that it can only be used for those files and no others.

The best option would be to generate the key or use some random data lying around,
although the latter could be unsafe. Public key cryptography is a good option, although
public keys are slower (when compared to symmetric keys) and they are incredibly more
difficult to manage in comparison. In section 3.3.2, we determined SSL to be a good meas-
ure to ensure that communication between server and client is private. The SSL symmetric

10 Encryption is the process of transforming data/information so that it is unreadable by anyone who does not
possesses a decryption key.

32 3 architecture

session key, the one agreed between the server and the client, can also be used as the
content encryption key used to encrypt the files. Since a new key is generated in each
connection it will guarantee the key is only used for a certain transfer and for specific files.
Still, to improve performance, a SSL connection can be re-used to spare the handshake
process, which we saw, can increase the response time.

In conclusion, generating a separate symmetric key that can be managed more freely is
our best choice for a content encryption key.

3.3.4 Access and Request Authentication

Regarding the authentication, there is one more architectural design decision we must dis-
cuss, the authentication of a user and the requests made by him. As explained in previously,
HTTP is a stateless protocol, meaning it does not keep a state between different message
exchanges. Stateless can help reduce memory usage in the server, since there is no need
to keep track of every user. Problems related to session expiration also decrease, and since
there is no session data in the server, there is no need to synchronize data between servers
in a distributed environment.

Using HTTP Authentication (Section 3.3.1.1) is a valid choice but it comes with some
limitations. Since the username and password are sent in every request, there is no way for
a user to login or logout of our system. Moreover, it is a major security risk to be always
sending username and password with every request, even when using encrypted channels,
we must always assume something might go wrong and the requests can be hijacked.

By using sessions, These are difficult requirements to meet when implementing features
like authentication and sessions (see Section 3.3). There is often a tight relationship between
authenticating users and holding their sessions. A valid session key can authenticate the
request and its user, the question is whether this key is stored on the server or an inform-
ation only the user and the server know. A well known implementation of this logic is
the request authentication performed by Amazon Web Services [73], which uses a HTTP
scheme based on Hash Message Authentication Code (HMAC) that forms a concatenated
string with elements known by the server and the client, encrypts and sends it with every
request:

digest = base64encode(hmac("sha256", "password", "GET+/"))

Since the server has access to all the same information a client does, the request can
be validated. Although, to achieve this, the password must be stored unencrypted at
the server, which can be a security risk. There are numerous occasions in which user’s
passwords were leaked due to this practice, for example [74] and [75]. In Section 3.4.2 we
will discusses security protective measures for such cases.

The major difference between a regular request hijacking that contains a session token
or id, and a hijacking of stateless request is that successful theft of a stateless request

3.4 relational database 33

authenticates an attacker even if the victim has logged out (since we do not have the same
control as with sessions). In this sense, by measuring the trade-off between computational
resources spent decrypting a key (HMAC) and server-side state, we feel that generating
and storing a server-side symmetric crypto key we can easily manage and trust is the most
efficient way to secure and authenticate every request. Since we have absolute control over
the creation of this key and its expiration time, we can use it as the content encryption key
discuss in Section 3.3.3.

As such, when logging into the system, through the application, a user inputs his cre-
dentials — username: joe ; password: joepass — which are then sent to the server:

POST / HTTPS/1.1

Host: xpto.com

BODY

Username: joe

Password: joepass

The connection is currently encrypted thanks to SSL. Still, for added protection, we
issue this request with a POST method, instead of a GET method, because the latter exposes
information via the Uniform Resource Locator (URL). The server then authenticates the
credentials and if correct, generates a session key (1c24171393d4ffcbf11ab28) for that user.
The session is stored on the server, and it is used to validate all subsequent requests:

GET /aService&session=1c24171393d4ffcbf11ab28 HTTPS/1.1

Host: xpto.com

Session: 1c24171393d4ffcbf11ab28

The previous request shows the session key passed in the header of the request or as
a URL query parameter (&session=1c24171393d4ffcbf11ab28). In our system we accept
both, on account of many programming libraries inability to handle HTTP header manipu-
lation, or even the creating of custom headers. A best practice is always to make use of the
standard headers defined in the HTTP protocol, however we wanted to take all possibilities
into account. There is always more information stored in the database, that can be sent in
a response such as the name of the worker and the department. However, only the session
is a requisite, while the rest is just complementary information.

3.4 relational database

In Chapter 2 we created a model — Figure 2.12 — that can uphold the information structure
necessary to run the current application. Databases allows us to store information in an

34 3 architecture

organized way. Therefore, we must find a representation that can enlighten the entities
constituting our model, and the relationship between each one of them within the database.
Likewise, we have to consider the necessary attributes and design choices to guarantee that
information can be secured and read as fast as possible.

3.4.1 Model Representation

Entity-Relationship (ER) diagrams communicate abstract representations of a data model
and the conceptual database design. Represented in Figure 3.3 is the ER diagram of our
database. In this diagram we can see the same objects present in the model now represented
as entities (rectangles, colored blue). Each entity has a set of attributes (ellipses, colored
gray) that defines them, e.g., Name and Description in the case of a Work Package entity.
Most of the attributes are evident, particularly the ones related to names and descriptions.
Additionally, we can see some attributes related to time management and progress, these
will become clearer in the implementation discussion of the actual database in Chapter 5.
Essentially, time related attributes will be used for the verification of updated instructions,
and progress related attributes like Mounted and Status will aid in the selection of the data
sent to the devices.

Another aspect that has become clearer is the relationships or associations between the
entities (diamonds, colored yellow). An essential element of this diagram is the mapping
cardinality, which expresses the number of entities to which another entity can be associ-
ated with, e.g. a ship entity is associated with one or more multiple work package entities,
1 – N. [76] These relationships form the basis of how information is organized and how we
can search for a particular one.

3.4.2 Password Protection

When storing any kind of passwords we have to make a decision about how to store the
worker’s password information securely. Data in the database is not safe, not only is it
accessible by the database administrators, but in case the system is compromised it can
lead to passwords being leaked and used in a malicious way. More times than not, we
receive news about the theft of large collections of passwords, such as [74] [75], and most
recently [77]. Using password scramblers can add some obscurity to the passwords, but
this is not considered to be truly secure. [78]

There are two ways in which we can obscure passwords in our database: hashing and
encryption. The former is considered to be the best approach since it is a one-way function
where the hashed value cannot be reversed to its original form, i.e, the password. The latter,
symmetric encryption, relies on a symmetric key and its always possible to reverse a value
by using that key. [79]

So how does our solution authenticate workers with a password hash? As we seen in
Section 3.3.4, a request containing the username and password is sent to the server. A

3.4 relational database 35

Figure 3.3: Entity-relationship diagram of the model. Rectangles represent entities, ellipses
represent attributes, and diamonds represent the relationships between entities.

close examination of the Worker entity in Figure 3.3 reveals the answer we propose. When
receiving a request containing a user’s credentials, the server hashes the password received
and compares it to the hashed password stored in the database, under the username in the
request. If the two are an exact match, the worker provided a valid username and password.
The benefit of hashing is the application never needs to store the clear password, only its
hash value, so even if the passwords are leaked, they are still secure. The process can be
seen represented In Figure 3.4.

The Secure Hash Algorithm (SHA) are a family of cryptography hash functions de-
veloped by National Institute of Standards and Technology (NIST) [80], and include the
algorithms SHA-0, SHA-1, SHA-2, and SHA-3. In terms of interoperability, SHA-1 is the
most supported and common of the previous algorithms, present in many programming
and environment languages, however SHA-3 has quickly become the new adopted stand-
ard which yields a 512-bit hash output and similar performance as SHA-1, which only
yields a 160-bit hash output. [80]

There is yet another security measure we can add to secure our passwords, a Salt.
Lookup tables and rainbow tables [81] are effective methods for cracking password hashes.
The reason is that each password is hashed exactly the same way, depending on/under
the hashing algorithm, Table 3.4. If two users have the same password, they will have the

36 3 architecture

same password hashes. [82] In order to prevent this, we can randomize each hash, so that
identical passwords will not have the same hash value. We can achieve this by appending
a salt value to the passwords before they are hash, Table 3.5. Salts are random, only used
once, values and can be stored clear in the database, as can be seen by the ER diagram
represented in Figure 3.3.

Table 3.4: Password Hashing. Two identical passwords result in the same hash value.

User Password Hash

Joe password123 le3fh2jka11n. . .

Susan password123 le3fh2jka11n. . .

Table 3.5: Password Hashing with Salt. Appending a salt to a password, before hashing, guar-
antees that two identical passwords do not result in the same hash value.

User Password Salt Hash

Joe password123 qw2jknf1. . . le3fh2jka11n. . .

Susan password123 2awi81nv. . . bah1xc91syn. . .

3.4.3 Assembly Instructions Storage

Regarding the storage of the assembly instructions files, two possible design choices exist:
storing the files in the filesystem, with the path in the database; or store the files as Binary
Large OBjects (BLOBs) in the database. So, the question is to BLOB or not to BLOB? [83]

Databases can manage a number of small objects, and we know that filesystems are
incredibly efficient at handling large objects. So where is the division? From what point is
reading the file from the database faster than reading a file store in the filesystem? A study
concluded that the answer is “BLOBs smaller than 256 KB are more efficiently handled by
a database, while a filesystem is more efficient for those greater than 1 MB”. [84]

Mayer Shipyard provided us with assembly instructions of a simple section. After ana-
lyzing the its size, around 90% of the files’ size are bellow the breaking point of 256 KB.
However, since the files correspond to a small example of a ship’s section we believe that
a real ship’s section files will surpass the 256 KB breaking point. For these reasons, we
decided it is best to store the assembly instruction on the filesystem as opposed of storing
them in the database, as BLOBs.

Although the 256 KB breaking point is a good measure to decide between the two design
options, there are also other factors that can be taken into account. When storing files’ path
in the database we must be aware that, in case files are moved, the reference path can
break the system. Even though we do not expect that to happen often, it is still worth to

3.5 system abstraction 37

Figure 3.4: Authentication Process.

be taken into account, and the database administrator should be aware of such situations.
With such a risk, we would think that storing BLOBs would be the best choice, transferring
data to another database would also be easier, since we do not have to account for the
risk of breaking files’ path. Nevertheless, there are also disadvantages: besides the already
mentioned performance when dealing with large objects, if the database is hosted outside
the network by a third-entity, the space cost of the database would be immense due to the
space required to store the BLOBs; backups of the database, a good measure in case of lost
data situations, would also contribute to that expense, due to their size.

When deciding how to storage assembly instructions we believe that storing the path is
still the best design choice for our solution. Still, other solutions might not benefit from it,
and in the future this decision can be reversed if necessary.

3.5 system abstraction

Described above are the core transmission technologies used to deliver the assembly in-
structions from a server to the clients, as well as the security measures to ensure a private

38 3 architecture

and safe communication between them. After a careful analysis of the requirements estab-
lished for this thesis, we arrived at four core components that we think have an integral
role for developing a complete server solution. Figure 3.5 represents an abstract overview
of the system and the four components that constitute the server.

Figure 3.5: System abstract overview.

disk file system Storage unit where the various assembly instructions — CAD files —
are stored. This system is used to control how data is stored and retrieved.

database sytem We require a database to organize and manage information such as
work packages, and their relation with workers and the construction’s stage. In-
formation is organized in relation to the model depicted in Figure 2.12. Section 3.4
describes/explains the steps employed in implementing our model as a (relational)
database;

cache This component will store data in memory, so that future or repeated requests can
be served faster; in our case the data stored in cache is a duplicate of the data stored
on the disk. Additionally, certain messages/responses can also be stored if needed
repeatedly. Cache memory can have reads up to 80 times faster compared to disk
reads, [85] thus by storing data in memory, as opposed to repeatedly reading it from
the disk, it will help improve the system response time. [86] This component will also
be responsible for handling access keys necessary for access control, Section 3.3.

application server This component resides in the middle of the server-centric archi-
tecture, in charge of handling all application operations between clients and other
backend applications, services, and databases. It is also responsible for handling con-
nections to the database and other services on one side, and connections to the cli-
ents on the other. Services are made available to the client, through a component

3.6 assembly instruction transfer 39

Application Program Interface (API), which represents the business logic — a set of
operations based on rules or workflows that dictate how data/information is handled,
modified, stored, and displayed.

In the upcoming/next/impending sections, we will describe how these components are
interconnected, and the diverse array of middleware services implemented for security and
state maintenance, access control, as well as data access, persistence, and transmission.

3.6 assembly instruction transfer

Up to this point, we have found that Wi-Fi and HTTP, which uses a TCP connection, are
the best transport and transfer protocols/technologies for our solution. Also, by using SSL,
the connection between server and client can be encrypted and is guaranteed to be private.
In this section, we will be covering how data, pertinent to the Work Package and their parts
(the CAD files), is sent to the devices, using the technologies described previously.

Both at the server and at the client, there are many ways in which business logic can
influence how we use the technologies at our disposal. For the better part of this section,
we will be mentioning the reasons why we decided to follow one path instead of the other.
It is consider that, from this point on, a request made by a worker has already gone through
the authentication process and has been clear for accessing the system.

The body of every HTTP message is defined in the header field — Content-Type — so
that the receiving party knows how to process the data in an appropriate manner. To better
understand these messages, specially text data messages, there are formats that help to
give messages, a structure so they can be easily parsed by programming languages and
become human readable. Among the data format interfaces, the most famous ones are
Extensible Markup Language (XML) [87] and JavaScript Object Notation (JSON) [88]. The
main difference between the two is that XML is, as the name indicates, a markup language,
whereas JSON is a way to freely represent objects. Since XML must have a defined data
structure it can be validated before being transmitted, however its validation and parsing
can take a considerable amount of memory and computer power. The strong integration
of JSON into the WWW ecosystem, due to its native way of representing javascript object
trees, has lead to its rise in popularity, with many big companies adopting the format. This
is also due to its light size when compared to XML, and also the less verbosity, being able
to represent the same data with less characters. [89] [90]

For these reasons, we decided to use JSON as the message format for messages ex-
changed between the server and the client. JSON is built on two data structures: a set
of name/value pairs (objects) and a list of values (array or list), universal data structures
in almost every programming language. [88]

40 3 architecture

3.6.1 Work Package List

In order for the worker to choose the appropriate Work Package or task, we require a list of
possible Work Packages that are available to him. An argument can be made that a worker
should not have any input on what work he wishes to perform, but instead, it should be
assigned to him. A justifiable decision specially when the device running the application
is an OHMD, where there are fewer and more complicated controls to interact with the
device. However, we believe this restriction should not be done in the server, but rather,
if necessary, on the client application. The application can display the list of possibilities
to the worker and let him decide, or can simply decide by itself based on the attributes of
each Work Package — the first on the list or the most urgent one by inspecting the end
date.

A restriction on the availability and distribution of Work Packages, at the server level,
would generate a chokehold on the information available to the client application and
hamper future modifications, rising the new of two separate systems.

The Work Packages presented in the list sent to the application must obey a set of rules:

• They belong to the same Department as the worker;

• They have the same Type, meaning the worker has the necessary skill set to assemble
those Work Packages;

• OR it can be any Work Package that was directly assigned to the worker, regardless
of Type or Department, although assigning a Worker to a Task should not break the
above two rules, it is possible and can give more flexibility to the distribution of
workers in certain cases;

• Another rule, which does not break the previous ones, is the restriction by Status,
for example including only Work Packages that have a specific Status like "Not Com-
pleted". This rule will depend on the Status defined when implementing this solution.

Every Work Package presented in the list should have all the corresponding attributes
linked to it by the relationships defined in Figure 3.3. An example of this list can be found
in Listing 1. As mentioned before, the client application can choose to display this list or
make a selection without the input of the Worker. Attributes in the list can help Workers
filter or sort the list to aid in the selection process.

