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This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater
in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were
performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data
obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted
to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the
anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production.
Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy
between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and
was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater
should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate
and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed
bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction
after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent
recirculation this effect being more pronounced for the higher loads.
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Introduction
In recent years, the application of anaerobic digestion
for the treatment of organic waste has emerged spectac-
ularly and the amount of anaerobically digested substrate
from waste has increased at an annual growth rate of
25%.[1,2] Considerable amounts of lipid-rich waste are
produced by the food processing industry, slaughterhouses,
the edible oil industry, the dairy products industry and
olive oil mills.[2] In all these waste streams, lipids are
often the main and most problematic substrate.[3] At high
concentrations, lipids cause different types of problems
in anaerobic digesters, including clogging, adsorption to
biomass (causing mass transfer problems) and microbial
inhibition due to the degradation to, and hence presence
of, long-chain fatty acids (LCFA).[4]

Dairy wastewater having a high fat content has the
highest methane potential among several types of agro-
wastes.[5] Anaerobic biodegradability tests indicated that
91% of the organic matter present in the effluent from milk
pasteurization and cheese manufacturing without whey
segregation was degraded in anaerobiosis.[6] Debowski
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et al. [7] studied the anaerobic degradation of dairy
wastewaters in batch reactors with chemical oxygen
demand (COD) loads ranging from 1.0 to 3.0 kg COD m−3.
Depending on the load applied, the effectiveness of the
treatment process ranged from 62.8% to 71.4%. The
authors also found that it was possible to achieve a high
production of biogas with methane content over 60% in
the anaerobic treatment of wastewaters from the dairy
industries. The respirometric analyses demonstrated that
the quantity of the gaseous products of methane fermen-
tation and their composition were directly influenced by
the applied load. A tendency was observed for decreasing
effectiveness of the fermentation process with increasing
quantities of wastewater fed to the anaerobic system.

Nadais [8] studied the kinetic parameters of anaero-
bic treatment of milk substrates in lab-scale batch reac-
tors for various types of anaerobic sludge with different
degrees of adaptation to the substrate. The Monod kinetic
parameters (see Equation (1)) were determined as follows:
maximum substrate removal rate ‘qmax’ (d−1) 0.6–2.2 and
half-velocity constant ‘K s’ (mg COD L−1) 7700–19000.

© 2015 Taylor & Francis
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Saléh et al. [9] reported a study on the kinetic parameters
of the treatment of dairy wastewater in a lab-scale upflow
anaerobic sludge bed (UASB) with hydraulic retention
time (HRT) between 20 and 44 h and observed a tendency
for a rise in the outflow COD with the decrease in the HRT.
The ranges of the kinetic parameters determined with the
Monod Model were as follows: sludge yield ‘Y’ (mgCOD
mg−1VS d−1) 0.5914–0.8214; endogenous decay coeffi-
cient ‘Kd’ (d−1) 0.005619–0.007804; maximum growth
rate ‘µmax’ (d−1) 0.1811–0.2516; and half-velocity con-
stant ‘K s’ (mg CODL−1) 611.70–849.60. A laboratory
study [10] was devised to verify the use of Monod kinet-
ics for the modelling of continuous UASB reactors treating
ice cream wastewater. Eight different HRTs (5.0–0.4 d)
were investigated at an average influent COD concen-
tration of 5.2 g L−1. The maximum substrate removal
rate and half-velocity constant were determined to be
1.4 kg COD(removed) kg−1 VSS d−1 and 0.3 kg COD kg−1

VSS d−1 (volatile suspended solids (VSS)), respectively.
The yield coefficient and sludge decay rate coefficient were
also determined to be 0.16 kg VSS kg−1 COD(removed)
and 0.028 d−1, respectively. The close relationship between
biomass loading rate and specific substrate utilization rate
supported the use of Monod equations and allowed the
model to be used predictively for assessing plant perfor-
mance.

