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Abstract. This paper presents new convolutions for the fractional Fourier transform which are somehow associated with the
Hermite functions. Consequent inequalities and properties are derived for these convolutions, among which we emphasize two
new types of Young’s convolution inequalities. The results guarantee a general framework where the present convolutions are
well-defined, allowing larger possibilities than the known ones for other convolutions. Furthermore, we exemplify the use of our
convolutions by providing explicit solutions of some classes of integral equations which appear in engineering problems.

INTRODUCTION

The roots of the fractional Fourier transform (FrFT) appeared long time ago, around 1929, mostly associated with the
works of N. Wiener [34], H. Weyl, E.U. Condon [13], and H. Kober [21]. At a first period after birth, the FrFT was not
immediately widely used in diverse subareas of knowledge, becoming even somehow forgotten (or, at least, not exten-
sively used). After the works of Namias and McBride [22, 24], there was a great revival of pure and applied studies on
the FrFT, mainly from the nineties of 20th Century to the present. In part, this occurred due to the emergence, in that
period, of several subareas where the application of the FrFT was recognized to be quite extensive and exhibiting great
potential. This was the case in quantum mechanics, optics, signal processing, radar, watermarking, pattern recognition,
cryptography, wavelet transforms and neural networks [1, 2, 5, 15, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 35].

In the recent past, we can recognize many efforts, explicit or implicit, to construct new convolutions for the FrFT.
However, none of them can be seen as an appropriate generalization of the classical result for the Fourier transform.
Namely, the papers [3, 4, 14, 31, 33, 35] introduced convolution formulas which are well-defined in some function
spaces – mainly in L1(R) and in the Wiener algebra. Those convolutions are very interesting, and applicable to both
theoretical and practical problems, since each one of them incorporate a new version of a suitable convolution theorem
for the Fourier transform. However, due to the global nature of the FrFT, convolution and product theorems for the
FrFT have not yet been intensively studied and obtained. In particular, there is no equal diversity of convolutions for
the FrFT in comparison with those existent for the Fourier transform. Also, its corresponding Wiener algebra has not
been addressed yet.

Motivated by this situation, this paper is devoted to propose new convolutions for the FrFT which are related
with the Hermite functions. The new convolutions will imply several inequalities and consequences in a very global
way. The paper is divided into four sections and organized as follows. In the next section, we provide three new
convolution theorems which contain infinitely many new convolutions, and we prove their fundamental properties.
The third section starts with a comparison and comprehensive analysis on the convolution and product theorems of the
last six papers cited above. In special, this will lead us to Young’s type inequalities. In particular, Theorem 4 indicates
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that the convolutions here proposed are well-defined in more flexible and better circumstances than the frameworks of
the previously known ones. In the last section, by using the new convolutions, we investigate the solvability of some
classes of convolution integral equations (which culminates with the derivation of explicit solution formulas). One of
the types of integral equations under investigation (cf. (16)) has a universal Hermite kernel, having therefore a great
potential of applicability to other sciences [8, 9, 10, 11, 12, 16, 17].

NEW CONVOLUTIONS

In what follows, for the two-valued square root function w =
√

z (z ∈ C) we choose the continuous branch taking√
1 = 1. For a given angle α ∈ R, we put a(α) := cot(α)/2, b(α) := sec(α) and c(α) :=

√
1 − i cot(α). The FrFT with

angle α is defined by

Fα [ f ] (p) :=
c(α) eia(α)p2

√
2π

∫ ∞
−∞

eia(α)(x2−2b(α)xp) f (x)dx, (1)

where we consider α � kπ for every k ∈ Z, for simplicity. We recall that only in the case α = π/2+ kπ, k ∈ Z, we have
a(α) = 0, a(α), b(α) = ±1/2, c(α) = 1, and our transform turns out to be the Fourier one. Throughout this paper, for
shortness, the constants a(α), b(α) and c(α) will be simply denoted by a, b and c.

Let us recall the definition of normalized Hermite functions φn, for n ∈ N, which are defined as

φn(x) := (−1)n
(
2nn!
√
π
)− 1

2 e
x2

2
dn

dxn e−x2

. (2)

In the sequel, for f ∈ L1(R), we define the norm ‖ f ‖1 as ‖ f ‖1 := 1√
2π|sinα|

∫
R
| f (x)| dx.