3.6 assembly instruction transfer 41

Listing 1: List Work Package Structure. In the list we can see all the Work Packages belonging
to a Ship, that match the set of rules for the creation of the list, together with all the attributes
related to the Work Packages.

1 [{

2 "ship": 1,

3 "ship_name": "Blue1",

4 "ship_description": "No Blueprint Description",

5 "ship_start_date": null,

6 "ship_end_date": null,

7 "work_packages": [{

8 "id": 1,

9 "name": "WP1",

10 "description": "No WP Description",

11 "status": "Not Complete",

12 "start_date": "null",

13 "end_date": null,

14 "department": "General",

15 "assignment": "true"

16 }, {

17 "id": 2,

18 "name": "WP2",

19 "description": "No WP Description 2",

20 "status": "Not Complete",

21 "start_date": "null",

22 "end_date": null,

23 "department": "General",

24 "assignment": "false"

25 }] }]

3.6.2 Data Selection

In Chapter 2, we explained how the construction of a ship takes place. We also introduced
our concept of Work Packages and how it translates to hierarchic dependencies matching
the modular block construction seen in modern assembly processes. Alongside with it, we
proposed our model and how information related to the construction is associated with a
Work Package. Later, this model was transformed into an ER diagram (Figure 3.3), which
corresponds to the database design that will store the information. As mentioned before,
shipyards have several tools [91] at their disposal to discover the best assembly schedule
and the material’s space allocation. As a rule, blocks are assembled in a succession order,
starting from the stern to the bow, Figure 3.6.

To understand the selection of the Work Package described henceforth, we designed a
simple fictional example of a ship’s block that can be seen in Figure 3.7. The block is di-
vided into two sections, each containing several units, that can be formed by numerous
parts like in Unit 5 (U5). As we established, some Work Packages have dependencies on

42 3 architecture

Figure 3.6: Block and Section Assembly Order

others; for example Unit 5 (U5) has dependencies on four Sub-Assemblies, with every one
of them containing four parts. There are other relationships as well, Units 3 and 4 have
dependency on Units 2 and 1, respectively. The direction of the relationships is a direct
inversion to the assembly order, and can be seen clearly in Figure 3.8. Since sometimes it
is not clear how to set up these relationships, we also accounted for bi-directional relation-
ships between Work Packages. Even though these relationships may seem close to a tree
data structure, they are more close to a graph structure and there will be cases in which
we cannot allow relational associations or cyclic dependencies. In Chapter 5 we will cover
this subject in more detail, and enumerate how we dealt with such scenarios.

We hope that with these examples (Figures 3.7 and 3.8) we can convey our solution in
a more clear way. We will be using these illustrations throughout the remaining parts of
this thesis. In the last page of this manuscript, the reader can unfold a page containing
the same figures, and use it to understand parts of the thesis, as we describe and make
reference to part of the illustrations.

The ship’s designs, although detailed, do not cover every single assembly step related
to the construction. Most of the times, workers have to make decisions "on site" that are
not explicitly expressed in the drawings. So, depending on the type of work they are
performing, workers may need information that is not always related to the task at hand.
In this section we introduce three methods for Work Package selection. Each method is
an augmentation of the previous, and will therefore also carry more information. The
reason for all three is based on those situations where a worker may or may not need more
information that is not always related to the task at hand.

3.6 assembly instruction transfer 43

30 m

20 m

15 m

Block
2

Section 1
Section 2

Unit 5 Sub Assembly Parts

Unit 3

Unit 1

Unit 2

Unit 4

Figure 3.7: Ship Example. A ship’s block, which contains a section with 2 units, and another
with two units.

Figure 3.8: Work Package structure, in accordance with the components seen in Figure 3.7.

44 3 architecture

For all methods, we will be using Work Package U5 as the Work Package selected (Sec-
tion 3.6.1) for transmission. As a rule, when a worker is working on a Work Package
that has dependencies on other Work Packages, those Work Packages should have been
assembled previously, although this may not always be the case.

The three methods are as follows:

single selection The first method is called simple or single selection. As the name
indicates, only one Work Package — U5 — and no others will be sent to the device.
There may be occasions in which a worker only needs to see the parts necessary his
task, and has no need for parts in other Work Packages, even if they are related to
it. Even though use cases for this selection may be scarce/rare/singular, we felt the
choice should be available if ever these cases become more frequent.

dependency selection Dependency selection is the most discernible of the methods,
due to the dependency relationship of the Work Packages. In the case of U5, it means
that U5 and all the Sub-Assemblies will be selected. If the Work Package requested
was U4, U1 and all potential/possible Work Packages that U4 had dependencies
with, would be selected. The ability to see all the components related to the task at
hand will allow the workers to see if any previously assembled parts were assembled
correctly, and in essence aid in the understanding and performance of his task.

associated selection The last selection is called associated selection. With this, a
worker will be able to see all the Work Package associated with his task, independent
of it having direct dependencies with other Work Packages that are built in the area/-
location/department he is working. U5 belongs to Section 2 (S2) of our block, thus
in an associated selection, S2 and all their dependencies will be selected, meaning
U1, U2, U3, U4 and U5. This is particularly useful to give an idea of the full context
in which the task currently being performed will fit in the overall design of the ship.
Moreover, small building decisions, such as where to place small support beams or
fittings, are being decided by workers on the stop. By having knowledge of where
components will be placed, a worker can place these support components as to not
obstruct access to areas he or other workers might require.

The challenge is in evaluating when to use each selection method. In practice, associated
selection can be the most commonly used, and could have been the only method provided,
as it can convey at least the same information as the previous two. The reason for having
three methods is: first for security reasons, as not essential information should not be
transfered; and so that the transferring time can be as short as possible, particularly since
multiple workers will be simultaneous asking for information, eg. at the beginning of the
work day or shift.

Through the Work Package List — Section 3.6.1 — the application has access to a list of
Work Packages available for transferring. Above, we explained how all pertinent data to

3.6 assembly instruction transfer 45

the selected Work Package, depending on the method, is selected. A request containing the
desired Work Package and selection method is made from the application to the server:

GET /workpackage/u5/dependencies HTTPS/1.1

Host: xpto.com

Session: 1c24171393d4ffcbf11ab28

Upon passing the authentication process, the Work Package U5 is passed through the
Dependencies Method. A JSON file, containing a detailed description of the Work Pack-
ages, their parts, and files is then generated and sent to the application. In Section 3.6.3, we
will see how this file is used in the transfer. Listing 2 is an example of the file generated in
response to the previous request, the Work Packages in the file correspond to the ones fea-
tured in Figure 3.8. An array of Work Packages resulting from the Dependency Selection

of U5 — U5, SA1, SA2, SA3, and SA4 — and each contains the information associated with
a Work Package. The dependencies each Work Package has with others are also present,
for example, in Line 4. As a result of the Dependency Selection, all Work Packages of U5
and all Work Packages of U5 dependencies and so on, should be present in Listing 2 —
List of Parts.

Following the relationships set in the database design, Figure 3.3, each Work Package is
comprised of one or more parts, each of these parts is represented by one or more files.
That structure can be easily recognized through the indentations in the file, although these
indentations are usually used to make such files human readable. In order to decrease the
size of these files, and in turn increase the transfer speed, the whitespaces are eliminated
forming a single line, which computers can still efficiently parse.

46 3 architecture

Listing 2: List of Parts for U5 (requested) on dependecy selection. Small attributes were elim-
inated for brevity

1 [{

2 "id": 1,

3 "name": "U5",

4 "dependecies": [2, 3, 4, 5],

5 },

6 {

7 "id": 2,

8 "name": "Sub Assembly 1",

9 "description": "WP SA1 Description",

10 "start_date": null,

11 "end_date": null,

12 "department": "Section",

13 "status": "Completed",

14 "dependecies": [],

15 "parts": [

16 {

17 "id": 134345,

18 "name": "Part 1",

19 "description": "No Description",

20 "status": "Completed",

21 "files": [

22 {

23 "id": 1,

24 "extension": "txt",

25 "path": "/SA1/p1/file1.txt"

26 },

27 {

28 "id": 2,

29 "extension": "obj",

30 "path": "/SA1/p1/file2.obj"

31 }

32]

33 },

34 {

35 "id": 12346,

36 "name": "Part 2",

37 "description": "No Description",

38 "status": "Completed",

39 "files": [

40 {

41 "id": 3,

42 "extension": "txt",

43 "path": "/SHA1/p2/file3.txt"

44 },

45 {

46 "id": 4,

47 "extension": "obj",

48 "path": "/SHA1/p2/file4.obj"

3.6 assembly instruction transfer 47

49 }

50]

51 },

52 {

53 "id": 12347,

54 "name": "Part 3",

55 "description": "No Description",

56 "status": "Completed",

57 "files": [

58 {

59 "id": 5,

60 "extension": "txt",

61 "path": "/SHA1/p3/file3.txt"

62 },

63 {

64 "id": 6,

65 "extension": "obj",

66 "path": "/SHA1/p3/file6.obj"

67 }

68]

69 },

70 {

71 "id": 12348,

72 "name": "Part 4",

73 "description": "No Description",

74 "status": "Completed",

75 "files": [

76 {

77 "id": 7,

78 "extension": "txt",

79 "path": "/SHA1/p4/file7.txt"

80 },

81 {

82 "id": 8,

83 "extension": "obj",

84 "path": "/SHA1/p4/file8.obj"

85 }

86]

87 }

88]

89 }, {

90 "id": 3,

91 "name": "Sub Assembly 2"

92 }, {

93 "id": 4,

94 "name": "Sub Assembly 3"

95 }, {

96 "id": 5,

97 "name": "Sub Assembly 4"}]

48 3 architecture

3.6.3 Transfer Methods

So far, we have covered how the application has access to the list of available Work Packages
(Section 3.6.1), and after the selection of a Work Package which related Work Packages are
marked for transfer (Section 3.6.2) through a detailed list of parts that comprise those Work
Packages.

As mentioned before, HTTP must specify the content’s extension/type of the message
in its header Content-Type. Initially HTTP was designed to send one file per one request,
but as we can deduce, after seeing Listing 2, we require sending multiple files and these
files can have different formats between them. In this section, we will discuss two different
methods to transfer these Work Packages and their files to the devices.

3.6.3.1 Condense Method

The simplest method for sending multiple files in one HTTP response is to compress all the
files into a single compressed file, such as zip or tar. This way, we end up merely sending
one file, whose type can be defined in the header, and contains all the requested files. For
added protection, the compressed file can be encrypted under the content encrypted key
described in Section 3.3.3.

Figure 3.9: Condense Method Process.

3.6 assembly instruction transfer 49

The procedure can be seen in Figure 3.9. Corresponding Work Package files are read
from disk and added to the compressed file. The internal structure of the compress file is
the same as the location of the files in the filesystem. The process is repeated for all the
files, until there are no more left. Afterwards, the compressed file is encrypted and sent to
the application, where it is decrypted and decompressed.

The biggest advantage of this method is its simplicity. Any client application can deal
with encrypted and compressed files, ensuring future compatibility. However, there are
some drawbacks. The response containing the files can not be sent until the compressed
file is created and encrypted. Combining with the time and computing resources it takes
to decompress the file on the client side, this method can increase the response time and
limited computational resources can be wasted here.

3.6.3.2 Multiple-Requests Method

Since HTTP is not fit for sending more than one file per request, a solution is requesting
one file per request until all necessary files have been transfered. Depending on the num-
ber of files, this method can prove to be more effective than the previous, considering the
time and resources spent dealing with compression are eliminated. Nonetheless, some dif-
ficulties/drawbacks can arise from making multiple requests. In Section 3.2 we explained
that each connection to the server suffers from latency due to the connection establishment
handshakes performed by TCP and SSL. If every request has to go through the same pro-
cess, an overall increase in the response time can expect, Figure 3.10. A mitigation to these
circumstances can be achieved by re-using the same underlying TCP connection for every
request, thus having the handshake process being conducted only once for the overall files’
transfer.

Figure 3.10: Two distinct TCP connections for each request.

50 3 architecture

Figure 3.11: Multiple requests connection, HTTP reuse of underlying TCP connection.

3.6.3.3 Method Comparison

The efficiency of each method described previously is dependent on the amount of files
being sent at a time. With the first method (Condense Method) files can be sent in one
request, but consequently the client must first wait until the server has compressed all the
files, before the client can receive them. Additionally, both server and client have to go
through a compressing/decompressing process, which in case of a small number of files
can result is wasted resources.

The second method (Multiple-Requests Method) on the other hand can send the files to
the client the moment they are available, allowing the client to decrypt them while waiting
for the next one. However, in comparison the decryption process must be performed
for every file instead of just one which, depending on the number of files, can result in
considerable amounts of time and computational resources being spent in this process. An
advantage of this method is that, while the server is preparing to send the next file, the
client can proceed to decrypt the file it just received, and continue to do so until receiving
all the files. Moreover, if sufficient files have been transferred, the transfer process can

3.6 assembly instruction transfer 51

continue in the background, and the worker can start immediately with his task. Compared
to the other method, the client has to wait until the server finishes processing the request,
only then it will send a response containing all the files, and the worker can proceed with
the assembly.

In Section 3.6.2, we introduced three methods for Work Packages’ data selection. We
concluded that section with an example of a JSON file — Parts List — which contains the
information of the selected Work Packages, parts, and files. From the above descriptions,
the Multiple-Requests Method seems to provide more flexibility and better performance
when compared to the Condense Method. However, there is one big difference between
the two. Since the latter compress all the selected data, the Parts List is not a requirement
for the the actual transfer. The compression can take place immediately after the selection,
without passing through the application. The Parts List JSON can be compressed inside the
(compressed) file that is sent. On the other, for the former, the Part List is a requirement.
The reason why is because with this method, the requests have to specify an exact file in
the request, therefore the Parts List was to be sent prior to the transfer process, which can
increase the overall transfer time.

In order to define which method is the faster, and therefore most suitable for our solution,
it is required that both are implemented and tested with real-world files. Only after, we
will have sufficient data to make an educated decision of which to support.

3.6.4 Transfer Time Improvement

For the sake of increasing the overall transfer time, we thought of two possible techniques.
These techniques are described in the following sections.

3.6.4.1 Location Identifier

By examining the files’ objects in Listing 2, we can see the path (in the file system) of
each file, together with the rest of the file’s information. But why? So far, an ID has been
sent with a request and the ID of the files is also present, so why not continue with this
scheme and simply send the ID? The reason is that to find the location of a file tied to an
ID, a database lookup has to be performed to retrieve the location of the file, so it can be
read and subsequently transfered. In Section 3.4.3, we debated the benefits of storing the
files location in the database as oppose to storing a BLOB. Having the location of the file
increases the size of Listing 2, but, in doing so, it opens the possibility to use the location of
the file in the request, instead of the corresponding ID, skipping a database lookup entirely.
A canonical path is always unique [92] so, for this case, it can also be used as an identifier.
Saving one step in the transfer process will undoubtedly increase the speed at which the
files are transfered.

52 3 architecture

Despite the fact that this technique can shave time off the overall transfer, it can only be
applied in the Multiple-Requests Method. Because, in order to benefit from it, the Parts
List must be sent, to the application, prior to the transfer, which is only necessary for the
Multiple-Requests Method.

3.6.4.2 File Caching

In Section 3.5, we enumerated all the core components that form our sever, one of which
is a cache component that can be used to cache files and requests, so that these can be sent
faster to the client. The response time of the methods described in Section 3.6.3 can be
improved if, instead of reading the files from the disk, they were read from memory, which
can be up to 80 times faster.

On every request, specifically the ones for Work Pakcages/files, the server can search if
the existing files, and if so read directly from it, instead of reading from the disk. In case it
does not find it there, the server will proceed like before and read them from disk, saving
them in memory afterwards. This logic is explained in greater detail in Figure 3.12.

