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1 Introduction

To the best of our knowledge the fractional Fourier transform (FRFT) was in-
troduced in the mathematical literature as early as 1929. In fact, as about the
initial ideas related with FRFT, we may point out the works of N. Wiener in
1929, H. Weyl in 1930, E. U. Condon in 1937, H. Kober in 1939, A. P. Guinand
in 1956, A. L. Patterson in 1959, V. Bargmann in 1961, De Bruijn in 1973 and
R. S. Khare in 1974, among others. Then, the concept was somehow reinvented
by Namias when solving some differential and partial differential equations
in quantum mechanics [1] in 1980. Such results were later improved on by
McBride and Kerr [2]. During the 1990s, a large number of papers appeared
in the literature tying the concept of the fractional Fourier operators to many
other fields such as signal processing and optics [3,4,5,6,7,8,9]. Recently, it
has been widely applied e.g. in radar, watermarking, pattern recognition, cryp-
tography, wavelet transforms and neural networks [10,11,12,13,14]. It is also
clear that the consideration of integral transforms of fractional type opens
new possibilities in fractional signal processing analysis [15]. In particular, the
FRFT may be interpreted as a rotation by an angle in the time-frequency
plane or decomposition of the signal in terms of chirps.

Note that in all the time-frequency representations [16,17], one normally
uses a plane with two orthogonal axes corresponding to time and frequency.
In the classical sense, if we consider a signal to be represented along the time
axis and its ordinary Fourier transform to be represented along the frequency
axis, then the Fourier transform operator can be visualized as a change in
representation of the signal corresponding to a counterclockwise rotation of the
axis by an angle π/2. That is why two successive rotations of the signal through
π/2 will result in an inversion of the time axis – which from the mathematical
point of view lead us to the inverse of the Fourier transform. Moreover, four
successive rotations will leave the signal unaltered since a rotation through
2π of the signal should leave the signal unaltered (and from the mathematical
viewpoint it means that the Fourier integral operator is indeed an involution of
order four). The FRFT is a linear operator that corresponds to the rotation of
the signal through an angle which is not a multiple of π/2. Instead, as above
mentioned, it provides us with a representation of the signal along an axis
which makes an angle α with the time axis. That is why now-a-days it is well
recognized that FRFT leads to a generalization of time and frequency domains
– being therefore very useful in signal analysis and processing. In particular,
this obviously yields the possibility of using the FRFT in time-varying signals
for which the classical Fourier transform fails to work (cf. also [18,19,20,21,
22,23,24]).

The present paper has the same spirit of the five papers listed below along
the time axis: Almeida [25], Zayed [24], Deng et al. [26], Wei at al. [23], and
the updated paper of Singh at al. [22], where the formulas for the FRFT’s of a
product and of a convolution of two functions were introduced in certain func-
tion spaces. Those convolutions are very interesting, and applicable to both
theoretical and practical problems as they may be viewed as extensions of the
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convolution theorem of the Fourier transform. Namely, a convolution trans-
form, mathematically, is diagonalized by another transform; and in the new
(momentum) representation a convolution turns into an operator of multipli-
cation by a function (see [27,28]). An interesting description of the history of
the development of convolutions for FRFT and their potential applications was
addressed in [22]. We can say that there were many endeavors of researchers,
explicit and implicit, of developing this research direction. However, convo-
lutions and products of FRFT have not been studied intensively as those of
Fourier transform, because, in our opinion, the FRFT is actually much more
complicated than the Fourier one.

The main purpose of this paper is to present two new convolutions for the
FRFT, analyze a consequent comparison with other known convolutions, and
to establish the solvability of their associated convolution equations of both
the first and second kind in L1(R) and L2(R) spaces. At the same time, the
paper shows that the convolutions given in [22,23,24,25,26] can be defined in
both those spaces. In particular, this will be a key point for the circumstance
that the convolution integral equations induced by those convolutions can be
solved completely.