Tauseef et al. [11] present a thorough review of litera-
ture results concerning energy recovery from wastewaters
with high-rate anaerobic reactors. Presently, the UASB
systems are the most used anaerobic technology for the
treatment of industrial wastewaters.[12,13] Latif et al. [14]
discussed UASB reactors’ performance in the treatment
of various types of wastewaters including dairy wastew-
ater. For dairy wastewaters, the reported COD removal
efficiencies ranged from 64%, for an organic loading rate
(OLR) of 0.24 kg COD L−1 d−1 and a HRT of 1.5 days
[15] to 98% for an OLR of 6.2 kg COD m−3 d−1 at a HRT
of 6 days.[16] Tawfik et al. [17] studied the UASB treat-
ment of dairy wastewater with 1 d HRT and volumetric
flow of 0.5 L d−1 and OLR of 1.9–4.4 kg COD m−3 d−1

achieving COD removal efficiencies of 69%. In a pilot-
scale UASB treating dairy wastewater, Saléh et al. [9]
achieved COD removal efficiencies of 93.5% at OLR
of 1.6 kg COD m−3 d−1 and HRT of 36 h. Jedrzejewska-
Cicinska et al. [18] reached COD removal efficiencies
of 79.4% and 86.5% for continuous lab-scale UASB and
hybrid UASB, respectively, for OLR of 4 kg COD m−3 d−1

and HRT of 24 h.
Performance parameters were studied [19] in an alter-

native full-scale dairy effluent treatment system comprising
two anaerobic sludge blanket reactors in parallel arrange-
ment with upward flow, internal fat-separation by flotation,
external lamella settler and floated material digester. Reac-
tors were initially inoculated with flocculent sludge and
granulated in a high-load stage. Using loading rates up to a

maximum 5.5 kg COD m3 d−1 hydraulic residence time of
17 h reactor efficiency was found to remain stable around
90% of COD. Average sludge digester efficiency using a
loading rate of 3.5 kgVS m3 d−1 with a lipid content of 47%
of COD amounted to 78% of volatile solids (VS) (87% of
lipid removal).

A UASB reactor was operated at different HRTs, of
about 12, 16, 20 and 18 h.[20] The initial (start-up) bio-
logical OLR was about 0.054 kg BOD kg TVS−1 d−1 (bio-
logical oxygen demand (BOD)). The observed removal
efficiencies of organic matter in terms of COD were about
24%, 39%, 43%, and 52%. The best results related to the
removal of organic matter were obtained with the higher
HRTs of 20 and 18 h.

Improvements in UASB reactors allow the degradation
of dairy wastewater without previous fat removal [19,21]
with important reduction in installation and operation costs
[13,19] and lower environmental impacts.[19]

The performance of anaerobic reactors is generally
assessed in terms of COD removal efficiency which for
dairy wastewaters may attain values as high as 98%.[16]
Yet, the COD removal efficiency is substantially higher
than the biodegradation efficiency as measured by the
methanization efficiency.[22,23] When the performance of
UASB reactors is assessed in terms of methanization effi-
ciency, it is apparent that presently, these systems face
significant challenges in what concerns their applicability
to the treatment of complex lipid-rich wastewater of which
dairy wastewater is an example.[24]

Nadais et al. [22] verified that to keep the methanization
efficiency above 70%, continuous UASB reactors inocu-
lated with flocculent biomass and used for treating dairy
wastewater should not be operated at loading rates above
2.5 g COD L−1 d−1. Jeganathan et al. [25] reported that
the continuous operation of an UASB reactor used for
treating food processing wastewater resulted in 75% sub-
strate biodegradation at a load of 2.5 kg COD m−3 d−1 and
that the system performance degraded sharply for higher
loads. For a load rate of 5 kg COD m−3 d−1, the authors
observed fats accumulation in the sludge bed and scum
formation, resulting in biodegradation below 50%. As an
option to overcome operating problems verified in con-
tinuous systems,[25–28] studies have been developed on
the intermittent operation of UASB reactors used for treat-
ing dairy wastewater [27,29] or for treating proteinaceous
wastewater,[30] slaughterhouse wastewater,[31] domestic
wastewater [32] or olive mill wastewater.[33] The bene-
ficial effects of discontinuous feeding of fatty substrates
on anaerobic systems have also been confirmed by Palatsi
et al. [34] and some results obtained in a full-scale reac-
tor are presented by Passeggi et al. [19] with effluent
recirculation during the feedless phase. The intermittent
operation is composed of a succession of feed and feed-
less periods where a feed period followed by a feedless
period forms an intermittent cycle. During the feed periods,
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high substrate removal rates are achieved which are not
accompanied by the expected methane production, lead-
ing to heavy accumulation of non-degraded substrate onto
the biological biomass that constitutes the UASB. The
feedless period is crucial for the degradation of the com-
plex substrates (fats and LCFA) that accumulate in the
biomass during the feed period, mainly by adsorption
mechanisms.[22,27,29,33] During the feed periods, the
intermittent UASB reactor operates as a continuous reac-
tor and during the feedless periods, it works as a batch
reactor. It has been suggested that effluent recirculation
during the feedless periods of intermittent operation was
beneficial for reactor performance, especially in terms of
methane production.[21]