Figure 3.12: Cache Writing Policy.

However, it is not possible to store all files in memory, due the total size of the files and
the memory’s space limitations. There is a set of rules or algorithms that can be used to
manage the information stored in cache. One of those is the First-In-Last-Out, Another
algorithm is the Least Recently Used, For that, it requires keeping track of what file was
requested and when it was used, which can be expensive if one wants to make sure the
algorithm always discards the least recently used item. It also requires more data to be
stored, an age bit that must be updated every time a file is used, which can add time to a
procedure that is intended to save it. [93]

Another rule of thumb — five-minute rule

3.6 assembly instruction transfer 53

Multiple-Requests Method is, of the two methods, the one who benefits more from this
improvement, especially when combined with the previous improvement (Section 3.6.4.1).
Condense Method can still benefit since, as we mentioned, memory reads are substantially
faster than disk reads.

3.6.5 Instructions Update

The major deciding factor in which of the commutation methods, described in Section 3.2.2,
to choose was the ability to receive updates of assembly instructions. After examining the
available communication methods and concluding the time for update requests updates,
we decided that a simple periodic request for updates is an adequate design decision.

Depending on the Operating System (OS) or programming language, this process can
have several names, but they are all part of a mechanism called time-based job scheduling,
where jobs can be designed to run at a specific time or every hour/minute and so on. In
our case, we want the application to periodically ask the server if the instructions currently
being implemented have been updated.

As previously mentioned in Section 3.3.4, we introduced sessions into our system. As-
sociated to each session we can have information related to the Worker and the Work
Packages requested. As such, there are two possible design choices here: We can store all
the Work Packages sent to the application, under that session together with the last time
a Worker requested an update check; Or the application can provide this information in
the request. Even if we decide to go for the latter, having the Work Packages stored in the
server can help identify, at any given time, the Work Packages currently being assemble
by a Worker. Nonetheless, if we recall the argument made previously about stateless, the
system can be more flexible if the application provides all the information, thus reducing
the implementation’s complexity of server’s session manager.

Figure 3.13 depicts the periodic request process just described.

Figure 3.13: Periodic Instructions Update.

54 3 architecture

3.7 service mapping

In the context of our application, and in conformity with the project’s requirements, the
range of operations or services accessible by the client are described next. Some of which
have already been covered.

authentication Authentication request for access to the server — Section 3.3.

assembly instructions Requests for specific Work Packages, and their corresponding
parts and files. In Section 3.6, we investigated how exactly the transference of one
or multiple files is conducted, and how precisely workers can have access to the full
range of possible Work Packages.

updates These requests will be sent periodically, as discussed in Section 3.6.5, to check
if there are any new or updated assembly instructions to the ones currently being
assembled.

status Requests to change the status of both a part and/or a Work Package.

report Report requests are sent when a worker reports a task as complete, ie., part(s)
mounted, or report error(s) discovered during the execution of that task.

Each of these operations must be addressable via an Uniform Resource Identifier (URI)
or its subset URL, so they can be accessible by the client. These operations correspond to
our API and expose our business logic to the world. Table 3.6 contains the list of services,
together with the URI, request method, headers, body, response to the request, and a
brief description. In this table, request path parameters are marked with "{ }". Different
resources or services are provided depending on the method or the parameter passed. For
example, the path parameters for the request /wp/{id}/{selection}, which correspond to
the Condense Method, correspond to the ID of the Work Package and the selection method
requested. Afterwards, in response, a compressed file containing the files and the JSON
List Parts is sent.

In Chapter 5 we explain how each of these services and every design decision discussed
in this chapter was implemented.

3.
7

s
e

r
v

i
c

e
m

a
p

p
i
n

g
5

5

Table 3.6: Service Mapping.

Resource URI Method Header Body Response Description

/worker/login POST - Credentials Session Key
Credentials are sent in the body of the request. If

authenticated, a session key is returned.

/worker/logout POST Session - Message Session is removed from the server.

/wp/listWP GET Session -
List Work Package

(JSON)
List of Work Packages avaiable

/wp/{id}/

{selection_method}
GET Session -

Compressed

File

Condense Method File. The content depends on the

selection method chosen. The List Parts JSON file is also

included in the file.

/wp/{id}/listParts/

{selection}
GET Session -

List Parts

(JSON)

List of Parts. Necessary for the Multi-Request Method.

Sent inside the compressed file in Condense Method.

/wp/file/{path} GET Session - File
Multi-Request Method. By using the file path as the

identifier, we can skip a database lookup.

/wp/updates/ GET Session
Work Packages

& Last

Update Time

Work

Packages

Updated

List of Work Packages that have been updated. If no

information is sent in the body,the data saved

(in the server) under the session is used.

/wp/{id}/status/ PUT Session Status Message Change Work Package status to the value sent in the body

/part/{id}/status PUT Session Status Message Change Part status to the value sent in the body

/part/{id}/mounted PUT Session - Message Check Part as mounted by the owner of the session.

/part/{id}/report PUT Session
Report

Message
Message Report problems or other remarks about a part.

4
F R A M E W O R K

“You just need a framework and a
dream.”

Michael Dell

Before moving on to the implementation of the architectural plans described in Chapter
3, the present chapter will briefly explain some of the technologies used in the implement-
ation chapter, including database, and both server and client side technologies.

4.1 database and datastore

In this section, we describe the relational database essential for the storage and organization
of assembly instructions and other pertinent information, and the cache memory database.

4.1.1 MySQL

MySQL is a free open source Relational Database Management System (RDMS). It works
as a server and can be managed either via command line or via client applications. As a
relational database, the data is organized into different tables. In each table, the information
is stored as entries (rows in a table). Each entry can be related to many entries in the
same or in other tables. The relationship between entries is made through a foreign key,
which is an unique identifier of an entry in a table. Queries in a MySQL database are
done through Structured Query Language (SQL), a standardized language used to query
relational databases.

4.1.2 Redis

Redis is a fast stand alone open source (BSD licensed), non-relational in-memory data
structure store, used as database, cache and message broker. [95] It supports several data
structures like strings, lists, and hashes. It is capable of in-memory, persistence storage on
disk, and replication distribution. It is the ideal place for storing sessions since data can be
restarted and redeployed in case of failure. [96] All these reasons are what leads up to use
Redis in our solution.

57

58 4 framework

4.2 server framework

The following sections introduce the technologies and tools that were used during the
implementation of the server side.

4.2.1 Node.js

The Node Foundation [97], a collaborative project at the Linux Foundation [98], is re-
sponsible for the host, adoption, and development of Node.js. Node.js is an open-source,
asynchronous event driven framework, cross-platform runtime environment for developing
scalable network applications [99]. Applications that are written in JavaScript, one of the
essential technologies of the WWW. Having a unified language for both client and server
development, which can also be used for building, testing, and templating, reduces the
overhead of dealing with multiple systems and languages (libraries can be shared across
the stack) and the number of developers required for a project, as well as the overall com-
plexity of the process when exchanging messages. Another advantage is Node’s runtime
ability to be executed on a number of OS’s, such as Mac OS, Microsoft Windows, and
Linux.

Node’s thesis/proposal/opinion is that Input/Output (I/O) must be done differently.
For example, most of the server programming languages deal with I/O operations the
following away: a database query is performed; the result is returned; the program uses
the result. In many cases, while performing the database query, the server hangs wait-
ing for the result response, and when dealing with I/O latency, either by disk, memory,
or network latency, the server cannot just wait for it to respond. For these reasons, many
programming languages employ multi-thread techniques to improve performance and con-
currency, although these applications are not easy to write, debug, and manage [100]

Node operates on a single thread (although multi-thread is possible), so if it were to
hang, the entire server would hang awaiting for the result, thus it should be able to multi-
task. The main reason for using Node.js in the implementation of our solution is Node’s
event-driven architecture and non-blocking I/O API, which is designed for optimization,
throughput, and scalability. If Node were to perform the database query described pre-
viously, it would issue the query and immediately process something else. The moment
the query result is returned, it triggers an asynchronous callback function responsible for
handling those results, allowing it to handle many connections concurrently. [101] [102]

On the matter of performance, Jason Hoffman, Chief Technology Officer (CTO) of Joyent,
the company where Node.js was created, stated that a single core with less than 1GB of
RAM is fully capable of handling 10 Gbps of traffic and one million connected end points.
[103] This makes Node well suited for the foundation/basis of our solution.

4.2 server framework 59

4.2.2 Node Package Manager

Node Package Manager (npm) is a public code registry open to all developers and where
code can be shared and reused. These bits of reusable code are called packages or modules.
An application is formed by multiple packages, and the freedom to re-use them allows
developers to draw expertises from the outside and bringing on packages that are focused
on particular problem areas. Also, code can be freely used in other projects by importing
the necessary packages.

Npm makes it easy for packages to stay updated to the latest versions and to set up devel-
oping environments across teams. The following paragraphs describe the major packages
used in our solution.

express .js Express.js [104] is a minimal and flexible web framework, and the base for
the majority of Node.js applications. It is based on the core Node.js HTTP module and
Connect packages, which are typically referred to as middleware. Express.js is the corner-
stone of our server, where all components and code can be elegantly structured under a
Model-View-Controller (MVC) organization. Express popularity is due to its fast learning
curve, easy to implement routing API, and request handling (Controller). [105] [106] Other
advantages of this framework are based on simplifying difficult tasks like parsing HTTP
requests (URL, parameters, and bodies) and cookies, managing sessions, handling errors,
and proper response headers based on data types.

sequelize Sequelize is a promise-based easy to use multi SQL dialect Object-Relational
Mapper (ORM) for Node.js [107]. It currently supports a variety of RDMSs like PostgreSQL,
MySQL, MariaDB, SQLite and MSSQL. An ORM makes data access more abstract and
portable, since classes are defined through an ORM and not subjected to vendor-specific
SQL. Thus, transitioning from one database to another does not require all transactions
and queries to be re-written.
As mentioned before, Node does not come equipped with database clients. Sequelize, on
the other hand, comes bundled with database specific client protocols for the databases it
supports.

redis-client Since Redis is not a relational database, Sequelize can not be used to-
gether with our Redis database. For this reason, we also require a Node.js Redis client that
can support all Redis commands, and focuses on delivering the high performance provided
by Redis.

hat Small (1.6 KB) package used to generate random 128-bit long session keys and avoid
collisions in this procedure. [108]

60 4 framework

bluebird “Fully featured promise library with focus on innovative features and per-
formance”. [109] Bluebird can "promisify" an existing promise-unaware API or function
into a promise-returning one.
Promises are a software abstraction that makes it easier to work with asynchronous oper-
ations. A promise represents the future result of an asynchronous operation. They make
it easier to throw and catch errors or exceptions and have proven to make code easier to
read and maintain. Nevertheless, the more important aspect for any javascript developer
is, perhaps, the ability to eliminate the fearful callback hell [110]. The use of Promises can
be seen in 3 however, in case the reader is interested in learning more about Promises, we
recommend reading [111] [112] [113].

archiver In order to test the method described in Section 3.6.3.1, we require a pack-
age capable of creating compressed archives. Although there are many archive or data
compression generators packages for Node.js, Archiver was chosen for being a “streaming
interface for archive generation” [114] capable of creating archives in formats like zip and
tar.

4.3 client framework

The following sections regard the technologies and tools used during the client side imple-
mentation.

4.3.1 Android Operating System

The current application is built over the Android OS, currently developed by Google. An-
droid is a rich mobile application framework for building mobile applications in a Java
language environment. [115] It has an adaptive device configuration system, which sup-
ports the creation of different layouts for different screen sizes, such as phones and tablets.

For this thesis, the two fundamental Android components are:

activities This component represents a screen within the user interface. Applications
usually consist of one or more activities. Activities can work together and pass in-
formation during the transition from one to another, however they are lossy bound to
each other, meaning each one is independent. [115]. During transition, the previous
activity can be terminated or stopped. A stack keeps track of which activities have
been stopped and pushed to the back in a "Last-in, First-Out" fashion. The state of
these transitions is tied to the activity lifecycle and can be managed by implementing
callback methods. [116] The activities’ lifecycle and the callback methods can be seen
in Figure 4.1.

service This component runs a process in the background of the application. It is nor-
mally used to “perform long-running operations or perform work for remote pro-

4.3 client framework 61

cesses” [115]. In the context of this thesis, services are used to periodically send
assembly instructions update requests. A service must be started by another com-
ponent, such as an Activity, however it is not bound to the same lifecycle of the
component that started it.

Figure 4.1: Android Activities Life Cycle, adapted from [117].

Components have to be initiated in the main thread, sometimes called "UI Thread". Be-
cause of this single thread model, In order to perform asynchronous operations, for in-
stance request to the server, worker threads must be created to avoid blocking the UI
Thread. This is accomplished via an AsyncTask. When worker thread functions are fin-
ished, the results can be published on the the UI Thread without any handling of threads
being required.

4.3.2 Android HTTP Client

There are an assortment of HTTP client libraries available for Android. Android itself
comes equipped with two HTTP clients: HttpURLConnection and Apache HTTP Client.
However, we found these libraries too complex to be used in our solution. Developed by
Square, Retrofit is a “type-safe HTTP client for Android and Java” [118]. Retrofit provides
annotations for request declaration and class generation. Synchronous or asynchronous
HTTP requests are easily defined and it has support for SSL, URL parameter replacement
and request body conversion. Underneath, it uses OkHTTP, another library developed
by Square, which features silent recover from common connection problems, connection
pooling, response caching, and the ability to fully manipulate an established connection.

5
I M P L E M E N TAT I O N

"A good idea is about 10 percent and
implementation and hard work, and luck is 90

percent."

Guy Kawasaki

In this chapter, we will demonstrate how the architectural plan in Chapter 3 was imple-
mented, using the technologies described in Chapter 4. We will explain our model, how
data is specifically exchange, and how its security is assured. The following sections are
also completed with contextual examples and descriptions. Not every portion of the im-
plementation will be covered, only the core parts of the database, the establishment of the
system, and the transfer methods. The renaming parts of the implementation can be seen
in the CD that accompanies this thesis.

5.1 database implementation

This section will focus on the implementation of our model as a database and according
to the ER diagram Figure 3.3. We will also address the structure of the Work Packages’
dependencies table, and how data is validated based on the structure deployed.

5.1.1 Database Structure

Previously, we designed a crude generalization of the information pertinent to the construc-
tion of one or multiple ships — Figure 2.12. After careful analysis of the model’s relational
representation, we arrived at the database design represented in Figure 5.1.

63

6
4

5
i
m

p
l

e
m

e
n

t
a

t
i
o

n

Figure 5.1: MySQL database

5.1 database implementation 65

At a first glance, we can notice that the representation depicted in Figure 3.3 does not
exactly match the representation seen in Figure 5.1. The database was separated into two
groups: Blueprint and Execution. This division is necessary so we can prevent data re-
dundancy when two or more identical ships are to be assembled. In the upper part, Blue-
print, tables represent how a Work Package structure of a ship is organized and related to
the planning for a specific ship’s design. Bellow, in the Execution group, are the tables re-
lated to the execution of that plan. For this reason, time related attributes are only present
in the tables of this group, as well as the status, assignments, and department where a spe-
cific Work Package, now a execution of a Work Package, should take place. Following this
logic, we can identify that the same relationships presented in Figure 3.3 are also present
in the database, in addition to relationships between brother tables, like WP_WorkPackage
and WE_WorkPackageExecution. Having this division, will allow for more control over the
progress and distribution of Work Packages.

Besides the division mentioned above, another aspect obvious in Figure 5.1, is the declar-
ation of the attributes types, and if an attribute is required, meaning must be filled (not
null).

A best practice when dealing with timestamps is to always store data as Coordinated
Universal Time (UTC). Many database do date/time and interval arithmetics in UTC time,
and only after, convert it back to the database time zone. [119] UTC time does not observe
daylight savings time, thus being considerered interchangeable. Time zones can be handled
in the application, avoiding time zone and daylight savings conflicts in the database.