The paper is divided into four sections and organized as follows. In the next
section, we recall the FRFT, define a L1-norm, and present our comments and
comprehensive analysis on the convolution and product theorems of the five
papers cited above. In Section 3, we give two new convolution multiplications
and prove their fundamental properties. As we shall verify, there are two dif-
ferent ways of convoluting in each one of the convolutions. This fact may have
some advantage over others in filtering. Indeed, associated with the computa-
tional complexity and input conditions, we will have two options for choosing
filtering (in which the first possibility may be better than the second one or
vice-versa). In Section 4, by using the mentioned convolutions, we investigate
classes of convolution integral equations in L1(R) and deduce their solvability
together with explicit solution formulas. We observe that although the results
are formulated for objects in L1(R), they still hold true for those in L2(R) as
the fractional Fourier operator can be defined in this domain, and the proofs
are quite similar. Furthermore, we provide an example of convolution equation
which satisfies all the conditions of Theorems 7 and 8 below.

2 Convolution and product theorems

This section presents the fractional Fourier transform (together with some
necessary notations), shows a slight difference between the convolution and
product theorems, and analyzes the well-known convolutions and products
associated with FRFT.

The fractional Fourier transform (FRFT) with angle α is defined in L1(R)
with the help of the transformation kernel Kα and given by

Fα [f ] (p) =

∫ ∞

−∞
f(x)Kα(x, p)dx, (2.1)
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where

Kα(x, p) =



























c(α)√
2π

exp
{

ia(α)
(

x2 + p2 − 2b(α)xp
)}

,

if α is not a multiple of π

δ (x− p), if α is a multiple of 2π

δ (x+ p), if α+ π is a multiple of 2π,

with

a(α) =
cotα

2
, b(α) = secα, c(α) =

√
1− i cotα.

Throughout this paper the constants a(α), b(α) and c(α), for simplicity, will
be denoted as a, b and c. For α ∈ 2πZ, the FRFT becomes the identity, and
for α + π ∈ 2πZ, it is the parity operator. Therefore, from now on we shall
confine our attention to Fα for α /∈ πZ.

In the sequel, we define the norm ‖f‖0 of f ∈ L1(R) as

‖f‖0 :=
1

√

2π|sinα|

∫

R

∣

∣f(x)
∣

∣dx.

Before going to the next section, we shall analyze and compare the convolu-
tions studied in [22,23,24,25,26]. Let F denote the Fourier transform defined
as

F [f ] (x) =

∫ ∞

−∞
e−ixyf(y)dy.

Let us use W := F (L1(R)) to denote the Wiener algebra. When comparing
in detail the proofs of the convolution theorems of Almeida and others, we
observe that the domain W ∩ L1(R) (or L2(R)) is necessary in the proofs of
[25], while the wider domain L1(R) (or L2(R)) is possible to be considered in
other works. In particular, we remark that:

– Equations (2), (4), and (8) in [25] can be considered as convolution the-
orems in some special circumstance, and they become classical convolu-
tion theorems for the Fourier transform when α = π/2 (and not as noted
in [22]). The reader may refer to [29, Theorem 7.8] formulated in the
Schwartz space, which is dense in both the spaces L1(R) and L2(R). For
instance, consider the expression (2) in [25] for α = π/2, and z = xy. Since
x, y ∈ W ∩L1(R), there exist x0, y0 ∈ L1(R), such that Fx0 = x, Fy0 = y.
We then have z = Fx0 · Fy0 = F (x0 ∗ y0). It is easy to show that if
f ∈ W ∩ L1(R), then (F 2f)(u) = f(−u) := f̌(u) for almost every u ∈ R

(with Lebesgue measure). Hence, (Fz)(u) = F 2(x0∗y0)(u) = (x0∗y0)(−u).
Thus,

Zπ/2(u) = (Fz)(u) = (x0 ∗ y0)(−u)

can be viewed as a convolution (with reflection) despite the implicit form
of this formula. The right-hand side of the last identity is exactly as (cf.
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[25, (2)])