The operation of intermittent UASB reactors applied
to the treatment of dairy wastewaters resulted in a COD
removal efficiency of 90–97% at OLRs of 12.5–22kg
COD m−3 d−1 and at a HRT of 0.5–1 d.[21,27] More recent
studies with intermittent UASB reactors used for treating
dairy wastewaters resulted in COD removal efficiencies
of 94–96% and methanization efficiencies of the removed
COD of 86–92% at OLR of 6 kg COD L−1 d−1 and HRT of
12 h.[35]

Insights into what happens during the feedless periods
are important to understand the functioning of the intermit-
tent UASB systems. Literature presents several results for
the degradation of dairy wastewater in batch reactors.[5–8]
Yet, if effluent recirculation is applied during the feedless
periods, the hydrodynamic conditions may significantly
alter the COD removal mechanisms and subsequent bio-
logical degradation observed in feedless periods of inter-
mittent systems. The importance of the hydrodynamic
conditions is related to mass transfer mechanisms [36] and
to adsorption phenomena responsible for the major per-
centage of initial COD removal from complex wastewaters
in anaerobic systems.[37,38]

The recirculation of the treated effluent in a semi-
continuous two-stage system combining continuous stirred
tank reactor (CSTR) and UASB resulted in a higher yield
of methane and suggested that the recirculation could sup-
port the hydrolysis step as well as avoiding nutrient loss at
higher OLR, and thus improving the performance and the
stability of the process.[24]

The upflow velocity (Vup) is an important operational
parameter in UASB reactors for maintaining the mixing
of the substrate and biomass.[14] Several studies have
demonstrated the importance of the liquid upflow velocity
upon the kinetics of high-rate anaerobic systems.[39–44]
The permissible limit of upflow velocity is 0.5–1.5 m h−1

described by many researchers.[45] Siang [46] maintained
a 0.59 m h−1 Vup at a HRT of 13 h for the treatment of
palm oil effluents. Keyser et al. [47] reported a 2 m.h−1 Vup
at HRT of 1.25 days. In lab-scale UASB reactors inocu-
lated with flocculent sludge and fed with dairy wastewater.
Nadais et al. [22] reported a Vup of 0.11 m h−1 at a 16 h

HRT and observed that Vup above 0.14 m h−1 (and HRT
bellow 12 h) caused biomass washout and the formation of
scum and sludge layer on the top of the reactors. Torkian
et al. [48] treated slaughterhouse wastewater and applied
Vup from 0.33 to 1.0 m h−1 while keeping a constant HRT
of 2.4 h using a pilot-scale UASB reactor of 1 m3 capac-
ity. While treating municipal wastewater in UASB reactor,
Uemura and Harada [49] reported 0.426 m h−1 Vup at 4.7 h
of HRT. Moawad et al. [50] used upflow velocities of
0.31–0.43 m h−1 at HRT of 4–3 h with a rectangular shaped
UASB reactor for the treatment of municipal wastewater.

Some authors suggest that the substrates diffusion rate
decreases with a higher flow velocity,[51] while other
authors [52] found that the external mass transfer resistance
can be decreased by increasing the flow velocity. Brito and
Melo [53] reported that under conditions of turbulent liq-
uid flow, and thus higher shear stress, the flow velocity had
a pronounced effect on the biofilm thickness and compact-
ness, leading to different mass transfer coefficients. If the
bulk liquid suffers a shift in velocity, there is an increase in
internal mass transfer coefficient.