5.1.2 Work Package Dependencies

Regarding the hierarchical representation of the Work Packages, there are certain patterns
for the model of hierarchical data that must be taken into account. The pattern represent-
ation most commonly seen is the inclusion of a parent attribute. However, this does not
fully represent the existing structure because, as we have seen by now, the dependency
structure of a Work Packages is more similar to a graph than a tree structure. An ideal pat-
tern should be one that can have an easy implementation and maintenance during changes
— Insert, Delete, and Update — and can preserve the referential integrity 11 of the Work
Packages records. [121]

Bill Karwin explains, in his book [122], four different patterns for hierarchical data
designs: Adjacency Lists; Path Enumeration; Nested Sets; and Closure Table. The de-
scription and comparison of these patterns can be seen in Table 5.1.

The analysis of the hierarchical data designs, depicted in Table 5.1, quickly reveals which
of the four patterns is the best. Closure Tables have easy implementations features, main-
tain referential integrity, and have quick and easy methods for querying ancestors and

11 Referential integrity means that a database must not contain any unmatched foreign key values. [120] Every
foreign key has a corresponding primary key.

66 5 implementation

Table 5.1: Hierarchical data designs comparison. Adapted from [122].

Design Tables Query Child Query Tree Insert Delete Ref. Integ.

Adjacency List 1 Easy Hard Easy Easy Yes

Path Enumeration 1 Easy Easy Easy Easy No

Nested Sets 1 Hard Easy Hard Hard No

Closure Table 2 Easy Easy Easy Easy Yes

Table 5.2: Representation, through closure pattern, of the records corresponding to Work
Package S2.

Work Package
Work Package

Dependency

S2 S1

S2 U1

S2 U2

S2 U3

S2 U4

S2 U5

S2 SA1

S2 SA2

S2 SA3

S2 SA4

descendants. In Figure 3.3, we can confirm the implementation of this pattern, by the
creation of the two necessary tables. Table Work Package has a many-to-many (N - N) rela-
tionship with itself generating, as a result, the table Dependencies. These tables belong to
the Planning portion of our database.

In a closure table pattern, every (dependency) path is stored from each Work Packages
to each of its dependencies, meaning that not only direct dependencies are stored but also
the dependencies of those dependencies and so on. Taking Work Package S2, from our
example depicted in Figure 3.8, the records stored will coincide with those present in Table
5.2. Data represented with this pattern results in an O(n2) number of rows. Still, size is a
minor compromise compared to the performance obtained in the selection process.

5.1 database implementation 67

5.1.3 Data Validation

In Figure 5.1 we can observe that there are triggers associated with some tables. Triggers are
database objects that activate when certain events occurs for that table, particularly when
a (SQL) statement inserts, updates, or deletes rows/records in the associated table.

The triggers present in the database are divided into two groups:

timestamps updates In tables WP_WorkPackage, PT_Part, and FL_File triggers ensure
that fields related to dates (LastUpdated) are always up-to-date. When changes occur
to a certain record, all the associated records, through the use of Foreign Keys 12, suf-
fer alterations. However, these alterations only happen in reverse order, i.e., from
the many part of the relationship to the one. For example, if a record in table
FL_File is inserted, updated, or deleted, the associated records in the other two tables,
WP_WorkPackage and PT_Part, will have their data time updated. However, when a
change occurs to a record in WP_WorkPackage the same does not happen the other
way around. The reason is because it is unnecessary to update these tables, consider-
ing the selection factor are the work packages, as we described in Section 3.6.2.

association validation This group of triggers are present in the Planning section of
the database, in tables WE_WorkPackageExecution and PE_PartExecution. Relationally
speaking, any record in WE_WorkPackageExecution can have a reference to another re-
cord in WP_WorkPackage. However, there are cases where such reference relationships
cannot be allowed. Figure 5.2 portraits a scenario of that nature. A Work Package
that belongs to a specific Ship’s Blueprint cannot be referenced by a Work Package
Execution that is affiliated with any other than the same Project’s blueprint.

Listing 3 corresponds to the SQL code that enforces that validation. The trigger
present in Table PE_PartExecution shares a similar code.

12 Foreign key is a (collection of) field in a table that (uniquely) identifies a another field (Primary Key) of another
table.

68 5 implementation

Figure 5.2: Trigger Association Validation

Listing 3: Records Association Trigger

1 CREATE DEFINER = CURRENT_USER TRIGGER ‘thesisdb‘.‘WE_WorkPackageExecution_BEFORE_INSERT‘ BEFORE

INSERT ON ‘WE_WorkPackageExecution‘ FOR EACH ROW

2

3 BEGIN

4 DECLARE bl INT;

5 DECLARE pr INT;

6

7 SET bl = (SELECT BL_idBlueprint

8 FROM WP_WorkPackage JOIN BL_Blueprint ON WP_idBluePrint = BL_idBlueprint

9 WHERE WP_idWorkPackage = NEW.WE_idWorkPackage);

10

11 SET pr = (SELECT DISTINCT PR_idBlueprint

12 FROM WE_WorkPackageExecution JOIN PR_Project ON PR_idProject = WE_idProject

13 WHERE WE_idProject = NEW.WE_idProject);

14

15 if (bl != pr) then

16 SIGNAL SQLSTATE ’45000’

17 SET MESSAGE_TEXT = ’Validator WorkPackageExecution FAILED’;

18 end if;

19 END

5.2 system configuration 69

5.2 system configuration

This section will describe, in greater detail, how many of the architectural designs present
in 3 were implemented. This and further sections will focus solely on the system’s con-
figuration, methods’ declaration, and how the more crucial methods were implemented.
Examples will be provided, however these may be incomplete for brevity. As mentioned
before, the CD that accompanies this thesis contains all the project’s code, and the complete
implementation can be found there.

5.2.1 System Modular Design

The server side of our system follows a modular design that separates the functionalities
of our program into independent and interchangeable modules. By employing this design,
we can have a clear separation of the different components; algorithms are also more direct
and understandable; and updates or changes can easily be introduced without involving
major changes to the whole program.

In Figure 5.3, we can see an overview of the modular system implemented to the server.

Figure 5.3: System abstract overview. Three different layers, under a modular design structure.
All layers are connect to error handling and access control mechanisms

This multi-layer modular design is partially based on the Law of Demeter [123], or prin-
ciple of least knowledge, where methods should avoid invoking objects that are returned
by another method. [124] Moreover, each layer has only the minimal knowledge about
methods in other layers, knowing only enough to accomplish its function.

Three distinct layers are represented In Figure 5.3:

70 5 implementation

controllers layer Its main function is to translate tasks/requests and results to some-
thing the user can understand. Using Express.js, on top of Node.js, facilitates the
connection of all the middleware, and allows us to make use of its incredible routing
abilities. This layer acts as the facade of our server, i.e., exposes the services, and
delegates the logic to the business layer. The services available were defined in Table
3.6.

In Section we will how to declare the controllers, and in Section Requests that

Besides the controllers, the stream handler methods are also presented here, we will
examine those methods in Section

application layer Sometimes called business, logical, or middle layer, its the layer
responsible for controlling the application and making logical decisions based on the
business logic implemented. Moreover, it moves and processes data between the two
surrounding layers. In summary, this layer implements the core functionality of the
system, and encapsulates the relevant business logic that dictates how requests are
processed. [125]

data layer This layer provides access to data hosted within the boundaries of the system.
In our case, this data is present in the database and cache server. The Data layer
includes the data persistence mechanism that encapsulates and exposes these data.
Using an ORM allows us to create methods for managing data without exposing or
creating dependencies on the data storage mechanisms of a specific system/server.
The multi-layer architecture ensures that if there are ever any changes or updates to
the methods in this layer, the above layers do not require any modifications, as long
as the returned objects stay the same. [125]

5.2.2 Server Configuration

This section focuses on the server configuration, how components were connected, and the
different techniques implemented to improve the server performance.

5.2.2.1 Package Declaration

All Node.js projects and packages have, at the root, a file named package.json. This file
contains metadata about the project, and is used by npm to identify the project, as well as
its dependencies. Thanks to this file all the project’s packages dependencies can be loaded
safely no matter the environment in which the project is deployed. Listing 4 depicts the
package.json file of our project.

5.2 system configuration 71

Listing 4: Package.json

1 {

2 "name": "Server_Express_App",

3 "version": "0.0.1",

4 "private": true,

5 "scripts": {

6 "start": "node ./bin/www"

7 },

8 "dependencies": {

9 "archiver": "^0.15.1",

10 "bluebird": "^2.10.2",

11 "body-parser": "~1.13.2",

12 "crypto": "0.0.3",

13 "debug": "~2.2.0",

14 "express": "~4.13.1",

15 "hat": "0.0.3",

16 "redis": "^2.1.0",

17 "sequelize": "^3.10.0",

18 }

19 }

When executing the project, a command specifying the starting script must be provided
as argument. In order to facilitate this task, inside package.json, we can define the scripts
properties for different actions. To start the project, we defined in Line 6, the command
that initiates the project.

Lines 8 to 18 represent the project’s dependencies, which were described in Chapter
4. Even though, we use Express.js (Line 14) and Node.js in our project, not all of their
packages are required. The packages in Lines 11, 12, and 13 belong to packages embed into
Node and Express. Their purpose is self explanatory. They are declared so that only these,
and not all packages inside Node.js and Express.js, which are not necessary, are imported.
Otherwise, the size of the project would increase exponentially if all the packages inside
Node.js and Express.js were defined.

The name and version of the packages form an identifier which, inside npm, are com-
pletely unique. Having the versions of the packages prevents deprecated methods from
occurring, and ensures that everything will work as designed.

5.2.2.2 Redis and MySQL Connection

Node.js has a simple and practical module loading system. Modules encapsulate code into
a single file, that can then be used by other modules or methods. Modules help in keeping
the code separated and organized. In Listings 5 and 6 we can see how the connection with
the MySQL and Redis server is created. In each Listing, we can see the clients created with
a set of defined options. At the end of each, these clients are exported, via module.exports

= <variable>. That way, they can be easily used by methods in other files when required.

72 5 implementation

These variables can be used in other files via module.exports = <package or file>. We
can see it in use, in the beginning of each Listing, when invoking the project’s module.

Listing 5: Redis Client.

1 var redis = require(’redis’)

2

3 var client = {

4 sessionDB: redis.createClient(’127.0.0.1’, ’6379’).select(1),

5 filesDB: redis.createClient(’127.0.0.1’, ’6379’).select(2, {

6 return_buffers = true

7 }),

8 };

9

10 module.exports = client;

Listing 6: Sequelize Client for MySQL

1 var Sequelize = require(’sequelize’);

2

3 var database = ’thesisdb’;

4 var username = ’root’;

5 var password = ’root’;

6

7 var sequelize = new Sequelize(database, username, password, {

8 host: ’localhost’,

9 dialect: ’mysql’,

10 pool: {

11 max: 20,

12 min: 0,

13 idle: 10000

14 }

15 });

16 module.exports = sequelize;

The code present in Listings 5 and 6 is self explanatory. In Listing 6 we declare the Se-
quelize ORM (Section 4.2.2), with the location of the server, and the type of RDMS, MySQL
in our case. In this Listing, there is also one small technique to increase the performance
of the communications between Node and MySQL. By default, only one connection exists
between Node and the databases MySQL and Redis. However, by using a Connection Pool,
a cache of connections can be used by the application to access the database server. Using
a connection pool can increase the performance of our system, since the time required
to establish a connection is eliminated. [126] In Listing 6, Lines 10 through 14, we can
see the maximum number of connections (20) created between Node and MySQL. These
connections are destroyed after an idle period of 10000 milliseconds or 10 seconds, to free
resources. This way, whenever Node wants to access the MySQL server, a connection is

5.2 system configuration 73

already ready to be used, if a new request to the database is issued, another connection is
already established and ready.

One client per application is an efficient pattern, however there are occasions in which
having more than one connection is beneficial. Since both Node.js and Redis are effectively
single thread there is however, no beneficial gain in using a connection pooling when
connecting to the Redis database.

If we perform a close analysis of Listing 5, we notice two different redis clients. Redis’
servers can have multiple databases in one instance. To separate the session management
and the file’s cache bind each client to a different redis databases in the same server (Lines
3 through 8).

5.2.2.3 Sequelize Models

We opted to use an ORM, Sequelize, so that data access methods can be defined in an
abstract manner, and be portable to other RDMS dialects if the need occurred. An example
of the Blueprint’s table model, can be seen in Listing 7. The model corresponds identically
with the table depicted in Figure 5.1. We can identify all the attributes of the table Blueprint,
their type, the primary key, and if they allow nulls or not. At end, the relationships this
table has with others are defined, in affinity whit the type of relationship.

Listing 7: Sequelize Blueprint Model

1 /* Code omitted for brevity */

2

3 var BluePrint = sequelize.define(’BL_Blueprint’, {

4 BL_idBlueprint: {

5 type: Sequelize.INTEGER(11),

6 allowNull: false,

7 primaryKey: true

8 },

9 BL_Name: {

10 type: Sequelize.STRING,

11 allowNull: true,

12 defaultValue: ’No Blueprint Name’

13 },

14 BL_Description: {

15 type: Sequelize.STRING,

16 allowNull: true,

17 defaultValue: ’No Blueprint Description’

18 }

19 }, {

20 tableName: ’BL_Blueprint’, // Table name

21 });

22

23 /* Blueprint Relationships */

24 BluePrint.hasMany(workPackage, {foreignKey: ’WP_idBlueprint’});

25 BluePrint.hasMany(project, {foreignKey: ’PR_idProject’});

74 5 implementation

26

27 module.exports = BluePrint;

Listing 8 shows the abstract nature of a method using Sequelize. The example depicted
shows how a blueprint can be retrieve by its ID. In case, there is ever a change to a new
dialect, this and other methods will not require changes. The object returned is an object
model that has the same structure of the one defined previously in Listing 7.

Listing 8: Sequelize FindbyId BluePrint

1 var getBlueprintById = function (blueprintId) {

2 return blueprint.findById(blueprintId).then(function (result) {

3 return result;

4 }).catch(function (error) {

5 throw error // <- throws the error

6 });

7 };

5.2.2.4 Application Configuration

As we explained in Section 5.2.2.1, we defined, in the package.json file, a script to initiate
our program, node ./bin/www. In this file, which can se seen in Listing 10, we initiated the
server with the application’s configuration shown in Listing 9. In Listing 9, we instantiate
an express application (Line 3), establish the request handling packages (Lines 5 and 6),
and the API routes (Lines 9 trough 11) defined in Table 3.6, with which one pointing to a
different file related with that URI.

Listing 9: Express App configuration. Routes definition

1 /* Code omitted for brevity */

2

3 var app = express();

4

5 app.use(bodyParser.json());

6 app.use(bodyParser.urlencoded({extended: false}));

7

8 // Routes

9 app.use(’/worker’, require(’./routes/worker’));

10 app.use(’/wp’, require(’./routes/workpackage’));

11 app.use(’/part’, require(’./routes/part’));

Listing 10: Node.js Server

1 /* Code omitted for brevity */

2

3 var app = require(’../app’);

4 var https = require(’https’);

5.2 system configuration 75

5 var fs = require(’fs’);

6

7 // Get port from environment and store in Express

8 app.set(’port’, normalizePort(process.env.PORT ’3000’));

9

10 // Create HTTPS server with credentials

11 var key = fs.readFileSync(__dirname + ’/key.pem’, ’utf-8’);

12 var certificate = fs.readFileSync(__dirname + ’/key-cert.pem’, ’utf-8’);

13 var options = {

14 key: key,

15 cert: certificate

16 };

17

18 var server = https.createServer(options, app);

19

20 // Listen on provided port, on all network interfaces.