(Fz)(u) = (x0 ∗ y0)(−u) =
(

x̌0 ∗ y̌0
)

(u)

= (F 2x0 ∗ F 2y0)(u) = (Fx ∗ Fy)(u).
However, without the assumption x, y ∈ W ∩ L1(R), the expressions (2),
(4), and (8) in [25] could not be product identities as the expression F 2x
may have no sense. Of course, the convolution and product theorems in
[25] are still valid for x, y ∈ L2(R). In general, the three above-mentioned
expressions are product identities for α ∈ R.

– As is showed, the operations ⋆ and ⊗ in [24] are convolutions. From our
point of view, they are not so cumbersome and may be useful in applica-
tions.

– The first expression in [26] is a convolution, and the second one is simply
a product identity. However, when α = π/2 the second one turns out to be
the Fourier case as showed above in Almeida’s case.

– Equations (16) and (17) in [23, Theorem 1] are in fact generalized convo-
lution and product theorems (see [27,28]). In this work, the authors use
the linear canonical transform (LCT) which is a result of parameterizing
the kernel of FRFT by four items. LCTs are general transforms that have
many potential applications due to their flexibility. On the other hand,
the computation of LCTs may be more expensive since they contain four
parameters.

– Finally, the expressions given in [22, (11), and (22)] are updated general-
ized convolution and product transforms. It should be emphasized that if
x, y ∈ L1(R), then formula (22) may fail due to the fact that the function
z(t) defined as in [22, (11), (12)] may not be integrable. However, the as-
sumption that x, y ∈ W ∩ L1(R) guarantees the validity of this theorem,
and the expression given in [22, (22)] turns into the Fourier case when
α = π/2 – as the authors stated there.

Observe that the above-mentioned convolutions and products hold in the
Hilbert space L2(R) without any additional condition.

3 New convolutions and their properties

In this section, we introduce two new convolutions associated with the FRFT,
which are defined in the both domains L1(R) and L2(R), and prove their
basic properties. However, only the proofs for the convolutions (3.1) and (3.4)
in L1(R) are given, since the other cases can be considered in a similar way.

Definition 1 We define the convolution operation ⊙ by

h(s) := (f ⊙ g) (s) =
c√
2π

∫ ∞

−∞
eia(2u

2−2su+ s

ab
− u

ab )f (u)×

g

(

s− u+
1

2ab

)

du. (3.1)
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Theorem 1 Let ψ(x) := ei(x−ax2). If f, g ∈ L1(R), then

‖f ⊙ g‖0 ≤ ‖f‖0 ‖g‖0 , (3.2)

Fα [f ⊙ g] (x) = ψ(x)Fα [f ] (x)Fα [g] (x). (3.3)

In other words, the product f ⊙ g defines a function belonging to L1(R), and
satisfies the convolution theorem for the FRFT associated with the function ψ.

Proof We first prove inequality (3.2). Note that |c| = 1/| sinα|. Using f, g ∈
L1(R), and changing the variable s− u+ 1/2ab = v, we have

‖f ⊙ g‖0 =
1

√

2π |sinα|

∫ +∞

−∞
|(f ⊙ g) (s)| ds

≤ 1

2π |sinα|

∫ +∞

−∞

∫ +∞

−∞
|f(u)|

∣

∣

∣

∣

g

(

s− u+
1

2ab

)∣

∣

∣

∣

duds

=
1

2π |sinα|

∫ +∞

−∞
|f(u)| du×

∫ +∞

−∞
|g (v)| dv

= ‖f‖0 ‖g‖0 ,

which proves the inequality (3.2). This inequality ensures immediately that
the convolution defined by (3.1) belongs to L1(R).