Zeng et al. [54] modelled the dynamic behaviour of a
UASB reactor and reported a linear dependence between
the dispersion coefficient and the upflow velocity of the
liquid. The experimental results of Gonzalez-Gil et al. [39]
revealed that the variation in liquid upflow velocity did not
affect the value of the apparent Monod constant for gran-
ular acetoclastic biomass, thus indicating that the external
resistance to the mass transport could be neglected. Guiot
et al. [55] verified that a rise in the liquid upflow veloc-
ity could cause a decrease in the acidogenic activity of
the sludge and a rise in the post-acidogenic activity (propi-
onate, acetate, H2), this effect being more pronounced for
higher specific loading rates.

Studies by Chowdhury and Mehrotra [40] showed that
the sludge bed in a UASB reactor had the hydraulic
behaviour of a CSTR with bypass and evidenced that the
reactor performance was influenced by the short-circuiting
of the liquid through the sludge bed. Nadais [8] determined
that the hydraulic behaviour of a lab-scale UASB reac-
tor with a volume of 6 L, operated at a 12 h HRT (upflow
velocity of 0.072 m h−1) and fed with dairy wastewater at
a load of 12 g COD L−1 d−1 was intermediate between a
perfect CSTR and two CSTR in series.

The monitoring of the sludge volume index (SVI) of the
sludge developed in a mesophilic UASB reactor showed
that the settling ability of the sludge gradually improved
in the first 120 days of operation, reaching a plateau
thereafter.[56] The authors suggested that the improvement
of the settling ability could provide a basis for keeping
bed height constant despite shortened HRT. Leitão et al.
[57] reported that decreasing the influent COD concentra-
tion led to a decreased settleability and increased expansion
of the anaerobic sludge. The authors also reported that
the sludge settleability apparently increased as the HRT
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decreased (and upflow velocity increased) and suggested
the occurrence of a selection process in the sludge bed,
that is, the washout of the voluminous light flocs leav-
ing the well-settling aggregates in the reactor. Contrary to
this suggestion, Guiot et al. [55] verified that the liquid
upflow velocity had a direct effect upon the diameter of
the biomass aggregates developed in a UASB reactor as
a direct function of the hydrodynamic regime and not so
much as a result of the specific washout of smaller biomass
particles at higher upflow velocities.

In this framework, this investigation aimed at evalu-
ating the influence of hydrodynamic conditions achieved
through effluent recirculation upon the kinetics of dairy
wastewater degradation in the feedless periods of intermit-
tent UASB operation. The influence of effluent recircula-
tion upon the sludge bed dynamics was also studied.

Materials and methods
For the assessment of the influence of effluent recircula-
tion upon the feedless period of intermittent operation, two
replicate lab-scale UASB reactors were used with a work-
ing volume of 6 L, topped with a gas–solid–liquid separator
and operated at mesophilic temperature (35 ± 1°C) by
means of water jackets connected to thermostatic baths.
The UASB reactors are shown in Figure 1. For com-
parison, batch tests were conducted in lab-scale reactors
with no recirculation in order to assess the biodegrad-
ability of the substrate in mesophilic anaerobic conditions
(35 ± 1°C). The batch reactors had working volumes of
5 L and the applied loads were 3 and 10 g COD L−1.
The inoculum sludge was adapted sludge taken from
an industrial anaerobic reactor treating dairy wastewater
with a specific methanogenic activity (SMA) of 0.25 g
CH4–COD g−1VSS d−1. For the UASB tests, each reactor
was seeded with approximately 4 L of flocculent biomass
adapted to dairy wastewater with an SMA of 0.21 g
CH4–COD g−1 VSS d−1 and taken from an industrial dairy
wastewater treatment plant. The SMA tests were conducted
at mesophilic temperature (35 ± 1°C) with a VSS concen-
tration of 5 g L−1 and 3 g COD L−1 of sodium acetate as
substrate.

The feed for the UASB reactors was prepared from
dilution of semi-skimmed milk and supplemented with
nutrients and alkalinity (sodium bicarbonate).[22] Table 1
presents the composition of the milk used for preparing
the feed. For the batch reactors, the feed was prepared
from diluted commercial semi-skimmed milk. Details of
the batch reactors operation are given elsewhere.[8]

The UASB reactors were operated in a discontinuous
mode where the feed was pumped into the reactor and then
the produced effluent was recirculated in closed circuit,
without any extra feeding, at a volumetric flow of 0.5 L h−1

(upflow velocity of 0.072 m h−1). Table 2 presents the
experimental conditions for the five UASB tests performed
in this work.