21 server.listen(port);

22 server.on(’error’, onError);

23 server.on(’listening’, onListening);

As we discussed in Section 3.3.2, we will be using SSL to secure the communication
between the server and the client. To avoid the costs associated with a SSL certificate, we
will be generating a self-signed SSL certificate meant only for testing. Self-signed certificate
means we certify this certificate instead of a CA. To avoid trust warnings, the certificate
should be added to the application, or to its Trust Certificate. A pem file, which includes an
entire certificate chain including public key, private key, and root certificates [127], is read
and used in the server object options (Listing 10, Lines 11 through 16).

5.2.2.5 Request Routes and Authentication

In the previous section, we understood how the mapping of the routes can be easily defined
using Express.js. Each route defined in the application file (Listing 9) refers to a different
file, where the reaming path of the URI is handled. An example can be seen in Listings
11. The method is a simple test request, used only to test the authentication of the requests
sent to the server, and is not present in the submitted version. Nevertheless, it is a simple
example to explain how requests are handled.

Listing 11: Route GET request

1 var express = require(’express’);

2 var router = express.Router();

3

4 var validator = require(’../utils/requestValidator’);

5

6 router.get(’/worker/test’, validator.validateSessionReq, function (req, res) {

7 res.json("You are a real Worker!")

8 });

76 5 implementation

In Line 6, we can see Express’ router function for a HTTP GET method request bound to
the /worker/test URI. Before the request is processed, it must pass validation, to verify
if the session exists. Only after this, does the server process the request, sending a JSON
message in response.

5.2.2.6 Messages Format

There are several types of messages that can be sent to the client. For the most part,
we follow a particular message format design, that can transmit as much information as
possible. This is particularly useful when dealing with error messages. Listing 12 shows
an example of an error message.

5.2 system configuration 77

Listing 12: Package.json

1 {

2 "sucess": false,

3 "uri": "http://192.168.10.72/wp/updates/",

4 "payload": {

5 "status": 404,

6 "code": 3810,

7 "message": "Error Found",

8 "developer_message": "An error occur while performing a search in the database for a work

package update with id = 31"

9 }

10 }

The payload can change depending on the success of the request. In case a request is
successful, application-specific data should be inserted in the payload object. The data
depends on the request made at the time. For error messages, the format should be similar
to the one described before. The payload in Listing 12 shows the HTTP status code, an
internal company code for that specific error message, a message that can be passed to the
application, and a special message meant to help developers fix the errors that can occur
when receiving this message.

5.2.2.7 Redis Database Structures

In Section 5.2.2.2, we described the creation of the connections to our databases, MySQL
and Redis. We mentioned also, that two separate redis databases: one to store and manage
the sessions; and another solely to the cache of CAD files, are used. Redis is not a plain
key-value store, but actually a data structure server. In this section, we will explain the
structure of both redis databases used in this system.

Traditional key-value stores, are limited to strings, however redis can deal with more
complex data structures. From the database that deals with sessions we are going to use

For every session, we have the correspondent map of fields:

workerid The ID of the worker for which the session key has generated.

listworkpackages The list of work packages requested by this session.

createdat The session key generation time.

lastupdate The last time a request, with this session, requested an update of the work
packages. We mentioned before that in case the request does not provide the neces-
sary information, that the values stored in the value under this field and the Work
Packages in ListWorkPackages are used to process the request.

Listing 13 shows the login service function, where the logic defined in Figure 3.4 is
implemented, and a hash is created and inserted into the database. This Listing also shows

78 5 implementation

Figure 5.4: Redis data structures. Used for file storage and session management

how Promises can make the code easier to manage and understand. Every session has a
determined time-to-live set at the time it is created (Line 24). Afterwards, it is automatically
removed from the database.

Listing 13: Login method

1 /* Code omitted for brevity */

2

3 login: function (reqUsername, reqPassword) {

4

5 return Promise.resolve().then(function () {

6 return getUserFromDB(reqUsername); // return Worker

7 }).then(function (dbWorker) {

8 var hashPass = dbWorker.WK_HashPassword;

9 var salt = dbWorker.WK_Salt;

10

11 if (!validatePasswordHash("sha1", hashPass, reqPassword, salt)) {

12 throw loginMessages.loginFailed();

13 }

14 return dbWorker.WK_idWorker;

15 }).then(function (userID) {

16 var sessionKey = generateSessionKey();

17 var currentTime = timeUtils.currentTime();

18

19 sessionDB.hmsetAsync(sessionKey,

20 ’worker’, userID,

21 ’createdAt’, currentTime

22 ’lastUpdated’, currentTime

23).then(function () {

24 redis.expire(sessionKey, 259200); // Time in seconds

25 }).catch(function (err) {

26 throw errorMessages.generalErrorMessage(err);

5.2 system configuration 79

27 });

28 return loginMessages.loginSuccessful(sessionKey);

29 }).catch(function (msg) {

30 throw msg;

31 });

32 }

The structure of the database reserved for caching the files is a simple Line 6, we defined
the following option return_buffers = true, in the client.

5.2.3 Client Configuration

Apart from the server-side configuration of our solution, there is also configurations on the
client-side. These configurations define the classes responsible for managing the applica-
tion, the HTTP requests. Moreover, like on the server-side, there are dependency packages
used in the development of the application

5.2.3.1 Package Declaration

The same way Node uses npm, Android uses Gradle, a flexible open-source build autonom-
ous system [128]. It follows the same ideas of Apache Maven, Apache Ant, and it is used to
efficiently compile or build projects that have dependencies on libraries. This automation
guarantees that the build is reproducible no matter the time or environment. Listing 14

represents the content of the android’s project build.gradle file.

Listing 14: build.gradle

1 apply plugin: ’com.android.application’

2

3 android {

4 compileSdkVersion 23

5 buildToolsVersion "23.0.1"

6

7 defaultConfig {

8 applicationId "de.tuhh.pmt.ar.client_android_app"

9 minSdkVersion 14

10 targetSdkVersion 23

11 versionCode 1

12 versionName "1.0"

13 }

14 buildTypes {

15 release {

16 minifyEnabled false

17 proguardFiles getDefaultProguardFile(’proguard-android.txt’), ’proguard-rules.pro’

18 }

19 }

20 useLibrary ’org.apache.http.legacy’

80 5 implementation

21 }

22 dependencies {

23 compile fileTree(include: [’*.jar’], dir: ’libs’)

24 compile ’com.android.support:appcompat-v7:23.1.0’

25 compile ’com.squareup.retrofit:retrofit:2.0.0-beta2’

26 compile ’com.squareup.retrofit:converter-gson:2.0.0-beta2’

27 compile ’com.google.code.gson:gson:2.3’

28 }

In Listing 14, we can find information related to the Android-specific building options,
such as: the compilation target; version of the build tools; the minimum Android Soft-
ware Development Kit (SDK) supported; and the dependencies of the project. In Lines 22

through 28, we can see the dependency declaration of the Retrofit library (Section 4.3.2),
and all necessary renaming dependencies. .

There is one small detailed about this build that is worth exploring. ProGuard, Line 17,
is a tool that reduces the application’s size by removing unused code, logging, debugging,
and testing code. It also offers protection by obfuscating code, renaming classes, fields, and
methods with semantically obscure names. These measure will make it harder to reverse
engineering the application. By removing verbose logging code in a background service,
the developer of Proguard, Eric Lafortune, states that battery life can increase up to five
times [129].

5.2.3.2 Android HTTP Client Interface

In agreement with the services defined in Table 3.6, both the server and the client should
be open to communicate through the stated URI. Before, we saw how these were defined
on the server side. On the client, we created an interface, that can be used through the
application to invoke those services. Listings 15 depicts one of the methods of that interface.

Listing 15: Client HTTP interface call method. Three parameters: a query parameters, session;
and two path parameters, one for the Work Package ID and the other for the selection method

1 /* Code omitted for brevity */

2

3 /* Get the List Parts JSON File of a Work Packages */

4 @GET("/wp/{id}/listParts/{method}")

5 retrofit.Call<List<Parts>> getWorkPackageListParts(

6 @Query("session") String session,

7 @Path("id") String idWP,

8 @Path("method") String selectionMethod);

We decided, as it can be seen, to send the session key as a Query parameter. We discussed
this in Section 3.3.4, as well as implementation alternatives and practices.

The method depicted corresponds to the request for a Work Package List Part JSON file.
The body of the response is mapped to a list of parts class object. We will see the use of a
method later in Section 5.4.

5.3 assembly instructions updates method 81

5.3 assembly instructions updates method

One of the core functions of our system, is the ability to query for updates made to assembly
instructions. These requests are sent periodically to the server, in case the assembly instruc-
tions, currently being assembled, are outdated. An IntentService is designed to handle
long-running tasks, without affecting the application UI thread. This service is started by
an Activity, but is not bound to it, meaning it is not affected by the activity’s lifecycle. Once
the IntentService starts, it handles each intent using a worker thread and stops itself when
the work is completed. Our IntentService class can be seen in Listing 16. If there are any
updates, a notification is displayed to the worker (Line 21). In the future, this notification
can be replaced by an automatic request for the updated instructions, removing the human
element from the equation.

Listing 16: Update Service

1 /* Code omitted for brevity */

2

3 public class UpdateService extends IntentService {

4 public UpdateService() {

5 super("UpdateService");

6 }

7

8 @Override

9 protected void onHandleIntent(Intent intent) {

10 Call<List<WorkPackages>> listUpdatedWP = servicesAPI.updates(app.getSession());

11

12 listUpdatedWP.enqueue(new Callback<List<WorkPackages>>() {

13 @Override

14 public void onResponse(Response<List<WorkPackages>> response,

15 Retrofit retrofit) {

16

17 if(!response.isSuccess()) { /* Code omitted for brevity */ }

18

19 if(isUpdates(response)) {

20 workPackagesList = (ArrayList<WorkPackages>) response.body();

21 sendNotification("New Updates");

22 }

23 }

24 }

25 }

26

27 private void sendNotification(String msg) {

28 mNotificationManager = (NotificationManager)

this.getSystemService(Context.NOTIFICATION_SERVICE);

29

30 PendingIntent contentIntent = PendingIntent.getActivity(this, 0,

31 new Intent(this, MainActivity.class), 0);

32

82 5 implementation

33 NotificationCompat.Builder mBuilder = new NotificationCompat.Builder(this)

34 .setContentTitle(getString(R.string.doodle_alert))

35 .setStyle(new NotificationCompat.BigTextStyle()

36 .bigText(msg))

37 .setContentText(msg);

38

39 mBuilder.setContentIntent(contentIntent);

40 mNotificationManager.notify(NOTIFICATION_ID, mBuilder.build());

41 }

42 /* Code omitted for brevity */

43 }

In this fashion, we can create requests to the server, however we still need a way to
execute this periodically at a specified interval. To achieve this, we can invoke the in-
tent via the AlarmManager, which will fire a BroadcastIntent. The BroadcastReceiver, a subset of
BroadcastIntent is defined in Listing 17.

Listing 17: AlarmManager

1 /* Code omitted for brevity */

2

3 // Triggered by the Alarm periodically

4 @Override

5 public void onReceive(Context context, Intent intent) {

6 Intent i = new Intent(context, UpdateService.class);

7 context.startService(i);

8 }

As such, the IntentService task is ready to be executed periodically. What remains is
to declare it in an activity, so that the application knows when to start. After this, the
intent will live in the background, independent of the activity. The ideal activity to execute
the intent, should be the one after the login, since we require a successful session key to
perform the requests. It is also possible to declare it after the first Work Packages have been
transfered. Listing 18 shows how the function scheduleAlarm() looks like. Requests are set
to be sent every hour, Line 13.

Listing 18: Alarm scheduler

1 /* Code omitted for brevity */

2

3 // Setup a recurring alarm half hour

4 public void scheduleAlarm() {

5 Intent intent = new Intent(getApplicationContext(), MyAlarmReceiver.class);

6

7 // Create a PendingIntent to be triggered when the alarm goes off

8 final PendingIntent pIntent = PendingIntent.getBroadcast(this, MyAlarmReceiver.REQUEST_CODE,

intent, PendingIntent.FLAG_UPDATE_CURRENT);

9

5.4 transfer methods implementation 83

10 long firstMillis = System.currentTimeMillis(); // alarm is set right away

11 AlarmManager alarm = (AlarmManager) this.getSystemService(Context.ALARM_SERVICE);

12

13 alarm.setInexactRepeating(AlarmManager.RTC_WAKEUP, firstMillis, AlarmManager.INTERVAL_HOUR,

pIntent);

14 }

5.4 transfer methods implementation

In Section 3.6.3, we describe two possible methods, Condense Method and Multiple-
Requests Method), to for the transfer of the assembly instructions from the server to the
client. We concluded that make an educated decision of which one should be supported,
both would need to be implemented and testes. Only after, we would have enough data
to decide. This section will explain the implementation of each method. The analysis and
comparison of the methods can be found in Section 5.5.

5.4.1 File Encryption

All the files sent to the application are encrypted under a content encryption key, a sym-
metric key known only by the server and a specific user. As a cipher algorithm, we decided
to use AES-256, a symetric block cipher. Whit the variation of encrypting data into blocks
of 256 bits, and CTR mode. For an evaluation of the different block cipher modes, we
recommend [130] and [131].

Listing 19: Encrypt Function, with AES-256 block cipher.

1 /* Code omitted for brevity */

2

3 var crypto = require(’crypto’);

4 var algorithm = ’aes-256-ctr’;

5

6 function encryptedFile(buffer, sessionKey){

7 var cipher = crypto.createCipher(algorithm, sessionKey)

8 var crypted = Buffer.concat([cipher.update(buffer),cipher.final()]);

9 return crypted;

10 }

5.4.2 Condense Method Implementation

The logic behind this method was descried previously in Figure 3.9. In short, a compressed
file is sent to the client with all the files and the List of Parts (Listing 2). As a security
measure, this file is encrypted under a content encryption key, the session key used to
authenticate a worker’s requests.

84 5 implementation

Listing 20: Condense Method Service

1 /* Code omitted for brevity */

2

3 router.get(’/wp/:id/:selection’, validateSessionReq, function (req, res) {

4

5 var wpId = req.params.id;

6 var selection = req.params.selection;

7 var sessionKey = req.query.session;

8

9 workPackageService.getWorkPackage(wpId, selection)

10 .then(function (zipper) {

11 var encryptedFile = encryptFile(zipper, sessionKey);

12

13 res.contentType(’application/zip’);

14 res.setHeader(

15 ’content-disposition’,

16 ’attachment; filename=’ + CompressFile);

17

18 res.send(encryptedFile)

19

20 }).catch(function (err) {

21 res.status(err.status).send(err.payload);

22 });

23 });

Afterwards, the response is sent to the client where it was must be decipher and de-
compress. In Listing 21, we can see the function responsible for handling the request and
response, on the client side. Due to the long running nature of these function, in order
not to block the UI thread, we must use AsyncTask (Line 3). As to not block or collide with
other requests or operations, all requests are put in a queue (Line 18), and executed when
possible. If the response is successful, we can begin to decrypt its content and process the
files (Line 26).