Theorem 1 If f , g ∈ L1(R), then the transform

( f � g) (x) := −abc
π

∫
R2 eia(u2+v2−x2)−2a2b2(x−u−v)2

f (u)g(v)dudv (3)

defines a convolution which admits the norm inequality ‖ f � g‖1 ≤ ‖ f ‖1 ‖g‖1 and the following factorization identity:

Fα [ f � g
]
(x) = ψ(x) Fα [ f ] (x) Fα [g] (x), (4)

where ψ(x) := e−
1
2

x2−iax2

. In other words, the product f � g defines a new function belonging to L1(R), and satisfies
the convolution theorem for the FrFT up to the weight function (factor) ψ.

Proof. We start by proving the norm inequality. Note that |c| = | sinα|− 1
2 . Performing the change of variables

ab(x − u − v) = t, we have∫
R

|( f � g) (x)| dx ≤ ab
π
√|sinα|

∫
R3

| f (u)| |g(v)| e−2a2b2(x−u−v)2

dudvdx =
1

π
√|sinα|

∫
R2

| f (u)| du|g(v)| dv
∫
R

e−2t2

dt

=
1√

2π |sinα|
∫
R

| f (u)| du
∫
R

|g(v)| dv =
√

2π |sinα| ‖ f ‖1 ‖g‖1 ,

which proves the norm inequality. Obviously, this inequality ensures immediately that the new function defined by (3)
belongs to L1(R).

Now we will prove the factorization property (4). Here and in what follows, we will use the following known

identity 1√
2π

∫
R

eixte−kt2

dt = 1√
2k

e−
1
4k x2

(k > 0) for every x ∈ R (see [29, 32]). By using the last identity, with k = 1/2,

we have

ψ(x)Fα [ f ] (x) Fα [g] (x) = e−
1
2

x2−iax2 c√
2π

∫
R

eia(x2+u2−2xub) f (u)du
c√
2π

∫
R

eia(x2+v2−2xvb)g(v)dv

= e−iax2 1√
2π

∫
R

e−
1
2

t2+ixtdt
c√
2π

∫
R

eia(x2+u2−2xub) f (u)du
c√
2π

∫
R

eia(x2+v2−2xvb)g(v)dv

=
c2

2π
√

2π
e−iax2

∫
R3

eia[2x2+u2+v2−2xb(u+v)]e−
1
2

t2+ixt f (u)g(v)dudvdt

=
c2

2π
√

2π

∫
R3

eia[x2+u2+v2−2xb(u+v− t
2ab )]e−

1
2

t2

f (u)g(v)dudvdt.
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Changing variables by u = u, v = v, s = u + v − t
2ab , we have

ψ(x)Fα [ f ] (x)Fα [g] (x) =
−abc2

π
√

2π

∫
R3

eia[x2+u2+v2−2xbs]e−2a2b2(s−u−v)2

f (u)g(v)dudvds

=
c√
2π

∫
R

eia(x2+s2−2xbs)
{−abc

π

∫
R2

eia(u2+v2−s2)−2a2b2(s−u−v)2

f (u)g(v)dudv
}

ds

= Fα
{−abc

π

∫
R2

eia(u2+v2−s2)−2a2b2(s−u−v)2

f (u)g(v)dudv
}

(x) = Fα [ f � g
]
(x).

Theorem 2 If f , g ∈ L1(R), then the following transform defines a convolution followed by the norm inequality
and factorization identity:

( f ⊗ g) (x) := einαc2

2π

∫
R2 e2ia(u2+v2−xu−xv+uv)φn(x − u − v) f (u)g(v)dudv, (5)

‖ f ⊗ g‖1 ≤ ‖φn‖1 ‖ f ‖1 ‖g‖1 , Fα [ f ⊗ g
]
(x) = Φn(x)Fα [ f ] (x)Fα [g] (x), (6)

where Φn(x) := e−i2ax2

φn(x) (cf. (2)). Thus, the new product f ⊗ g defines a function belonging to L1(R), and satisfies
the convolution theorem for the FrFT associated with the Hermite function φn scaled by the chirp e−i2ax2

.