Figure 1. Laboratory-scale UASB reactors used in this work.

Table 1. Characterization of the milk used for feed.

Parameter Value (g L−1)

Proteinsa 32
Carbohydratesa 48
Total lipidsa 16
Saturated lipidsa 10
Calciuma 1.2
CODb 147.5

Note: COD, chemical oxygen demand.
aData from the producer of the commercial milk.
bExperimental determination.

The monitoring plan was implemented at the begin-
ning of recirculation and consisted of daily analysis of total
COD, paper-filtered COD (CODpf), membrane-filtered
COD (CODmf), total and volatile suspended solids (TSS
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Table 2. Experimental set-up.

Test
Organic load
(g COD L−1)

Biomass
(g VSS L−1)

1 0.33 4.8
2 0.67 4.8
3 4.5 4.5
4 8.9 5.1
5 17 4.3

and VSS), pH and volatile fatty acids (VFA). Paper-filtered
COD samples (CODpf) were prepared using paper filters
with a pore diameter of 1.2 μm (Whatman Inc. Reeve
Angel, grade 403, Ø 4.7 cm). Membrane-filtered COD
samples (CODmf) were prepared with membrane filters
with a pore diameter of 0.45 μm (Schleicher & Schuel
Purabind, Ø 4.7 cm). Membrane-filtered COD represents
the soluble COD fraction while the paper-filtered COD
represents the soluble and colloidal COD fraction.[31]

The produced biogas was measured by water displace-
ment systems. Methane content in biogas was monitored
using a gas chromatograph Shimadzu GC – 9a, equipped
with a Supleco Molecular Sieve 5 A column and a Ther-
mal Conductivity Detector (T = 100°C). Injection tem-
perature was 45°C and helium was used as carrier gas
(P = 4.4 kg cm−2). VFA determination was carried out in
a gas chromatograph Chrompack CP 9001 equipped with
a Chrompack CP – sil5 – CB column and a flame ion-
ization detector (T = 300°C). The injection temperature
was 270°C and helium was used as carrier gas with a
volumetric flow of 8 mL min−1.

All the results presented in this work are averages of
two replicate reactors.

Results and discussion
COD biodegradation in batch test (no recirculation)
The anaerobic biodegradation of the substrate at mesophilic
temperature (35 ± 1°C) was calculated as the percent-
age of feed COD that was converted to methane. The
tested substrate reached an anaerobic biodegradation of
(81 ± 5)% and (85 ± 6)% for the batch tests performed
with 3 and 10 g COD L−1, respectively. These results are in
accordance with the values of 86–97.5% reported by Vidal
et al. [58] for the biodegradability of milk with similar fat
content and with the value of 89.1% presented by Nieto
et al. [5] for milk wastewater.

Anaerobic sludge settleability and sludge bed dynamics
The initialSVI of the inoculum used in the tests with the
UASB reactors with total recirculation of the treated efflu-
ent was 84 ± 6 mL g−1 and the final SVI for the sludge at
the end of each test is presented in Figure 2 in comparison
with the results obtained with tests with no recirculation.[8]

Figure 2. Evolution of SVI with applied load; data for batch
tests reference.[8]

For both conditions, with and without effluent recircula-
tion, it was observed that the tests with higher organic
load resulted in sludge with lower SVI. The influence of
the applied load on the SVI was more pronounced for the
test with effluent recirculation. According to Leitão et al.,
[57] the formation of a more flocculent type of sludge with
the application of low concentration influent, and relatively
low upflow velocities, may be a result of natural selec-
tion, as flocculent sludge is characterized by a lower mass
transfer resistance as compared with granular sludge.[59]
This may explain the higher values of SVI obtained in this
work for the sludge subjected to lower loads. The results
for sludge bed high for the UASB test with the load of
8.9 g COD L−1 are presented in Figure 3 where it can be
seen that during the first days of operation, the sludge
bed expanded slightly to a maximum of 12.8% expan-
sion in relation to the initial height. After the fifth day, the
sludge bed started to contract, losing up to 15.5% of the
initial bed height although the same liquid upflow veloc-
ity was kept (0.072 m h−1). These results imply that the
initial sludge bed expansion was greatly due to the bio-
gas that was formed during the degradation of the sugars

Figure 3. Evolution of sludge bed high for test 4 (8.9 g
COD L–1).
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and easily degradable substrates present in the substrate.
Apparently, the applied upflow velocity, although very low
(0.072 m h−1), resulted in the formation of more dense and
compactable biomass aggregates.