Listing 21: Android condense method

1 /* Code omitted for brevity */

2

3 public class getWorkPackageCompress extends AsyncTask<Void, Void, Boolean> {

4

5 @Override

6 protected Boolean doInBackground(Void... params) {

7

8 String selectionMethod = params[0];

9 String workPackageID = params[1];

10

11 AndroidApp app = (AndroidApp) getApplication();

12 String session = app.getSession();

13

5.4 transfer methods implementation 85

14 RestServicesAPI servicesAPIFiles = app.getServicesAPIFiles();

15

16 Call<ResponseBody> responseZip = servicesAPI.getWorkPackage(session, workPackageID,

selectionMethod);

17

18 responseZip.enqueue(new retrofit.Callback<ResponseBody>() {

19 @Override

20 public void onResponse(retrofit.Response<ResponseBody> response, Retrofit retrofit) {

21 if (!response.isSuccess()) { /* Code omitted for brevity */ }

22

23 try {

24 ResponseBody body = response.body();

25 InputStream inputStream = body.byteStream();

26 ZipInputStream zipInputStream = new ZipInputStream(decompressFile(inputStream));

27

28 /* Code omitted for brevity */

29 });

30 /* Code omitted for brevity */

31 }

32 }

5.4.3 Multiple-Requests Method Implementation

The second method, consists in re-using the initial connection for all subsequent requests.
As we pointed out, there is one big difference when compare to the previous method. This,
requires the List of Parts (Listing 2) to be sent to the application prior to the request for the
assembly instructions. Listing 22 shows the application’s code for the method. Again, an
AsyncTask is used to not block the UI thread. Inside it, two HTTP requests are made. The
first for the List of Parts (Lines 18), where afterwards a loop invokes a HTTP request for
each of the parts inside the list (Line 27). The connection is maintained open and is only
close after the loop has terminated (Line 31). Each file received is decompress, and should
be passed to other function of the application. For testing purposes, both this method and
the previous simply read and discard the data.

Listing 22: Android Multi-Request method

1 /* Code omitted for brevity */

2

3 public class getWorkPackageMutil extends AsyncTask<Void, Void, Boolean> {

4

5 @Override

6 protected Boolean doInBackground(Void... params) {

7

8 String selectionMethod = params[0];

9 String workPackageID = params[1];

10

11 AndroidApp app = (AndroidApp) getApplication();

86 5 implementation

12 String session = app.getSession();

13

14 RestServicesAPI servicesAPIFiles = app.getServicesAPIFiles();

15

16 Call<List<Parts>> listParts = servicesAPI.getWorkPackageListParts(session, workPackageID,

selectionMethod);

17

18 listParts.enqueue(new retrofit.Callback<List<Parts>>() {

19 @Override

20 public void onResponse(retrofit.Response<ResponseBody> response, Retrofit retrofit) {

21 if (!response.isSuccess()) { /* Code omitted for brevity */ }

22

23 try {

24 List<Parts> body = response.body();

25

26 for(Parts p : body) {

27 InputStream in = makeRequestFile(session, p.path); // Request for File

28 decompressFile(inputStream);

29 /* Code omitted for brevity */

30 }

31 response.body().close(); // Connection Closes

32 /* Code omitted for brevity */

33 });

34 /* Code omitted for brevity */

35 }

36 }

At the server-side, Express.js takes care of most of the boilerplate implementation. Since
the canonical path of a file can be used as an identifier, we can eliminated one database
lookup. However, to avoid an injection attack, the request parameter for the path is first
sanitized (Line 7).Afterwards, the file is read, encrypted and sent to the client (Lines 11 and
13).

Listing 23: Multi-Request Method Service

1 /* Code omitted for brevity */

2

3 router.get(’/wp/file/:loc’, validateSessionReq, function (req, res, next) {

4 var session = req.query.session;

5 var reqPath = req.params.loc;

6

7 reqPath = cleanPath(reqPath);

8

9 var fullPath = path.join(__dirname, filesLocation, reqPath);

10

11 var encryptedFile = encryptFile(workpackageServices.getFile(fullPath), sessionKey);

12

13 res.send(encryptedFile);

14 });

5.4 transfer methods implementation 87

To guarantee that the connection was not established between request we used a packet
analyzer, Wireshark, to analyze the traffic between the application and the server. Figure
5.5 shows the packets exchange between the server and the client. It is possible to verify,
that in between requests, there are no FIN packets exchange. These only occur, after all
requests have been transmitted to the client. Thus, we successfully implemented these
method in accordance with our specifications.

8
8

5
i
m

p
l

e
m

e
n

t
a

t
i
o

n

Figure 5.5: HTTP packets capture through Wireshark.

5.5 test results 89

5.5 test results

This section pertains to the analysis of the overall system’s performance. Both methods
are tested using a number of different files and scenarios. Also, to determine the server’s
behavior to peak load conditions, we performed some loading tests.

5.5.1 Transfer Methods Comparison

In Section 3.6.3.3, we described the main differences between the two methods designed to
handle the transfer of the assembly instructions. We concluded, that both had their merits
and should be implemented and tested to determine to most suitable one. Also, as we
mentioned in Section 3.6.4.2, we tried to improved the response time by having files stored
in memory.

The tests consisted in having an application transfer different Work Packages, each one
with a different number of files and file’s sizes. The tests were conducted throughout a
period of time, and the results averaged. These results, measured in seconds, can be seen
in Figure 5.6 and Table 5.3.

At first glance, we can see which of the two methods is the fastest, the Multiple-Requests
Method. The reason why is understandable, compression is a very expensive process, and
as we mentioned before, HTTP already supports gZip compression in the transmission,
thus having two compression methods is redundant. Of course, that is not to say, that there
could be times, in which having a compress file sent to a client can be useful. However,
that is not our case, in fact, having the ability to perform a request for the exact file we
need can increase the application’s flexibility, specially when a updates have been made to
a single part.

In regards to having files stored in memory, as expected, we can clearly see an improved
in the response time when combined with both methods. Surely there are still improve-
ments that can be made, nevertheless we believe we arrived at a good starting point for
seamlessly transferring assembly instructions to the client application.

Table 5.3: Method results values

Methods

Compress Compress + Cache Multi-Request Multi-Request + Cache

N
um

be
r

of
Fi

le
s

1 0,2857 0,1664 0,1014 0,0364

2 0,1571 0,1035 0,0714 0,0393

5 0,3178 0,2223 0,1692 0,1162

10 0,2264 0,1501 0,1068 0,0634

20 0,2643 0,1641 0,1086 0,0532

50 0,6213 0,3508 0,2103 0,0698

80 0,9477 0,5262 0,3101 0,0941

90 5 implementation

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 5 10 20 50 80

Ti
m
e	
(in

	 se
co
nd

s)

Number	 of	 Files

Methods	 Comparison

Compress Compress	 +	 Cache Multi-‐Request Multi-‐Request	 +	 Cache

Figure 5.6: Methods comparison

5.5.2 Load Testing

There are times when we can expect a large number of requests been made to the server.
When working begin their working day or shift, there will be an extreme amount of pres-
sure to our server. In preparation for those occasions, we decided to perform a load testing
scenario, to stress test our server. Multiple concurrent connections simulate multiple work-
ers making requests to the server.

Assuming an assembly instruction is around 100 KB, and that an entire ship is comprised
of 1000 separated files. For this test, we used Apache’s JMeter13 load testing tool, and
simulated 100 workers concurrently requesting the entire ship’s assembly instructions.

The results of the stress test can be seen in Figure 5.7 and Table 5.4. In 10 minutes, using
cache, all workers could have the entire assembly instructions to build the ship. 14 minutes,
in case the files were not stored in memory. These are fantastic numbers when compared

13 JMeter — http://jmeter.apache.org/

http://jmeter.apache.org/

5.5 test results 91

to the initial method of manually transferring the assembly instructions. More so, when
we consider the impact it can have on the shipyard’s productivity.

0 2 4 6 8 10 12 14 16

Time	 (in	 minutes)

Total	 Time

Figure 5.7: Load test total time.

Table 5.4: Load test summary results

Without Cache With Cache

Samples 100000 100000

Average 354 409

Min 4 1

Max 1008 1092

Std. Dev. 153.39 109.02

Error % 0.00% 0.00%

Throughput 248.2 213.5

KB/sec 19801.95 17034.10

Avg. Bytes 81709.4 81711.0

Time (min) 14 10

In Table 5.4, we can analyze the summary results of both load test, the main terms are :

samples Number of HTTP requests ran for given thread. Since we simulated 100 workers
requesting 1000 files, we have a total of 100000 samples.

92 5 implementation

average Average response time for a particular HTTP request, measured in milliseconds.

min Min denotes the minimum response time of a HTTP request.

max Max denotes the maximum response time taken by the HTTP request.

std.deviation Number of exceptional cases found that deviated from the average value
of the response time. The lesser this value the more consistent the time is.

error % Number of HTTP requests that resulted in an error, i.e., were not successful. In
this case, an error can be a 404 NOT FOUND. In both tests, the percentage of errors is
zero, meaning all requests ran successfully.

throughput Number of requests, per unit of time (seconds, minutes, hours), that are
sent to your server during the test.

6
C O N C L U S I O N

During this project, we overviewed the shipbuilding assembly and the planning process
behind it. With the knowledge collected from this revision, we were able to create an
organizational relational model capable of holding all assembly instructions relevant to the
ship’s construction.

We started by introducing our concept of Work Packages, a bundle of all the components
necessary for a specific task a worker must complete at any stage of construction. This was
followed by the development of an automated assembly instructions selection protocol and
a transfer server. The aim was allowing workers to easily access all the information via a
user-friendly mobile application, increasing the efficiency and, consequently, the productiv-
ity.

The new model had to fulfill some critical requirements. First of all, it should be simple
and easy to understand. However, regardless of its simplicity, the structure should be com-
plex enough to hold all the information in an organized and intercorrelated way, between
the worker, component, work package, and data. Finally, the model should be “univer-
sal”, meaning able to be implemented in a different industry or to a different problem if
necessary, without difficulty.

In this thesis, we defined three main points for the creation of transferring mechan-
isms: (i) communication technologies; (ii) transfer speed; (iii) and security. The first point
relates to the technologies present today in most modern mobile devices. To take advant-
age of the devices portability, the server and the application should communicate wirelessly.
We performed a study of different wireless communication and concluded Wi-Fi was the
most suitable, due to its low implementation costs, fast transfer speeds, and wide range.
Moreover, Wi-Fi antennas are standard equipment in the majority of mobile devices in the
market, so no additional costs would be added. In the stack,

The second point refers to technologies and protocols used to establish a connection
between the server and the application and transport the assembly instructions from one
end to the other properly. Unlike their wired counterparts, mobile devices are subjected to
severe limitations on power consumption, performance, size, and weight, all of which were
taken into consideration when developing the transferring mechanisms. We demonstrated
that TCP and HTTP, combined, have all the characteristics essential to guarantee a good
performance to battery life ratio.

The third and final point concerns the security of both the connection, the data in transit,
and data protection in the application. We explained how the use of SSL can ensure a
private and secure connection. Moreover, every transferred data is encrypted under a
symmetric content encryption key, known only by the server and the client. For added pro-

93

94 6 conclusion

tection, we ensured that all credentials, necessary for the user and request authentication,
are protected against exposition.

Two different transference methods were designed, developed, and tested in a series of
scenarios varying in the size and nature of the files transferred. We concluded that reusing
a TCP connection and performing all necessary requests over it, was the most efficient
method. Moreover, we successfully implemented two additional techniques to increase the
response time. Stress/Load tests were also performed to assess the server behavior under
pressure in normal and anticipated peak load conditions. Due to the unavailability of a
real life environment, we were incapable of performing reliability tests. However, during
implementation, measures were taken to ensure that a worker always has the most updated
information. Nevertheless, these tests should be conducted in the future.

Besides easing the distribution of assembly instructions between workers, it was demon-
strated how the introduction of this work can contribute to the rise of ship’s construction
productivity, especially when compared to the previously assembly instructions manual
transfer. The initial context for this thesis is the assembly instructions for the marine in-
dustry, however, due to its abstract nature and modular design, it can be easily implemen-
ted in other industries.

We were able to successfully fulfill the objectives established for this project. Moreover,
in pursuit of a more complete solution, an effort was made to develop extra components
and improve the design. Further improvements can be added in other areas of this solution.
In the future, in order to enhance the file memory storage we can incorporate prediction
algorithms that anticipate a request for a file. This could be achieved either by logging in
worker activity and predict its habits, or through the shipyards’ time attendance system
(punch clock). Of course, there is a high complexity associated with these cases if the busi-
ness logic allows workers to freely choose Work Packages. Another improvement worth
considering is the development of a Graphical User Interface (GUI), for the management of
Work Packages, allowing foremen or project managers to watch over the state and progress
of the construction. Gantt charts are a practical tool for illustrating a project schedule, a
feasible tool considering the availability of time attributes associated with Work Packages.

B I B L I O G R A P H Y

[1] Hermann Lodding Philipp Sebastian Halata, Axel Friedewald. Augmented reality
supported information gathering in one-of-a-kind production. In 13th International
Conference on Computer and IT Applications in the Maritime Industries (COMPIT ’14),
pages 489–503. Redworth, 2014.

[2] Klaas Dokkum and Carmen Koenen-Loos. Ship Knowledge: Ship Design, Construction
and Operation. DOKMAR, 3th edition, 2006.

[3] Marine Exchange of Alaska (MXAK). URL http://www.mxak.org/community/polar_

adventure/side%20view.jpg. [Online; accessed 28-November-2015].

[4] D.J. Eyres and G.J. Bruce. 12 - Design information for production. In D.J. EyresG.J.
Bruce, editor, Ship Construction (Seventh Edition), pages 125 – 134. Butterworth-
Heinemann, Oxford, seventh edition edition, 2012. ISBN 978-0-08-097239-8.

[5] Eric C. Tupper. Chapter 14 - ship design. In Eric C. Tupper, editor, Introduction to
Naval Architecture (Fifth Edition), pages 343 – 377. Butterworth-Heinemann, Oxford,
fifth edition edition, 2013. ISBN 978-0-08-098237-3.

[6] Dictionary.com — Bert, Nov 2015. URL http://dictionary.reference.com/browse/

berth. [Online; accessed 04-November-2015].

[7] Dictionary.com — Keel. Nov 2015. URL http://dictionary.reference.com/browse/

keel. [Online; accessed 04-November-2015].

[8] J.F.C. Conn. Ship construction. Encyclopedia Britannica, 2015. URL http://www.

britannica.com/technology/ship-construction. [Online; accessed 04-November-
2015].

[9] Paul Stott. UFPE Recife: Shipbuilding Competitiveness — Work breakdown and competit-
iveness. Newcastle University, 2013.

[10] J-D Caprace, Cristian Petcu, MG Velarde, and Philippe Rigo. Optimization of
shipyard space allocation and scheduling using a heuristic algorithm. Journal of mar-
ine science and technology, 18(3):404–417, 2013.

[11] H Kim, S-S Lee, JH Park, and J-G Lee. A model for a simulation-based shipbuild-
ing system in a shipyard manufacturing process. International Journal of Computer
Integrated Manufacturing, 18(6):427–441, 2005.

95

http://www.mxak.org/community/polar_adventure/side%20view.jpg
http://www.mxak.org/community/polar_adventure/side%20view.jpg
http://dictionary.reference.com/browse/berth
http://dictionary.reference.com/browse/berth
http://dictionary.reference.com/browse/keel
http://dictionary.reference.com/browse/keel
http://www.britannica.com/technology/ship-construction
http://www.britannica.com/technology/ship-construction

96 bibliography

[12] Bath Iron Works Corporation, Corporate-Tech Planning, United States. Maritime Ad-
ministration, and National Shipbuilding Research Program. A Manual on Planning
and Production Control for Shipyard Use. The Corporation, 1978.

[13] Howard M Bunch. A study of the construction planning and manpower schedules
for building the multipurpose mobilization ship, pd214, in a shipyard of the people’s
republic of china. Journal of ship production, (4), 1988.

[14] Sylvia Encheva, Sharil Tumin, and Maryna Z Solesvik. Decision support system for
assessing participants reliabilities in shipbuilding. In Proceedings of the 9th WSEAS
international conference on Automatic control, modelling and simulation, pages 270–275.
World Scientific and Engineering Academy and Society (WSEAS), 2007.