Now we will prove the factorization property (3.3). From the definition
(2.1) of FRFT, we have

ψ(x)Fα [f ] (x)Fα [g] (x)

= ei(x−ax2) × c√
2π

∫ ∞

−∞
eia(x

2+u2−2xub)f(u)du

× c√
2π

∫ ∞

−∞
eia(x

2+v2−2xvb)g(v)dv

= ei(x−ax2)×
c2

2π

∫ +∞

−∞

∫ ∞

−∞
eia[2x

2+u2+v2−2xb(u+v)]f (u) g (v) dudv

=
c2

2π

∫ +∞

−∞

∫ ∞

−∞
eia[x

2+u2+v2−2xb(u+v− 1

2ab )]f (u) g (v) dudv.

Making the change of variables u = u and s = u+ v − 1

2ab
, we obtain

ψ(x)Fα [f ] (x)Fα [g] (x)

=
c2

2π

∫ +∞

−∞

∫ ∞

−∞
e
ia

[

x2+u2+(s−u+ 1

2ab )
2−2xbs

]

f (u)×

g

(

s− u+
1

2ab

)

duds
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=
c2

2π

∫ +∞

−∞

∫ ∞

−∞
eia[x

2+2u2+s2−2su+ s

ab
− u

ab
−2xbs]f (u)×

g

(

s− u+
1

2ab

)

duds

=
c√
2π

∫ +∞

−∞
eia[x

2+s2−2xbs]×
{

c√
2π

∫ ∞

−∞
eia[2u

2−2su+ s

ab
− u

ab ]f (u) g

(

s− u+
1

2ab

)

du

}

ds

= Fα

{

c√
2π

∫ ∞

−∞
eia[2u

2−2su+ s

ab
− u

ab ]f (u)×

g

(

s− u+
1

2ab

)

du

}

(x) = Fα [f ⊙ g] (x).

The proof is complete.

f(t)
✲

g(t)
✲

n
+
·
g
+

m
·
f

✲

✲

co
n
v
o
lu
ti
o
n

✲

c/
(m

·

√

2
π
)

h(s)
✲

Fig. 1 First way of performing the convolution (3.1)

Let us write
m(t) := eiat

2

, n±(t) := eia(t
2± 1

ab
t),

and take into account

g±(t) := g(t± 1

ab
)

in which g± can be considered as a delay or shift of the function g with the
step (1/ab). Clearly, the functions m and n± have no zeros and they have
equal constant magnitude, i.e., |m(t)| = |n±(t)| = 1. Therefore, we can write

m−1(t) :=
1

m(t)
, n−1

± (t) :=
1

n±(t)
.

There are two different ways of performing the convolution (3.1) via the Fourier
convolution denoted by ∗, as it will be explained below.
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(1) We can represent h(s) := (f ⊙ g) (s) as

h(s) =
(

m · f
)

∗
(

n+ · g+
)

(s).
1

m(s)
.
c√
2π
.

In this case, the convolution of f and g is obtained by multiplying f by a
chirp (m), convolving with g delayed by (1/ab) and multiplied by a new
chirp (n+), dividing by a chirp (m) and scaling by a factor (c/

√
2π).

(2) On the other hand, we can write

h(s) =
(

n− · f
)

∗
(

m · g+
)

(s).
1

n−(s)
.
c√
2π
.

Then the same convolution of f and g is obtained by multiplying f by
a chirp (n−), convolving with g delayed by (1/ab) and multiplied by a
different chirpm, dividing by the chirp n− and scaling by a factor (c/

√
2π).

Therefore, there are also two options for choosing chirp functions. This fact
can be useful for comparison realizable approaches and (numerical) solutions
for practical problems. Nevertheless, the FRFT of this convolution is the same
as in the expression on the right-hand side of (3.3). Figures 1 and 2 illustrate
two different ways of performing the convolution.

f(t)
✲

g(t)
✲

m
·
g
+

n
−

·
f

✲

✲

co
n
v
o
lu
ti
o
n

✲

c/
(n

−
·

√

2
π
)

h(s)
✲

Fig. 2 Second way of performing the convolution (3.1)

In other words, convolution (3.1), when applied to some specific problems,
is more flexible than those in [22,23,24,25,26].