Proof. We shall prove the inequality in (6). Changing variables u = u, v = v, and t = x− u− v, and using ‖ · ‖1, we
have ∫

R

|( f ⊗ g) (x)| dx ≤ 1

2π |sinα|
∫
R3

| f (u)| |g(v)| |φn (x − u − v)| dudvdx

=
1

2π |sinα|
∫
R

| f (u)| du
∫
R

|g(v)| dv
∫
R

|φn (t)| dt =
√

2π |sinα| ‖φn‖1 ‖ f ‖1 ‖g‖1 ,

as desired. This inequality implies that the function defined by (5) belongs to L1(R). Now we will prove the factoriza-
tion property (6). From the definition of the FrFT, we have

Φn(x)Fα [ f ](x)Fα [g] (x) =
e−i2ax2

φn(x)√
2π

∫
R

eia(x2+u2−2xub) f (u)du
c2

√
2π

∫
R

eia(x2+v2−2xvb)g(v)dv

=
c3e−i2ax2

(2π)3/2

∫
R

einαeia(x2+t2−2xtb)φn(t)dt
∫
R

eia(x2+u2−2xub) f (u)du
∫
R

eia(x2+v2−2xvb)g(v)dv

=
einαc3

(2π)
3
2

∫
R3

e−i2ax2

eia[3x2+u2+v2+t2−2xb(u+v+t)] f (u)g(v)φn(t)dudvdt

=
einαc3

(2π)
3
2

∫
R3

eia[x2+u2+v2+t2−2xb(u+v+t)] f (u)g(v)φn(t)dudvdt.

Performing the change of variables u = u, v = v and s = u + v + t, we obtain

Φn(x)Fα [ f ](x)Fα [g] (x) =
einαc3

(2π)
3
2

∫
R3

eia[x2+u2+v2+(s−u−v)2−2xbs] f (u)g(v)φn(s − u − v)dudvds

=
c√
2π

∫
R

eia(x2+s2−2xbs)

⎧⎪⎪⎨⎪⎪⎩einαc2

2π

∫
R

e2ia(u2+v2−su−sv+uv) f (u)g(v)φn(s − u − v)dudv

⎫⎪⎪⎬⎪⎪⎭ds

= Fα
{

einαc2

2π

∫
R2

e2ia(u2+v2−su−sv+uv) f (u)g(v)φn(s − u − v)dudv
}

(x) = Fα [ f ⊗ g
]
(x).

Theorem 3 If f , g ∈ L1(R), then the transform

( f � g) (x) := einα

2π|sinα|
∫
R2 eia(2u2−2ux−2uv+2xv)φn(x − u + v) f (u)g(v)dudv (7)
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defines a convolution with the norm inequality ‖ f � g‖1 ≤ ‖φn‖1 ‖ f ‖1 ‖g‖1 , and the factorization identity

Fα [ f � g
]
(x) = φn(x)Fα [ f ] (x)F−α [g] (x). (8)

This means that the product f � g defines a function belonging to L1(R), and satisfies the convolution theorem asso-
ciated with the FrFT and its inverse (IFrFT) with the factor φn(x).

Proof. The norm inequality can be proved in the same way as in the proof of the inequality in (6), and so we omit
the proof. We will prove the factorization property (8). By the definition of FrFT, we have

φn(x) Fα [ f ] (x) F−α [g] (x) = einα

√
1 − i cotα√

2π

√
1 + cot2 α

2π

∫
R3

eia[x2+t2+u2+x2−x2−v2−2xb(t+u−v)] f (u)g(v)φn(t)dudvdt

= einα

√
1 − i cotα√

2π

√
1 + cot2 α

2π

∫
R3

eia[x2+t2+u2−v2−2xb(t+u−v)] f (u)g(v)φn(t)dudvdt

= einα

√
1 − i cotα√

2π

√
1 + cot2 α

2π

∫
R3

eia[x2+(s−u+v)2+u2−v2−2xbs] f (u)g(v)φn(s − u + v)dudvds

= einα

√
1 − i cotα√

2π

1

2π |sinα|
∫
R

eia(x2+s2−2xbs)

(∫
R2

eia(2u2−2us−2uv+2sv) f (u)g(v)φn(s − u + v)dudv
)

ds

= Fα [ f � g
]
(x),

which proves the theorem.

We notice that convolutions (3) and (5) satisfy the commutative, associative and distributive properties. However,
�, defined by (7), does not satisfy any of those properties (just because it is a convolution associated with the two
transforms Fα and F−α).

YOUNG’S CONVOLUTION INEQUALITIES

In [31], Singh and Saxena gave a meaningful and detailed comparison between their convolutions and the convolutions
previously constructed. Here, we shall start by discussing the possible framework for the convolutions in [3, 4, 14, 31,
33, 35] and then will make a consequent comparative analysis.