[15] A.G. Greenwood, S. Vanguri, B. Eksioglu, P. Jain, T.W. Hill, J.W. Miller, and C.T.
Walden. Simulation optimization decision support system for ship panel shop op-
erations. In Simulation Conference, 2005 Proceedings of the Winter, pages 9 pp.–, Dec
2005.

[16] G. Chondrocoukis and E. Foundas. A group decision support system design for a
shiprepair facility. Journal of Information and Optimization Sciences, 18(2):261–269, 1997.

[17] John Earley. Computer Weekly — Infrared meets speed and se-
curity needs, 2015. URL http://www.computerweekly.com/opinion/

Infrared-meets-speed-and-security-needs. [Online; accessed 07-November-
2015].

[18] Bradley Mitchell. About Tech — Infrared, . URL http://compnetworking.about.com/

od/homenetworking/g/bldef_infrared.htm. [Online; accessed 07-November-2015].

[19] Darren Quick. Gizmag — Infrared technology offers faster wireless data trans-
fer than wi-fi and bluetooth, October 2012. URL http://www.gizmag.com/

infrared-optical-wireless-data-module/24373/. [Online; accessed 07-November-
2015].

[20] Bluetooth sig. URL http://www.bluetooth.com/what-is-bluetooth-technology/

bluetooth. [Online; accessed 07-November-2015].

[21] Ian Paul. PC World — Wi-Fi direct vs. bluetooth 4.0: A battle for suprem-
acy. URL http://www.pcworld.com/article/208778/Wi_Fi_Direct_vs_Bluetooth_

4_0_A_Battle_for_Supremacy.html. [Online; accessed 07-November-2015].

[22] Bradley Mitchell. About Tech — Bluetooth, . URL http://compnetworking.about.

com/cs/bluetooth/g/bldef_bluetooth.htm. [Online; accessed 07-November-2015].

[23] Vangie Beal. Webopedia — wi-fi. URL http://www.webopedia.com/TERM/W/Wi_Fi.

html. [Online; accessed 23-November-2015].

http://www.computerweekly.com/opinion/Infrared-meets-speed-and-security-needs
http://www.computerweekly.com/opinion/Infrared-meets-speed-and-security-needs
http://compnetworking.about.com/od/homenetworking/g/bldef_infrared.htm
http://compnetworking.about.com/od/homenetworking/g/bldef_infrared.htm
http://www.gizmag.com/infrared-optical-wireless-data-module/24373/
http://www.gizmag.com/infrared-optical-wireless-data-module/24373/
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth
http://www.bluetooth.com/what-is-bluetooth-technology/bluetooth
http://www.pcworld.com/article/208778/Wi_Fi_Direct_vs_Bluetooth_4_0_A_Battle_for_Supremacy.html
http://www.pcworld.com/article/208778/Wi_Fi_Direct_vs_Bluetooth_4_0_A_Battle_for_Supremacy.html
http://compnetworking.about.com/cs/bluetooth/g/bldef_bluetooth.htm
http://compnetworking.about.com/cs/bluetooth/g/bldef_bluetooth.htm
http://www.webopedia.com/TERM/W/Wi_Fi.html
http://www.webopedia.com/TERM/W/Wi_Fi.html

bibliography 97

[24] Richard Van Nee. Breaking the gigabit-per-second barrier with 802.11 ac. Wireless
Communications, IEEE, 18(2):4–4, 2011.

[25] Bradley Mitchell. About Tech — wireless standards 802.11a, 802.11b/g/n, and
802.11ac. the 802.11 family explained, . URL http://compnetworking.about.com/

cs/wireless80211/a/aa80211standard.htm. [Online; accessed 24-November-2015].

[26] Home Network Admin. Wireless b vs g vs n vs ac | what is the difference? URL http:

//homenetworkadmin.com/wireless-b-vs-g-vs-n-vs-ac-difference/. [Online; ac-
cessed 24-November-2015].

[27] Aeroflex David Asquith. Wide bandwidth measurement techniques for 802.11ac wlan
devices. Microwave Product Digest, August 2012. URL http://www.mpdigest.com/

issue/Articles/2012/Aug/Aeroflex/Default.asp. [Online; accessed 24-November-
2015].

[28] AT&T. Differences between 802.11a, 802.11b, 802.11g and 802.11n. URL https://

www.wireless.att.com/support_static_files/KB/KB3895.html. [Online; accessed
24-November-2015].

[29] Ajay R Mishra. Fundamentals of cellular network planning and optimisation: 2G/2.5 G/3G...
evolution to 4G. John Wiley & Sons, 2004.

[30] Ofcom. Measuring mobile broadband performance in the uk. Technical report,
November 2014.

[31] Michael Miller. Wireless Networking Absolute Beginner’s Guide. Que Publishing, 2013.

[32] Jessica Rosenworcel. Growing unlicensed spectrum, grow-
ing the wireless economy. URL http://recode.net/2014/02/21/

growing-unlicensed-spectrum-growing-the-wireless-economy/. [Online; ac-
cessed 24-November-2015].

[33] Gian Paolo Perrucci, Frank HP Fitzek, and Jörg Widmer. Survey on energy consump-
tion entities on the smartphone platform. In Vehicular Technology Conference (VTC
Spring), 2011 IEEE 73rd, pages 1–6. IEEE, 2011.

[34] Eric Rozner, Vishnu Navda, Ramachandran Ramjee, and Shravan Rayanchu. Nap-
man: network-assisted power management for wifi devices. In Proceedings of the 8th
international conference on Mobile systems, applications, and services, MobiSys 10, pages
91–106. ACM, 2010.

[35] R Nave. Inverse square law, general. URL http://hyperphysics.phy-astr.gsu.edu/

hbase/forces/isq.html. [Online; accessed 24-November-2015].

http://compnetworking.about.com/cs/wireless80211/a/aa80211standard.htm
http://compnetworking.about.com/cs/wireless80211/a/aa80211standard.htm
http://homenetworkadmin.com/wireless-b-vs-g-vs-n-vs-ac-difference/
http://homenetworkadmin.com/wireless-b-vs-g-vs-n-vs-ac-difference/
http://www.mpdigest.com/issue/Articles/2012/Aug/Aeroflex/Default.asp
http://www.mpdigest.com/issue/Articles/2012/Aug/Aeroflex/Default.asp
https://www.wireless.att.com/support_static_files/KB/KB3895.html
https://www.wireless.att.com/support_static_files/KB/KB3895.html
http://recode.net/2014/02/21/growing-unlicensed-spectrum-growing-the-wireless-economy/
http://recode.net/2014/02/21/growing-unlicensed-spectrum-growing-the-wireless-economy/
http://hyperphysics.phy-astr.gsu.edu/hbase/forces/isq.html
http://hyperphysics.phy-astr.gsu.edu/hbase/forces/isq.html

98 bibliography

[36] Emmett Dulaney and Michael Harwood. CompTIA Network+ N10-005 Exam Cram.
Pearson IT Certification, 4 edition, January 2012.

[37] David Callisch. Coping with wi-fi’s biggest problem: interference, Au-
gust 2010. URL http://www.networkworld.com/article/2215287/tech-primers/

coping-with-wi-fi-s-biggest-problem--interference.html. [Online; accessed 01-
December-2015].

[38] Charles Kozierok. The tcp/ip guide: A comprehensive, illustrated internet protocols
reference, September 2005.

[39] Keith Winstein. Forbes tech | how does one decide between tcp and
udp?, January 2014. URL http://www.forbes.com/sites/quora/2014/01/27/

how-does-one-decide-between-tcp-and-udp/. [Online; accessed 01-December-
2015].

[40] Jakob Nielsen. Hypertext and hypermedia. 1990.

[41] R Fielding, James Gettys, Jeffrey C Mogul, H Frystyk, Larry Masinter, P Leach, and
T Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, Network Working
Group, June 1999.

[42] Can i use web sockets? URL http://caniuse.com/#feat=websockets. [Online; ac-
cessed 01-December-2015].

[43] P Willars. Smartphone traffic impact on battery and networks. Oc-
tober 2010. URL http://www.ericsson.com/research-blog/uncategorized/

smartphone-traffic-impact-battery-networks/. [Online; accessed 03-December-
2015].

[44] Engin Bozdag, Ali Mesbah, and Arie Van Deursen. A comparison of push and pull
techniques for ajax. In Web Site Evolution, 2007. WSE 2007. 9th IEEE International
Workshop on, pages 15–22. IEEE, 2007.

[45] Sharon Shea Margaret Rouse. Access control definition, June 2014. URL http:

//searchsecurity.techtarget.com/definition/access-control. [Online; accessed
14-November-2015].

[46] Duke University. Authentication vs. authorization, October 2012. URL http://www.

duke.edu/~rob/kerberos/authvauth.html. [Online; accessed 14-November-2015].

[47] Federal Financial Institutions Examination Council. Authentication in an internet
banking environment. Financial Institution Letter, FIL-103-2005. Washington, DC: Fed-
eral Deposit Insurance Corp.(FDIC). Retrieved March, 18:2005, 2005.

http://www.networkworld.com/article/2215287/tech-primers/coping-with-wi-fi-s-biggest-problem--interference.html
http://www.networkworld.com/article/2215287/tech-primers/coping-with-wi-fi-s-biggest-problem--interference.html
http://www.forbes.com/sites/quora/2014/01/27/how-does-one-decide-between-tcp-and-udp/
http://www.forbes.com/sites/quora/2014/01/27/how-does-one-decide-between-tcp-and-udp/
http://caniuse.com/#feat=websockets
http://www.ericsson.com/research-blog/uncategorized/smartphone-traffic-impact-battery-networks/
http://www.ericsson.com/research-blog/uncategorized/smartphone-traffic-impact-battery-networks/
http://searchsecurity.techtarget.com/definition/access-control
http://searchsecurity.techtarget.com/definition/access-control
http://www.duke.edu/~rob/kerberos/authvauth.html
http://www.duke.edu/~rob/kerberos/authvauth.html

bibliography 99

[48] Bruce Schneier. Two-factor authentication: too little, too late. Commun. ACM, 48(4):
136, 2005.

[49] Kirk Hausman, Martin Weiss, and Diane Barrett. CompTIA Security+ SY0-301 Exam
Cram. Pearson Education, 2011.

[50] John Brainard, Ari Juels, Ronald L. Rivest, Michael Szydlo, and Moti Yung. Fourth-
factor authentication: Somebody you know. In Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS ’06, pages 168–178. ACM, 2006. ISBN
1-59593-518-5.

[51] Paul J Leach, John Franks, Ari Luotonen, Phillip M Hallam-Baker, Scott D Lawrence,
Jeffery L Hostetler, and Lawrence C Stewart. Http authentication: Basic and digest
access authentication. 1999.

[52] David F Ferraiolo and D Richard Kuhn. Role-based access controls. arXiv preprint
arXiv:0903.2171, 2009.

[53] Oracle. Understanding web service security concepts. URL https://docs.oracle.

com/middleware/1212/owsm/OWSMC/owsm-security-concepts.htm. [Online; accessed
16-November-2015].

[54] Min-kyu Choi, R Robles, Chang-hwa Hong, and Tai-hoon Kim. Wireless network
security: Vulnerabilities, threats and countermeasures. International journal of Multi-
media and Ubiquitous Engineering, 3(3), July 2008.

[55] Raymond Panko Reviews, C.T. e-Study Guide for: Corporate Computer and Network
Security. Cram101, 2014. ISBN 9781467262279.

[56] F. Garzia. Handbook of Communications Security. WIT Press, 2013. ISBN 9781845647681.

[57] Edney and William A. Arbaugh. Real 802.11 Security: Wi-Fi Protected Access and
802.11I. Addison-Wesley Longman Publishing Co., Inc., 2003. ISBN 0321136209.

[58] Mark Ciampa. CWNA guide to wireless LANs. Cengage Learning, 2012. [Accessed
26-November-2015].

[59] Digitcert. What is ssl (secure sockets layer) and what are ssl certificates? URL
https://www.digicert.com/ssl.htm. [Online; accessed 8-November-2015].

[60] Tim Dierks. The transport layer security (tls) protocol version 1.2. 2008.

[61] Holly Lynne McKinley. Ssl and tls: A beginners’ guide. SANS Institute, 2003.

[62] Alan Freier, Philip Karlton, and Paul Kocher. The secure sockets layer (ssl) protocol
version 3.0. 2011.

https://docs.oracle.com/middleware/1212/owsm/OWSMC/owsm-security-concepts.htm
https://docs.oracle.com/middleware/1212/owsm/OWSMC/owsm-security-concepts.htm
https://www.digicert.com/ssl.htm

100 bibliography

[63] Joseph Salowey. Transport layer security (tls) session resumption without server-side
state. Transport, 2008.

[64] A Langley, N Modadugu, and B Moeller. Transport layer security (tls) false start.
draft-bmoeller-tls-falsestart-00, June, 2, 2010. URL https://tools.ietf.org/html/

draft-ietf-tls-falsestart-01. [Online; accessed 03-December-2015].

[65] Open Web Application Security Project (OWASP). Glossary: Certificate author-
ity (ca), . URL https://www.owasp.org/index.php?title=Glossary&oldid=194291#

Certification_Authority. [Online; accessed 03-December-2015].

[66] S Renfro. Secure browsing by default. Facebook Engineering, 571397832

(0), 2013. URL https://www.facebook.com/notes/facebook-engineering/

secure-browsing-by-default/10151590414803920. [Online; accessed 26-November-
2015].

[67] Michal Zalewski. Browser security handbook. Google Code, 2010. URL https://code.

google.com/p/browsersec/wiki/Main. [Online, Accessed 26-November-2015].

[68] Adam Langley, N Modadugu, and WT Chang. Overclocking ssl. In Velocity: Web
Performance and Operations Conference, 2010.

[69] SR Subramanya and Byung K Yi. Digital rights management. Potentials, IEEE, 25(2):
31–34, 2006.

[70] Daniel Nye Griffiths. The Truth Is, It Doesn’t Work’ - CD Projekt On DRM. Forbes
| Tech, May 2012. URL http://www.forbes.com/sites/danielnyegriffiths/2012/

05/18/the-truth-is-it-doesnt-work-cd-projekt-on-drm/. [Online; accessed 17-
November-2015].

[71] Paul Hyman. PC Game Piracy: Why Bother With DRM? URL http://www.gamasutra.

com/view/feature/132411/pc_game_piracy_why_bother_with_.php?print=1. [On-
line; accessed 17-November-2015].

[72] Michael A Einhorn and Bill Rosenblatt. Peer-to-peer networking and digital rights
management: How market tools can solve copyright problems. J. Copyright Soc’y
USA, 52:239, 2004.

[73] Amazon Web Services. Signing and authenticating rest requests. URL http:

//docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html. [Online;
accessed 03-December-2015].

[74] Jeremy Kirk. Gawker media hacked, warns users to change passwords, December
2010. URL http://www.networkworld.com/article/2196643/malware-cybercrime/

gawker-media-hacked--warns-users-to-change-passwords.html. [Online; ac-
cessed 03-December-2015].

https://tools.ietf.org/html/draft-ietf-tls-falsestart-01
https://tools.ietf.org/html/draft-ietf-tls-falsestart-01
https://www.owasp.org/index.php?title=Glossary&oldid=194291#Certification_Authority
https://www.owasp.org/index.php?title=Glossary&oldid=194291#Certification_Authority
https://www.facebook.com/notes/facebook-engineering/secure-browsing-by-default/10151590414803920
https://www.facebook.com/notes/facebook-engineering/secure-browsing-by-default/10151590414803920
https://code.google.com/p/browsersec/wiki/Main
https://code.google.com/p/browsersec/wiki/Main
http://www.forbes.com/sites/danielnyegriffiths/2012/05/18/the-truth-is-it-doesnt-work-cd-projekt-on-drm/
http://www.forbes.com/sites/danielnyegriffiths/2012/05/18/the-truth-is-it-doesnt-work-cd-projekt-on-drm/
http://www.gamasutra.com/view/feature/132411/pc_game_piracy_why_bother_with_.php?print=1
http://www.gamasutra.com/view/feature/132411/pc_game_piracy_why_bother_with_.php?print=1
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
http://www.networkworld.com/article/2196643/malware-cybercrime/gawker-media-hacked--warns-users-to-change-passwords.html
http://www.networkworld.com/article/2196643/malware-cybercrime/gawker-media-hacked--warns-users-to-change-passwords.html

bibliography 101

[75] Zack Whittaker. Amazon force-resets some account passwords, citing
password leak, November 2014. URL http://www.zdnet.com/article/

amazon-is-resetting-account-passwords-for-some-accounts/. [Online; accessed
03-December-2015].