As we shall verify in what follows, convolution (3.1) satisfies the commu-
tative, associative and distributive properties:

– Commutativity. From the factorization property (3.3), we have

Fα [f ⊙ g] (x) = ψ(x)Fα [f ] (x)Fα [g] (x),

Fα [g ⊙ f ] (x) = ψ(x)Fα [f ] (x)Fα [g] (x),

which implies that

Fα [f ⊙ g] (x) = Fα [g ⊙ f ] (x).

Hence f ⊙ g = g ⊙ f .
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– Associativity. From the factorization property (3.3), we have

Fα [(f ⊙ g)⊙ h](x) = ψ2(x)Fα [f ] (x)Fα [g] (x)Fα [h] (x),

Fα [f ⊙ (g ⊙ h)](x) = ψ2(x)Fα [f ] (x)Fα [g] (x)Fα [h] (x),

which implies that

Fα [(f ⊙ g)⊙ h] (x) = Fα [f ⊙ (g ⊙ h)] (x).

Hence,
(f ⊙ g)⊙ h = f ⊙ (g ⊙ h).

– Distributivity. Observing that

Fα [f ⊙ (g + h)] (x) = ψ(x)Fα [f ] (x)Fα [g + h] (x),

and

Fα [f ⊙ g + f ⊙ h] (x)

= ψ(x)Fα [f ] (x)Fα [g] (x) + ψ(x)Fα [f ] (x)Fα [h] (x),

we get
Fα [f ⊙ (g + h)] (x) = Fα [f ⊙ g + f ⊙ h] (x).

Hence,
f ⊙ (g + h) = f ⊙ g + f ⊙ h.

Definition 2 We define the product f ⊗ g by

h(s) := (f ⊗ g) (s) =
c√
2π

∫ ∞

−∞
eia(2u

2−2su− s

ab
+ u

ab )×

f (u) g

(

s− u− 1

2ab

)

du. (3.4)

The following theorem is proved similarly to Theorem 1.

Theorem 2 Let ζ(x) = ei(−x−ax2). If f , g ∈ L1(R), then:

‖f ⊗ g‖0 ≤ ‖f‖0 ‖g‖0 , (3.5)

Fα [f ⊗ g] (x) = ζ(x)Fα [f ] (x)Fα [g] (x). (3.6)

In other words, the product f ⊗ g defines a function belonging to L1(R), and
satisfies the convolution theorem for the FRFT associated with the function ζ.

Similarly to the convolution (3.1), there are also two different ways of
performing the convolution (3.4). Namely:

(1) h(s) =
(

m · f
)

∗
(

n+ · g−
)

(s).m−1(s).(c/
√
2π);

(2) h(s) =
(

n+ · f
)

∗
(

m · g−
)

(s).n−1
+ (s).(c/

√
2π).

We will omit the corresponding illustrative figures due to limitations of space.
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Remark 1 The convolution (3.4) also satisfies the commutative, associative
and distributive properties. Let us omit the proofs for this claim as they are
similar to those of convolution (3.1).

Thanks to inequalities (3.2) and (3.5), the convolution operators defined
by (3.1) and (3.4) are bounded in L1(R). From an algebraic point of view, the
space L1(R), equipped with each one of the convolution multiplications (3.1)
and (3.4), becomes a commutative Banach algebra.

4 Classes of convolution equations

In this section, we establish the solvability of several classes of convolution
equations associated with the FRFT, and obtain their explicit solutions for-
mulas.