We observe that in [3], Almeida obtained some convolutions associated with FrFT, under some assumptions on
the domain space (as proved by [4]). In [35], Zayed introduced two interesting convolutions, associated with FrFT,

denoted by � and ⊗. The process of f � g can be interpreted as a signal f , scaled by the factor eiax2

, which convolutes

in the Fourier sense with the signal g, scaled by the same factor eiax2

, up to the weight function ce−ix2

/
√

2π. The

convolution ⊗ was built by using the same idea but for a scaled factor e−iax2

and a weighted factor ceix2

/
√

2π.
It took eight years so that the convolution theorems for the linear canonical transforms (LCT) were provided by

Deng et al. in [14]. Having in mind the Zayed’s idea for FrFT, the convolutions in [14] can be seen as new versions
for LCT of what was known for the FrFT case. Despite the cumbrousness of expressions, they may be applicable in
some practical models.

In 2009, Wei et al., in [33], offered the concept on τ-generalized translation of a signal, and presented a convolu-
tion expression associated with the LCT. We see that the convolution expression in [33] was constructed by the time
shift/modulation properties of the LCT. This is why this convolution is elegant and flexible, and the transform (LCT)
of the convolution has no scaling functions. At this point we should clarify that the LCT has an advantage over other
ones due to its flexible use. However, its computation may be more expensive since it contains four parameters.

In [31], the authors developed a convolution theorem and a product theorem for the FrFT. In this work we may
also find a somehow detailed comparison between different convolutions.

The authors of [4] gave two new convolutions associated with FrFT in which there are a time-delay and a shift.
As a result, the transform (FrFT) of each one of convolutions is a simple product of two image functions scaled by the

weight functions ei(±x−ax2).
Taking into consideration those works, we realizer that the structure of those convolutions are still in the frame-

work of the known Fourier convolution when scaled by some chirps. In this work, we shall be out of that framework
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when looking for new convolutions. As a result, infinitely many convolutions related to Hermite functions have been
found (as already presented in the previous section), and some natural consequences will be now deduced in this
section and also in the next section.

For short, put Ech(t) := eiat2

, Egd(t) := e−2a2b2t2

,where Ech,Egd are the chirp and Gaussian functions, respectively.

Then, E(s, u, v) := eia(u2+v2−s2)−2a2b2(s−u−v)2

= Ech(u) Ech(v) [Ech(s)]−1 Egd(s − u − v). Thus, we can say that E is a
product of the three chirps Ech(u), Ech(v), [Ech(s)]−1 and the Gaussian distribution Egd. As presented, there is a great
diversity of constructed convolutions. Most of them are flexible as there is the presence of delays and shifts in the
Hermite function, and chirp functions are in full forms. Roughly speaking, the proposed convolutions are combined
by three chirps with independent coordinates and a Gaussian or Hermite distribution of signals. This supplement can
meet different mathematical models for engineering problems. For serving those purposes, we study some classes of
general integral equations generated by Gaussian and Hermite kernels, and obtain the explicit form of solutions which
will be presented in the next section.

We will now prove two norm inequalities for the convolutions here introduced. For this purpose, we first recall
the Minkowski’s integral inequality

[∫
Ω2

∣∣∣∣∣∣
∫
Ω1

F(x, y) dμ1(x)

∣∣∣∣∣∣
r

dμ2(y)

] 1
r

≤
∫
Ω1

(∫
Ω2

|F(x, y)|r dμ2(y)

) 1
r

dμ1(x), (9)

where the function F(·, ·) : Ω1×Ω2 −→ C is measurable on two measure spaces (Ω1, μ1) and (Ω2, μ2). In what follows,
let 1 ≤ p, q, r ≤ ∞ such that 1

p +
1
q =

1
r + 1. Naturally, the Banach spaces here involved are Lp(R), Lq(R) and Lr(R).

Theorem 4 Let p, q, r ∈ [1,∞] satisfy 1
p +

1
q =

1
r + 1. Denoting by � any of the three previously considered

convolutions �, ⊗ and �, it holds

‖ f � g‖r ≤ C1 ‖ f ‖p ‖g‖q, provided f ∈ Lp(R), g ∈ Lq(R), (10)

‖ f � g‖s ≤ C2 ‖ f ‖1 ‖g‖1, for any s ≥ 1, provided f , g ∈ L1(R), (11)

where C1 and C2 are some positive constants.

Proof. We shall deduce the inequalities (10)–(11) for the convolution (3), and will omit the cases of (5) and (7),
since the proofs are analogous.