COD biodegradation in UASB reactors with total
effluent recirculation (closed circuit)
For all the tests performed in the UASB reactors with
total effluent recirculation, the profiles of CODpf, cumu-
lative methane production, removal of CODpf and meth-
anization of removed CODpf were obtained. Figures 4–7
present results for the two higher loads tested (8.9 g L−1

and 17 g COD L−1).
For all the organic loads tested, a significant decrease in

CODpf was observed during the first day of the tests (Fig-
ures 4 and 5) with 75–90% CODpf removal for all the tests
except the higher load (only 43% CODpf removal on the
first day). From the second day onwards, the CODpf val-
ues are approximately similar, except for the higher load
(17 g COD L d−1) in which an important decrease in CODpf
was observed on the second day (Figure 5). The values
of volumetric methane production presented a tendency

Figure 4. COD and CH4 profile for test (8.9 g COD L–1).

Figure 5. COD and CH4 profile for test (17 g COD L–1).

Figure 6. COD removal and methanization efficiencies for test
4 (8.9 g COD L–1).

Figure 7. COD removal and methanization efficiencies for test
5 (17 g COD L–1).

towards stabilization only from the third day onwards for
all the tests except for the lower load (0.33 g COD L d−1,
data not shown). With this lower load, the tendency to
diminish the methane production was observed only after
the fifth day of the test (data not shown).

For loadsup to 8.9 g COD L−1, the cumulative COD
removal occurring until the second day is very similar to
the COD removal observed on the first day (Figure 8). This
means that the additional COD removal on the second day
is very small in comparison with what was observed on the
first day. In contrast, for the higher load (17 g COD L−1),
by comparing the cumulative percentage removal attained
on the first and the second days, it is possible to see that
not all the substrate was removed on the first day.

A linear relation was found between the applied load
and the volumetric methane production obtained on the
first day (Figure 9) except for the higher load. In this case,
a decrease in the ratio CH4/load was observed. When cor-
relating the total cumulative volume of CH4 produced until
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Figure 8. Evolution of COD removal with applied load.

Figure 9. Correlation between applied load and methane pro-
duction.

the second day with the applied loads, a linear correla-
tion is observed for all the loads (Figure 9). This suggests
that for the load range tested in this work, a two-day
feedless period in the intermittent operation of UASB reac-
tors would be sufficient for the degradation of the feed
substrate. Figure 10 presents the values of methanization
percentages of the removed CODpf attained on the first
and second days of the tests as functions of the applied
loads. The differences observed in the methanization of the
removed substrate between the first and second days indi-
cate that a part of the COD removed during the first day
is methanized only on the second day. This result is in
accordance with the proposed duration of two days for the
feedless period of intermittent operation of UASB reactors
treating dairy wastewater.[22]

The methane content in the produced biogas varied
from 50% to 90% for all the tests, being higher by the end
of each test. The soluble COD fraction (CODmf) is the frac-
tion available for metabolization by the microorganism,
and is around 20–40% of the CODpf (colloidal + soluble
COD) in the beginning of tests (Figures 4 and 5). In
all the tests, the average pH values varied between 7

Figure 10. Evolution of methane production with applied load.