[76] Osmar R Zaïane and K Koperski. Cmpt 354 database systems and structures,
1998. URL http://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/

contents.html. [Online; accessed 25-November-2015].

[77] Thomas Fox-Brewster. 13 million passwords appear to have leaked from this free web
host. Forbes, October 2015. URL http://www.forbes.com/sites/thomasbrewster/

2015/10/28/000webhost-database-leak/. [Online; accessed 08-December-2015].

[78] Open Web Application Security Project (OWASP). Password storage cheat sheet,
. URL https://www.owasp.org/index.php?title=Password_Storage_Cheat_Sheet&

oldid=203402. [Online; accessed 08-December-2015].

[79] Kevin Wall John Steven, Jeff Walton. Secure password storage, September 2012. URL
http://goo.gl/Spvzs. [Online; accessed 08-December-2015].

[80] D Eastlake 3rd and Paul Jones. Us secure hash algorithm 1 (sha1). Technical report,
September 2001.

[81] Chrysanthou Yiannis. Modern password cracking: A hands-on approach to creating
an optimised and versatile attack. 2013.

[82] Defuse Security. Salted password hashing - doing it right, August 2014. URL https:

//crackstation.net/hashing-security.htm. [Online; accessed 08-December-2015].

[83] Wenjing Zhou, Xiangwei Xie, Hui Li, Xiao Zhang, and Shan Wang. A database
approach for accelerate video data access. In Advances in Web and Network Technologies,
and Information Management, pages 45–57. Springer, 2009.

[84] Russell Sears, Catharine Van Ingen, and Jim Gray. To blob or not to blob: Large object
storage in a database or a filesystem? arXiv preprint cs/0701168, April 2006.

[85] B. Jacob, S. Ng, and D. Wang. Memory Systems: Cache, DRAM, Disk. Elsevier Science,
2010. ISBN 9780080553849.

[86] Mark Donald Hill, Norman Paul Jouppi, and Gurindar Sohi. Readings in computer
architecture. Gulf Professional Publishing, 2000. [Accessed 25-November-2015].

[87] World Wide Web Consortium et al. Extensible markup language (xml) 1.1. 2006.

[88] Tim Bray. The javascript object notation (json) data interchange format. 2014.

http://www.zdnet.com/article/amazon-is-resetting-account-passwords-for-some-accounts/
http://www.zdnet.com/article/amazon-is-resetting-account-passwords-for-some-accounts/
http://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/contents.html
http://www.cs.sfu.ca/CourseCentral/354/zaiane/material/notes/contents.html
http://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/
http://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/
https://www.owasp.org/index.php?title=Password_Storage_Cheat_Sheet&oldid=203402
https://www.owasp.org/index.php?title=Password_Storage_Cheat_Sheet&oldid=203402
http://goo.gl/Spvzs
https://crackstation.net/hashing-security.htm
https://crackstation.net/hashing-security.htm

102 bibliography

[89] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta.
Comparison of json and xml data interchange formats: A case study. Caine, 9:157–162,
2009.

[90] Guanhua Wang. Improving data transmission in web applications via the translation
between xml and json. In Communications and Mobile Computing (CMC), 2011 Third
International Conference on, pages 182–185. IEEE, 2011.

[91] Yan Wei and Ubald Nienhuis. Automatic generation of assembly sequence for the
planning of outfitting processes in shipbuilding. Journal of Ship Production and Design,
28(2):49–59, 2012.

[92] xyzws. What is the difference between absolute, relative and canon-
ical path of file or directory? URL http://www.xyzws.com/Javafaq/

what-is-the-difference-between-absolute-relative-and-canonical-path-of-file-or-directory/

60. [Online; accessed 9-December-2015].

[93] Hong-Tai Chou and David J DeWitt. An evaluation of buffer management strategies
for relational database systems. Algorithmica, 1(1-4):311–336, 1986.

[94] Jim Gray and Franco Putzolu. The 5 minute rule for trading memory for disc accesses
and the 5 byte rule for trading memory for cpu time. In ACM SIGMOD Record,
volume 16, pages 395–398. ACM, 1986.

[95] RedisLabs. Introduction to redis. URL http://redis.io/topics/introduction. [On-
line; accessed 07-December-2015].

[96] Josiah L Carlson. Redis in Action. Manning Publications Co., 2013.

[97] Node.js Foundation. Node.js foundation, . URL https://nodejs.org/en/

foundation/. [Online; accessed 07-December-2015].

[98] Linux Foundation. Linux foundation collaborative projects, . URL http://

collabprojects.linuxfoundation.org/. [Online; accessed 07-December-2015].

[99] Node.js Foundation. About node.js, . URL https://nodejs.org/en/about/. [Online;
accessed 07-December-2015].

[100] BEA Systems. Advantages and disadvantages of a multithreaded/multicontexted
application. URL https://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/

pgthr5.htm. [Online; accessed 07-December-2015].

[101] C.J. Ihrig. Pro Node.js for Developers. Expert’s voice in Web development. Apress, 2013.
ISBN 9781430258612.

[102] Ryan Dahl. Jsconf eu: Original node.js presentation, 2009. URL https://www.youtube.

com/watch?v=ztspvPYybIY. [Online; accessed 07-December-2015].

http://www.xyzws.com/Javafaq/what-is-the-difference-between-absolute-relative-and-canonical-path-of-file-or-directory/60
http://www.xyzws.com/Javafaq/what-is-the-difference-between-absolute-relative-and-canonical-path-of-file-or-directory/60
http://www.xyzws.com/Javafaq/what-is-the-difference-between-absolute-relative-and-canonical-path-of-file-or-directory/60
http://redis.io/topics/introduction
https://nodejs.org/en/foundation/
https://nodejs.org/en/foundation/
http://collabprojects.linuxfoundation.org/
http://collabprojects.linuxfoundation.org/
https://nodejs.org/en/about/
https://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgthr5.htm
https://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgthr5.htm
https://www.youtube.com/watch?v=ztspvPYybIY
https://www.youtube.com/watch?v=ztspvPYybIY

bibliography 103

[103] Jason Hoffman. Devcon5 santa clara: Node.js in context with jason hoffman of joyent,
2012. URL https://www.youtube.com/watch?v=yluchvyUzvU. [Online; accessed 07-
December-2015].

[104] StrongLoop. Express.js. URL http://expressjs.com/en/index.html. [Online; ac-
cessed 07-December-2015].

[105] E. Brown. Web Development with Node and Express: Leveraging the JavaScript Stack.
O’Reilly Media, 2014. ISBN 9781491902301.

[106] A. Mardan. Express.js Guide: The Comprehensive Book on Express.js. Azat Mardan, 2014.

[107] Sequelize. URL http://docs.sequelizejs.com/en/latest/. [Online; accessed 07-
December-2015].

[108] Node-hat. URL https://github.com/substack/node-hat. [Online; accessed 07-
December-2015].

[109] Bluebird. URL http://bluebirdjs.com/docs/getting-started.html. [Online; ac-
cessed 07-December-2015].

[110] M Ogden. Callback hell, 2015. URL http://callbackhell.com/. [Online; accessed
07-December-2015].

[111] Jake Archibald. Javascript promises: There and back again. URL http://

www.html5rocks.com/en/tutorials/es6/promises/. [Online; accessed 07-December-
2015].

[112] Mozilla Developer Network (MDN). Promise. URL https://developer.mozilla.

org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise. [Online; ac-
cessed 07-December-2015].

[113] Daniel Parker. JavaScript with Promises. " O’Reilly Media, Inc.", 2015.

[114] Chris Talkington. Archiver. URL https://www.npmjs.com/package/archiver. [On-
line; accessed 07-December-2015].

[115] Google Android Developers. Application fundamentals. 2009. URL http://

developer.android.com/guide/components/fundamental.html. [Online; accessed
07-December-2015].

[116] Reto Meier. Professional Android 4 application development. John Wiley & Sons, 2012.

[117] Google Android Developers. Activity lifecycle. URL http://developer.android.

com/reference/android/app/Activity.html#ActivityLifecycle. [Online; accessed
07-December-2015].

https://www.youtube.com/watch?v=yluchvyUzvU
http://expressjs.com/en/index.html
http://docs.sequelizejs.com/en/latest/
https://github.com/substack/node-hat
http://bluebirdjs.com/docs/getting-started.html
http://callbackhell.com/
http://www.html5rocks.com/en/tutorials/es6/promises/
http://www.html5rocks.com/en/tutorials/es6/promises/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.npmjs.com/package/archiver
http://developer.android.com/guide/components/fundamental. html
http://developer.android.com/guide/components/fundamental. html
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle

104 bibliography

[118] Square. Retrofit. URL http://square.github.io/retrofit/. [Online; accessed 07-
December-2015].

[119] Oracle. Datetime datatypes and time zone support. In Oracle Database Globalization
Support Guide, chapter 4, page 11. 2015.

[120] CJ Date. Referential integrity. In VLDB, volume 81, pages 2–12, 1981. [Online;
accessed 09-December-2015].

[121] Marco A Casanova and Luiz Tucherman. Enforcing inclusion dependencies and ref-
erencial integrity. 1988.

[122] Bill Karwin. SQL antipatterns: avoiding the pitfalls of database programming. Pragmatic
Bookshelf, 2010. [Online; accessed 9-December-2015].

[123] Kari J Lieberherr and Ian M Holland. Assuring good style for object-oriented pro-
grams. Software, IEEE, 6(5):38–48, 1989.

[124] David Bock. The paperboy, the wallet, and the law of demeter, 2000.

[125] Tony Marston. What is the 3-tier architecture?, October 2012. URL http://www.

tonymarston.net/php-mysql/3-tier-architecture.html. [Accessed 09-December-
2015].

[126] Virinder Mohan Batra. Connection pool management for backend servers using com-
mon interface, August 15 2000. US Patent 6,105,067.

[127] Stephen T Kent. Internet privacy enhanced mail. Communications of the ACM, 36(8):
48–60, 1993.

[128] Tim Berglund and Matthew McCullough. Building and Testing with Gradle. " O’Reilly
Media, Inc.", 2011.

[129] Eric Lafortune et al. Proguard, 2009. URL http://www.guardsquare.com/

files/media/slides/ProGuard_IstanbulTechTalks2014.pdf. [Online; accessed 12-
December-2015].

[130] Phillip Rogaway. Evaluation of some blockcipher modes of operation. Cryptography
Research and Evaluation Committees (CRYPTREC) for the Government of Japan, 2011.

[131] Jakob Jonsson. On the security of ctr+ cbc-mac. In selected Areas in Cryptography,
pages 76–93. Springer, 2003.

[132] Digital Command Control (DCC. Simplex, duplex and infrared, November 2014.
URL http://www.dccwiki.com/index.php?title=Simplex,_Duplex_and_Infrared&

oldid=11117. [Online; accessed 07-November-2015].

http://square.github.io/retrofit/
http://www.tonymarston.net/php-mysql/3-tier-architecture.html
http://www.tonymarston.net/php-mysql/3-tier-architecture.html
http://www.guardsquare.com/files/media/slides/ProGuard_IstanbulTechTalks2014.pdf
http://www.guardsquare.com/files/media/slides/ProGuard_IstanbulTechTalks2014.pdf
http://www.dccwiki.com/index.php?title=Simplex,_Duplex_and_Infrared&oldid=11117
http://www.dccwiki.com/index.php?title=Simplex,_Duplex_and_Infrared&oldid=11117

C O M M U N I C AT I O N C H A N N E L S

There are three basic communication systems or mode of operation a channel can use to
transmit information from one party to the other:

simplex In a simplex operation, the flow of information occurs only in one direction,
meaning it is a "one-way street" — Figure .1. An example is a car’s radio, which only
receives and does not transmit [132].

half-duplex Half-duplex operations are capable of sending information in both direc-
tions between two parties, but only in one direction at a time. “This is a fairly com-
mon mode of operation when there is only a single network medium (cable, radio
frequency, and so forth) between devices”. [38] In conventional networks, any device
can transmit information, but only one can do so at a time — Figure .2.

full-duplex Sometimes just called "Duplex" for redundancy, is when both parties can
communicate simultaneous with one another. A good example of the operations is a
telephone. Duplex channels can be compose of either a pair of simplex (as described
above), or by using a channel that allows bidirectional communication simultaneously.
[38] — Figure .3.

Figure .1: Simplex chan-
nel, A to B only.

Figure .2: Half-Duplex
channel, A to B or B to A.

Figure .3: Full-Duplex
channel, A to B and B to
A.

105

	Contents
	1 Introduction
	1.1 Context
	1.2 Thesis Objectives
	1.3 Thesis Structure

	2 Problem Statement and Concept
	2.1 State of the Art of Ship Building
	2.2 Problem Description
	2.3 Proposed Solution
	2.4 Decision Support System

	3 Architecture
	3.1 Solution Constraints
	3.2 Data Transmission
	3.2.1 Transport Protocol
	3.2.2 Transferring Protocol

	3.3 Security
	3.3.1 Access Control
	3.3.1.1 Authentication
	3.3.1.2 Authorization

	3.3.2 Secure Communication
	3.3.3 Data Protection
	3.3.4 Access and Request Authentication

	3.4 Relational Database
	3.4.1 Model Representation
	3.4.2 Password Protection
	3.4.3 Assembly Instructions Storage

	3.5 System Abstraction
	3.6 Assembly Instruction Transfer
	3.6.1 Work Package List
	3.6.2 Data Selection
	3.6.3 Transfer Methods
	3.6.3.1 Condense Method
	3.6.3.2 Multiple-Requests Method
	3.6.3.3 Method Comparison

	3.6.4 Transfer Time Improvement
	3.6.4.1 Location Identifier
	3.6.4.2 File Caching

	3.6.5 Instructions Update

	3.7 Service Mapping

	4 Framework
	4.1 Database and Datastore
	4.1.1 MySQL
	4.1.2 Redis

	4.2 Server Framework
	4.2.1 Node.js
	4.2.2 Node Package Manager

	4.3 Client Framework
	4.3.1 Android Operating System
	4.3.2 Android HTTP Client

	5 Implementation
	5.1 Database Implementation
	5.1.1 Database Structure
	5.1.2 Work Package Dependencies
	5.1.3 Data Validation

	5.2 System Configuration
	5.2.1 System Modular Design
	5.2.2 Server Configuration
	5.2.2.1 Package Declaration
	5.2.2.2 Redis and MySQL Connection
	5.2.2.3 Sequelize Models
	5.2.2.4 Application Configuration
	5.2.2.5 Request Routes and Authentication
	5.2.2.6 Messages Format
	5.2.2.7 Redis Database Structures

	5.2.3 Client Configuration
	5.2.3.1 Package Declaration
	5.2.3.2 Android HTTP Client Interface

	5.3 Assembly Instructions Updates Method
	5.4 Transfer Methods Implementation
	5.4.1 File Encryption
	5.4.2 Condense Method Implementation
	5.4.3 Multiple-Requests Method Implementation

	5.5 Test Results
	5.5.1 Transfer Methods Comparison
	5.5.2 Load Testing

	6 Conclusion
	Bibliography
	Communication Channels