The key point on the proofs comes from the Gaussian and Hermite functions Egd and ψn, which are rapidly
decreasing functions. Let us start by the proof of (10). Performing the change of variable t := u + v, we have

h(s) :=
−abc
π

∫∫
R2

Ech(u).Ech(v).[Ech(s)]−1.Egd(s − u − v) f (u)g(v)dudv

=
−abc
π

∫
R

[Ech(s)]−1.Egd(s − t)dt
(∫
R

[Ech(t − v) f (t − v)
]
.
[Ech(v)g(v)

]
dv
)
=
−abc
πEch(s)

∫
R

Egd(s − t)F(t)dt, (12)

where F(t) :=
∫
R

[Ech(t − v) f (t − v)
]
.
[Ech(v)g(v)

]
dv. Evidently, Ech f ∈ Lp(R), Echg ∈ Lq(R). Applying the well-

known Young’s convolution inequality for the Fourier case [6, 7], we have F ∈ Lr(R). Remind that |Ech| = 1, and
Egd ∈ L1(R). Again, applying the Young’s inequality for Egd and F, within the case 1

r +
1
1
= 1

r + 1, we derive that the
function defined by the right-hand side of (12) belongs to Lr(R). This means that h ∈ Lr(R).

Let us now turn to the proof of (11). Note that Egd ∈ Ls(R), for any s > 0, and
∫
R
|Egd(±x ± u ± v)|sdx = ‖Egd‖ss

(u, v are fixed in R). Applying (9), it follows

[∫
R

∣∣∣∣∣
∫
R2

Egd(x − u − v) f (u)g(v)dudv
∣∣∣∣∣s dx
]1/s

≤
∫
R2

(∫
R

∣∣∣Egd(x − u − v) |s.| f (u) |s.| g(v)
∣∣∣s dx
)1/s

dudv

=

∫
R2

(∫
R

∣∣∣Egd(x − u − v)
∣∣∣s dx
)1/s

. | f (u)| . |g(v)| dudv = ‖Egd‖s.
∫
R2

| f (u)| . |g(v)| dudv = ‖Egd‖s.‖ f ‖1.‖g‖1,

and so (11) is obtained.
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We would like to point out that the last result exposes a notable difference between the image and domain spaces
of the proposed convolutions and the ones of previously constructed convolutions, associated with FrFT and LCT.
Namely, here the convolutions (3), (5) and (7) possess their own direct Young’s convolution inequalities (10), as well
as (11). In other words, if f ∈ Lp(R) and g ∈ Lq(R), then each one of the proposed convolutions defines a function
in Lr(R), where 1/p + 1/q = 1/r + 1. Moreover, if f , g ∈ L1(R), then each one of those convolutions also defines a
function in Ls(R), for any s ≥ 1. In notation, we may write this as Lp(R) � Lq(R) ⊆ Lr(R), L1(R) � L1(R) ⊆ Ls(R),
for any s ≥ 1.

Remark 5 (a) Letting p = q = r = 1 in (10), or s = 1 in (11), we retrieve the norm inequalities proved by
Theorems 1, 2, and 3.

(b) Choosing s = 2 in (11), we see that: if f , g ∈ L1(R), then the convolution defines a function in the space
L1(R) ∩ L2(R). This result is suitable with the known fact that a convolution f ∗ g, roughly speaking, inherits the best
properties of both f and g. In particular, since a convolution can be seen as a process of filtering, averaging, inner
product or smoothing, in a certain sense, the Young type convolution inequality (11) is a distinctive feature of the
proposed convolutions. This may be of interest since (11) exhibits a remarkable difference in comparison with the
known ones which are associated with the Fourier case. Moreover, when focusing on the case L2(R), and having in
mind that the Hermite functions constitute a standard-orthogonal basis system in the Hilbert space L2(R), we notice
that those convolutions have a great potential of application in Harmonic Analysis.

(c) The appearance of Hermite functions in the above convolution kernels plays a key role in the potential of
application of those convolutions. In particular, the Young’s inequality (11) is already a typical characteristic of such
a structure.

Theorem 6 The Banach space L1(R), equipped with the convolution multiplication (3) or (5), becomes a commu-
tative normed algebra.

Proof. After having the above results, we can complete this proof by using a very direct way. Indeed, by Theo-
rems 1, 2, the convolution multiplications (3) and (5) are closed in L1(R), and have the commutative and associative
properties.

We recall that this occurs also for generalized convolutions of Fourier transform; cf. [18, 19].

CLASSES OF CONVOLUTION INTEGRAL EQUATIONS

In this section, we establish necessary and sufficient conditions for the solvability of some classes of convolution
equations associated with the FrFT. Moreover, under appropriate conditions, we obtain the corresponding explicit
solutions of those integral equations.