Figure 11. VFA profile for test 4.

and 8, the lowest value reached being 6.5. The VFA
concentrations determined in all the tests never sur-
passed 2 mg HAc L−1, always being under the threshold
toxicity limit of 3 g HAc L−1 suggested by Malina and
Pohland.[38] As an example, Figure 11 presents the VFA
profile for test 4 (load of 8.9 g COD L−1) where it can
be seen that a significant percentage of the produced
VFA is butyric acid, an intermediate substrate related to
the degradation of fatty matter and LCFA in anaerobic
systems.[60]

The specific CODcolloidal + soluble removal rates
(qCODpf) and the specific methane production rates
(qCH4) were obtained by the initial velocity method
(�t = 1 d) and were adjusted to the Monod model
Equation (1) and to the uncompetitive inhibition model or
Haldane model Equation (2), both described in.[61] The
least squares method was applied and commercial software
Scientist © version 2.0 (1994) was used, with an inte-
gration method based on the Powell algorithm and initial
values search by the double simplex method. The quality of
the fitting was assessed by the coefficient of determination
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Table 3. Kinetic parameters.

Parameter CODpf
a CH4

a CODpf
b CH4

b

qmax (d−1) 3.04 1.17 2.4 2.3
Ks (g L−1) 9.39 6.71 9.6 13.0
r2 0.99 0.98 0.99 0.99

aThis work.
bReference.[8]

r2, see Figure 10 and Table 3:

q = qmax

Ks + S
, (1)

q = qmax

1 + (Ks/S) + (S/Ki)
, (2)

where q is the specific substrate removal rate (g COD g
VSS d−1); qmax the maximum substrate specific removal
rate (g COD g VSS d−1); K s the half-velocity constant
(g L−1), K i the Haldane inhibition constant (g L−1) and S
the substrate concentration (g L−1).

According to the values of r2, the model that provided
a better fit of the experimental data was the Monod model
(Figure 12). This was due to the fact that the removal of
paper-filtered COD (CODcolloidal + soluble) expresses
not only the biological removal but also the removal
by physical–chemical mechanisms like entrapment and/or
adsorption of substrates onto the sludge particles. As a con-
sequence, no apparent inhibition is detected and the Monod
model adequately fits the data. On the other hand, the spe-
cific methane production (qCH4) rate which expresses the
true biological degradation of the substrate was also bet-
ter modelled with the Monod model because the loads
used in this work were relatively low and no substrate
inhibition was detected. Results from Nadais [8] obtained

Figure 12. Fitting of experimental data to the Monod model.

for batch tests with milk substrates and with no recircula-
tion showed that substrate inhibition effects were detected
only for loads above 10 g COD L−1. The effect of recir-
culating the effluent and the resulting improvement of the
mixing in the system may have contributed to lower the
apparent inhibition. According to Pavlostathis and Giraldo-
Gomez, [62] the value of the half saturation constant
K s tends to increase when the mass transfer limitations
are more severe. It is also worth noting that the hydro-
dynamic conditions in the reactors are determinant for
the mass transfer effects and, consequently, on the values
of the kinetic constants. Generally, in continuous reac-
tors, the mass transfer limitations are less than in batch
reactors.[63]

The specific rate of methane production (qCH4) is
approximately 45% of the specific CODpf removal rate
(Figure 13) which is justified by the fact that these
rates were calculated using the initial velocity method
(�t = 1 d) and there is a lag between initial COD removal
and methane production. This discrepancy is due to the
fact that not all the organic matter is available for the
microorganisms to degrade since it was adsorbed onto
the biomass particles, causing a methane production lower
than the expected from the observed COD removal. Nadais
et al. [37] reported that the adsorption of milk substrates
onto anaerobic sludge increased for a higher degree of
sludge adaptation to the substrate and also that the adsorp-
tion phenomena take place very fast, reaching a plateau
within 15–30 min of contact between the milk substrate
and the sludge. The results obtained in the present work
confirm the rapid adsorption of organic substrate onto
the biological sludge reported by Hwu [64] and Nadais
et al. [37].

Figure 14 and Table 3 present a comparison of the spe-
cific COD removal rates obtained in this work and those
obtained in batch reactors with no recirculation with a
biomass content of 5 g VSS L−1.[8] It can be seen that for

Figure 13. Relation between specific COD removal rate and
specific methane production rate. r², correlation coefficient.
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Figure 14. Comparison of COD removal rates from this work
and literature.[8]

loads above 5 g COD L−1, recirculation improves the COD
removal rate in about 30% for tests performed with the
same VSS content compared with the results with no recir-
culation. The half saturation constant obtained in this work
for the removal of CODcolloidal + soluble was 9.4 g L−1,
lower than the value obtained for the batch tests with no
recirculation (9.6 g L−1, [8]), indicating lower mass trans-
fer limitations with effluent recirculation. An even wider
difference may be observed for the half saturation con-
stants referring to methane formation (Table 3). This means
that the recirculation of the treated effluent and the hydro-
dynamic conditions have a significant beneficial influence
upon the kinetics of the degradation process in intermittent
anaerobic systems.