We start by considering the following type of integral equation in the Ba-
nach space L1(R):

λϕ(s) +
(

k ⊙ ϕ
)

(s) = f(x), (4.1)

where λ ∈ C and k ∈ L1(R) are given, and ϕ will be determined in this space.
We shall use the notation

A(s) := λ+ ψ(s)Fα [k] (s).

The following proposition is useful for proving Theorem 3.

Proposition 1 (1) If λ 6= 0, then A(s) 6= 0 for every s outside a finite

interval.

(2) If A(s) 6= 0 for every s ∈ R, then the function 1/A(x) is bounded and

continuous on R.

Proof (1) By the Riemann-Lebesgue lemma, the function A(x) is continuous
on R and

lim
|x|→∞

A(x) = λ 6= 0,

i.e., A(x) takes the value λ at infinity. Since λ 6= 0 and A(x) is continuous,
there exists an R > 0 such that A(x) 6= 0 for every |x| > R. Item (1) is proved.

(2) Due to the continuity of A and lim|s|→∞A(s) = λ 6= 0, there exist
R0 > 0, ǫ1 > 0 such that

inf
|x|>R0

|A(x)| > ǫ1.

As A is continuous and does not vanish on the compact set

S(0, R0) = {x ∈ R : |s| ≤ R0},

there exists ǫ2 > 0 such that

inf
|s|≤R0

|A(s)| > ǫ2.
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We deduce

sup
s∈R

1

|A(s)| ≤ max

{

1

ǫ1
,
1

ǫ2

}

<∞.

This implies that the function 1/|A(s)| is continuous and bounded on R.
Since Fαf ∈ L1(R), we have

(

Fαf/A
)

∈ L1(R). The proposition is proved.

Theorem 3 Assume that A(s) 6= 0 for every s ∈ R, and one of the following

conditions is satisfied:

(i) λ 6= 0, and Fα[f ] ∈ L1(R);

(ii) λ = 0, and
Fαf

Fαk
∈ L1(R).

Then equation (4.1) has a solution in L1(R) if and only if

F−α

(

Fαf/A
)

∈ L1(R).

If this is the case, then the solution is given by

ϕ = F−α

(

Fαf/A
)

.

Proof Let us first assume that (i) is fulfilled.
Necessity. Suppose that equation (4.1) has a solution ϕ ∈ L1(R). Applying Fα

to both sides of equation (4.1) and using the factorization identity in Theorem
1, we obtain

A(s)(Fαϕ)(s) = (Fαf)(s).

Since A(s) 6= 0 for every s ∈ R,

Fαϕ =
Fαf

A
. (4.2)

As the function 1/A(x) is bounded and continuous on R (cf. Proposition 1)
and Fαf ∈ L1(R), we deduce that

(

Fαf/A
)

∈ L1(R). We can now apply
the inverse transform of Fα to (4.2) to obtain the solution as stated in the
theorem. The necessity part is proved.
Sufficiency. Consider the function

ϕ := F−α

(Fαf

A

)

.

It implies that ϕ ∈ L1(R). Hence, Fαϕ = Fαf/A. Equivalently, A (Fαϕ) =
Fαf . Due to the factorization identity,

Fα

[

λϕ+ (k ⊙ ϕ)
]

= Fαf.

By the uniqueness theorem of Fα, we conclude that ϕ fulfills equation (4.1)
for almost every s ∈ R. Item (i) is proved.

Since |ψ(x)| = 1, the function 1/ψ is continuous and bounded on R. Hence,
Fαf/Fαk ∈ L1(R) if and only if Fαf/

(

ψ · Fαk
)

∈ L1(R). Therefore, the case
of (ii) may be proved similarly to that of item (i). The proof of Theorem 3 is
complete.
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Observe that in the last theorem we have just analyzed both situations,
where (4.1) can be a first or second kind integral equation depending whether
λ = 0 or λ 6= 0, respectively.

Theorem 4 below can be proved in the same way as Theorem 3.