We start by considering the following type of integral equation, in the Banach space L1(R):

λϕ(s) +
(
k � ϕ

)
(s) = f (s), (13)

where λ ∈ C and k ∈ L1(R) are given, and ϕ is to be determined (in this space). We shall use the notation A(s) :=
λ + ψ(s)Fα [k] (s), where ψ is the function introduced in Theorem 1. The following proposition is useful for proving
the characterization of the solvability of equation (13), which will be given in Theorem 8.

Proposition 7 (1) If λ � 0, then A(s) � 0 for every s outside a finite interval.
(2) If A(s) � 0 for every s ∈ R, then the function 1/A(s) is bounded and continuous on R.

Proof. (1) By the Riemann-Lebesgue lemma, the function A(s) is continuous on R and

lim
|s|→∞

A(s) = λ � 0, (14)

i.e., A(s) takes the value λ at infinity. Since λ � 0 and A(s) is continuous, there exists an R > 0 such that A(s) � 0 for
every |s| > R. Proposition (1) is proved.
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(2) Due to the continuity of A and (14), there exist R0 > 0, ε1 > 0 such that inf
|s|>R0

|A(s)| > ε1. As A is continuous

and not vanishing on the compact set S (0,R0) = {s ∈ R : |s| ≤ R0}, there exists ε2 > 0 such that inf
|s|≤R0

|A(s)| > ε2. We

deduce sup
s∈R

1
|A(s)| ≤ max

{
1
ε1
, 1
ε2

}
< ∞. This implies that the function 1/|A(s)| is continuous and bounded on R. The

proposition is proved.

Theorem 8 Assume that A(s) � 0 for every s ∈ R, and one of the following conditions is satisfied:

(i) λ � 0, and Fα[ f ] ∈ L1(R);
(ii) λ = 0, and Fα[ f ]

Fα[k]
∈ L1(R).

Then, equation (13) has a solution in L1(R) if and only if F−α [Fα[ f ]/A
] ∈ L1(R). If this is the case, then the solution

is given by ϕ := F−α [Fα[ f ]/A
]
.

Proof. Let us first assume that (i) is fulfilled.
Necessity. Suppose that equation (13) has a solution ϕ ∈ L1(R). Applying Fα to both sides of equation (13) and

using the factorization identity in Theorem 1, we obtain A(s)Fα[ϕ](s) = Fα[ f ](s). Since A(s) � 0 for every s ∈ R,
Fα[ϕ] =

Fα[ f ]

A . As the function 1/A(s) is bounded and continuous on R (cf. Proposition 7) and Fα[ f ] ∈ L1(R), we

deduce that (Fα f /A) ∈ L1(R). We can now apply the inverse transform of Fα to Fα[ϕ] =
Fα[ f ]

A for obtaining the
solution as stated in the theorem. The necessity part is proved.

Sufficiency. Consider the function ϕ := F−α
[Fα[ f ]

A

]
. By the assumption, ϕ ∈ L1(R). Hence, Fα[ϕ] = Fα[ f ]/A. Equiva-

lently, A (Fα[ϕ]) = Fα[ f ]. Thanks to the factorization identity, we have Fα [λϕ + (k � ϕ)
]
= Fα[ f ]. By the uniqueness

theorem of Fα, we conclude that ϕ fulfills equation (13) for almost every s ∈ R. Item (i) is proved.
Since |ψ(x)| = 1, the function 1/ψ is continuous and bounded on R. Hence, Fα[ f ]/Fα[k] ∈ L1(R) if and only if

Fα[ f ]/(ψ · Fα[k]) ∈ L1(R). Therefore, item (ii) can be proved similarly to that of item (i). The theorem is proved.

By using the same method as we just did in Theorem 8, we were able to produce a corresponding characterization
of the solvability of another class of integral equations, and provide their solutions. We shall formulate the result, and
omit the proof as it can be deduced analogously to the last one.

Theorem 9 Consider the equation

λϕ(s) +
(
k ⊗ ϕ

)
(s) = f (s), (15)

and assume that Bn(s) := λ+ψn(s)Fα [k] (s) � 0 for every s ∈ R, and that one of the following conditions is satisfied:

(i) λ � 0, and Fα[ f ] ∈ L1(R); (ii) λ = 0, and
Fα[ f ]

Fα[k]
∈ L1(R).