Figure 15 presents the COD balances for test 4 (organic
load of 8.9 g COD L−1), while Figure 16 presents the COD
balances for a test performed in similar conditions but
with no effluent recirculation, with an organic load of
9 g COD L−1 and 5 g VSS L−1, [8]. Surprisingly, it can
be seen that initial methane production was faster in the
test with no recirculation. Yet, initial adsorption (retained
COD) is more pronounced in the test with effluent recircu-
lation probably due to a more complete contact between
the substrate and the biomass. Although initial adsorp-
tion is higher with effluent recirculation, also the substrate

Figure 15. COD balance for test 4 (8.9 g COD L–1);
coll = colloidal, SNA = soluble not acidified.

Figure 16. COD balance for a batch test without recirculation
with a load of 9 g COD L–1 and 5 g VSS L–1 (adapted from [8]);
coll, colloidal; SNA, soluble not acidified.

degradation is higher for this condition, leading to higher
methanization efficiency. The maximum COD biodegra-
dation attained with effluent recirculation at the load of
8.9 g COD L−1 was 96%, a higher value than the one
obtained in the batch test (maximum 85%).

These results are in agreement with those previously
reported by Nadais et al.,[21] who described an improve-
ment of intermittent UASB reactor performance when
effluent recirculation was applied during the feedless peri-
ods (methanization rose to 95% as compared to 80–88%
attained with no effluent recirculation).

The results obtained in this work also suggest that for
organic loads above 10 g COD L−1, the feedless periods
of intermittent operation should be longer than the feed
periods as has been suggested by Coelho et al.[29] On
the other hand, in this work, it was confirmed that the
monitoring of high-rate reactors treating complex fat con-
taining wastewater based on the monitoring of the COD
of the produced effluent may be misleading in what con-
cerns the real biological degradation as stated by Nadais
et al. [22] and by Jeganathan et al. [25]. This is because
the difference between the feed COD and the effluent
COD may not express the degradation of the substrate
since accumulation may frequently occur in the sludge
bed. The adequate parameter to monitor high-rate anaero-
bic reactors should be the efficiency of methanization of the
removed COD.

Conclusions
In laboratory experiments of UASB reactors with total
effluent recirculation treating dairy wastewater, there is a
rapid COD removal on the first day of the tests, evidenced
by the decrease in CODcolloidal + soluble, the removal
of which is not followed by a biological degradation evi-
denced by CH4 production. This is due to adsorption of
the organic matter onto the surface of the biological sludge
the adsorption of which is faster than biological degrada-
tion. The CH4-specific production rate, calculated by the
initial velocity method (�t = 1 d), was about 45% of the
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specific CODcolloidal + soluble removal rate. This con-
firms that the monitoring of high-rate reactors treating fat
containing substrates should be based on the efficiency
of methanization of removed COD rather than on the
COD removal efficiency. The discrepancy between the ini-
tial COD removal and the CH4 production was observed
mostly on the first day of the tests fading on the second day,
which suggests that a period for intermittency in UASB
reactors treating dairy wastewater should be longer than
one day and possibly two days.

In what concerns the influence of the hydrodynamic
conditions upon the behaviour of high-rate reactors treating
milk wastewaters, it can be said that effluent recirculation
during feedless periods improved significantly (up to 30%
increase) the specific CODcolloidal + soluble removal
rate in comparison with what was observed in classical
batch reactors with no recirculation. A more complete
substrate degradation as measured by methanization effi-
ciency was also observed with effluent recirculation. The
observed bed expansion was due to the biogas production
and the application of effluent recirculation led to a sludge
bed contraction after all the substrates were degraded. The
settleability of the anaerobic sludge improved by the intro-
duction of effluent recirculation, this effect being more
pronounced for the higher loads.
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