Theorem 4 Assume that

B(s) := λ+ ζ(s)Fα [k] (s) 6= 0

for every s ∈ R, and that one of the following conditions is satisfied:

(i) λ 6= 0, and Fα[f ] ∈ L1(R);

(ii) λ = 0, and
Fαf

Fαk
∈ L1(R).

Then, the equation

λϕ(s) +
(

k ⊗ ϕ
)

(s) = f(x)

has a solution in L1(R) if and only if F−α

(

Fαf/B
)

∈ L1(R). If this is the

case, then the solution is given by

ϕ = F−α

(

Fαf/B
)

.

We can solve the convolution equations induced by the convolutions given
in the works [22,23,24,26]. Namely, let us use the common symbols ⋆ and θ(x)
to denote the convolution operations and the weight-functions given in those
papers, respectively. Consider the following equation:

λϕ(s) +
(

k ⋆ ϕ
)

(s) = f(s), (4.3)

where λ ∈ C and k ∈ L1(R) are given, and ϕ is to be found in this space. We
set

C(s) := λ+ θ(s)Fα [k] (s).

Theorem 5 Assume that C(s) 6= 0 for every s ∈ R, and that one of the

following conditions holds true:

(i) λ 6= 0, and Fα[f ] ∈ L1(R);

(ii) λ = 0, and
Fαf

Fαk
∈ L1(R).

Then equation (4.3) has a solution in L1(R) if and only if

F−α

(

Fαf/C
)

∈ L1(R).

If this is the case, then the solution is given by

ϕ = F−α

(

Fαf/C
)

.

The proof of this theorem is in the same way as that of Theorem 3, and
hence is here omitted.
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Example 1 The following equation can serve as an illustration of the above-
mentioned theorems including the convolutions considered in the four papers
just cited above. It suffices to formulate the results for the case of L1(R) as
those for L2(R) are similar. Consider the convolution equation

λϕ(x) + (k ⋆ ϕ)(x) = f(x), (4.4)

for any λ ∈ C, and the symbol ⋆ denotes any convolution multiplication among
(3.1), (3.4) and those in [22,23,24,26]. We choose k(x) = e−a|x| with ℜ(a) > 0,

f(x) = e−
1

2
x2

. It is easily seen that k, f ∈ L1(R). Let us denote by Kα(x) the
FRFT of k. Obviously, |θ(x)| = 1, and for a fixed λ the function

M(x) = λ+ θ(x)Kα(x),

is bounded and continuous, and tends to λ as |x| → +∞.

– The case λ 6= 0. It holds Kα ∈ L1(R). Additionally, note that the function
θ(x)Kα(x) is continuous and bounded, and vanishing at infinity. There-
fore, if λ is arbitrarily and sufficiently large, then M(x) 6= 0 for every
x. For example, the assumption that |λ| > maxx∈R |θ(x)Kα(x)| is a suffi-
cient condition which guarantees that M(x) is a non-vanishing function.
Concerning the second assumption, we have

Fα[f ](x) = e−
1

2
x2 ∈ L1(R).

Therefore, we have obtained the solvability of the equation for this case,
and we can give its explicit solution.

– The case λ = 0.We can prove without difficulty that Fα[f ]/Fα[k] ∈ L1(R).
For instance, if it is the Fourier case, then

F [f ](s)/F [k](s) = 2a(a2 + s2)e−
1

2
s2 .

This function belongs to L1(R), and it therefore fulfills the condition in
Theorems 3 and 4.

Thus, in both cases all the conditions of Theorems 3 and 4 are fulfilled, hence
the corresponding equation possesses a solution and we have the explicit so-
lution formula.

Conclusion. We have introduced two new convolutions associated with the
FRFT, and established the complete solvability of the convolution equations
induced by these convolutions. Observe that the explicit solution formula was
proved for the above-mentioned convolution-type equations, which may be of
the first or the second kind integral equations.
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