Equation (15) has solution in L1(R) if and only if F−α [Fα[ f ]/Bn
] ∈ L1(R). Moreover, under the conditions of solv-

ability, the solution is given by ϕ = F−α [Fα f /B
]
.

We will now consider integral equations whose kernel is generated by two Hermite functions. In particular, let
φm, φn be given Hermite functions, and let k1, k2 be functions belonging to L1(R). For shortness of the formulas, we

write Em−ch(u, v, s) := eimα.ei2a(v2+us−uv−sv) for m ∈ N. We shall present a necessary and sufficient condition for solving
a class of integral equations of the form

λϕ(s) +
1

2π |sinα|
∫
R2

[
Em−ch(u, v, s)φm(s + u − v)k1(u) + En−ch(v, u, s).φn(s − u + v)k2(u)

]
ϕ(v)dudv = p(s), (16)

where λ ∈ C and p ∈ L1(R) are given, and ϕ(s) is the unknown function in L1(R).
Note that Em−ch is a chip and |Em−ch| = 1. We derive k1.[Em−ch]−1 ∈ L1(R) and (or) k2.[En−ch]−1 ∈ L1(R) if

and only if k1 ∈ L1(R) and (or) k2 ∈ L1(R), respectively. Therefore, the appearance of the factor 1
2π|sinα| and the

chirps Em−ch, En−ch in the kernel of equation (16) is not artificial. In fact, it is just convenient for the direct use of the
convolutions, because that factor and the chirps can be merged into the functions k1, k2. Indeed, for any k1, k2 ∈ L1(R),

we can write k1 = Em−ch.[(Em−ch)−1k1] := Em−ch .̃k1, k2 = En−ch.[(En−ch)−1k2] := En−ch .̃k2, where k̃1, k̃2 are also in
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L1(R). That is why equation (16) can be seen as a universal Hermite kernel which includes many integral equations.
There are some special cases of (16) which appear in engineering problems (for example, see [16, 17] and references
therein).

In view to solve this equation we need an additional convolution operation.

Definition 10 We define the product ⊕ by

h(s) := ( f ⊕ g) (s) =
eimα

2π |sinα|
∫
R2

eia(2v2+2us−2uv−2sv) f (u)g(v)φm(s + u − v)dudv, (17)

which satisfies the following properties:

‖ f ⊕ g‖1 ≤ ‖φn‖1 ‖ f ‖1 ‖g‖1 , Fα [ f ⊕ g
]
(x) = φm(x) F−α [ f ] (x) Fα [g] (x). (18)

It is necessary to say that the operation defined by (17) can be deduced from that one defined by (7). Indeed, switching
the role u and v in the integration of (7), we obtain (17) and the inequality in (18). In this sense, the operation (17) is
not a new convolution. Instead, it is just a small adaption in that previous one, but it is enough for our purpose.

For the sake of shortness of notation, let us fix:

D(x) :=
[
λ + φm(x)(F−αk1)(x)

] [
λ + φm(x)(Fαk1)(x)

] − [φn(x)(Fαk2)(x)
] [
φn(x)(F−αk2)(x)

]
; (19)

DFα (x) := (Fαp) (x)
[
λ + φm (x) (Fαk1) (x)

] − φn (x) (Fαk2) (x) (F−αp) (x) ; (20)

DF−α (x) := (F−αp) (x)
[
λ + φm (x) (F−αk1) (x)

] − φn (x) (F−αk2) (x) (Fαp) (x) . (21)

Proposition 11 is useful for proving Theorem 12. However, let us omit the proof of Proposition 11 as it is
analogous to that of Proposition 7.

Proposition 11 (1) If λ � 0, then D(x) � 0 for every x outside a finite interval.
(2) Assume that λ � 0 and D(x) � 0 for every x ∈ R, then the function 1/D(x) is bounded and continuous on R.

Theorem 12 Assume that D(x) � 0 for every x ∈ R, and one of the following conditions is satisfied:

(i) λ � 0, and Fα[p], F−α[p] ∈ L1(R);
(ii) λ = 0, and DFα

D ,
DF−α

D ∈ L1(R).

Then equation (16) has a solution in L1(R) if and only if

F−α
[

DFα
D

]
= Fα

[
DF−α

D

]
∈ L1(R).

If this is the case, then the solution is given by ϕ = F−α
[DFα

D

]
.

A way of proving Theorem 12 is in a certain sense analogous to that of Theorem 8, if considering the combination
of a system of two equations.

Proof. Let us first assume that (i) is fulfilled.
Necessity. Suppose that equation (16) has a solution ϕ ∈ L1(R). Applying Fα to both sides of (16), we obtain

λFα[ϕ](x) + φm(x)F−α[k1](x)Fα[ϕ](x) + φn(x)Fα[k2](x)F−α[ϕ](x) = Fα[p](x). (22)

Equivalently,
[
λ + φm(x)F−α[k1](x)

]Fα[ϕ](x) +
[
φn(x)Fα[k2](x)

]F−α[ϕ](x) = Fα[p](x). In this identity, by replacing
α by −α we receive a system of two functional equations⎧⎪⎪⎨⎪⎪⎩

[
λ + φm(x)F−α[k1](x)

]Fα[ϕ](x) +
[
φn(x)Fα[k2](x)

]F−α[ϕ](x) = Fα[p](x)[
φn(x)F−α[k2](x)

]Fα[ϕ](x) +
[
λ + φm(x)Fα[k1](x)

]F−α[ϕ](x) = F−α[p](x).
(23)

The determinants associated with this system are exactly given by (19), (20), and (21). Hence, Fα[ϕ] = DFα/D,
F−α[ϕ] = DF−α/D. Since Fα[p], F−α[p] ∈ L1(R), and the functions λ + φm (x)Fα [k1] (x), λ + φm (x)F−α [k1] (x),

020006-8



φn (x)Fα [k2] (x), φn (x)F−α [k2] (x) are continuous and bounded on R, we have DFα , DF−α ∈ L1(R). As the function
1/D(x) is bounded and continuous on R (cf. Proposition 11) and DFα , DF−α ∈ L1(R), we deduce that DFα/D, DF−α/D ∈
L1(R). We can now apply the inverse transform to obtain the solution as stated in the theorem. The necessity part is
therefore proved.
Sufficiency. Consider the function ϕ = F−α [DFα/D] = Fα [DF−α/D] ∈ L1(R). It implies that ϕ ∈ L1(R). Hence,

Fα[ϕ] = DFα/D, F−α[ϕ] = DF−α/D. Equivalently,⎧⎪⎪⎨⎪⎪⎩ (λ + φmFα[k1])Fα[p] − φnFα[k2]F−α[p] = Fα[ϕ]D

(λ + φmF−α[k1])F−α[p] − φnF−α[k2]Fα[p] = F−α[ϕ]D.

We thus have λFα[ϕ](x) + φm(x)F−α[k1](x)Fα[ϕ](x) + φn(x)Fα[k2](x)F−α[ϕ](x) = Fα[p]. Due to the factorization
identities for ⊕ and �, we have Fα [λϕ + (k1 ⊕ ϕ) + (k2 � ϕ)

]
= Fα[p]. By the uniqueness theorem of Fα we conclude

that ϕ fulfills equation (16) for almost every x ∈ R. Thus, item (i) is proved. The case (ii) may be proved similarly to
that of item (i), and so the proof of Theorem 12 is completed.

Example 13 The following equation can serve as a clear illustration of Theorem 8. Consider the convolution
equation

λϕ(x) + (k � ϕ)(x) = f (x),

for any λ ∈ C.

We choose k(x) = e−a|x| with �(a) > 0, f (x) = e−
1
2

x2

. It is easily seen that k, f ∈ L1(R). Let us denote by Kα(x)
the FrFT of k. Obviously, |ψ(x)| = 1, and for a fixed λ the function M(x) = λ+ψ(x)Kα(x), is bounded and continuous.
Let us consider first the case λ � 0. It holds Kα ∈ L1(R). Additionally, note that the function ψ(x)Kα(x) is continuous
and bounded, and vanishing at infinity. Therefore, if λ is sufficiently large, then M(x) � 0 for every x. For example, the
assumption that |λ| > maxx∈R |ψ(x)Kα(x)| is a sufficient condition to guarantee that M(x) is a non-vanishing function.

Concerning the second assumption, we have Fα[ f ](x) = e−
1
2

x2 ∈ L1(R). Therefore, we have obtained the solvability
of the equation for this case, and we can give its explicit solution.

As about the case λ = 0, we can prove without difficulty that Fα[ f ]/Fα[k] ∈ L1(R). For instance, if it is the

Fourier case, then F[ f ](s)/F[k](s) = 2a(a2 + s2)e−
1
2

s2

. This function belongs to L1(R), and therefore it fulfills the
condition in Theorems 8.

Thus, in both cases all the conditions of Theorems 8 are fulfilled. Hence, the corresponding equation possesses a
solution and we have the consequent explicit solution formula.
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